60,142 research outputs found

    The design and implementation of a relational programming system.

    Get PDF
    The declarative class of computer languages consists mainly of two paradigms - the logic and the functional. Much research has been devoted in recent years to the integration of the two with the aim of securing the advantages of both without retaining their disadvantages. To date this research has, arguably, been less fruitful than initially hoped. A large number of composite functional/logical languages have been proposed but have generally been marred by the lack of a firm, cohesive, mathematical basis. More recently new declarative paradigms, equational and constraint languages, have been advocated. These however do not fully encompass those features we perceive as being central to functional and logic languages. The crucial functional features are higher-order definitions, static polymorphic typing, applicative expressions and laziness. The crucial logic features are ability to reason about both functional and non-functional relationships and to handle computations involving search. This thesis advocates a new declarative paradigm which lies midway between functional and logic languages - the so-called relational paradigm. In a relationallanguage program and data alike are denoted by relations. All expressions are relations constructed from simpler expressions using operators which form a relational algebra. The impetus for use of relations in a declarative language comes from observations concerning their connection to functional and logic programming. Relations are mathematically more general than functions modelling non-functional as well as functional relationships. They also form the basis of many logic languages, for example, Prolog. This thesis proposes a new relational language based entirely on binary relations, named Drusilla. We demonstrate the functional and logic aspects of Drusilla. It retains the higher-order objects and polymorphism found in modern functional languages but handles non-determinism and models relationships between objects in the manner of a logic language with notion of algorithm being composed of logic and control elements. Different programming styles - functional, logic and relational- are illustrated. However, such expressive power does not come for free; it has associated with it a high cost of implementation. Two main techniques are used in the necessarily complex language interpreter. A type inference system checks programs to ensure they are meaningful and simultaneously performs automatic representation selection for relations. A symbolic manipulation system transforms programs to improve. efficiency of expressions and to increase the number of possible representations for relations while preserving program meaning

    CREOLE: a Universal Language for Creating, Requesting, Updating and Deleting Resources

    Get PDF
    In the context of Service-Oriented Computing, applications can be developed following the REST (Representation State Transfer) architectural style. This style corresponds to a resource-oriented model, where resources are manipulated via CRUD (Create, Request, Update, Delete) interfaces. The diversity of CRUD languages due to the absence of a standard leads to composition problems related to adaptation, integration and coordination of services. To overcome these problems, we propose a pivot architecture built around a universal language to manipulate resources, called CREOLE, a CRUD Language for Resource Edition. In this architecture, scripts written in existing CRUD languages, like SQL, are compiled into Creole and then executed over different CRUD interfaces. After stating the requirements for a universal language for manipulating resources, we formally describe the language and informally motivate its definition with respect to the requirements. We then concretely show how the architecture solves adaptation, integration and coordination problems in the case of photo management in Flickr and Picasa, two well-known service-oriented applications. Finally, we propose a roadmap for future work.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    Compiling ER Specifications into Declarative Programs

    Full text link
    This paper proposes an environment to support high-level database programming in a declarative programming language. In order to ensure safe database updates, all access and update operations related to the database are generated from high-level descriptions in the entity- relationship (ER) model. We propose a representation of ER diagrams in the declarative language Curry so that they can be constructed by various tools and then translated into this representation. Furthermore, we have implemented a compiler from this representation into a Curry program that provides access and update operations based on a high-level API for database programming.Comment: Paper presented at the 17th Workshop on Logic-based Methods in Programming Environments (WLPE2007
    corecore