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Due to the abundance of data in today’s data-rich world, end-users

increasingly need to perform various data extraction and transformation tasks.

While many of these tedious tasks can be performed in a programmatic way,

most end-users lack the required programming expertise to automate them

and end up spending their valuable time in manually performing various data-

related tasks. The field of program synthesis aims to overcome this problem

by automatically generating programs from informal specifications, such as

input-output examples or natural language.

This dissertation focuses on the design and implementation of new

systems for automating important classes of data transformation and extraction

tasks. It introduces solutions for automating data manipulation tasks on fully-

structured data formats like relational tables, or on semi-structured formats

such as XML and JSON documents.
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First, we describe a novel algorithm for synthesizing hierarchical data

transformations from input-output examples. A key novelty of our approach is

that it reduces the synthesis of tree transformations to the simpler problem of

synthesizing transformations over the paths of the tree. We also describe a new

and effective algorithm for learning path transformations that combines logical

SMT-based reasoning with machine learning techniques based on decision trees.

Next, we present a new methodology for learning programs that migrate

tree-structured documents to relational table representations from input-output

examples. Our approach achieves its goal by decomposing the synthesis task to

two subproblems of (A) learning the column extraction logic, and (B) learning

the row extraction logic. We propose a technique for learning column extraction

programs using deterministic finite automata, and a new algorithm for predicate

learning which combines integer linear programing and logic minimization.

Finally, we address the problem of automating data extraction tasks

from natural language. Specifically, we focus on data retrieval from relational

databases and describe a novel approach for learning SQL queries from English

descriptions. The method we describe is fully automatic and database-agnostic

(i.e., does not require customization for each database). Our method combines

semantic parsing techniques from the NLP community with novel programming

languages ideas involving probabilistic type inhabitation and automated sketch

repair.
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Chapter 1

Introduction

Much of the data that users deal with today are organized with respect

to well-defined data models. These data models include fully-structured data

formats like relational databases, and semi-structured hierarchical formats such

as XML and JSON documents. These structural formats are used by many

applications in various domains -including finance, medicine, retail, and more-

to store and exchange data. For instance, XML and JSON documents are

popular for exporting data and transferring them between different applications

because they incorporate both data and meta-data. On the other hand, since

accessing data in relational databases does not require navigating through a

hierarchy, they are the best fit for applications that frequently perform data

extraction queries on large data sources.

End-users of fully- or semi- structured data types often perform various

tasks which involve data extraction and transformation. For example, a user

may want to reorganize the structure of elements in an XML document, or

converting its data to a relational format. These examples require transfor-

mation of the data stored in the XML document. Another example, which

involves data extraction, is when a user needs to query data stored in some
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relational database by using a declarative query languages such as SQL. Many

of these tasks are tedious to be performed manually, especially when they are

applied to large data sources. In principle, one may accomplish these tasks

by writing a program to automate them. However, most end-users often do

not have the required expertise to write such programs and end up spending

their time in manually performing them. The field of program synthesis aims

to overcome this problem by automatically generating programs from informal

specifications, such as input-output examples or natural language.

The idea of program synthesis is to automatically find programs in

an underlying domain specific language (DSL) that satisfy a given set of

constraints expressed in formal or informal specifications [71]. Since providing

formal specification of a problem requires domain-specific knowledge, the

program synthesis systems that are designed to interact with non-expert end-

users rely on informal problem descriptions such as input-output examples or

natural language. These systems can be categorized to two main classes of

programming-by-example (PBE) [117, 75] and programming-by-natural-language

(PBNL) [46].

Programming by Example (PBE). There are active researches in the field

of program synthesis that focus on generating programs from examples [73, 26,

161, 61, 59, 89, 145]. Given a set of input-output examples, the goal of PBE

systems is to learn programs such that applying them to each input example

return its corresponding output example. Such computer-aided programming

2



techniques have been successful in a wide range of domains, ranging from

spreadsheet programming [73, 27, 108], to string manipulation [161], to table-to-

table transformations [59, 176, 89, 145]. PBE has emerged as a favorite program

synthesis methodology since reasoning about examples is more systematic than

other types of informal specification, and providing examples is easy for end-

users in many domains.

Programming by Natural Language (PBNL). Although PBE approach

is successful in providing solutions for many synthesis problems, it is not

effective in cases where constructing examples is difficult, or a large number

of examples is required to describe a task. For instance, providing examples

to describe a task in the database domain requires the user to be familiar

with the underlying database schema. In such scenarios, it is easier for end-

users to specify the problem in natural language. Therefore, a wide range

of program synthesizers use the PBNL approach to generate programs from

natural language specifications [46, 113, 78, 47, 149, 148, 110] in variety of

contexts including databases, spreadsheets and smartphone automation scripts.

In this dissertation, we show how program synthesis can help non-expert

users to automate their data manipulation tasks. We introduce practical

methods based on PBE and PBNL approaches that synthesize data extraction

and transformation programs on fully- or semi- structured data formats. We also

present systems that are developed using these methodologies and empirically

demonstrate their practicality and effectiveness.
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First, we present a novel algorithm for synthesizing transformations

on tree-structured data -such as Unix directories and XML documents- from

input-output examples. Chapter 2 describes this technique in details. Our

central insight is to reduce the problem of synthesizing tree transformers to the

synthesis of list transformations that are applied to the paths of the tree. We

also propose a new and effective algorithm for learning path transformations

that combines SMT solving and decision tree learning. We implement our

method in a tool called Hades and use it to synthesize bash scripts and XSLT

programs for various tasks obtained from on-line forums. Our evaluation shows

that Hades can generate the desired program for all of these benchmarks in

0.77 seconds on average.

Chapter 3 presents a novel programming-by-example approach, and

its implementation in a tool called Mitra, for automatically migrating tree-

structured documents to relational tables. We propose a tree-to-table transfor-

mation DSL that facilitates synthesis by allowing us to decompose the synthesis

task into two subproblems of learning the column extraction logic, and learning

the row extraction logic. Moreover, we describe a synthesis technique for

learning column transformation programs using deterministic finite automata,

and present a predicate learning algorithm that reduces the problem to a

combination of integer linear programming and logic minimization. In order

to evaluate our approach, we use Mitra to automate 98 data transformation

tasks collected from StackOverflow. Our method can generate the desired

program for 94% of these benchmarks with an average synthesis time of 3.8

4



seconds. We also show that Mitra can convert real-world XML and JSON

datasets to full-fledged relational databases.

In Chapter 4 we focus on the synthesis of programs that extract data

from relational databases. We present a new technique for automatically

synthesizing SQL queries from natural language. At the core of our technique is

a new NL-based program synthesis methodology that combines semantic parsing

techniques from the NLP community with type-directed program synthesis

and automated program repair. Starting with a program sketch obtained using

standard parsing techniques, our approach involves an iterative refinement loop

that alternates between quantitative type inhabitation and automated sketch

repair. We use the proposed idea to build an end-to-end system called Sqlizer

that can synthesize SQL queries from natural language. Our method is fully

automated, works for any database without requiring additional customization,

and does not require users to know the underlying database schema. We

evaluate our approach on over 450 natural language queries concerning three

different databases, namely MAS, IMDB, and YELP. Our experiments show

that the desired query is ranked within the top 5 candidates in close to 90% of

the cases.

In summary, we show that program synthesis can automate various

difficult tasks that deal with fully- or semi- structured data formats. This

is especially helpful for end-users without any programming knowledge who

interact with large amount of data on a daily basis. In this dissertation, we

identify three important classes of data manipulation tasks and develop new
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methods that perform these tasks automatically by synthesizing programs from

informal descriptions. We show that all of these methods are practical and can

be used to solve real-world problems.
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Chapter 2

Hades 1

In this chapter, we introduce Hades, a new system for synthesizing tree

transformations from input-output examples. Hades develops a new method

for synthesizing transformations on hierarchical data formats, such as Unix

directories and XML documents. We evaluate our approach by collecting a

variety of interesting transformations collected from online forums and con-

ducting a user study. We show that Hades can efficiently synthesize tree

transformation programs for real world tasks.

We start by introducing our new method and motivations behind it

in Section 2.1, and then provide an overview of our approach through an example

in Section 2.2. Then, we introduce hierarchical data trees ( Section 2.3) and

describe the detail of our synthesis algorithm in Section 2.4 and Section 2.5.

In Section 2.6, we discuss our implementation and present the results of our user

study in Section 2.7. We finish this chapter with a brief summary in Section 2.8.

1Parts of this chapter have appeared in [184].
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2.1 Introduction

Much of the data that users deal with today are inherently hierarchical

or tree-shaped. Examples of these hierarchical data formats include:

• File systems: A file system is naturally seen as a tree where directories

represent internal nodes and files correspond to leaves.

• XML documents: In XML documents, data is organized as a tree struc-

ture, where each subtree is identified by a pair of start and end tags.

• HDF files: Many scientific documents are stored as HDF files that have

a tree structure. In this format, groups correspond to internal nodes and

datasets represent leaves.

End-users of such hierarchical data must often perform various kinds

of tree transformations on their data. For instance, consider the following

motivating scenarios:

• Given a directory called Music with subfolders for different musical gen-

res, a user wants to re-organize her files so that Music has subdirectories

for different classes of files (e.g., mp3, wma), and each such subdirectory

has further subdirectories for genres (Rock, Jazz etc.).

• Given an XML file, a user wants to convert the name attribute of a person

tag (e.g., <person name=...> ... </person>) to a nested element

within the person tag (e.g., <person><name>... </name></person>).
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In principle, one may accomplish these tasks by writing a program, such as

a Bash or XSLT script. However, given that end users often do not have the

expertise to write programs, an attractive alternative is to automatically syn-

thesize such a program from a high-level specification. In particular, synthesis

of programs from examples [74, 162] seems like a natural fit for this setting.

Motivated by this context, we propose a new algorithm, and its imple-

mentation in a system called Hades, for automatically synthesizing hierarchical

data transformations from input-output examples. Our algorithm operates on

a general abstraction of hierarchical data, called hierarchical data trees (HDTs),

and does not place any restrictions on the depth or fanout of the hierarchy. Our

method is able to synthesize a rich class of tree transformations that commonly

arise in real-world data manipulation tasks, such as restructuring of the data

hierarchy and modification of metadata.

Synthesizing programs over unbounded trees is a difficult problem. In

spite of recent attempts [13, 62, 136], the problem lacks a comprehensive

solution. For example, so far as we know, no existing technique can synthesize

nontrivial alterations to the structure of an input tree.

Our approach to tree transformation synthesis is based on a simple but

novel insight: We note that, under natural assumptions, tree transformations

can be written as a composition of transformations over the paths of the tree.

Our algorithm uses this observation to generate code that behaves as follows:

(1) Given an input tree T , generate the set of paths in T ; (2) apply a list

transformation to each path; and (3) combine the transformed paths into a
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transformed tree.

An alternative to the above strategy is to generate a transformation that

operates directly on the tree. While this competing approach could conceivably

generate programs that are more compact than those we produce, our approach

provides a practical way to synthesize complex programs that change the

structure of the input tree. Put another way, our approach trades off the

complexity of the synthesized programs for faster and more comprehensive

synthesis.

Another novelty of our approach is a new algorithm for synthesizing list

transformations that combines SMT solving and decision tree learning. Given

a set of input-output lists, our algorithm partitions the examples into unifiable

groups, where a unifier is a conditional-free program containing loops. Our

algorithm learns unifiers using SMT solving and uses decision tree learning

to find predicates that differentiate one unifiable subset of examples from the

others.

We have implemented our technique in a system called Hades, which

provides a language-agnostic backend for synthesizing HDT transformations.

In principle, Hades can be used to generate code in any DSL, provided it has

been plugged into our infrastructure. Our current implementation provides

two DSL front-ends, one for bash scripts (Unix directories), and another for

XSLT (XML transformations).
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Figure 2.1: Hades’ motivating example. Input-output directories for motivat-
ing example

2.2 Overview

We illustrate our approach using a motivating example from the file

system domain. Consider a user, Bob, who has a large collection of music files

organized by genres: The top-level Music directory has subfolders for each

genre, and each subdirectory contains a collection of music files and subfolders

(e.g., one for each band). Furthermore, Bob’s music files come in three different

formats: mp3, ogg, and flac. However, since not every music player supports

all formats, Bob wants to categorize his music based on file type while also

maintaining the original organization based on genres. In addition, since few

applications can play music files in flac format, Bob wants to convert all his

flac files to mp3 and keep both the original as well as the converted files.

Let us consider how Bob can use Hades for synthesizing a bash script

that performs his desired transformation. To use Hades, Bob first constructs

the input-output example shown in Figure 2.1. Observe that the Music

directory in the output has three subfolders called flac, ogg, and mp3. Also

observe that the naima.flac file under the Jazz subfolder in the input has
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E1 :
p1 = [(Music, dm), (Jazz, dj), (naima, dn)] 7→
p′1 = [(Music, dm), (flac, df ), (Jazz, dj), (naima, dn)]

E2 :
p1 = [(Music, dm), (Jazz, dj), (naima, dn)] 7→
p′′1 = [(Music, dm), (mp3, dmp), (Jazz, dj), (naima, d′n)]

E3 :
p2 = [(Music, dm), (Rock, dr), (help, dh)] 7→
p′2 = [(Music, dm), (ogg, do), (Rock, dr), (help, dh)]

E4 :
p3 = [(Music, dm), (Rock, dr), (Muse, dms), (bliss, db)] 7→
p′3 = [(Music, dm), (flac, df ), (Rock, dr), (Muse, dms), (bliss, db)]

E5 :
p3 = [(Music, dm), (Rock, dr), (Muse, dms), (bliss, db)] 7→
p′′3 = [(Music, dm), (mp3, dmp), (Rock, dr), (Muse, dms), (bliss, d′b)]

E6 :
p4 = [(Music, dm), (Pop, dp), (Adele, da), (tired, dt)] 7→
p′4 = [(Music, dm), (mp3, dmp), (Pop, dp), (Adele, da), (tired, dt)]

Figure 2.2: Path transformation examples constructed by Hades

been duplicated as naima.flac and naima.mp3 in the output under the

flac/Jazz and mp3/Jazz directories respectively.

Given this input, Hades first converts each of the input and output

directories to an intermediate representation called a hierarchical data tree

(HDT) and then generates a set of list transformation examples E, as shown

in Figure 2.2. Each example e ∈ E consists of a pair of lists (p1, p2) where

p1 is a root-to-leaf path in the input HDT and p2 is a corresponding path

in the output HDT. We represent paths as a list of pairs (l, d) where l is a

node label and d is the data stored at that node. In this application domain,
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labels correspond to directory/file names, and data includes information about

permissions, owner, file type etc.

After constructing the list transformation examples E, Hades synthe-

sizes a path transformation function f such that p′ ∈ f(p) for every example

(p, p′) ∈ E. Note that we allow path transformers to return a set of paths in

order to support duplication and deletion.

In the Hades system, the synthesis of path transformers consists of two

phases: In the first phase, we partition the input examples into sets of unifiable

groups using SMT solving, and in the second phase, we perform classification by

using decision tree learning to find a predicate that differentiates one unifiable

group from the others. Going back to our example, Hades partitions examples

E into two groups P1 = {E1,E3,E4,E6} and P2 = {E2,E5} and infers the

following unifier χ1 for partition P1:

concat ( map Id subpath(x, 1, 1),
map ExtOf subpath(x, size(x), size(x)),
map Id subpath(x, 2, size(x)) )

Here, subpath(x, t, t′) yields a subpath of x between indices t and t′, Id

is the identity function, and ExtOf yields the extension (i.e., file type) for a

given node. Similarly, for partition P2, we infer the following unifier χ2, where

FlacToMp3 is a function for converting flac files to mp3:

concat ( map Id subpath(x, 1, 1), “mp3”,
map Id subpath(x, 2, size(x)− 1),
map FlacToMp3 subpath(x, size(x), size(x)) )

13



srcDir=$1
for inputFile in \$srcDir/* do

elems=$(split $inputFile)
size=$(SizeOf $elems)
output=concat($inputElems[0],$(Ext $elems[$size-1]),

subList(1, $size-1, $elems))
outputPaths+=\$output
if {[[ $(Ext $inputFile) == flac]]} then
output=concat($elems[0], "mp3",

subList(1, $size-2, $elems),
$(convertFormat $elems[$size-1]))

outputPaths+=$output
fi

done
makeDirectories $outputPaths

Figure 2.3: Bash script synthesized by Hades

Next, Hades performs classification to infer a predicate characterizing

the input paths in each partition. Since the input paths in partition P1

include all paths in the input tree, Hades infers the classifier φ1 : true for

P1. On the other hand, since partition P2 only includes p1, p3, Hades infers

φ2 : ext = “flac” as a classifier for P2. Hence, the overall path transformer

inferred by our method is π : λx. (χ1; if(ext = “flac”) then χ2).

As a final step, Hades uses this list transformer π to synthesize the

tree transformation shown as (pseduo-) bash code in Figure 2.3. In essence, the

synthesized program constructs the output directory by applying transformation

π to every path in the input directory. Going back to our motivating scenario,

Bob can now apply this bash script to his very large music collection and obtain

the desired transformation.
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2.3 Preliminaries

In this section, we define hierarchical data trees and some their properties

which we use throughout this chapter.

2.3.1 Hierarchical Data Trees

First, we introduce hierarchical data trees (HDT) which our system uses

as the canonical representation for various kinds of hierarchical data.

Definition 2.1. Hierarchical data trees (HDT) Assume a universe Id of

labels for tree nodes and a universe Dat of data. A hierarchical data tree T is

a rooted tree represented as a quadruple (V,E, L,D) where V is a set of nodes,

and E is a set of directed edges. The labeling function L : V → Id assigns a

label to each node v ∈ V , and the data store D : V → Dat maps each node

v ∈ V to the data associated with v.

We emphasize that the labeling function L does not need to be one-

to-one. That is, it is possible that L(v) = L(v′) for two distinct nodes v, v′.

We write L(V ) to indicate the multi-set {` | v ∈ V ∧ L(v) = `} and L(E) to

denote the multi-set {(`, `′) | (v, v′) ∈ E ∧ L(v) = ` ∧ L(v′) = `′}.

Example 2.1. File system directories can be viewed as HDTs where vertices

are files and directories, and an edge from v1 to v2 means that v1 is v2’s parent

directory. The label for each node v is the name of the file or directory associated

with v. The data store D assigns each node to its corresponding meta-data

(e.g., permissions, creation date etc.).
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Example 2.2. We can view XML files as HDTs where nodes correspond to

XML elements. An edge from v to v′ means that v′ is nested directly inside

element v. The labeling function L maps each element v to a label (s, i) where

s is the name of the tag associated with v and i indicates that v is the i’th

element with tag s under v’s parent. The data store D maps each element v to

its attributes.

2.3.2 Properties of Hierarchical Data Trees

Next, we define some properties of HDTs.

Definition 2.2. (Well-formedness) We say that an HDT is well-formed iff

no two sibling vertices have the same label.

Throughout this chapter, we assume that HDTs are well-formed and use

the term “tree” to mean a well-formed HDT. This well-formedness assumption

is a lightweight restriction that applies to many real-world domains. For

example, file system directories satisfy the well-formedness assumption because

there cannot be two files or directories with the same name under the same

directory. XML documents also satisfy this assumption because the order

in which tags appear in a document is significant; hence, we can assign two

different labels to sibling elements with the same tag name (recall the labeling

function from Example 2.2).

Definition 2.3. (Path) A path p in an HDT T = (V,E, L,D) is a list

[(`1, d1), . . . , (`k, dk)] such that:
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Figure 2.4: Well-formedness in HDTs. An example to motivate well-formedness

• `1 = L(r) and d1 = D(r), where r is the root of T

• `k = L(v) and dk = D(v), where v is a leaf of T

• For each i ∈ [1, k), there is an edge (v, v′) ∈ E where L(v) = `i, L(v′) =

`i+1, D(v) = di, and D(v′) = di+1.

Given a path p = [(`1, d1), . . . , (`k, dk)], we write p[i].` and p[i].d to

indicate `i and di respectively. The set of paths in T is denoted by paths(T ),

and we write pathTo(T, v) to denote a path starting at T ’s root and ending in

v.

Definition 2.4. (Equivalence) Let T1 = (V1, E1, L1, D1) with root v1 and

T2 = (V2, E2, L2, D2) with root node v2. We say that T1 is equivalent to T2,

written T1 ≡ T2, iff the following conditions hold:

1. L1(v1) = L2(v2) and D1(v1) = D2(v2)

2. L1(children(v1)) = L2(children(v2))

3. For every (v′1, v
′
2) ∈ children(v1)× children(v2) such that L1(v′1) = L2(v′2),

subtree(T1, v
′
1) ≡ subtree(T2, v

′
2).
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Intuitively, two HDTs T1 and T2 are equivalent if they are indistinguish-

able with respect to the labeling functions (L1, L2) and data stores (D1, D2).

A very important property of well-formed trees is that their equivalence can

also be stated in terms of paths:

Theorem 2.1. 2 Let T = (V,E, L,D) and T ′ = (V ′, E ′, L′, D′) be two well-

formed hierarchical data trees. Then, T ≡ T ′ if and only if paths(T ) =

paths(T ′).

This theorem states that a given set of paths uniquely defines a well-

formed HDT. This property is very important for our approach since our

synthesized programs construct the output tree from a set of paths. However,

as illustrated by the following example, this property does not hold if we lift

the well-formedness assumption:

Example 2.3. Consider the HDTs of Figure 2.4, where letters indicate node

labels, and assume all nodes store data d. In this case, we have paths(T1) =

paths(T2), but the left tree T1 is not well-formed, as A has two children with

label B.

2.4 Synthesizing Trees from Paths

In this section, we describe our algorithm for synthesizing HDT trans-

formations given an appropriate path transformer.

2Proofs of all theorems are given in Appendix A.
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Algorithm 2.1 High-level structure of Hades synthesis algorithm

1: procedure synthesize(set 〈Tree, Tree〉 E)

2: Input: Examples E, consisting of pairs of HDTs
3: Output: Synthesized program P

4: if (!CheckExamples(E)) then return ⊥;

5: E′ := Furcate(E);
6: f := InferPathTrans(E′);
7: P := CodeGen(f);

8: return P ;

2.4.1 Synthesis Algorithm Overview

The high-level structure of our synthesis algorithm consists of four steps

and is summarized in Algorithm 2.1. First, given a set of input-output HDTs

E, we verify that examples E obey a certain unambiguity restriction required

by our algorithm and enforced using the CheckExamples function at line 4.

Next, we furcate the input-output trees E into a set E′ of path transformation

examples. Specifically, each example e ∈ E′ maps a path p in input tree T

to a “corresponding” path p′ in T ′ for some (T, T ′) ∈ E. Next, we invoke a

function called InferPathTrans to learn an appropriate path transformer

f such that p′ ∈ f(p) for every (p, p′) ∈ E′. Finally, CodeGen generates a

program that performs the desired tree transformation by applying f to each

path in the input tree and then constructing the output tree from the new set

of paths. In what follows, we explain these steps in more detail, leaving the

InferPathTrans procedure to Section 2.5.
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2.4.2 Requirements on Examples

Our approach is parametric on a notion of correspondence between paths

in the input and output trees. Let Π be the universe of paths in all possible

HDTs. A correspondence relation is a binary relation ∼⊆ Π× Π. Given a set

of input-output examples E, let us define E.in,E.out to be the input and output

trees in E respectively. Our synthesis algorithm expects the user-provided

examples E to obey a certain semantic unambiguity criterion:

Unambiguity: For every p′ ∈ paths(E.out), there exists a unique p such

that p ∼ p′ where p ∈ paths(E.in) and (p, p′) ∈ paths(T )× paths(T ′) for

some (T, T ′) ∈ E.

In other words, unambiguity requires that, for every output path p′, we

can find exactly one input path p such that p ∼ p′ and p, p′ belong to the same

input-output example. Unambiguity is enforced by the CheckExamples

function used at line 4 of the Synthesize algorithm. 3

The correspondence relation ∼ can be defined in many natural ways.

Specifically, the Hades system allows the user to mark paths in the input-

output examples as corresponding. However, Hades also comes with a default

definition of ∼ that is adequate in many practical settings.

3We can actually drop the unambiguity requirement by adding another layer of search to
the synthesis algorithm. However, we have not encountered any examples that violate this
restriction in practice.
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Figure 2.5: Schematic illustration of Hades synthesis approach

2.4.3 Furcation

Given an unambiguous set of examples E, our algorithm furcates them

into a set of path transformation examples E′. Specifically, a pair of paths

(p, p′) ∈ E′ iff p ∈ paths(T ), p′ ∈ paths(T ′), and p ∼ p′ for some (T, T ′) ∈ E. If

some input path p ∈ paths(T ) does not have a corresponding output path, then

E′ also contains (p,⊥).

Note that E′ may contain multiple examples that have the same path p

as an input. For instance, when some leaf in the input tree has been duplicated

in the output tree, then there will be at least two examples (p, p′) and (p, p′′)

in E′. However, due to the unambiguity requirement, it is not possible that

there are multiple examples in E′ that have the same output path. That is,

if (p, p′) ∈ E′, then there does not exist another example (p′′, p′) ∈ E′ where

p 6= p′′.

Given path transformation examples E′, we write inputs(E′) and outputs(E′)
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to denote the input and output paths in E′ respectively. That is, p ∈ inputs(E′)

iff (p, ) ∈ E′.

Example 2.4. Figure 2.2 shows the result of furcating the input-output example

from Figure 2.1.

2.4.4 Path Transformer

The next step in our synthesis algorithm is to learn a path transformer

that takes an input path and returns a set of output paths. Any path trans-

former f returned by InferPathTrans at line 6 of the Synthesize procedure

must satisfy the following requirement: 4

∀p ∈ inputs(E′). (p′ ∈ f(p)⇔ (p, p′) ∈ E′)

When an input path p does not have a corresponding output path p′, we require

that f(p) = {⊥}. Since InferPathTrans is the most involved aspect of the

synthesis algorithm, we discuss it in detail in Section 2.5.

2.4.5 Code Generation

Once we learn a path transformer f , the last step of our algorithm is to

generate code for the synthesized program. For this purpose, we first define a

splicing operation: Given a set S of paths, Splice(S) yields a well-formed tree

T such that paths(T ) = S. Recall from Theorem 2.1 that the result of splicing

is unique. Using this splicing operation, the CodeGen procedure used at line

4Proof of this property is given in Appendix A.
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7 of Figure 2.1 yields the following function P :

P = λT. Splice({p′ | p′ ∈ f(p) ∧ p ∈ paths(T ) ∧ p′ 6= ⊥})

In other words, synthesized program P constructs the output tree by applying

function f to each path in the input tree.

Summary. Figure 2.5 gives a schematic summary our approach: Our synthe-

sis algorithm furcates the input-output examples and learns a path transformer

f . On the other hand, the synthesized algorithm furcates the input tree, applies

path transformer f , and splices it back to obtain the output tree.

Theorem 2.2. (Soundness) Let E be a set of examples satisfying the unambi-

guity requirement, and let E′ be the output of Furcate(E). Then, ∀(T, T ′) ∈ E.

P (T ) ≡ T ′ where P is the output of procedure Synthesize from Figure 2.1.

2.5 Synthesizing Path Transformations

We now describe the InferPathTrans algorithm for learning path

transformers from path examples E. Each example (p, p′) ∈ E consists of an

input path p and an output path p′, and our goal is to learn a path transformer

f satisfying the property ∀p ∈ inputs(E).(p′ ∈ f(p)⇔ (p, p′) ∈ E).

2.5.1 Domain Specific Language (DSL)

We first introduce a small language over which we describe path trans-

formers. As shown in Figure 2.6, a path transformer π takes as input a path x
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Path transformer π := λx. {φ1 → χ1 ⊕ . . .⊕ φn → χn}

Path term χ := concat(τ1(x), . . . , τn(x))

Segment trans. τ := λx. map F subpath(x, t1, t2)

Index term t := b · size(x) + c

Path cond φ := Pi(x) | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ

Mapper F := λx. int | λx. fi(x)

| λx. if(ϕi(x)) then fi(x) else fj(x)

Figure 2.6: Language for expressing path transformers

and returns a set of paths Π = {p1, . . . , pk}. Specifically, a path transformer π

has the syntax λx. {φ1 → χ1⊕ . . .⊕φn → χn} where each φi is a path condition

that evaluates to true or false, and each χi is a path term describing an output

path. The semantics of this construct is that χi ∈ Π iff φi evaluates to true.

We refer to the number of (φi, χi) pairs in π as the arity of π.

Path terms χ used in the path transformer are formed by concatanating

different subpaths τi(x) where each τi is a so-called segment transformer. A

segment transformer τ is of the form λx.map F subpath(x, t1, t2) and applies

function F to a subpath of x starting at index t1 and ending at index t2

(inclusive). For brevity, we often abbreviate λx.map F subpath(x, t1, t2) using

the notation 〈t1, t2, F 〉. Note that a segment transformer is a kind of looping

construct that iterates over a consecutive range of elements in x. Indices in

segment transformers are specified using index terms t of the form b · size(x) + c

where b is either 0 or 1, c is an integer, and size(x) denotes the number of
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Figure 2.7: Schematic overview of algorithm for learning path transformers

elements in path x. 5 Mapper functions F either return constants or apply

pre-defined functions fi to their input. For instance, in the file system domain,

such predefined functions include procedures for changing file permission or

converting one file type to another (e.g., jpg to png). Mapper functions F can

also contain if statements if(ϕi(x)) then fi(x) else fj(x) where each ϕi is drawn

from a family of pre-defined predicate templates (e.g., for checking file type).

2.5.2 Learning Path Transformers

We now give an overview of our algorithm for learning path transformers.

As illustrated in Figure 2.7, our algorithm consists of three key components,

namely partitioning, unification, and classification. The goal of partitioning

is to divide examples E into groups of unifiable subsets. We say that a set of

examples E∗ is unifiable if outputs(E∗) can be represented using the same path

term χ∗, and we refer to χ∗ as the unifier for E∗. Our algorithm represents each

partition Pi as a triple 〈Ei, χi, φi〉 where Ei is a unifiable set of examples, χi is

5Our implementation also allows terms containing indexOf(x, e) expressions; however, we
ignore them here to simplify the presentation.
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their unifier, and φi is a predicate distinguishing Ei from the other examples.

The partitioning component of our algorithm is based on enumerative

search that tries different hypotheses in increasing order of complexity. Here, a

hypothesis corresponds to a partitioning of examples E into k disjoint groups

E1, . . . ,Ek. Given a hypothesis, we query whether each Ei is unifiable. If

unification fails, we backtrack and try a different hypothesis.

Since our method repeatedly invokes the unification algorithm to confirm

or refute a hypothesis, we need an efficient mechanism for finding unifiers.

Towards this goal, our algorithm represents each input-output example using a

compact numeric representation and invokes an SMT solver to determine the

existence of a unifier. Furthermore, we can obtain the unifier χi associated

with examples Ei by getting a satisfying assignment to an SMT formula. This

approach allows our algorithm to find unifiers with a single SMT query rather

than explicitly exploring search spaces of exponential size.

The last key ingredient of our algorithm for synthesizing path transform-

ers is classification. Given a set of examples E1, . . . ,Ek, the goal of classification

is to infer a predicate φi for each Ei such that φi evaluates to true for each

p ∈ inputs(Ei) and evaluates to false for each p′ ∈ inputs(E)− inputs(Ei). For

this purpose, we use the ID3 algorithm for learning a small decision tree and

then extract a formula describing all positive examples in this tree.

InferPathTrans algorithm. Algorithm 2.2 presents the InferPathTrans

procedure based on this discussion. The algorithm consists of two phases: In
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Algorithm 2.2 Algorithm for learning path transformations

1: procedure InferPathTrans(set E)

2: Input: A set of path transformation examples E

3: Output: Synthesized path transformer

4: . Phase I: Partition into unifiable subsets
5: for i=1; i≤ |E|; i++ do
6: Φ := Partition(∅, E, i);
7: if Φ 6= ∅ then break;

8: . Phase II: Learn classifiers
9: for all Pi in Φ do

10: Pi.φ := Classify(Pi.E,E);

11: π := PtCodeGen(Φ);
12: return π;

the first phase, we partition examples E into a smallest set Φ of unifiable groups,

and, in the second phase, we infer classifiers for each partition. Specifically,

lines 5-7 try to partition E into i disjoint groups by invoking the Partition

procedure, and lines 9-10 infer classifiers. Finally, we use a procedure called

PtCodeGen to generate a path transformer π from the partitions in the

expected way. In what follows, we describe partitioning, unification, and

classification in more detail.

2.5.3 Partitioning

Algorithm 2.3 shows the partitioning algorithm used in InferPath-

Trans. The recursive Partition procedure takes as input a set of examples

E1 that are part of the same partition, the remaining examples E2, and number
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Algorithm 2.3 Partitioning Algorithm. The notation P(E, χ) indicates a
partition with examples E and their unifier χ.

1: procedure Partition(set E1, set E2, int k)

2: Input: Current partition E1, remaining examples E2,
3: and number of partitions k
4: Output: Set of partitions Φ

5: . Base case
6: if k = 1 then
7: χ := Unify(E1 ∪ E2);
8: if χ = null then return ∅;
9: return {P(E1 ∪ E2, χ)};

10: . Recursive case
11: for all e ∈ E2 do
12: χ := Unify(E1 ∪ {e});
13: if χ = null then continue;

14: Φ := Partition(∅, E2 − {e}, k − 1);
15: if Φ 6= ∅ then
16: return Φ ∪ {P(E1 ∪ {e}, χ)};
17: Φ := Partition(E1 ∪ {e},E2 − {e}, k);
18: if Φ 6= ∅ then return Φ;

19: return ∅;

of partitions k. The base case of the algorithm is when k = 1: In this case,

we try to unify all examples in E1 ∪ E2, and, if this is not possible, we return

failure (i.e., ∅).

In the recursive case (lines 11–18), we try to grow the current partition

E1 by adding one or more of the remaining examples from E2. The algorithm

always maintains the invariant that elements in E1 are unifiable. Hence, we

try to add an element e ∈ E2 to E1 (line 12), and if the resulting set is not
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unifiable, we give up and try a different element (line 13). Since E1 ∪ {e} is

unifiable, we now check if it is possible to partition the remaining examples

E2 − {e} into k − 1 unifiable sets (recursive call at line 14). If this is indeed

possible, we have found a way to partition E1 ∪ E2 into k different partitions

and return success (line 16).

Now, if the remaining examples E2 cannot be partitioned into k − 1

unifiable sets, we try to shrink E2 by growing E1. Hence, the recursive call at

line 17 looks for a partitioning of examples where one of the partitions contains

at least E1 ∪ {e}. If this recursive call also does not succeed, then we move

on and consider the scenario where partition E1 does not contain the current

element e.

Observe that Partition(∅,E, k) effectively explores all possible ways

to partition examples E into k unifiable subsets. However, since most subsets

of E are typically not unifiable, the algorithm does not come anywhere near its

worst-case O(kn) behavior in practice.

2.5.4 Unification

We now describe the Unify procedure for determining if examples E

have a unifier. Since the unification algorithm is invoked many times during

partitioning, we need to ensure that Unify is efficient in practice. Hence, we

formulate it as a symbolic constraint solving problem rather than performing

explicit search. However, in order to reduce unification to SMT solving, we first

need to represent each input-output example in a so-called summarized form
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that uses a numerical representation to describe each path transformation.

Intuitively, a summarized example represents a path transformation as

a permutation of the elements in the input path. For example, if some element

e in the output path has the same label as the k’th element in the input path,

then we represent e using numerical value k. On the other hand, if element e

does not have a corresponding element with the same label in the input path,

summarization uses a so-called “dictionary” D to map e to a numerical value.

More formally, we define example summarization as follows:

Definition 2.5. (Example summarization) Let E be a set of examples where

L denotes the labels used in E, and let F be the set of pre-defined functions

allowed in the path transformer. Let D : (L ∪ F)→ {i | i ∈ Z ∧ i > m} be an

injective function where m is the maximum path length in inputs(E). Given an

example (p1, p2) ∈ E, the summarized form of (p1, p2) is a pair (n, σ) where n

is the length of path p1 and σ is a sequence such that:

σi :


(j, p1[j].d→ p2[i].d) if ∃j.p2[i].` = p1[j].`

(D(f∗) + j, ⊥ → p2[i].d) else if ∃j.p2[i].` = f∗(p1[j])

(D(p2[i].`), ⊥ → p2[i].d) otherwise

We illustrate summarization using a few examples:

Example 2.5. Consider input path p1 = [(A, r), (B, r), (C, r)], and output path

p2 = [(C,w), (A, r), (B, r)], where r, w indicate permissions. The summarized

example is (3, σ) where σ = [(3, r 7→ w), (1, r 7→ r), (2, r 7→ r)]. The first

element in σ is (3, r 7→ w) because the first element C of the output path is at

index 3 in the input path, and its corresponding data is mapped from r to w.
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Example 2.6. Consider the same p1 from Example 2.5 and the output path

p′2 = [(A, r), (B, r), (New, r)]. Suppose that D(New) = 1000 (i.e., “dictionary”

assigns 1000 to foreign element New). The summarized example is (3, σ′) where

σ′ = [(1, r 7→ r), (2, r 7→ r), (1000,⊥ 7→ r)].

Example 2.7. Consider the input path [(A,⊥), (B, pdf)] and output

[(A,⊥), (pdf,⊥), (B, pdf)]. In this case, the summarized example is (2, σ)

where σ = [(1,⊥ 7→ ⊥), (D(ExtOf) + 2,⊥ 7→ ⊥), (2, pdf 7→ pdf)]. Note that

label pdf in the output list is mapped to D(ExtOf) + 2 because it corresponds to

the extension for element at index 2 in the input list (case 2 of Definition 2.5).

Given a summarized example e = (n, [(i1, ), . . . , (in, )]), we write

indices(e) to denote [i1, . . . , in]. For instance, in Example 2.5, we have indices(e) =

[3, 1, 2].

The next step in our unification algorithm is to coalesce consecutive indices

in the summarized example. Hence, we define the coalesced form of an example

as follows:

Definition 2.6. (Coalesced form) Given a summarized example e =

(n, σ), we say that e∗ is a coalesced form of e iff it is of the form

(n, [〈b1, e1,M1〉, . . . , 〈bk, ek,Mk〉]) where

• indices(e) = [b1, . . . , e1, . . . , bk, . . . , ek]

• ∀i, [bi, bi+1, . . . , ei] is a contiguous sublist of indices(e)
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• Mk =
⋃
j{mj | bk ≤ ij ≤ ek ∧ σj = (ij,mj)}

Intuitively, this definition “coalesces” consecutive indices in a summa-

rized example. Note that the coalesced form of an example is not unique

because we are allowed but not required to coalesce consecutive indices.

Example 2.8. Consider the summarized example from Example 2.5, which

has the following two coalesced forms:

e∗1 = (3, [〈3, 3, {r 7→ w}〉, 〈1, 1, {r 7→ r}〉, 〈2, 2, {r 7→ r}〉])
e∗2 = (3, [〈3, 3, {r 7→ w}〉, 〈1, 2, {r 7→ r}〉])

Given a coalesced example e∗ = (n, σ∗) where σ∗ is

[〈b1, e1,M1〉, . . . , 〈bk, ek,Mk〉], we define len(e∗) to be n and segments(e∗) to be

k. We also write begin(e∗, j) to indicate bj , end(e∗, j) for ej , and data(e∗, j) for

Mj. Note that σ∗ can be viewed as a concatanation of concrete path segments

of the form 〈c, c′,M〉 where c and c′ are the start and end indices for the

corresponding path segment respectively.

Before we continue, let us notice the similarity between segment trans-

formers 〈t, t′, F 〉 6 in the language from Figure 2.6, and each concrete path

segment 〈c, c′,M〉 in a coalesced example. Specifically, observe that a concrete

path segment can be viewed as a concrete instantiation of a segment trans-

former 〈b ∗ size(x) + c, b′ ∗ size(x) + c′, F 〉 where each of the terms b, c, b′, c′,

and F are substituted by concrete values. In fact, this is no coincidence: The

key insight underlying our unification algorithm is to use the concrete path

6Recall that 〈t, t′, F 〉 is an abbreviation for λx. map F subpath(x, t, t′).
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segments in the coalesced examples to solve for the unknown terms in segment

transformers using an SMT solver.

Algorithm 2.4 Unification algorithm

1: procedure Unify(set E)

2: Input: A set of path transformation examples E

3: Output: A unifier χ if it exists, null otherwise

4: . Convert examples to coalesced form

5: E′ := {e′ | e′ = Summarize(e) ∧ e ∈ E};
6: Λ := {(e∗1, . . . , e∗n) | e∗i ∈ Coalesce(e′i) ∧ e′i ∈ E′};

7: . Generate candidate unifiers χ of increasing size

8: for k=1 to maxSize(outputs(E)) do

9: τi := 〈bi · size(x) + ci , b
′
i · size(x) + c′i , Fi〉;

10: χ := concat(τ1(x), . . . , τk(x));

11: . Check if χ unifies some E∗ ∈ Λ

12: for all E∗ ∈ Λ do

13: if (∃e∗i ∈ E∗. segments(e∗i ) 6= k) then
14: continue;

15: . Use SMT solver to check if χ unifies E∗

16: ϕie∗ := (bi · len(e∗) + ci = begin(e∗, i));

17: ψie∗ := (b′i · len(e∗) + c′i = end(e∗, i));

18: φ :=
∧

1≤i≤k
∧
e∗∈E∗ (ϕie∗ ∧ ψie∗);

19: if UNSAT(φ) then continue;

20: σ := SatAssign(φ);

21: σ′ := UnifyMappers(E∗);

22: if σ′ = null then continue;

23: return Substitute(χ, σ ∪ σ′);

24: return null;
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Let us now consider the unification algorithm presented in Algorithm 2.4.

Given examples E, the Unify algorithm first computes the summarized exam-

ples E′ and then generates all possible coalesced forms (lines 5-6). Since we

do not know which coalesced form is the “right” one, we need to consider all

possible combinations of coalesced forms of the examples. Hence, set Λ from

line 6 corresponds to the Cartesian product of the coalesced form of examples

E′.

Next, the algorithm enumerates all possible candidate unifiers χ of

increasing arity. Based on the grammar of our language (recall Figure 2.6), a

path term χ of arity k has the shape concat(τ1(x), . . . , τk(x)) where each τi is

a segment transformer of the form 〈bi · size(x) + ci , b
′
i · size(x) + c′i , Fi〉. Hence,

the hypothesis χ at line 10 is a templatized unifier whose unknown coefficients

will be inferred later.

Given a hypothesis χ, we next try to confirm or refute this hypothesis

by checking if there exists some E∗ ∈ Λ for which χ is a unifier. For χ to be a

unifier for E∗, every example e∗i ∈ E∗ must contain exactly k segments because

χ has arity k. If this condition is not met (line 13), χ cannot be a unifier for

E∗, so we reject it.

If all examples in E∗ contain k segments, we try to instantiate the

unknown coefficients b1, b
′
1, c1, c

′
1, . . . , bk, b

′
k, ck, c

′
k in χ in a way that is consistent

with the concrete path segments in all examples in E∗. Now, consider the

i’th concrete path segment in coalesced example e∗ and the i’th abstract

path segment 〈bi · size(x) + ci, b
′
i · size(x) + c′i, Fi〉 in hypothesis χ. Clearly, if
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E′1 : (3, [(1, dm 7→ dm), (D(ExtOf) + 3,⊥ 7→ df ), (2, dj 7→ dj), (3, dn 7→ dn)])

E′3 : (3, [(1, dm 7→ dm), (D(ExtOf) + 3,⊥ 7→ do), (2, dr 7→ dr), (3, dh 7→ dh)])

E′4 : (4, [(1, dm 7→ dm), (D(ExtOf) + 4,⊥ 7→ df ), (2, dr 7→ dr), (3, dms 7→ dms),
(4, db 7→ db)])

E′6 : (4, [(1, dm 7→ dm), (D(ExtOf) + 4,⊥ 7→ dmp), (2, dp 7→ dp), (3, da 7→ da),
(4, dt 7→ dt)])

Figure 2.8: Summarization of partition P1 of the motivating example.

our hypothesis is correct, it should be possible to instantiate the unknown

coefficients in a way that satisfies:

bi · len(e∗) + ci = begin(e∗, i) ∧ b′i · len(e∗) + c′i = end(e∗, i)

since the size of this example is len(e∗) and begin and end indices for the

path segment are begin(e∗, i) and end(e∗, i). Hence, we test the correctness of

hypothesis χ for E∗ by querying the satisfiability of formula φ from line 18. If

φ is unsatisfiable (line 19), we reject the hypothesis for E∗.

If, however, φ is satisfiable, we have found an instantiation of the

unknown coefficients, which is given by the satisfying assignment σ at line 20.

Now, the only remaining question is whether we can also find an instantiation

of the unknown functions F1, . . . , Fk used in χ. For this purpose, we use

a function called UnifyMappers which tries to find mapper functions Fi

unifying all the different Mi’s from the examples. Since the UnifyMappers

procedure is based on straightforward enumerative search, we do not describe
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E∗1 : (3, [〈1, 1, {dm 7→ dm}〉, 〈D(ExtOf) + 3,D(ExtOf) + 3, {⊥ 7→ df}〉,
〈2, 3, {dj 7→ dj, dn 7→ dn}〉])

E∗3 : (3, [〈1, 1, {dm 7→ dm}〉, 〈D(ExtOf) + 3,D(ExtOf) + 3, {⊥ 7→ do}〉,
〈2, 3, {dr 7→ dr, dh 7→ dh}〉])

E∗4 : (4, [〈1, 1, {dm 7→ dm}〉, 〈D(ExtOf) + 4,D(ExtOf) + 4, {⊥ 7→ df}〉,
〈2, 4, {dr 7→ dr, dms 7→ dms, db 7→ db}〉])

E∗6 : (4, [〈1, 1, {dm 7→ dm}〉, 〈D(ExtOf) + 4,D(ExtOf) + 4, {⊥ 7→ dmp}〉,
〈2, 4, {dp 7→ dp, da 7→ da, dt 7→ dt}〉])

Figure 2.9: A set of coalesced examples E∗ for partition P1

it in detail. In particular, since the language of Figure 2.6 only allows a finite

set of pre-defined data transformers fi and predicates φi, UnifyMappers

enumerates –in increasing order of complexity– all possible functions belonging

to the grammar of mapper functions in Figure 2.6.

Example 2.9. For the motivating example from Section 2.2, our unification

algorithm takes the following steps to determine unifier χ1 for partition P1:

First, we generate the summarized examples shown in Figure 2.8 and construct

set Λ. We then consider hypotheses of increasing size and reject those with

arity 1 and 2 since all examples contain at least 3 segments. Now, let’s consider

hypothesis χ of arity 3 and the set of coalesced examples E∗ shown in Figure 2.9.

We generate the formula φ shown in Figure 2.10 and get a satisfying assignment,

which results in the following instantiation of χ:

[〈1, 1, F1〉, 〈v, v, F2〉, 〈2, size(x), F3〉]
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φ :

b1 · 3 + c1 = 1 ∧ b′1 · 3 + c′1 = 1 ∧ b1 · 4 + c1 = 1 ∧ b′1 · 4 + c′1 = 1 ∧
b2 · 3 + c2 = D(ExtOf) + 3 ∧ b′2 · 3 + c′2 = D(ExtOf) + 3 ∧
b2 · 4 + c2 = D(ExtOf) + 4 ∧ b′2 · 4 + c′2 = D(ExtOf) + 4 ∧
b3 · 3 + c3 = 2 ∧ b′3 · 3 + c′3 = 3 ∧ b3 · 4 + c3 = 2 ∧ b′3 · 4 + c′3 = 4

Figure 2.10: (Simplified) formula φ. To check the satisfiability of hypothesis
χ1 on set E∗.

where v = D(ExtOf) + size(x). Finally, UnifyMappers searches for instanti-

ations of F1, F2, and F3 satisfying all data mappers in the examples. For F1

and F3, it returns the Identity function, and for, F2, it extracts the function

extOf from the segment transformer coefficients. As a result, we obtain the

unifier χ1 from Section 2.2.

2.5.5 Classification

We now consider the last missing piece of our algorithm, namely classi-

fication. Given examples E and partition Pi with examples Ei ⊆ E and unifier

χi, the goal of classification is to find a predicate φi such that:

(1) ∀p ∈ inputs(Ei). (φi[p/x] ≡ true)
(2) ∀p ∈ (inputs(E)− inputs(Ei)). (φi[p/x] ≡ false)

Our key insight is that the inference of such a predicate φi is precisely

the familiar classification problem in machine learning. Hence, to find predicate

φi, we first extract relevant features from each path and then use decision tree

learning.
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2.5.5.1 Feature Extraction

To use decision tree learning for classification, we need to represent

each input path using a finite set of discrete features. In the Hades system,

these features are domain-specific and therefore defined separately for each

application domain. For instance, some of the features for the file system

domain include file types, permissions, and the presence of a certain file or

directory in the path. Given path p, we write α(p) to denote the feature vector

for p and αf (p) for the value of feature f for path p.

2.5.5.2 Decision Tree Learning

We now explain how to use decision tree learning to infer a predicate

distinguishing paths Π1 from those in Π2. Given sets Π1 and Π2 and a set of

features F, we use the ID3 algorithm [147] to construct a decision tree TD with

the following properties:

• Each leaf in TD is labeled as Π1 or Π2

• Each internal node of TD is labeled with a feature f ∈ F

• Each edge (f, f ′, `) from f to f ′ is annotated with a label ` that indicates

a possible value of feature f

• Let (f1, f2, `1), . . . (fn,Πi, `n) be a root-to-leaf path in TD. Then, for every

p ∈ Π1 ∪ Π2, we have: ( n∧
i=1

αfi(p) = li
)
⇔ p ∈ Πi
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Given such a decision tree TD, identifying a predicate φ differentiating

Π1 from Π2 is simple. Let π = 〈(f1, f2, `1), . . . (fn,Π1, `n)〉 be a path in TD,

and let ϕ(π) denote the formula ∧ni=1(fi = li). Assuming Π1 corresponds to

inputs(Ei) and Π2 is inputs(E)− inputs(Ei), the following DNF formula φi gives

us a classifier for Pi:

φi :
∨

π∈pathTo(TD,Π1)

ϕ(π)

Example 2.10. Consider partition P2 from the example of Section 2.2. Here,

Π1 = {p1, p3} and Π2 = {p2, p4}. After running ID3, we obtain the following

decision tree:

extOf
flac

mp3

ogg

Hence, we extract the classifier φ2 : ExtOf(x) = flac.

2.6 Implementation

We have implemented our synthesis algorithm in a tool called Hades,

which consists of ≈ 9, 500 lines of C++ code.The only external tool used

by Hades is the Z3 SMT solver [45]. The core of Hades is the domain-

agnostic synthesis backend, which accepts input-output examples in the form

of hierarchical data trees and emits path transformation functions in the

intermediate language of Figure 2.6.
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Hades provides an interface for domain-specific plug-ins, and our current

implementation incorporates two such front ends: one for XML transforma-

tions using XSLT and another one for bash scripts. However, Hades can

be extended to new domains by implementing plug-ins that implement the

following functionality: (a) represent input-output examples as HDTs; (b) use

the synthesized path transformer to emit tree transformation code in the target

language; (c) specify any domain-specific functions and features.

2.7 Evaluation

We evaluated Hades by using it to automate 36 data transformation

tasks in the file system and XML domains. Our examples come from two sources:

on-line forums (e.g., Stackoverflow, bashscript.org) and teaching assistants at

our institution. To simulate a real-word usage scenario of Hades where end-

users provide input-output examples, we performed a user study involving six

students, only three of which are CS majors. The students in our study neither

had prior knowledge of Hades nor are they familiar with program synthesis

research.

Prior to the evaluation, we gave the participants a demo of the system,

explained how to provide input/output examples, and how to check whether

the generated script is correct. For each benchmark, we provided the users an

English description of the task to be performed as well as a set of test cases

to assess whether Hades produces the correct result. The participants were

asked to come up with a set of examples for each benchmark, and then run the
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F1
Categorize .csv files based on their

group
0.03 1 2 47 2 2 3

F2 Make all script files executable 0.01 2 2 51 1 2 2

F3
Copy all text and bash files to

directory temp
0.05 2 3 56 2 4 3

F4
Append last 3 directory names to file

name and delete directories
0.02 1 2 50 2 2 6

F5
Put files in directories based on
modification year/month/day

0.02 1 4 52 1 2 4

F6
Copy files without extension into the

“NoExtension” directory
0.05 2 3 56 2 7 4

F7
Archive each directory to a tarball

with modify month in its name
0.01 1 1 50 1 2 2

F8
Make files in “DoNotModify”

directory read-only
0.12 2 2 83 2 4 3

F9
Convert .mp3, .wma, and .m4a files

to .ogg
0.02 1 1 47 1 3 3

F10
Change group of text files in “Public”

directory to “everyone”
0.06 2 2 77 1 3 2

F11 Change directory structure 0.03 1 4 52 2 3 6
F12 Convert .zip archives to tarballs 0.08 2 2 77 1 3 3

F13
Organize all files based on their

extensions
1.85 4 10 148 1 9 3

F14
Append modification date to the file

name
0.01 1 2 48 1 2 3

F15 Convert pdf files to swf files 0.03 2 2 55 2 2 2

F16
Delete files which are not modified

last month
0.03 2 2 54 2 5 2

F17
Convert video files to audio files and

put them in “Audio” directory
0.01 1 2 49 1 3 5

F18
Append “lgst” to name of largest file

and “sml” to xml files ≤ .1kB
17.94 3 5 110 2 6 3

Table 2.1: File System and XML Benchmarks (part 1)
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Benchmarks Time Script
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F19
Extract tarballs to a directory named

using file and parent directory
0.36 2 3 83 2 3 3

F20 Convert xml files ≥ 1kB to text files 0.09 2 2 77 2 4 2

F21
Append parent name to each .c file

and copy under “MOSS”
0.04 2 3 56 2 4 4

F22 Keep all files older than 5 days 0.59 2 2 54 3 7 2

F23
Copy each file to the directory

created with its file name
0.02 1 2 47 1 3 5

F24
Archive directories which are not

older than a week
0.11 2 2 80 3 5 2

X
M

L

X1
Add style=’bold’ attribute to parent

element of each text
0.02 1 2 145 2 3 5

X2
Merge elements with “status”

attribute and put under children
0.02 1 3 169 3 3 5

X3 Remove all attributes 0.01 1 1 115 2 3 3
X4 Change the root element of xml 0.02 1 2 222 1 2 3

X5
Remove 3rd element and put all

nested elements under parent
0.02 1 2 129 1 3 4

X6
Create a table which maps each text

to its parent element tag
0.09 2 10 497 1 6 4

X7
Remove text in element “done” and

put all other text under “todo”
0.05 2 3 241 4 8 3

X8
Generate HTML drop down list from

a XML list storing the data
0.02 1 4 443 1 3 3

X9
Rename a set of element tags to

standard HTML tags
0.02 1 4 356 1 2 3

X10
Move “class” attribute and categorize

based on “class”
0.18 2 6 229 1 6 3

X11
Categorize based on “tag” and put
each class under element with valid

HTML tag
5.55 3 9 517 2 6 3

X12 Delete all elements with tag “p” 0.05 2 1 122 1 5 4

Table 2.2: File System and XML Benchmarks (part 2)
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tests to verify whether Hades’ output is correct. If Hades failed to produce

the correct result, the users were asked to restart the process with a modified

set of input-output examples.

Tables 2.1 and 2.2 summarizes the results of our evaluation. The

column labeled “Description” provides a brief summary of each benchmark,

and “Time” reports synthesis time in seconds. The column labeled “Script”

gives statistics about the synthesized script, while the column named “User”

provides important data related to user interaction.

2.7.1 Performance

To evaluate performance, we utilized the examples provided by the

participants from our user study. 7 All performance experiments are conducted

on a MacBook Pro with 2.6 GHz Intel Core i5 processor and 8 GB of 1600

MHz DDR3 memory running OS X version 10.10.3.

The column labeled “Time” in Tables 2.1 and 2.2 reports the total

synthesis time in seconds, including conversion of examples to HDTs and

emission of bash or XSLT code. On average, Hades takes 0.90 seconds to

synthesize a directory transformation and 0.51 seconds to synthesize an XML

transformation. Across all benchmarks, Hades is able to synthesize 91.6% of

the benchmarks in under 1 second and 97.2% of the benchmarks in under 10

seconds.

7When there were multiple rounds of interaction with the user, we used the examples
from the last round.
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2.7.2 Complexity

The column labeled “Script” in Tables 2.1 and 2.2 reports various

statistics about the script synthesized by Hades: “Branches” reports the

number of branches in the synthesized program. ,“Segments” reports the

number of loops , and “LOC” gives the number of lines of code for the

synthesized path transformer. Note that the whole script synthesized by

Hades is actually significantly larger (due to furcation/splicing code); the

statistics here only include the path transformation portion. As summarized by

this data, the scripts synthesized by Hades are fairly complex: They contain

between 1-4 branches, 1-10 loops, and between 47-517 lines of code for the path

transformer. Furthermore, since our algorithm always generates a simplest

path transformer, the reported statistics give a lower bound on the complexity

of the required path transformations.

2.7.3 Usability

The last part of Tables 2.1 and 2.2 reports data about our user study:

The column “Iteration” reports the number of rounds of tool-user interaction,

“Examples” gives the number of furcated examples, and “Depth” indicates

the maximum depth of the input-output trees. Our results demonstrate that

Hades is user-friendly: 88.8% of the benchmarks require only 1-2 rounds of

user interaction, with no task requiring more than 4 rounds. Furthermore,

72.2% of the tasks require less than 5 examples, and no task requires more

than 9. Finally, tree depth is typically very small – by providing example trees
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with depth 3.2 on average, users are able to obtain scripts that work on trees

of unbounded depth.

2.7.4 Comparison with Other Tools

To substantiate our claim that our approach broadens the scope of

tree transformations that can be automatically synthesized, we also compared

Hades with two existing tools, namely λ2 [62] and Myth [136], for synthesizing

higher-order functional programs. Since these tools do not directly handle

Unix directories or XML documents, we manually created a simplified tree

abstraction for each task and supplied these tools with a suitable set of input-

output examples. Myth was unable to synthesize any of our benchmarks,

and λ2 was only able to synthesize a single example (X3) within a time limit

of 600 seconds. Since these tools target a much broader class of synthesis

tasks, their search space seems to blow up when presented with non-trivial

tree-transformation tasks. In contrast, by learning path transformers that are

applied to each path in the tree, our synthesis algorithm can synthesize complex

transformations in a practical manner.

2.8 Summary

In this chapter, we presented an algorithm for synthesizing tree trans-

formations from examples. The central idea of our approach is to reduce the

generation of tree transformations to the synthesis of list (path) transforma-

tions. The path transformations are synthesized using a novel combination
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of decision tree learning and SMT solving. The reduction from tree to path

transformations simplifies the underlying synthesis algorithm, while allowing us

to handle a rich class of tree transformations, including those that restructure

the tree.

On the practical side, we have shown that our algorithm has numerous

applications for automating the manipulation of hierarchically structured

data, such as XML files and Unix directories. In the longer run, approaches

like ours can be embedded into end-user programming tools such as Apple’s

Automator [1], which offers visual abstractions for everyday scripting tasks.

Since Hades allows users to generate complex programs from simple examples,

it offers a plausible way to broaden the scope of such tools.
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Chapter 3

Mitra 1

While many applications export data in hierarchical formats like XML

and JSON, it is often necessary to convert such hierarchical documents to a

relational representation. In particular, applications that extensively perform

data extraction queries prefer to store and access the data in relational databases

to increase their performance. This chapter presents a novel programming-

by-example approach, and its implementation in a tool called Mitra, for

automatically migrating tree-structured documents to relational tables. We

have evaluated the proposed technique using two sets of experiments. In the

first experiment, we used Mitra to automate 98 data transformation tasks

collected from StackOverflow. Our method can generate the desired program

for 94% of these benchmarks with an average synthesis time of 3.8 seconds. In

the second experiment, we used Mitra to generate programs that can convert

real-world XML and JSON datasets to full-fledged relational databases. Our

evaluation shows that Mitra can automate the desired transformation for all

datasets.

We start this chapter by motivating our approach in Section 3.1. Then,

1Parts of this chapter have appeared in [185].
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we illustrate our methodology by describing an example in Section 3.2. Sec-

tion 3.3 defines a variation of HDTs that we use in Mitra, and Section 3.4

presents Mitra’s domain specific language for implementing tree-to-table

transformations. We describe the synthesis algorithm in Section 3.5, discuss

the implementation details in Section 3.6, and present the experimental re-

sults in Section 3.7. Finally, we conclude this chapter with a brief summary

in Section 3.8.

3.1 Introduction

3.1.1 Motivation

Many applications store and exchange data using a hierarchical format,

such as XML or JSON documents. Such tree-structured data models are

a natural fit in cases where the underlying data is hierarchical in nature.

Furthermore, since XML and JSON documents incorporate both data and

meta-data, they are self-describing and portable. For these reasons, hierarchical

data formats are popular for exporting data and transferring them between

different applications.

Despite the convenience of hierarchical data models, there are many

situations that necessitate converting them to a relational format. This trans-

formation, sometimes referred to as “shredding”, may be necessary for a variety

of reasons. For example, data stored in an XML document may need to be

queried by an existing application that interacts with a relational database.

Furthermore, because hierarchical data models are often not well-suited for
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efficient data extraction, converting them to a relational format is desirable

when query performance is important.

In this chapter, we introduce a new technique based on programming-

by-example (PBE) [117, 75] for converting hierarchically structured data to

a relational format. In our methodology, the user provides a set of simple

input-output examples to illustrate the desired transformation, and our system,

Mitra 2, automatically synthesizes a program that performs the desired task.

Because Mitra learns the target transformation from small input-output

examples, it can achieve automation with little guidance from the user. In

a typical usage scenario, a user would “train” our system on a small, but

representative subset of the input data and then use the program generated by

Mitra to convert a very large document to the desired relational representation.

While programming-by-example has been an active research topic in

recent years [73, 26, 161, 61, 184, 59, 89, 145], most techniques in this space

focus on transformations between similarly structured data, such as string-

to-string [73, 161], tree-to-tree [184, 61] or table-to-table transformations [59,

176, 89, 145]. Unfortunately, automating transformations from tree- to table-

structured data brings new technical challenges that are not addressed by prior

techniques. First, because the source and target data representations are quite

different, the required transformations are typically more complex than those

between similarly-structured data. Second, since each row in the target table

2stands for Migrating Information from Trees to RelAtions
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corresponds to a relation between nodes in the input tree, the synthesizer needs

to discover these “hidden links” between tree nodes.

3.1.2 Methodology

This chapter addresses these challenges by presenting a new program

synthesis algorithm that decomposes the synthesis task into two simpler sub-

problems that aim to learn the column and row construction logic separately:

• Learning the column extraction logic: Given an attribute in a relational table,

our approach first synthesizes a program to extract tree nodes that correspond

to that attribute. In other words, we first ignore relationships between

different tree nodes and construct each column separately. Taking the cross

product of the extracted columns yields a table that overapproximates the

target table (i.e., contains extra tuples).

• Learning the row extraction logic: Since the program learned in the first

phase produces a table that overapproximates the target relation, the next

phase of our algorithm synthesizes a program that filters out “spurious”

tuples generated in the first phase. In essence, the second phase of the

algorithm discovers the “hidden links” between different nodes in the original

tree structure.

Figure 3.1 shows a schematic illustration of our synthesis algorithm.

Given an input tree T and output table R with k columns, our technique

first learns k different programs π1, . . . , πk, where each column extraction
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program πi extracts from T the data stored in the i’th column of R. Our

synthesis algorithm then constructs an intermediate table by applying each

πi to the input tree and taking their cross product. Thus, the intermediate

table π1(T )× . . .× πk(T ) generated during the first phase overapproximates

the target table (i.e.,it may contain more tuples than R). In the next phase,

our technique learns a predicate φ that can be used to filter out exactly the

spurious tuples from the intermediate table. Hence, the program synthesized

by our algorithm is always of the form λx.filter(π1 × . . .× πk, φ). Furthermore,

since the synthesized program should not be over-fitted to the user-provided

examples, our method always learns the simplest program of this shape that is

consistent with the user-provided input-output examples.

From a technical point of view, our contributions are three-fold. First,

we propose a domain-specific language (DSL) that is convenient for expressing

transformations between tree-structured and relational data. Our DSL is ex-

pressive enough to capture many real-world data transformation tasks, and it

also facilitates efficient synthesis by allowing us to decompose the problem into

two simpler learning tasks. While the programs in this DSL may sometimes be

inefficient, our method eliminates redundancies by memoizing shared compu-

tations in the final synthesized program. This strategy allows us to achieve a

good trade-off between expressiveness, ease of synthesis, and efficiency of the

generated programs.

The second technical contribution is a technique for automatically

learning column extraction programs using deterministic finite automata (DFA).
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Phase 1: Extract columns Phase 2: Filter spurious rows

Input tree Output table

Synthesized program: 

Figure 3.1: Schematic illustration of Mitra’s approach

Given an input tree and a column from the output table, our method constructs

a DFA whose language corresponds to the set of DSL programs that are

consistent with this example. Hence, in our methodology, learning column

extraction programs boils down to finding a word (i.e., sequence of DSL

operators) that is accepted by the automaton.

Our third technical contribution is a novel technique for learning predi-

cates that can be used to filter out spurious tuples in the intermediate table.

Given a set of positive examples (i.e., tuples in the output table) and a set of

negative examples (i.e., spurious tuples in the intermediate table), we need to

find a smallest classifier in the DSL that can be used to distinguish the positive

and negative examples. Our key observation is that this task can be reduced

to integer linear programming. In particular, our method first generates the
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universe of all possible atomic predicates over the DSL and then infers (using

integer linear programming) a smallest subset of predicates that can be used

to distinguish the positive and negative examples. Given such a subset, our

method then uses standard logic minimization techniques to find a boolean

combination of atomic predicates that can serve as a suitable classifier.

We have implemented our technique in a tool called Mitra, which

consists of a language-agnostic synthesis core for tree-to-table transformations as

well as domain-specific plug-ins. While Mitra can generate code for migrating

data from any tree-structured representation to a relational table, it requires

plug-ins to translate the input format into our intermediate representation.

Our current implementations contains two such plug-ins for XML and JSON

documents. Furthermore, Mitra can be used to transform tree-structured

documents to a full-fledged relational database by invoking it once for each

table in the target database.

We have evaluated Mitra by performing two sets of experiments. In

our first experiment, we use Mitra to automate 98 data transformation tasks

collected from StackOverflow. Mitra can successfully synthesize the desired

program for 94% of these benchmarks, with an average synthesis time of 3.8

seconds. In our second experiment, we use Mitra to migrate four real-world

XML and JSON datasets (namely, IMDB, YELP, MONDIAL, and DBLP)

to a full-fledged relational database. Our experiments show that Mitra can

perform the desired task for all four datasets.
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3.2 Overview

In this section, we give a high-level overview of our technique with the

aid of a simple motivating example. Consider the XML file from Figure 3.2a

which contains information about the users of a social network as well as the

“friendship” relation between them. Suppose a user wants to convert this XML

document into the relational table shown in Figure 3.2b. Observe that this

transformation is non-trivial because the XML file stores this information as a

mapping from each user to a list of friends, where each friend is represented

by their fid. In contrast, the desired table stores this information as tuples

(A,B, n), indicating that person with name A is friends with user with name

B for n years.

Suppose that the original XML file is much bigger than the one shown

in Figure 3.2a, so the user decides to automate this task by providing the input-

output example from Figure 3.2 and uses Mitra to automatically synthesize

the desired data migration program. We now give a brief overview of how

Mitra generates the target program.

Internally, Mitra represents the input XML file as a hierarchical data

tree, shown in Figure 3.3. Here, each node corresponds to an element in the

XML document, and an edge from n to n′ indicates that element n′ is inside n.

The bold text in each node from Figure 3.3 corresponds to the data stored in

that element.

As mentioned in Section 3.1, Mitra starts by learning all possible
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(a) Input XML

(b) Output relation

Figure 3.2: Mitra’s motivating example

column extraction programs that can be used to obtain column i in the output

table from the input tree. Figure 3.5 shows the extraction programs for each

column. Specifically, Mitra learns a single column extraction program π11

(resp. π21) for the column Person (resp. column Friend-with). For

instance, the program π11 first retrieves all children with tag Person of the

root node, and, for each of these children, it returns the child with tag name.

Since there are several ways to obtain the data in the years column, Mitra

learns four different column extractors (namely, π31, . . . , π34) for years.

Next, Mitra conceptually generates intermediate tables by applying
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Figure 3.3: Hierarchical data tree representation of the input XML
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Figure 3.4: Intermediate table generated by Mitra

each column extractor to the input tree and taking their cross product. 3 Since

we have four different column extraction programs for the years attribute,

Mitra considers four different intermediate tables, one of which is shown

in Figure 3.4. In particular, this table is obtained using the table extraction

program ψ presented in Figure 3.5. Observe that entries in the intermediate

tables generated by Mitra refer to nodes from the input tree.

In the second phase of the synthesis algorithm, Mitra filters out

spurious tuples in the intermediate table by learning a suitable predicate. For

instance, the intermediate table from Figure 3.4 contains several tuples that do

3Since this strategy may be inefficient, our implementation performs an optimization to
eliminate the generation of intermediate tables in most cases. However, decomposing the
problem in this manner greatly facilitates the synthesis task.
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π11 : pchildren(children(s, Person), name, 0)
π21 : pchildren(children(s, Person), name, 0)
π31 : pchildren(children(πF , F riend), years, 0)
π32 : pchildren(children(πF , F riend), fid, 0)
π33 : pchildren(pchildren(πF , F riend, 0), years, 0)
π34 : pchildren(children(s, Person), id, 0)
πF : pchildren(children(s, Person), F riendship, 0)

ψ := (λs.π11){root(τ)} × (λs.π21){root(τ)} × (λs.π31){root(τ)}

P := λτ. filter(ψ, λt. φ1 ∧ φ2)

φ1 : ((λn. parent(n)) t[0]) = ((λn. parent(parent(parent(n))) t[2])

φ2 : ((λn. child(parent(n), id, 0))) t[1]) = ((λn. child(parent(n), fid, 0)) t[2])

Figure 3.5: Synthesized program by Mitra for the motivating example

not appear in the output table. As an example, consider the tuple (n7, n7, n25).

If we extract the data stored at these nodes, we would obtain the tuple (Alice,

Alice, 3), which is not part of the desired output table. To filter out such

spurious tuples from the intermediate table, Mitra learns a predicate φ such

that φ evaluates to true for every tuple in the target table, and evaluates to

false for the spurious tuples. For our running example and the intermediate

table from Figure 3.4, Mitra learns the predicate φ1∧φ2, where φ1 and φ2 are

shown in Figure 3.5. Here, φ1 ensures that a tuple (a, b, c) only exists if a and

c are associated with the same person. Similarly, φ2 guarantees that b refers

to the person who has been friends with a for c years. For instance, since φ2

evaluates to false for the first tuple in the intermediate table from Figure 3.4,
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this spurious tuple will be filtered out by the learnt predicate.

While all programs synthesized by Mitra are guaranteed to satisfy the

input-output examples, not all of these programs may correspond to the user’s

intent. In particular, since examples are typically under-constrained, there

may be multiple programs that satisfy the provided examples. For instance, in

our running example, Mitra finds four different programs that are consistent

with the examples. Our synthesis algorithm uses a heuristic ranking function

based on Occam’s razor principle to rank-order the synthesized programs.

For instance, programs that involve complex predicates are assigned a lower

score by the ranking algorithm. Since the program P shown in Figure 3.5

has the highest rank, Mitra chooses it as the desired solution and optimizes

P by memoizing redundant computations and avoiding the generation of

intermediate tables whenever possible. Finally, Mitra generates an executable

XSLT program, which is available from goo.gl/rcAHT4. The user can now

apply the generated code to the original (much larger) XML document and

obtain the desired relational representation. For instance, the synthesized

program can be used to migrate an XML document with more than 1 million

elements to the desired relational table in 154 seconds.

3.3 A Variant of HDTs

In this section, we introduce a variant of hierarchical data trees which

is slightly different from the definition of HDTs presented in Section 2.3.
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Definition 3.1. (A variant of) Hierarchical Data Tree A hierarchical

data tree (HDT) τ is a rooted tree represented as a tuple 〈V,E〉 where V is

a set of nodes, and E is a set of directed edges. A node v ∈ V is a triple

(tag, pos, data) where tag is a label associated with node v, pos indicates that v

is the pos’th element with label tag under v’s parent, and data corresponds to

the data stored at node v.

While Definition 3.1 of HDTs is inspired by Definition 2.1 presented

in Section 2.3, there are some subtle differences: In particular, instead of

mapping each element to a single node as in Definition 2.1, Definition 3.1

maps each element to multiple tree nodes. Throughout this chapter, HDTs are

defined with respect to our new Definition 3.1.

Given a node n = (t, i, d) in a hierarchical data tree, we use the notation

n.tag, n.pos, and n.data to indicate t, i, and d respectively. We also use the

notation isLeaf(n) to denote that n is a leaf node of the HDT. In the rest of this

chapter, we assume that only leaf nodes contain data; hence, for any internal

node (t, i, d), we have d = nil. Finally, given an HDT τ , we write τ.root to

denote the root node of τ .

3.3.1 XML Documents as HDTs

We can represent XML files as hierarchical data trees where nodes

correspond to XML elements. In particular, an edge from node v′ to v = (t, i, d)

indicates that the XML element e represented by v is nested directly inside

element e′ represented by v′. Furthermore since v has tag t and position i,
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this means e is the i’th child with tag t of e′. We also model XML attributes

and text content as nested elements. This design choice allows our model to

represent elements that contain a combination of nested elements, attributes,

and text content.

Example 3.1. Figure 3.3 shows the HDT representation of the XML file from

Figure 3.2a. Observe how attributes are represented as nested elements in the

HDT representation.

3.3.2 JSON Documents as HDTs

JSON documents store data as a set of nested key-value pairs. We can

model JSON files as HDTs in the following way: Each node n = (t, i, d) in the

HDT corresponds to a key-value pair e in the JSON file, where t represents

the key and d represents the value. Since values in JSON files can be arrays,

the position i corresponds to the i’th entry in the array. For instance, if the

JSON file maps key k to the array [18, 45, 32], the HDT contains three nodes

of the form (k, 0, 18), (k, 1, 45), (k, 2, 32). An edge from n′ to n indicates that

the key-value pair e represented by n is nested inside the key-value pair e′

represented by n′.

Example 3.2. Figure 3.6 shows the JSON document corresponding to the

HDT representation in Figure 3.3. Observe that JSON objects and arrays

are represented as internal nodes with data nil. For a given node n, we have

n.pos = 0 unless the parent of n corresponds to an array.

61



Figure 3.6: Example of a JSON file

3.4 Domain-Specific Language

In this section, we present our domain-specific language (DSL) for

implementing transformations from hierarchical data trees to relational tables.

As standard, we represent relational tables as a bag of tuples, where each tuple

is represented using a list. Given a relational table R, we use the notation

column(R, i) to denote the i’th column of R, and we use the terms “relation”

and “table” interchangably.

Figure 3.7 shows the syntax of our DSL, and Figure 3.8 gives its seman-

tics. Before we explain the constructs in this DSL, an important point is that

our language is designed to achieve a good trade-off between expressiveness

and efficiency of synthesis. That is, while our DSL can express a large class

of tree-to-table transformations that arise in practice, it is designed to make

automated synthesis practical.
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Program P := λτ.filter(ψ, λt.φ)

Table Extractor ψ := (λs.π) {root(τ)} | ψ1 × ψ2

Column Extractor π := s | children(π, tag)

| pchildren(π, tag, pos) | descendants(π, tag)

Predicate φ :=
(
(λn.ϕ) t[i]

)
E c |

(
(λn.ϕ1) t[i]

)
E
(
(λn.ϕ2) t[j]

)
| φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ

Node Extractor ϕ := n | parent(ϕ) | child(ϕ, tag, pos)

Figure 3.7: Syntax of Mitra’s DSL. Here, τ denotes the input tree, t is bound
to a tuple of nodes in τ , and n denotes a node in τ . Furthermore, i and j
are integers, and c is a constant value (string, integer, etc). t[i] gives the i-th
element in tuple t.

The high-level structure of the DSL follows our synthesis methodology

of decomposing the problem into two separate column and row extraction

operations. In particular, a program P is of the form λτ.filter(ψ, λt.φ), where

τ is the input HDT and ψ is a table extractor that extracts a relation R′ from

τ . As mentioned in Section 3.1, the extracted table R′ overapproximates the

target table R. Therefore, the top-level filter construct uses a predicate φ to

filter out tuples in R′ that do not appear in R.

3.4.1 Table Extractor

A table extractor ψ constructs a table by taking the cartesian product

of a number of columns, where an entry in each column is a “pointer” to a node
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[[ filter(ψ, λt.φ) ]]T = { (n1.data, ··,nk.data) | t ∈ [[ψ]]T, t = (n1, ··,nk), [[φ]]t,T = True }

[[ ψ1 × ψ2 ]]T = { (n1, ··,nk,n′1, ··,n′l) | (n1, ··,nk) ∈ [[ψ1]]T, (n′1, ··,n′l) ∈ [[ψ2]]T }
[[ (λs.π) {root(τ)} ]]T = { n | n ∈ [[π]]s,T,s = {T.root} }

[[ x ]]s,T = s where s is a set of nodes in T

[[ children(π, tag) ]]s,T = { n′ | n ∈ [[π]]s,T, (n,n′) ∈ E, n′.tag = tag }
[[ pchildren(π, tag, pos) ]]s,T = { n′ | n ∈ [[π]]s,T, (n,n′) ∈ E, n′.tag = tag, n′.pos = pos }

[[ descendants(π, tag) ]]s,T = { nz | n1 ∈ [[π]]s,T, ∃{n2, ...,nz−1} ⊂ V
s.t. ∀1 ≤ x < z. (nx,nx+1) ∈ E, nz.tag = tag }

[[
(
(λn.ϕ) t[i]

)
E c ]]t,T = n′.dataE c where n′ = [[ϕ]]ni,T

[[
(
(λn.ϕ1) t[i]

)
E(

(λn.ϕ2) t[j]
)

]]t,T

=


n′1.dataE n′2.data if n′1 and n′2 are both leaf nodes of T

n′1 = n′2 if E is “ = ”, and neither n′1 nor n′2
is a leaf node of T

False otherwise
where n′1 = [[ϕ1]]ni,T and n′2 = [[ϕ2]]nj ,T

[[ φ1 ∧ φ2 ]]t,T = [[φ1]]t,T ∧ [[φ2]]t,T

[[ φ1 ∨ φ2 ]]t,T = [[φ1]]t,T ∨ [[φ2]]t,T

[[ ¬φ ]]t,T = ¬[[φ]]t,T

[[ n ]]n,T = n

[[ parent(ϕ) ]]n,T =

{
n′ if (n′, [[ϕ]]n,T) ∈ E
⊥ otherwise

[[ child(ϕ, tag, pos) ]]n,T =

{
n′ if ([[ϕ]]n,T,n′) ∈ E and n′.tag = tag and n′.pos = pos

⊥ otherwise

Figure 3.8: Semantics of Mitra’s DSL. Here, T = (V,E) and t = (n1, ··,nl).
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in the input HDT. Each column is obtained by applying a column extractor π

to the root node of the input tree. A column extractor π takes as input a set

of nodes and an HDT, and returns a set of HDT nodes. Column extractors

are defined recursively and can be nested inside each other: The base case

simply returns the input set of nodes, and the recursive case extracts other

nodes from each input node using the children, pchildren, and descendants

constructs. Specifically, the children construct extracts all children with a

given tag, whereas pchildren yields all children with a given tag and specified

position. In contrast, the descendants construct returns all descendants with

the given tag. The formal (denotational) semantics of each construct is given

in Figure 3.8.

3.4.2 Predicate

Let us now turn our attention to predicates φ that can be used in the

top-level filter construct. Atomic predicates without boolean connectives are

obtained by comparing the data stored in an HDT node with a constant c or

the data stored in another tree node. In particular, predicates make use of

node extractors ϕ that take a tree node as input and return another tree node.

Similar to column extractors, node extractors are recursively defined and can

be nested within each other. Observe that node extractors allow accessing both

parent and children nodes; hence, they can be used to extract any arbitrary

node within the HDT from a given input node. (Figure 3.8 gives the formal

semantics).
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(a) Input XML (b) Output relation

Figure 3.9: Input-output example for Example 3.3

Going back to the definition of predicates, φ takes a tuple t and evaluates

to a boolean value indicating whether t should be kept in the output table.

The simplest predicate
(
(λn.ϕ) t[i]

)
E c first extracts the i’th entry n of t

and then uses the node extractor ϕ to obtain another tree node n′ from n.

This predicate evaluates to true iff n′.data E c is true. The semantics of(
(λn.ϕ1) t[i]

)
E
(
(λn.ϕ2) t[j]

)
is similar, except that it compares values stored

at two tree nodes n,n′. In particular, if n,n′ are both leaf nodes, then we check

whether the relation n.data E n′.data is satisfied. If they are internal nodes

and the operator E is equality, then we check whether n,n′ refer to the same

node. Otherwise, the predicate evaluates to false. More complex predicates are

obtained using the standard boolean connectives ∧,∨,¬.

Example 3.3. Consider the data transformation task illustrated in Figure 3.9,

in which we want to map the text value of each object element with id less

than 20 in the XML file to the text value of its immediate nested object
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P := λτ. filter(ψ, λt. φ1 ∧ φ2)

ψ := (λs.π1){root(τ)} × (λs.π2){root(τ)}

π1 = π2 = pchildren(descendants(s,Object), text, 0)

φ1 : ((λn. child(parent(n), id, 0))) t[0]) < 20

φ2 : ((λn. parent(n)) t[0]) = ((λn. parent(parent(n)) t[1])

Figure 3.10: Synthesized program for Example 3

elements. Figure 3.10 shows the DSL program that can be used to perform

this transformation. Here, column extractors π1, π2 use the descendants and

pchildren constructs to extract all children nodes with tag text and pos 0 of any

object node reachable from the root. Predicate φ1 filters out all tuples where

the first element in the tuple has an id sibling with value greater than or equal

to 20. The second predicate φ2 ensures that the second element in the tuple is

directly nested inside the first one.

3.5 Synthesis Algorithm

In this section, we present our synthesis algorithm for converting an

HDT into a relational table from input-output examples. Our technique can

be used to transform an XML or JSON document into a relational database

by running the algorithm once for each table in the target database.

The top-level structure of our synthesis algorithm is given in Algo-

rithm 3.1. The algorithm takes a set of input-output examples of the form
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Algorithm 3.1 Mitra’s top-level synthesis algorithm

1: procedure LearnTransformation(E)

2: Input: Examples E = {T1 → R1, ··,Tm → Rm}.
3: Output: Simplest DSL program P ∗.
4: Requires: Each table Ri has k columns.
5: Ensures: ∀i ∈ [1,m] : [[P ∗]]Ti = Ri.

6: for all 1 ≤ j ≤ k do
7: Πj := LearnColExtractors(E, j);

8: Ψ := Π1 × · · ×Πn;

9: P ∗ := ⊥;
10: for all ψ ∈ Ψ do
11: φ := LearnPredicate(E, ψ);

12: if φ 6= ⊥ then
13: P := λτ.filter(ψ, λt.φ);

14: if θ(P ) < θ(P ∗) then P ∗ := P

15: return P ∗;

{T1 → R1, ··,Tm → Rm}, where each Ti represents an HDT (input example)

and Ri represents its desired relational table representation (output example).

Since the schema of the target table is typically fixed in practice, we assume

that all output tables (i.e., Ri’s) have the same number of columns. Given

these input-output examples, the procedure LearnTransformation returns

a program P ∗ in our DSL that is consistent with all input-output examples.

Furthermore, since P ∗ is the simplest DSL program that satisfies the specifi-

cation, it is expected to be a general program that is not over-fitted to the

examples.

As mentioned earlier, our methodology decomposes the synthesis task
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into two phases for extracting columns and rows. In the first phase, we

synthesize a column extraction program that yields an overapproximation

of each column in the output table R. The cartesian product of columns

extracted by these column extraction programs further yields a table R′ that

overapproximates the target table R. In the second phase, we learn a predicate

φ that allows us to filter out exactly the “spurious” tuples in R′ that do not

appear in the output table R.

Let us now consider the LearnTransformation procedure from

Algorithm 3.1 in more detail. Given the examples, we first invoke a procedure

called LearnColExtractors that learns a set Πj of column extraction

expressions such that applying any π ∈ Πj on each Ti yields a column that

overapproximates the j’th column in table Ri (lines 6-7). Observe that our

algorithm learns a set of column extractors (instead of just one) because

some of them might not lead to a desired filter program. Our procedure for

learning column extractors is based on deterministic finite automata and will

be described in more detail in Section 3.5.1.

Once we have the individual column extraction programs for each

column, we then obtain the set of all possible table extraction programs by

taking the cartesian product of each column extraction program (line 8). Hence,

applying each table extraction program ψ ∈ Ψ to the input tree Ti yields a

table R′i that overapproximates the output table Ri.

The next step of the synthesis algorithm (lines 9-14) learns the predicate

used in the top-level filter construct. For each table extraction program ψ ∈ Ψ,
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we try to learn a predicate φ such that λτ.filter(ψ, λt.φ) is consistent with the

examples. Specifically, the procedure LearnPredicate yields a predicate

that allows us to filter out spurious tuples in [[ψ]]Ti . If there is no such predicate,

LearnPredicate returns ⊥. Our predicate learning algorithm uses integer

linear programming to infer a simplest formula with the minimum number

of atomic predicates. We describe the LearnPredicate algorithm in more

detail in Section 3.5.2.

Since there may be multiple DSL programs that satisfy the provided

examples, our method uses the Occam’s razor principle to choose between

different solutions. In particular, Algorithm 3.1 uses a heuristic cost function θ

to determine which solution is simpler (line 14), so it is guaranteed to return a

program that minimizes the value of θ. Intuitively, θ assigns a higher cost to

programs that use complex predicates or column extractors. We discuss the

design of the heuristic cost function θ in Section 3.6.

3.5.1 Learning Column Extraction Programs

Our technique for learning column extraction programs is based on

deterministic finite automata (DFA). Given a tree (input example) and a

single column (output example), our method constructs a DFA whose language

accepts exactly the set of column extraction programs that are consistent with

the input-output example. If we have multiple input-output examples, we

construct a separate DFA for each example and then take their intersection.

The language of the resulting DFA includes column extraction programs that
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Algorithm 3.2 Algorithm for learning column extractors

1: procedure LearnColExtractors(E, i)

2: Input: Examples E and column number i.
3: Output: Set Π of column extractors.
4: Ensures: ∀π ∈ Π. ∀(T,R) ∈ E.
5: [[π]]{T.root},T ⊇ column(R, i).

6: E′ := {(T, κ) | (T,R) ∈ E ∧ κ = column(R, i)}
7: A := ConstructDFA(e0) where e0 ∈ E′

8: for all e ∈ E′\{e0} do

9: A′ := ConstructDFA(e)
10: A := Intersect(A,A′)

11: return Language(A)

are consistent with all examples.

Let us now look at the LearnColExtractors procedure shown in

Algorithm 3.2 in more detail. It takes the set of input-output examples E

as well as a column number i for which we would like to learn the extractor.

The algorithm returns a set of column extraction programs Π such that for

every π ∈ Π and every input-output example (T,R), we have [[π]]{T.root},T ⊇

column(R, i).

Algorithm 3.2 starts by constructing a set of examples E′ mapping each

input tree to the i’th column of the output table (line 6). Then, for each

example e ∈ E′, we construct a DFA that represents all column extraction

programs consistent with e (lines 7-10). The set of programs consistent with

all examples E′ corresponds to the language of the intersection automaton A

from line 11. In particular, the Intersect procedure used in line 10 is the
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standard intersection procedure for DFAs [86]. Concretely, the intersection

of two DFAs A1 and A2 only accepts programs that are accepted by both A1

and A2 and is constructed by taking the cartesian product of A1 and A2 and

defining the accepting states to be all states of the form (q1, q2) where q1 and

q2 are accepting states of A1 and A2 respectively.

The key part of the LearnColExtractors procedure is the Con-

structDFA method, which constructs a deterministic finite automaton

A = (Q,Σ, δ, q0, F ) from an input-output example using the rules shown

in Figure 3.11. Here, the states Q of the automaton correspond to sets of nodes

in the input HDT. We use the notation qs to denote the state representing the

set of nodes s. The alphabet Σ corresponds to the names of column extraction

functions in the DSL. Specifally, we have:

Σ = {childrentag | tag is a tag in T}
∪ {pchildrentag,pos | tag (pos) is a tag (pos) in T}
∪ {descendantstag | tag is a tag in T}

In other words, each symbol in the alphabet corresponds to a DSL oper-

ator (instantiated with labels and positions from the input HDT). Transitions

in the DFA are constructed using the semantics of DSL operators: Intuitively,

given a DSL construct f ∈ {children, pchildren, descendants} and a state qs,

the DFA contains a transition qs
f−→ q′s if applying f to s produces s′. The

initial state of the DFA is {T.root}, and we have qs ∈ F iff s overapproximates

the i’th column in table R.

Let us now look at the construction rules shown in Figure 3.11 in more

detail. Rules (1)-(4) process the column extractor constructs in our DSL and
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s = {T.root}
q0 = qs ∈ Q

(1)

qs ∈ Q tag is a tag in T

[[children(s,tag)]]s,T = s′

qs′ ∈ Q, δ(qs, childrentag) = qs′
(2)

qs ∈ Q tag is a tag in T pos is a pos in T

[[pchildren(s,tag,pos)]]s,T = s′

qs′ ∈ Q, δ(qs, pchildrentag,pos) = qs′
(3)

qs ∈ Q tag is a tag in T

[[descendants(s,tag)]]s,T = s′

qs′ ∈ Q, δ(qs, descendantstag) = qs′
(4)

s ⊇ column(R, i)

qs ∈ F
(5)

Figure 3.11: DFA construction rules. T is the input tree, R is the output table,
and i is the column to be extracted.

construct states and/or transitions. The first rule adds q{T.root} as an initial

state because the root node of the HDT is directly reachable. The second

rule adds a state qs′ and a transition δ(qs, childrentag) = qs′ if children(s,

tag) evaluates to s′. Rules (3) and (4) are similar to rule (2) and process the

remaining column extraction functions pchildren and descendants. For example,

we have δ(qs, pchildrentag,pos) = qs′ if pchildren(s,tag,pos) evaluates to s′.

The last rule in Figure 3.11 identifies the final states. In particular, a state qs

is a final state if s is a superset of the target column (i.e., output example).
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Theorem 3.1. 4 Let A be the DFA constructed by Algorithm 3.2 for a set of

input-output examples E and a column number i. Then, A accepts a column

extraction program π in our DSL iff ∀(T,R) ∈ E. [[π]]{T.root},T ⊇ column(R, i).

Example 3.4. Suppose the DFA constructed using rules from Figure 3.11

accepts the word ab where a = descendantsobject and b = pchildrentext,0. This

word corresponds to the following column extractor program:

π = pchildren(descendants(s, object), text, 0)

If the input example is T and the output example is column(R, i), then we have

((λs.π) {T.root}) ⊇ column(R, i).

3.5.2 Learning Predicates

We now turn our attention to the predicate learning algorithm Learn-

Predicate shown in Algorithm 3.3. This procedure takes the input-output

examples E and a candidate table extractor ψ and returns a predicate φ such

that for every (T,R) ∈ E, the program filter(ψ, λt.φ) yields the desired output

table R on input T.

The algorithm starts by constructing a (finite) universe Φ of all possible

atomic predicates that can be used in formula φ (line 6). These predicates are

constructed for a set of input-output examples E and a candidate table extractor

ψ using rules from Figure 3.12. While these rules are not very important for

understanding the key ideas of our technique, let us consider rule (4) from

4Proofs of all theorems are given in Appendix A.
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Algorithm 3.3 Algorithm for learning predicates

1: procedure LearnPredicate(E, ψ)

2: Input: Examples E, a candidate table extractor ψ.
3: Output: Desired predicate φ.
4: Requires: ∀(T,R) ∈ E. R ⊆ [[ψ]]T.
5: Ensures: ∀(T,R) ∈ E. [[filter(ψ, λt.φ)]]T = R.

6: Φ := ConstructPredUniverse(E, ψ)
7: E+ := ∅; E− := ∅
8: for all (T,R) ∈ E do
9: for all t ∈ [[ψ]]T do

10: if t ∈ R then
11: E+ := E+ ∪ {t}
12: else E− := E− ∪ {t}

13: Φ∗ := FindMinCover(Φ,E+,E−)

14: Find φ such that:

15: (1) φ is boolean combination of preds in Φ∗

16: (2) φ(t) =

{
1 if t ∈ E+

0 if t ∈ E−

17: return φ

Figure 3.12 as an example. According to this rule, we generate an atomic

predicate
(
(λn.ϕ) t[i]

)
E c if i is a valid column number in the range [1, k], c

is a constant in one of the input tables, and ϕ is a “valid” node extractor for

column i. Rules (1)-(3) in Figure 3.12 define what it means for a node extractor

ϕ to be valid for column i, denoted as ϕ ∈ χi. In particular, we say ϕ is a valid

node extractor for column i if applying ϕ does not “throw an exception” (i.e.,

yield ⊥) for any of the entries in the i’th column of the generated intermediate
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Algorithm 3.4 Algorithm to find minimum predicate set

1: procedure FindMinCover(Φ, E+, E−)

2: Input: Universe of predicates Φ
3: Input: Positive examples E+, negative examples E−

4: Output: Set of predicates Φ∗ where Φ∗ ⊆ Φ

5: for all (φk, ei, ej) ∈ Φ× E+ × E− do

6: aijk =

{
1 if φk(ei) 6= φk(ej)
0 otherwise

7: minimize
|Φ|∑
k=1

xk

8: subject to:

9: ∀(ei, ej) ∈ E+ × E−.
|Φ|∑
k=1

aijk · xk ≥ 1

10: ∧ ∀k ∈ [1, |Φ|]. xk ∈ {0, 1}

11: return {φi | φi ∈ Φ ∧ xi = 1}

tables. 5

The next step of LearnPredicate constructs a set of positive and

negative examples to be used in LearnPredicate (lines 7–12). In this

context, positive examples E+ refer to tuples that should be present in the

desired output table, whereas negative examples E− correspond to tuples that

should be filtered out. The goal of the predicate learner is to find a formula

φ over atomic predicates in Φ such that φ evaluates to true for all positive

examples and to false for all negative examples. In other words, formula φ

5Recall that these intermediate tables are obtained by applying ψ to the input HDTs in
E.

76



πi,E ` n ∈ χi
(1)

πi,E ` ϕ ∈ χi
∀T→ R ∈ E. ∀n ∈ πi(T). [[parent(ϕ)]]n,T 6= ⊥

πi,E ` parent(ϕ) ∈ χi
(2)

πi,E ` ϕ ∈ χi
∀T→ R ∈ E. ∀n ∈ πi(T). [[child(ϕ,tag,pos)]]n,T 6= ⊥

πi,E ` child(ϕ,tag,pos) ∈ χi
(3)

ψ = π1 × . . .× πk, i ∈ [1, k]

πi,E ` ϕ ∈ χi
∃(T,R) ∈ E. c ∈ data(T)

ψ,E `
(
(λn.ϕ) t[i]

)
E c ∈ Φ

(4)

ψ = π1 × . . .× πk, i ∈ [1, k], j ∈ [1, k]

πi,E ` ϕ1 ∈ χi
πj,E ` ϕ2 ∈ χj

ψ,E `
(
(λn.ϕ1) t[i]

)
E
(
(λn.ϕ2) t[j]

)
∈ Φ

(5)

Figure 3.12: Predicate universe construction rules. E is the input-output
examples and ψ = π1 × ... × πk is the candidate table extractor. Here χi
indicates a set of node extractors that can be applied to the nodes extracted
for column i.

serves as a classifier between E+ and E−.

To learn a suitable classifier, our algorithm first learns a minimum set

of atomic predicates that are necessary for distinguishing the E+ samples from

the E− ones. Since our goal is to synthesize a general program that is not
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over-fitted to the input-output examples, it is important that the synthesized

predicate φ is as simple as possible. We formulate the problem of finding a

simplest classifier as a combination of integer linear programming (ILP) and

logic minimization [126, 146]. In particular, we use ILP to learn a minimum

set of predicates Φ∗ that must be used in the classifier, and then use circuit

minimization techniques to find a DNF formula φ over Φ∗ with the minimum

number of boolean connectives.

Our method for finding the minimum set of atomic predicates is given

in Algorithm 3.4. The FindMinCover procedure takes as input the universe

Φ of all predicates as well as positive and negative examples E+, E−. It returns

a subset Φ∗ of Φ such that, for every pair of examples (e1, e2) ∈ E+×E−, there

exists an atomic predicate p ∈ Φ∗ such that p evaluates to different truth values

for e1 and e2 (i.e., p differentiates e1 and e2).

We solve this optimization problem by reducing it to 0-1 ILP in the

following way: First, we introduce an indicator variable xk such that xk = 1 if

pk ∈ Φ is chosen to be in Φ∗ and xk = 0 otherwise. Then, for each predicate

pk and every pair of examples (ei, ej) ∈ E+ × E−, we introduce a (constant)

variable aijk such that we assign aijk to 1 if predicate pk distinguishes ei and

ej and to 0 otherwise. Observe that the value of each aijk is known, whereas

the assignment to each variable xk is to be determined.

To find an optimal assignment to variables ~x, we set up the 0-1 ILP

problem shown in lines 7–10 of Algorithm 3.4. First, we require that for every

pair of examples, there exists a predicate pk that distinguishes them. This
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requirement is captured using the constraint in line 9: Since aijk is 1 iff pk

distinguishes ei and ej , the constraint at line 9 is satisfied only when we assign

at least one of the xk’s differentiating ei and ej to 1. The objective function at

line 7 minimizes the sum of the xk’s, thereby forcing us to choose the minimum

number of predicates that are sufficient to distinguish every pair of positive

and negative examples.

Going back to Algorithm 3.3, the return value Φ∗ of FindMinCover

(line 13) corresponds to a minimum set of predicates that must be used in the

classifier; however, we still need to find a boolean combination of predicates in

Φ∗ that differentiates E+ samples from the E− ones. Furthermore, we would

like to find the smallest such boolean combination for three reasons: (1) large

formulas might hinder the generality of the synthesized program as well as

its readability, and (2) large formulas would incur more overhead when being

evaluated at runtime.

We cast the problem of finding a smallest classifier over predicates in

Φ∗ as a logic minimization problem [126, 146]. In particular, given a set of

predicates Φ∗, our goal is to find a smallest DNF formula φ over predicates

in Φ∗ such that φ evaluates to true for any positive example and to false

for any negative example. To solve this problem, we start by constructing a

(partial) truth table, where the rows correspond to examples in E+ ∪ E−, and

the columns correspond to predicates in Φ∗. The entry in the i’th row and

j’th column of the truth table is true if predicate pj ∈ Φ∗ evaluates to true for

example ei and false otherwise. The target boolean function φ should evaluate
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φ1 φ2 φ3 φ4 φ5 φ6 φ7

e+1 true true false false true true false

e+2 false true true true true false true

e+3 false true true true false false false

e−1 false false true true false false false

e−2 false true true true false false true

e−3 true false true false false false true

Figure 3.13: Initial truth table for Example 3.5. Initial truth table for the
predicate universe Φ, positive examples E+ and negative examples E−.

to true for any e+ ∈ E+ and false for any e− ∈ E−. Since we have a truth table

describing the target boolean function, we can use standard techniques, such

as the Quine-McCluskey method [126, 146], to find a smallest DNF formula

representing classifier φ.

Theorem 3.2. Given examples E and table extractor ψ such that ∀(T,R) ∈

E. R ⊆ [[ψ]]T, Algorithm 3.3 returns a smallest DNF formula φ such that

∀(T,R) ∈ E. [[filter(ψ, λt.φ)]]T = R if such a formula exists in our DSL.

Example 3.5. Consider predicate universe Φ = {φ1, ..., φ7}, a set of positive

examples E+ = {e+
1 , e

+
2 , e

+
3 }, and a set of negative examples E− = {e−1 , e−2 , e−3 }

with the truth table given in Figure 3.13. Here, the entry at row ei and column φj

of Figure 3.13 is true iff tuple ei satisfies predicate φj. The goal of the predicate

learner is to find a formula φ? with the minimum number of atomic predicates

φi ∈ Φ such that it evaluates to true for all positive examples and to false

for all negative examples. In order to do so, the FindMinCover procedure
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υ11 υ12 υ13 υ21 υ22 υ23 υ31 υ32 υ33

φ1 1 1 0 0 0 1 0 0 1
φ2 1 0 1 1 0 1 1 0 1
φ3 1 1 1 0 0 0 0 0 0
φ4 1 1 0 0 0 1 0 0 1
φ5 1 1 1 1 1 1 0 0 0
φ6 1 1 1 0 0 0 0 0 0
φ7 0 1 1 1 0 0 0 1 1

Figure 3.14: Values of aijk assigned in line 6 of Algorithm 3.4. Here υij
corresponds to (ei, ej) ∈ E+ × E−.

φ2 φ5 φ7 φ?

e+1 true true false true

e+2 true true true true

e+3 true false false true

e−1 false false false false

e−2 true false true false

e−3 false false true false

Figure 3.15: Truth table for Example 3.5, constructed in lines 14 − 16 of
Algorithm 3.3.

first finds the minimum required subset of atomic predicates Φ∗ as described

in Algorithm 3.4. Figure 3.14 shows the values of aijk assigned in line 6 of

Algorithm 3.4. In particular, the entry at row φi and column vjk of Figure 3.14

is true iff aijk is true. The highlighted rows in the Figure 3.14 indicate the

predicates which are selected to be in Φ∗ using integer linear programming. After

finding Φ∗ = {φ2, φ5, φ7}, lines 14–16 Algorithm 3.3 generate the (partial) truth

table as shown in Figure 3.15. The smallest DNF formula that is consistent
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with this truth table is φ5 ∨ (φ2 ∧ ¬φ7), so our algorithm returns this formula

as a classifier.

3.5.3 Synthesis Algorithm Properties

The following two theorems state the soundness and completeness of

our algorithm:

Theorem 3.3. (Soundness) Given examples E = {T1 → R1, ··,Tm → Rm},

suppose that LearnTransformation(E) yields P ∗. Then, ∀(Ti,Ri) ∈ E, we

have [[P ∗]]Ti = Ri.

Theorem 3.4. (Completeness) Suppose there is a DSL program con-

sistent with examples E = {T1 → R1, ··,Tm → Rm}. Then,

LearnTransformation(E) eventually returns a program P ∗ such that

∀i ∈ [1,m] : [[P ∗]]Ti = Ri.

Finally, the following theorem states that our synthesis algorithm returns

a simplest DSL program with respect to the cost metric θ:

Theorem 3.5. (Simplicity) Given examples E, Algorithm 3.1 returns a DSL

program P ∗ such that for any program P satisfying E, we have θ(P ∗) ≤ θ(P ).

3.5.3.1 Complexity

Our algorithm has worst-case exponential time complexity with respect

to the size of input-output examples, as integer linear programming and logic

minimization for a given truth table are both NP-hard problems. However, in
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practice, the complexity of our algorithm does not come close to the worst-case

scenario. The next two paragraphs present a more detailed explanation of the

empirical complexity of the proposed algorithm.

Let m be the number of input-output examples, k and r be (respectively)

the number of columns and maximum number of rows in output tables, and

n be the maximum number of nodes in an input tree. Despite the worst-

case exponential time complexity in theory, the empirical complexity of our

algorithm is close to O(m2 · k2 · n2 · r · (log n)k). To see where this result

comes from, we first discuss the complexity of the LearnColExtractor

procedure. The complexity of DFA construction is O(n), and the complexity

of generating the intersection of two DFAs is O(n2). Therefore, the overall

complexity of Algorithm 3.2 is O(m · n2), and as the result, the loop in lines

4 − 5 of Algorithm 3.1 takes O(k · m · n2). Our empirical evaluations show

that the cartesian-product generated in line 6 of the LearnTransformation

procedure usually contains a small number of table extractors.

Now we discuss the complexity of the LearnPredicate procedure

for a given table extractor ψ and the set of examples E. It first generates

the universe of all atomic predicates which contains O(k2 · n2) predicates.

Then, it constructs the set of positive and negative examples. The number of

positive examples is determined by the given input-output examples, which

is O(m · r). The number of negative examples for each (T,R) ∈ E is bounded

by the number of tuple in the corresponding intermediate table ([[ψ]]T). In

practice, each column extractor usually extracts O(log n) nodes from a given
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tree with n nodes, therefore the intermediate table contains O((log n)k) tuples.

Hence, the total size of negative examples is O(m ·(log n)k). In our experiments,

Algorithm 3.4 returned a smallest set of atomic predicates, which included

a few predicates, in O(m2 · k2 · n2 · r · (log n)k). Finally, finding a smallest

classifier over the predicates Φ∗ returned by the FindMinCover procedure is

very efficient because of the small size of Φ∗. Therefore, the overall complexity

of Algorithm 3.3 is close to O(m2 · k2 · n2 · r · (log n)k) in practice. Going back

to Algorithm 3.1, since the loop in lines 8− 12 iterates over a small number of

column extractors, the overall empirical complexity of our synthesis algorithm

is determined by the complexity of the Algorithm 3.3.

3.6 Implementation

We have implemented our synthesis algorithm in a tool called Mitra,

which consists of approximately 7, 000 lines of Java code. As shown in Fig-

ure 3.16, Mitra includes a domain-agnostic synthesis core (referred to as

Mitra-core) and a set of domain-specific plug-ins. Specifically, Mitra-core

accepts input-output examples in the form of (HDT, table) pairs and outputs

a program over the DSL shown in Figure 3.7. The goal of a Mitra plug-in is

to (1) convert the input document to our internal HDT representation, and

(2) translate the program synthesized by Mitra-core to a target DSL. We

have currently implemented two domain-specific plug-ins, called Mitra-xml

and Mitra-json, for XML and JSON documents respectively. Specifically,

Mitra-xml outputs programs written in XSLT, and Mitra-json generates
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Figure 3.16: Architecture of Mitra

JavaScript programs. Mitra can be easily extended to handle other forms

of hierarchical documents (e.g., HTML and HDF) by implementing suitable

plug-ins.

3.6.1 Cost function

Recall from Section 3.5 that our synthesis algorithm uses a heuristic

cost function θ to choose the simplest program among all possible solutions

that are consistent with the provided input-output examples. The cost function

that we use in our implementation ranks programs based on the complexity of

their predicates and column extractors and returns a program with the lowest

cost. Given two programs P1, P2, our cost function assigns P1 (resp. P2) a

lower cost if it uses fewer atomic predicates than P2 (resp. P1). If P1 and P2

use the same number of atomic predicates, then the cost function assigns a

lower cost to the program that uses fewer constructs in the column extractors.
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3.6.2 Program Optimization

While our DSL is designed to facilitate synthesis, programs in this

language can be inefficient: In particular, the synthesized programs generate a

(potentially large) intermediate table and then filter out the undesired tuples.

To avoid inefficiencies caused by this design choice, Mitra-core optimizes

the synthesized programs by avoiding the generation of intermediate tables

whenever possible. In particular, consider a synthesized program of the form

λx.filter(π1 × π2, φ). Instead of first taking the cross-product of π1, π2 and

then filtering out undesired tuples, we optimize the synthesized program in

such a way that the optimized program directly generates the final table by

using φ to guide table generation. More specifically, we use φ to find a prefix

subprogram π∗ that is shared by π1, π2 with the property that any subsequent

execution of the remaining parts of π1, π2 from any node in Jπ∗K yields tuples

that are guaranteed to satisfy φ. Therefore, the optimized program avoids a

post-filtering step and directly generates the output table. A more detailed

explanation of this optimization can be found in Appendix B.

3.6.3 Handling Full-fledged Databases

The synthesis algorithm that we described in Section 3.5 generates

programs for converting a single HDT to a relational table. However, in

practice, we would like to use Mitra to convert XML and JSON datasets to a

complete database with a given schema. This transformation can be performed

by invoking Mitra multiple times (once for each target table) and annotating
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primary and foreign keys of database tables.

Mitra ensures that the synthesized program obeys primary and foreign

key constraints by performing a post-processing step. 6 To ensure that the

primary key uniquely identifies a given row in the table, the synthesized

program generates primary keys as follows: If a given row in the database table

is constructed from nodes n1, . . . , nk in the input tree, then we generate its

primary key using an injective function f(n1, . . . , nk). Since each row in the

table is constructed from a unique list of tree nodes, the generated primary

key is guaranteed to be unique for each row as long as f is injective. In our

implementation, f simply concatenates the unique identifiers for each tree

node.

In order to ensure that a foreign key in table T refers to a primary key

in the table T ′, the synthesized program for table T must use the same function

f to generate the foreign keys. In particular, to generate the foreign key for

a given row r constructed from list of tree nodes n1, . . . , nk, we need to find

the tree nodes n′1, . . . , n
′
m that are used to construct the corresponding row

r′ in T ′. For this purpose, we learn m different (node extractor, node) pairs

(χj, ntj) such that χj(ntj) yields n′j for all rows in the output examples for T

and T ′. Finally, for a given row r in T , we then generate the foreign key for r

as f(χ1(nt1), . . . , χm(ntm)). This strategy ensures that the foreign and primary

6If the primary and foreign keys come from the input data set, we assume that the dataset
already obeys these constraints. Hence, the following discussion assumes that the primary
and foreign keys do not appear in the input dataset.
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key constraints are satisfied as long as the learnt node extractors are correct.

3.7 Evaluation

To evaluate Mitra, we perform experiments that are designed to answer

the following questions:

Q1. How effective is Mitra at synthesizing tree-to-table transformation

programs?

Q2. Can Mitra be used to migrate real-world XML and JSON datasets to

the desired relational database?

Q3. Are the programs synthesized by Mitra fast enough to automate real-

world data transformation tasks?

To answer these questions, we perform two sets of experiments: The first

experiment evaluates Mitra on tree-to-table transformation tasks collected

from StackOverflow, whereas the second experiment evaluates Mitra on real-

world datasets. Both experiments are conducted on a MacBook Pro with 2.6

GHz Intel Core i5 processor and 8 GB of 1600 MHz DDR3 memory running

OS X version 10.12.5.

3.7.1 Accuracy and Running Time

3.7.1.1 Setup

To perform our first experiment, we collected 98 tree-to-table trans-

formation tasks from StackOverflow by searching for relevant keywords (e.g.,
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“JSON to database”, “XML shredding”, etc.). Among these 98 benchmarks, 51

involve XML documents, while 47 involve JSON files.

Since Mitra requires input-output examples, we obtained the input

XML/JSON file directly from the StackOverflow post. For output examples, we

used the table provided in the StackOverflow post if one was present; otherwise,

we constructed the desired output table based on the English description

included in the post.

For each benchmark, we used Mitra to synthesize a program that

performs the given task. We manually inspected the tool’s output to check

whether the synthesized program performs the desired functionality. Even

though any program synthesized by Mitra is guaranteed to satisfy the provided

input-output examples, it may not necessarily be the program that the user

intended. Whenever the program synthesized by Mitra did not conform to

the English description provided in the StackOverflow post, we updated the

input-output examples to make them more representative. In our evaluation,

we needed to update the original input-output example at most once, and the

original examples were sufficient to learn the correct program for the majority

of the benchmarks.

3.7.1.2 Results

Table 4.3 summarizes the results of evaluating Mitra on these 98 bench-

marks. The first part of the table provides information about our benchmarks,

which we categorize into four classes depending on the number of columns
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Benchmarks

Synthesis Input-output Synthesis

Time Examples Program

(s) #Elements #Rows (Avg.)
#
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#
P

re
d
s

L
O

C

X
M

L

≤ 2 17 15 0.34 0.38 12.0 15.9 3.0 4.3 1.0 13.2

3 12 12 0.63 3.67 19.5 47.7 4.0 3.8 2.0 17.2

4 12 11 1.25 3.56 16.0 20.5 2.0 2.7 3.1 19.5

≥ 5 10 10 3.48 6.80 24.0 27.2 2.5 2.6 4.1 23.3

Total 51 48 0.82 3.27 16.5 27.2 3.0 3.5 2.4 17.8

J
S

O
N

≤ 2 11 11 0.12 0.27 6.0 7.4 2.0 2.7 0.9 21.3

3 11 11 0.48 1.13 7.0 10.5 3.0 3.5 2.0 23.0

4 11 11 0.26 12.10 6.0 7.9 2.0 2.8 3.0 26.5

≥ 5 14 11 3.20 3.85 6.0 8.1 2.0 2.5 4.9 28.0

Total 47 44 0.31 4.33 6.0 8.5 2.0 2.9 2.7 24.7

Overall 98 92 0.52 3.78 11.0 18.7 3.0 3.2 2.6 21.6

Table 3.1: Summary of Mitra’s experimental evaluation

in the target table. Specifically, “#Cols” shows the number of columns in

each category, and “Total” shows the number of benchmarks in each category.

The column labeled “#Solved” shows the number of benchmarks that Mitra

was able to solve correctly. Overall, Mitra was able to synthesize the target

program for 93.9% of these benchmarks.

The columns under “Synthesis Time” show the median and average

90



time that Mitra takes to synthesize the desired program in seconds. On

average, Mitra synthesizes the target transformation in 3.8 seconds, and the

median time is even lower (0.5 seconds). We believe these results demonstrate

that Mitra is quite practical.

Next, the section labeled “Input-output Examples” in Table 4.3 describes

properties of the provided input-output examples. The two columns under

“#Elements” represent the median and average number of elements in the input

document, and the“#Rows” columns show the median and average number

rows in the output table. Here, “#Elements” corresponds to the number of

JSON objects and XML elements. As we can see from Table 4.3, the median

number of elements in the input document is 11, and the median number of

rows in the input table is 3. These results suggest that Mitra can synthesize

the desired program from relatively small input-output examples.

The final section of Table 4.3 describes properties of the synthesized

programs. For instance, according to the“Preds” column, the average num-

ber of atomic predicates used in predicates φ from our DSL is 2.6. More

interestingly, the column labeled “LOC” gives the number of lines of code in

the synthesized XSLT and Javascript programs. On average, the size of the

programs synthesized by Mitra is 21.6 (without including built-in functions,

such as the implementation of getDescendants or code for parsing the input

file).

Table 3.2 compares the number (resp. percentage )of benchmarks for

which Mitra was able to synthesize the desired program from the original
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Original Updated

Examples Examples

# % # %

XML 29 56.9 22 43.1

JSON 27 57.4 20 42.6

Overall 56 57.1 42 42.9

Table 3.2: Number of original vs updated input-output examples.

input-output examples provided in the StackOverflow post (shown in the section

“Original Examples”) with the number (resp. percentage) of benchmarks that

required updating the input-output examples (shown in the section “Updated

Examples”). This table shows that the original examples were sufficient to

learn the correct program for 57% of our benchmarks.

3.7.1.3 Limitations

To understand Mitra’s limitations, we investigated the 6 benchmarks

for which Mitra was not able to synthesize the desired program. We found

that the desired program was not expressible in our DSL for 5 of these 6

benchmarks. For example, some of these 5 benchmarks require the use of a

conditional in the column extractor, which our DSL does not currently support.

For the other benchmark, there exists a DSL program that can perform the

desired functionality, but Mitra ran out of memory due to the large number

of columns in the target table.
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3.7.1.4 Performance

We also evaluated the performance of the synthesized programs by

running them on XML documents of size 512± 20 MB. In particular, we used

the Oxygen XML editor [7] to generate XML files with a given schema and a

specified number of elements. Among the 48 XSLT programs generated using

Mitra, 46 of them were able to perform the desired transformation within

approximately one minute. The running times of these 46 programs range

between 8.6 and 65.5 seconds, with a median (resp. average) running time of

20.0 (resp. 23.5) seconds. The other two programs were not able to complete

the transformation task within one hour due to inefficiencies in the generated

code.

3.7.2 Migration to Relational Database

3.7.2.1 Setup

In our next experiment, we use Mitra to convert real-world XML and

JSON datasets to a complete relational database. Our benchmarks for this

experiment include the following four well-known datasets:

• DBLP, an XML document containing 2 GB of data about published

computer science papers [3].

• IMDB, a set of JSON documents containing 6.2 GB of data about

movies, actors, studios etc [4]. 7

7The raw data from [4] is provided in tab-separated-values (TSV) format, so we converted
it to JSON format using an existing program [5].
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• MONDIAL, an XML document containing 3.6 MB of geographical

data [6].

• YELP, a set of JSON documents containing 4.6 GB of data about

businesses and reviews [11].

We obtained the target relational database schema for each of these

datasets from [2], and certified that all of them are normalized. To use Mitra

to perform the desired data migration task, we manually constructed small

input-output examples. For each table, we provided a single pair of input-

output examples, in addition to a list of all primary and foreign keys in the

database schema. In particular, the average number of elements in the input

examples is 16.6 and the average number of rows in each database table is 2.8.

Given a suitable input-output example for each target database table, we then

ran Mitra with a time limit of 120 seconds. We then manually inspected

the synthesized program and verified its correctness. In this experiment, there

was no user interaction; the original examples we provided were sufficient for

Mitra to synthesize the desired program. Furthermore, for each target table,

we were often able to re-use the input examples (e.g., for IMDB, we used 2

different input examples for the 9 target tables).

3.7.2.2 Results

The results of this experiment are summarized in Table 3.3. The columns

under “DB” show the number of tables and total number of attributes in the
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Dataset DB
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DBLP XML
1.97
GB

9 39 7.41 0.82
8.312

M
1166.44 129.60

IMDB JSON
6.22
GB

9 35 33.53 3.72
51.019

M
1332.93 148.10

MONDIAL XML
3.64
MB

25 120 62.19 2.48
27.158

K
71.84 2.87

YELP JSON
4.63
GB

7 34 14.39 2.05
10.455

M
220.28 31.46

Table 3.3: Migrating datasets to databases. Summary of using Mitra for
migrating real-world datasets to a full DB. The columns labeled “Tot. Time”
include time for all database tables, whereas “Avg. Time” is the average time
per table.

target database. In particular, the number of database tables range between

7 and 25 and the number of columns range from 34 to 120. 8 Next, the two

columns under “Synthesis” show total and average synthesis time in seconds,

respectively. Specifically, the average time denotes synthesis time per table,

whereas total time aggregates over all database tables. As shown in Table 3.3,

average synthesis time ranges between 0.8 to 3.7 seconds per database table.

The last part of Table 3.3 provides information about the execution time

of the synthesized program and size of the generated database. Specifically,

8The Mondial database consists of a large number of tables and columns because it
includes a variety of different geographical and cultural data.
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according to the “#Rows” column, the total number of rows in the generated

database ranges between 27, 000 and 51 million. The next two rows provide

statistics about the execution time of the synthesized programs on the original

full dataset. For example, the average time to generate a target database table

for datasets in the range 2 − 6 GB is between 31 and 148 seconds. These

statistics show that the programs generated by Mitra can be used to migrate

real-world large datasets.

3.8 Summary

In this chapter, we proposed a new PBE-based method for transforming

hierarchically structured data, such as XML and JSON documents, to a rela-

tional database. Given a small input-output example, our tool, Mitra, can

synthesize XSLT and Javascript programs that perform the desired transforma-

tion. The key idea underlying our method is to decompose the synthesis task

into two phases for learning the column and row extraction logic separately.

Our synthesis algorithm generates column extractors by constructing a certain

type of DFA and identifying the lowest-cost word accepted by this DFA. In

contrast, our method learns the predicates used in the row extraction logic

by reducing the problem to a combination of integer linear programming and

logic minimization. We have evaluated our method on examples collected from

Stackoverflow as well as real-world XML and JSON datasets. Our evaluation

shows that Mitra is able to synthesize the desired programs for 94% of the

Stackoverflow benchmarks and for all of the real-world datasets.

96



Chapter 4

Sqlizer 1

One of the main advantages of using relational databases is the ease

of data retrieval. While extracting data from relational databases is more

efficient and less complex than retrieving it from hierarchical datasets such

(e.g. XML or JSON documents), it still requires users to write queries in a

specific language such as SQL. This means end-users who wish to access data

in an underlying database should be knowledgeable about database systems

and query languages.

This chapter presents a new technique for automatically synthesizing

SQL queries from natural language (NL). At the core of our technique is a

new NL-based program synthesis methodology that combines semantic parsing

techniques from the NLP community with type-directed program synthesis

and automated program repair. Starting with a program sketch obtained using

standard parsing techniques, our approach involves an iterative refinement loop

that alternates between quantitative type inhabitation and automated sketch

repair. We use the proposed idea to build an end-to-end system called Sqlizer

that can synthesize SQL queries from natural language. Our method is fully

1Parts of this chapter have appeared in [186].
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automated, works for any database without requiring additional customization,

and does not require users to know the underlying database schema. We

evaluate our approach on over 450 natural language queries concerning three

different databases, namely MAS, IMDB, and YELP. Our experiments show

that the desired query is ranked within the top 5 candidates in close to 90% of

the cases.

The rest of this chapter is organized as follows: We first introduce

our approach in Section 4.1 and provide an overview of it through a simple

motivating example (Section 4.2). Then, we present our general methodology for

synthesizing programs from natural language descriptions (Section 4.3). After

providing some background on a variant of relational algebra (Section 4.4), we

then show how to instantiate each of the components of our general synthesis

methodology in the context of SQL synthesis (Sections 4.5, 4.6, 4.7). We

discuss our implementation in Section 4.8 and present our empirical evaluation

in Section 4.9. Finally, we discuss the limitations of our system in Section 4.10

and summarize this chapter in Section 4.11.

4.1 Introduction

A promising application domain for program synthesis from informal

specifications is the automated synthesis of database queries. Although many

end-users need to query data stored in some relational database, they typically

lack the expertise to write complex queries in declarative query languages

such as SQL. As a result, there has been a flurry of interest in automatically
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synthesizing SQL queries from informal specifications [194, 176, 59, 113, 144].

Existing techniques for automatically synthesizing SQL queries fall into

two different classes, namely example-based approaches and those based on

natural language. Programming-by-example techniques, such as Scythe [176]

and SQLSynthesizer [194], require the user to present a miniature version

of the database together with the expected output. A shortcoming of such

example-directed techniques is that they require the user to be familiar with the

database schema. Furthermore, because realistic databases typically involve

many tables, it can be quite cumbersome for the user to express their intent

using input-output examples.

On the other end of the spectrum, techniques that can generate SQL

queries from natural language (NL) descriptions are easier for end-users but

more difficult for the underlying synthesizer, as natural language is inherently

ambiguous. Existing NL-based techniques try to achieve high precision either

by training the system on a specific database [192, 170] or requiring interactive

guidance from the user [113]. Hence, existing NL-based techniques for synthe-

sizing SQL queries are either not fully automatic or not database-agnostic (i.e.,

require customization for each database).

In this chapter, we present a novel technique, and its implementation in a

tool called Sqlizer, for synthesizing SQL queries from English descriptions. By

marrying ideas from the NLP community with type-directed synthesis and repair

techniques from the programming languages community, our proposed approach

overcomes many of the disadvantages of existing techniques. Specifically, our
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method is fully automatic (i.e., it does not require guidance from the user)

and database-agnostic (i.e., it does not require database-specific training or

customization). As we show experimentally, Sqlizer achieves high precision

across multiple different databases and significantly outperforms Nalir [113],

a state-of-the-art system that won a best paper award at VLDB’14.

From a technical perspective, our approach achieves these results by

combining three novel and synergistic ideas in a confidence-driven refinement

loop:

Sketch generation semantic parsing . As a first step, our method uses

standard semantic parsing techniques [97, 116, 96] from the NLP community to

translate the user’s English description into a so-called query sketch (skeleton).

Since a query sketch only specifies the shape – rather than the full content – of

the query (e.g., join followed by selection followed by projection), the semantic

parser does not need to be trained on the target database. Hence, by using

the semantic parser to generate a query sketch rather than a full-fledged SQL

query, we can translate the user’s English description into a suitable formal

representation without requiring any database-specific training. This property

of being database-agnostic is very useful because our system does not need

additional training data for each new database that a user wishes to query.

Type-directed sketch completion . Given a query sketch containing holes,

our technique employs type-directed program synthesis to complete the sketch

into a well-typed SQL query. However, because there are typically many
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WHERE F.Year > 1986   
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Figure 4.1: Schematic overview of Sqlizer’s approach

well-typed completions of the sketch, our approach assigns a confidence score

to each possible completion using both the schema and the contents of the

database.

Sketch refinement using repair . Since users are typically not familiar

with the underlying data organization, the initial query sketches generated

using semantic parsing may not accurately reflect the structure of the target

query. Hence, there may not be any well-typed, high-confidence completions

of the sketch. For example, consider a scenario in which the user believes

that the desired data is stored in a single database table, although it in fact

requires joining two different tables. Since the user’s English description does

not adequately capture the structure of the desired query, the initial query

sketch needs to be repaired. Our approach deals with this challenge by (a)

performing fault localization to pinpoint the likely cause of the error, and (b)

using a database of “repair tactics” to refine the initial sketch.
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Figure 4.1 gives a schematic overview illustrating the interaction be-

tween the three key ideas outlined above. Given the user’s natural language

description, Sqlizer first generates the top k most likely query sketches Q

using semantic parsing, and, for each query skeleton q ∈ Q, it tries to syn-

thesize a well-typed, high-confidence completion of q. If no such completions

can be found, Sqlizer tries to identify the root cause of failure and automat-

ically repairs the suspect parts of the sketch. Once Sqlizer enumerates all

high-confidence queries that can be obtained using at most n repairs on q, it

then moves on to the next most-likely query sketch. At the end of this parse-

synthesize-repair loop, Sqlizer ranks all queries based on their confidence

scores and presents the top m results to the user.

We have evaluated our approach on 455 queries involving three different

databases, namely MAS (Microsoft Academic Search), IMDB, and YELP. Our

evaluation shows that the desired query is ranked within Sqlizer’s top 5

solutions approximately 90% of the time and within top 1 close to 80% of the

time. We also compare Sqlizer against a state-of-the-art NLIDB tool, Nalir,

and show that Sqlizer performs significantly better across all three databases,

including on the data set that is used for evaluating Nalir.

4.1.1 The General Idea

While our target application domain in this chapter is relational

databases, we believe that our proposed ideas could be applicable in other

domains that require synthesizing programs from natural language descriptions.
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Publication
*P pid Integer

tit le VARCHAR (200)
abstract VARCHAR (2000)
year Integer

*F cid Integer
*F j id Integer

{entity} PK (pid)

Journal
*P j id Integer

name VARCHAR (200)
fullName VARCHAR (1000)
homepage VARCHAR (200)

{entity} PK (jid)

Conference
*P cid Integer

name VARCHAR (200)
fullName VARCHAR (1000)
homepage VARCHAR (200)

{entity} PK (cid)

Writes
*PF aid Integer
*PF pid Integer

{entity} PK (aid, pid)

Author
*P aid Integer

name VARCHAR (200)
homepage VARCHAR (200)

{entity} PK (aid)

Figure 4.2: Simplified schema for MAS database. MAS stands for Microsoft
Academic Search.

Specifically, given a program sketch generated using standard NLP techniques,

we propose a confidence-driven synthesis methodology that uses a form of

quantitative type inhabitation to assign a confidence score to each well-typed

sketch completion. While the specific technique used for assigning confidence

scores is inherently domain-specific, the idea of assigning confidence scores to

type inhabitants is not. Given a domain-specific method for performing quan-

titative type inhabitation and a database of domain-specific repair techniques,

the parse-synthesize-repair loop proposed in this chapter can be instantiated

in many other settings where the goal is to synthesize programs from natural

language.

4.2 Overview

In this section, we give a high-level overview of our technique with the

aid of a simple motivating example. Figure 4.2 shows the relevant portion of the
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schema for the Microsoft Academic Search (MAS) database, and suppose that

we would like to synthesize a database query to retrieve the number of papers

in OOPSLA 2010. To use our tool, the user provides an English description,

such as “Find the number of papers in OOPSLA 2010”. We now outline the

steps taken by Sqlizer in synthesizing the desired SQL query.

Sketch generation. Our approach first uses a semantic parser to generate

the top k most-likely program sketches. For this example, the highest-ranked

query sketch returned by the semantic parser is the following 2:

SELECT count(?[papers]) FROM ??[papers]

WHERE ? = "OOPSLA 2010"

Here, ?? represents an unknown table, and ?’s represent unknown

columns. Where present, the words written in square brackets represent so-

called “hints” for the corresponding hole. For example, the second hint in this

sketch indicates that the table represented by ?? is semantically similar to the

English word “papers”.

First iteration. Starting from the above sketch S, Sqlizer enumerates all

well-typed completions qi of S, together with a score for each qi. In this case,

there are many possible well-typed completions of S, however, none of the qi’s

meet our confidence threshold. For instance, one of the reasons why Sqlizer

2We actually represent query sketches using an extended version of relational algebra. In this section,
we present query sketches using SQL for easier readability.
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fails to find a high-confidence query is that there is no entry called “OOPSLA

2010” in any of the database tables.

Next, Sqlizer performs fault localization on S to identify the root cause

of failure (i.e., not meeting confidence threshold). In this case, we determine

that the likely root cause is the predicate ? = "OOPSLA 2010" since there

is no database entry matching “OOPSLA 2010”, and our synthesis algorithm

has assigned a low confidence score to this term. Next, we repair the sketch by

splitting the where clause into two separate conjuncts. As a result, we obtain

the following refinement S′ of the initial sketch S:

SELECT count(?[papers]) FROM ??[papers]

WHERE ? = "OOPSLA" AND ? = 2010

Second iteration. Next, Sqlizer tries to complete the refined sketch S′

but it again fails to find a high-confidence completion of S′. In this case, the

problem is that there is no single database table that contains both the entry

“OOPSLA” as well as the entry “2010”. Going back to fault localization, we

now determine that the most likely problem is the term ??[papers], and

we try to repair it by introducing a join. As a result, the new sketch S′′ now

becomes:

SELECT count(?[papers]) FROM ??[papers] JOIN ??

ON ? = ? WHERE ? = "OOPSLA" AND ? = 2010
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Third iteration. After going back to the sketch completion phase a third

time, we are now able to find a high-confidence instantiation q of S′′. In this

case, the highest ranked completion of S′′ corresponds to the following query:

SELECT count(Publication.pid)

FROM Publication JOIN Conference

ON Publication.cid = Conference.cid

WHERE Conference.name = "OOPSLA"

AND Publication.year = 2010

This query is indeed the correct one, and running it on the MAS database

yields the number of papers in OOPSLA 2010.

4.3 General Synthesis Methodology

Before describing our specific technique for synthesizing SQL code from

English queries, we first explain our general methodology for synthesizing

programs from natural language descriptions. As mentioned in Section 3.1, our

general synthesis methodology involves three components, namely (a) sketch

generation using semantic parsing, (b) sketch completion using quantitative

type inhabitation, and (c) sketch refinement using repair.

The high-level structure of our synthesis methodology is described in

pseudo-code in Algorithm 4.1. The algorithm takes as input a natural language

description Q of the program to be synthesized, a type environment Γ, and

a confidence threshold γ. Since our synthesis algorithm assigns confidence
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Algorithm 4.1 General synthesis methodology in Sqlizer

1: procedure Synthesize(Q, Γ, γ)

2: Input: natural language query Q, type environment Γ, confidence
threshold γ

3: Output: A list of synthesized programs and their corresponding confi-
dence scores

4: Sketches := SemanticParse(Q) . Sketch generation

5: Programs := [ ];

6: for all top k ranked S ∈ Sketches do
7: loop n times
8: θ := FindInhabitants (S, Γ) . Type-directed sketch

completion

9: needRepair := true

10: for all (Ii,Pi) ∈ θ do

11: if Pi > γ then Programs.add(Ii,Pi); needRepair := false;

12: if ¬needRepair then break

13: F := FaultLocalize(S, Γ, ∅) . Sketch refinement

14: if F = null then break

15: S := S[FindRepair(F)/F]

16: return Programs

scores to generated programs, the cut-off γ is used to identify programs that

do not meet some minimum confidence threshold. The output of the synthesis

procedure is a list of synthesized programs, together with their corresponding

confidence score.

Given an English description of the program, the first step in our synthe-

sis methodology is to generate a ranked list of program sketches using semantic

parsing [97, 116, 96]. Semantic parsing is a standard technique from the NLP
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community that can be used to convert an English utterance into a logical

form, which is defined according to a formal context-free grammar. In this

chapter, we use program sketches [165, 166] as our logical form representation

because they allow us to translate the NL description into a program draft

while omitting several low-level details that may not be accurately captured by

the user’s English description. As standard, a program sketch in this context

is a partial program with holes [165, 166]. However, because our program

sketches are created from English descriptions, we additionally allow each hole

in the sketch to contain a natural language hint associated with it. The idea

is to use these natural language hints for assigning confidence scores during

sketch completion.

Given the top k query sketches generated by the semantic parser, the

next step is to complete each sketch S such that it is well-typed with respect

to our type environment Γ. For instance, in the context of SQL, the type

environment corresponds to the database schema, and the goal of sketch

completion is to find a relational algebra term that is well-typed with respect to

the underlying database schema. In essence, the use of type information allows

our synthesis methodology to perform logical reasoning that complements the

probabilistic reasoning performed by the semantic parser. However, because

there are typically many well-typed completions of a given sketch, we would like

to predict which term is the most likely completion. We refer to this problem

as quantitative type inhabitation: Given a type τ , a type environment Γ, and

some “soft constraints” C on the term to be synthesized, what is our confidence
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Pi that Ii is the inhabitant of τ with respect to hard constraints Γ and soft

constraints C? These soft constraints include natural language hints embedded

inside the sketch as well as any other domain-specific knowledge. For example,

in the context of database queries, we also utilize the contents of the database

when assigning confidence scores to relational algebra terms.

Now, if we fail to find any well-typed completions of the sketch that

meet our confidence threshold γ, our algorithm goes into a refinement loop

that alternates between repair and synthesis (the inner loop at lines 7–15

in Algorithm 4.1). Given a program sketch S for which we cannot find a

high-confidence completion, the fault localization procedure (line 13) returns

a minimal subterm of the sketch that does not meet our confidence threshold

γ. Given a faulty subterm F of sketch S, we then consult a database of

domain-specific repair tactics to find a new subterm F′ that can be used to

replace F. For instance, in the domain of SQL query synthesis, the repair

tactics introduce join operators, aggregate functions, or additional conjuncts

in predicates depending on the shape of the faulty sub-term. If there are

multiple repair tactics that apply, we can either arbitrarily choose one or try

each of them in turn. Since this refinement process may, in general, continue

ad infinitum, our algorithm allows the user to specify a value n that controls

the number of refinement steps that are allowed.
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T := ΠL(T ) | σφ(T ) | T c./cT | t

L := L,L | c | f(c) | g(f(c), c)

E := T | c | v

φ := φ lop φ | ¬φ | c op E

op := ≤ | < | = | > | ≥

lop := ∧ | ∨

Figure 4.3: Grammar of Extended Relational Algebra. Here, t, c denote table
and column names; f denotes an aggregate function, and v denotes a value.

4.4 Extended Relational Algebra

In the rest of this chapter, we will show how to apply the synthesis

methodology outlined in Section 4.3 to the problem of synthesizing database

queries from natural language. However, since our approach synthesizes

database queries in a variant of relational algebra, we first describe our target

language. Note that it is straightforward to translate our extended relational

algebra to declarative query languages, such as SQL.

Our target language for expressing database queries is presented in

Figure 4.3. Here, relations are denoted as T and include tables t stored in

the database or views obtained by applying the relational algebra operators,

projection (Π), selection (σ), and join (./). As standard, projection ΠL(T )

takes a relation T and a column list L and returns a new relation that only

contains the columns in L. The selection operation σφ(T ) yields a new relation

that only contains rows satisfying φ in T . The join operation T1c1
./ c2T2
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composes two relations T1, T2 such that the result contains exactly those rows

of T1 × T2 satisfying c1 = c2, where c1, c2 are columns in T1, T2 respectively.

Please observe that the grammar from Figure 4.3 allows nested queries. For

instance, selections can occur within other selections and joins as well as inside

predicates φ.

In the rest of this chapter, we make a few assumptions that simplify our

technical presentation. First, we assume that every column in the database has

a unique name. Note that we can easily enforce this restriction by appending the

table name to each column name. Second, we only consider equi-joins because

they are the most commonly used join operator; however, our techniques can

also be extended to other kinds of join operators (e.g., θ-join).

Unlike standard relational algebra, the relational algebra variant shown

in Figure 4.3 also allows aggregate functions as well as a group-by operator. For

conciseness, aggregate functions f ∈ AggrFunc = {max, min, avg, sum, count}

are specified as a subscript in the projection operation. In particular, Πf(c)(T )

yields a single aggregate value obtained by applying f to column c of relation T .

Similarly, group-by operations are also specified as a subscript in the projection

operator. Specifically, Πg(f(c1),c2)(T ) divides rows of T into groups gi based on

values stored in column c2 and, for each gi, it yields the aggregate value f(c1).

Example 4.1. Consider the “Grades” and “Courses” tables

from Figure 4.4, where column names with suffix “ fk” indi-

cate foreign keys. Here, Πavg(score)(Grades) evaluates to 85, and
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id name score cid fk

1 John 60 101

2 Jack 80 102

3 Jane 80 103

4 Mike 90 104

5 Peter 100 103

6 Alice 100 104

(a) Grades

cid cname dept

101 C1 CS

102 C2 EE

103 C3 CS

104 C4 EE

(b) Courses

Figure 4.4: Example 4.1 tables

Πg(avg(score), dept)(Gradescid fk ./cidCourses) yields the following table:

dept avg(score)

CS 80

EE 90

To provide an example of nested queries, suppose that a user wants

to retrieve all students with the highest score. We can express this query

as Πname(σscore=Πmax(score)(Grades)(Grades)). For the tables from Figure 4.4, this

query yields a table with two rows, Peter and Alice.

4.5 Sketch Generation Using Semantic Parsing

Recall from Section 4.3 that the first step of our synthesis methodology

is to generate a program sketch using semantic parsing. In this section, we

provide some background on semantic parsing and describe our parser for

generating a query sketch from the user’s English description.
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4.5.1 Background on Semantic Parsing

The goal of a semantic parser is to map a sentence in natural language

to a so-called logical form which represents its meaning. A logical form is

an unambiguous artificial language specified using a context-free grammar.

Previous work on semantic parsing has used various logical form representations,

including lambda calculi [39], database query languages [192], and natural

logics [121].

Similar to traditional parsers used in compilers, a semantic parser is

specified by a context-free grammar and contains a set of reduction rules

describing how to derive non-terminal symbols from token sequences. Given an

English sentence S, the parse is successful if the designated root non-terminal

can be derived from S.

Since semantic parsers deal with natural language, they must overcome

two challenges that do not arise in parsers for formal languages. First, multiple

English phrases (e.g., “forty two”) can correspond to a single token (e.g., 42);

so a semantic parser must be capable of recognizing phrases and mapping them

accurately into tokens. To address this challenge, semantic parsers typically

include a linguistic processing module to analyze the sentence and detect such

phrases based on part-of-speech tagging and named entity recognition. Second,

since natural language is inherently ambiguous, one can often derive multiple

logical forms from an English sentence. Modern semantic parsers address this

challenge by using statistical methods to predict the most likely derivation for

a given utterance. Given a set of training data consisting of pairs of English
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χ := Πκ(χ) | σψ(χ) | χ?h ./?hχ | ??h

κ := κ, κ | ?h | f(?h) | g(f(?h), ?h)

η := χ | ?h | v

ψ := ψ lop ψ | ¬ψ | ?h op η

op := ≤ | < | = | > | ≥

lop := ∧ | ∨

Figure 4.5: Sketch grammar. Here, v denotes a value, h represents a natural
language hint, and f is an aggregate function.

sentences and their corresponding logical form, the idea is to train a statistical

model to predict the likelihood that a given English sentence is mapped to

a particular logical form. Hence, the output of a semantic parser is a list of

logical forms xi, each associated with a probability that the English sentence

corresponds to xi.

4.5.2 Sqlizer’s Semantic Parser

The logical forms used in our synthesis methodology take the form of

program sketches containing unknown expressions with natural language hints.

In essence, the use of program sketches as our logical form representation allows

the semantic parser to generate a high-quality intermediate representation even

when we have modest amounts of training data available. In the context of gen-

erating database queries from natural language, the use of query sketches allows

our technique to work well without requiring any database-specific training.
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β := Number N | Bool B | String S | · · ·

τ := β | {(c1 : β1), · · · , (cn : βn)}

Γ :: Table→ τ

p :: {ν : double | 0 ≤ ν ≤ 1}

sim :: S× S→ p

P./ :: Column× Column→ p

Pφ :: Column× Value→ p

Figure 4.6: Symbols used in sketch completion

Figure 4.5 defines query sketches that are used as our logical form

representation in the database query synthesis domain. At a high level, a query

sketch χ is a relational algebra term with missing table and column names.

In particular, ?h represents an unknown column with hint h, which is just

a natural language description of the unknown. Similarly, ??h represents an

unknown table name with corresponding hint h. If there is no hint associated

with a hole, we simply write ? for columns and ?? for tables.

To map English sentences to query sketches, we have implemented our

own semantic parser on top of the Sempre framework [29], which is a toolkit

for building semantic parsers. For the linguistic processor, we leverage the

pre-trained models of the Stanford CoreNLP [124] library for part-of-speech

tagging and named entity recognition.

Given an utterance u, our parser generates all possible query sketches Si

and assigns each Si a score that indicates the likelihood that Si is the intended

115



interpretation of u. This score is calculated based on a set of pre-defined

features. More precisely, given an utterance u and weight vector w, the parser

maps each query sketch Si to a d-dimensional feature vector φ(u, Si) ∈ Rd and

computes the likelihood score for Si as the weighted sum of its features:

score(u, Si) = ~w . φ(u, Si) =
d∑
j=1

wj · φ(u, Si)j

Sqlizer uses approximately 40 features that it inherits from the Sempre

framework. Examples of features include the number of grammar rules used in

the derivation, the length of the matched input, whether a particular rule was

used in the derivation, the number of skipped words in a part-of-speech tag etc.

4.6 Type-Directed Sketch Completion

Given a program sketch S and a type environment (in our case, database

schema) Γ, sketch completion refers to the problem of finding an expression e

such that e is well-typed with respect to Γ. In essence, this is a type inhabitation

problem in that we can view each program sketch as defining a type. However,

rather than finding any inhabitant of S, we would like to find an inhabitant

e of S that has a high probability of being the program that the user has in

mind. One of the key ideas in our approach is to use natural language hints

embedded in sketch S as well as any domain-specific background knowledge to

associate a confidence score Pi with every inhabitant Ii of a type τ with respect

to the type environment Γ. As mentioned earlier, we refer to this problem as

116



quantitative type inhabitation.

In the specific case of the database query synthesis problem, we make

use of the following high-level insights to determine the confidence score of

each type inhabitant:

• Names of schema elements: Since our query sketches contain natural

language hints for each hole, we can utilize table and column names in

the database schema to assign confidence scores.

• Foreign and primary keys: Since foreign keys provide links between data

in two different database tables, join operations that involve foreign keys

have a higher chance of being the intended term.

• Database contents: Our approach also uses the contents of the database

when assigning scores to queries. For instance, a candidate term σφ(T ) is

relatively unlikely to occur in the target query if there are no entries in

relation T satisfying predicate φ.3

Using these domain-specific heuristics in the query synthesis context,

Figures 4.7 and 4.8 describe our quantitative type inhabitation rules. Specif-

ically, the top-level sketch completion rules derive judgments of the form

Γ ` χ ⇓ T : τ, p where Γ is a type environment mapping each table t in the

3This assumption may not hold in all contexts. However, since Sqlizer is intended
as a question answering system, we believe this assumption makes sense under potential
deployment scenarios of a tool like Sqlizer.
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database to its corresponding type. The meaning of this judgment is that

sketch χ instantiates to a relational algebra term T of type τ with confidence

score p ∈ [0, 1]. The higher the score p, the more likely it is that T is a valid

completion of sketch χ.

Figure 4.8 presents the helper rules used for finding inhabitants of so-

called specifiers. A specifier ω of a sketch χ is any subterm of χ that does

not correspond to a relation. For example, the specifier for Πκ(χ) is κ, and

the specifier for σψ(χ) is ψ. The instantiation rules for specifiers are shown in

Figure 4.8 using judgements of the form:

Γ, τ s̀ ω ⇓ Z : τ ′, p

Here, type τ used on the left-hand side of the judgment denotes the type of

the table that ω is supposed to qualify. For instance, if the parent term of ω is

Πω(χ), then τ represents the type of relation χ. Hence, the meaning of this

judgment is that, under the assumption that ω qualifies a relation of type τ ,

then ω instantiates to a term Z of type τ ′ with score p.

4.6.1 Inhabitation Rules for Relation Sketches

Let us first consider the quantitative type inhabitation rules from Fig-

ure 4.7. Given a sketch ??h indicating an unknown database table with hint

h, we can, in principle, instantiate ?? with any table t in the database (i.e., t

is in the domain of Γ). However, as shown in the first rule from Figure 4.7,

our approach uses the hint h to compute the likelihood that t is the intended
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t ∈ dom(Γ)

p = sim(h, t)

Γ `??h ⇓ t : Γ(t), p
(Table)

Γ ` χ ⇓ T : τ, p1

Γ, τ s̀ κ ⇓ L : τ1, p2

Γ ` Πκ(χ) ⇓ ΠL(T ) : τ1, p1 ⊗ p2

(Proj)

Γ ` χ ⇓ T : τ, p1

Γ, τ s̀ ψ ⇓ φ : B, p2

Γ ` σψ(χ) ⇓ σφ(T ) : τ, p1 ⊗ p2

(Sel)

Γ ` χ1 ⇓ T1 : τ1, p1

Γ ` χ2 ⇓ T2 : τ2, p2

Γ, τ1 s̀?h1 ⇓ c1 : {(c1, β)}, p3

Γ, τ2 s̀?h2 ⇓ c2 : {(c2, β)}, p4

p = p1 ⊗ p2 ⊗ p3 ⊗ p4 ⊗ P./(c1, c2)

Γ ` χ1?h1
./?h2χ2 ⇓ T1c1

./c2T2 : τ1 ∪ τ2, p
(Join)

Figure 4.7: Inference rules for relations

completion of ??. Specifically, we use the sim procedure to compute a similarity

score between hint h and table name t using Word2Vec [129], which uses a

two-layer neural net to group similar words together in vector-space.

Next, let us consider the Proj, Sel rules from Figure 4.7. Given a

sketch of the form Πκ(χ) (resp. σψ(χ)), we first recursively instantiate the

sub-relation χ to T . Now, observe that the columns used in specifiers κ and ψ
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can only refer to columns in T ; hence, we use the type τ of T when instantiating

specifiers κ, ψ. Now, assuming χ instantiates to T with score p1 and κ (resp.

ψ) instantiates to L (resp. φ) with score p2, we need to combine p1 and p2

to determine a score for ΠL(T ) (resp. σφ(T )). Towards this goal, we define

an operator ⊗ that is used to compose different scores. While there are many

possible ways to compose scores, our implementation defines ⊗ as the geometric

mean of p1, . . . , pn:

p1 ⊗ ...⊗ pn = n
√
p1 × ...× pn

Observe that our definition of ⊗ is not the standard way to combine

probabilities (i.e., standard multiplication). We have found that this definition

of ⊗ works better in practice, as it does not penalize long queries and allows a

more meaningful comparison between different-length queries. However, one

implication of this choice is that the scores of all possible completions do

not add up to 1. Hence, our confidence scores are not “probabilities” in the

technical sense, although they are in the range [0, 1].

Finally, let us consider the Join rule for completing sketches of the form

χ1?h1
./?h2χ2. As before, we first complete the nested sketches χ1 and χ2, and

then instantiate ?h1 and ?h2 under the assumption that χ1, χ2 have types τ1, τ2

respectively. The function P./(c1, c2) used in the Join rule assigns a higher

score to term T1c1
./c2T2 if column c1 is a foreign key referring to column c2 in

table T2 (or vice versa). Intuitively, if c1 in table T1 is a foreign key referring

to c2 in Table T2, then there is a high probability that the term T1c1
./ c2T2

appears in the target query. More precisely, we define the P./ function as
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follows, where ε is a small, non-zero constant:

P./(c1, c2) =

{
1− ε if c1 is a foreign key referring to c2 (or vice versa)

ε otherwise

4.6.2 Inhabitation rules for specifiers

In our discussion so far, we ignored how to find inhabitants of specifiers

and how to assign confidence scores to them. We now consider the rules from

Figure 4.8 that address this problem.

In the simplest case, a specifier is a column of the form ?h. As shown in

the Col rule of Figure 4.8, we must first ensure that the candidate inhabitant

c is actually a column of the table associated with the parent relation (i.e.,

(c, β) ∈ τ). In addition to this “hard constraint”, we also want to assign a

higher confidence score to inhabitants c that have a close resemblance to the

natural language hint h provided in the sketch. Hence, similar to the Table

rule from Figure 4.7, we assign a confidence score by computing the similarity

between c and h using Word2Vec.

Since most of the rules in Figure 4.8 are quite similar to the ones from

Figure 4.7, we do not explain them in detail. However, we would like to draw

the reader’s attention to the Pred rule for instantiating predicate sketches of

the form ?h op η. Recall that a predicate c op v evaluates to true for exactly

those values v′ in column c for which the predicate v′ op v is true. Now, if c

does not contain any entries v′ for which the v′ op v evaluates to true, there

is a low, albeit non-zero, probability that c op v is the intended predicate.
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(c, β) ∈ τ
p = sim(h, c)

Γ, τ s̀?h ⇓ c : {(c, β)}, p
(Col)

p = Pτ (v, β), (c, β) ∈ τ
cast(v, β) = v′

Γ, τ s̀ v ⇓ v′ : {(v′, β)}, p
(Value)

Γ ` χ ⇓ T : τ, p

Γ, τ s̀ χ ⇓ T : τ, p
(Reduce)

Γ, τ s̀ ψ ⇓ φ : B, p
Γ, τ s̀ ¬ψ ⇓ ¬φ : B, p

(PredNeg)

Γ, τ s̀?h ⇓ c : {(c, β)}, p1

Γ, τ s̀ η ⇓ E : {(c′, β)}, p2

p = p1 ⊗ p2 ⊗ Pφ(c op E)

Γ, τ s̀?h op η ⇓ c op E : B, p
(Pred)

Γ, τ s̀?h ⇓ c : {(c, β)}, p
type(f) = β → β′

Γ, τ s̀ f(?h) ⇓ f(c) : {(f(c), β′)}, p
(Fun)

Γ, τ s̀ f(?h1) ⇓ f(c1) : {(f(c1), β)}, p1

Γ, τ s̀?h2 ⇓ c2 : {(c2, τ2)}, p2

Γ, τ s̀ g(f(?h1), ?h2) ⇓ g(f(c1), c2)

: {(c2, τ2), (f(c1), β)}, p1 ⊗ p2

(Group)

Γ, τ s̀ κ1 ⇓ L1 : τ1, p1

Γ, τ s̀ κ2 ⇓ L2 : τ2, p2

Γ, τ s̀ κ1, κ2 ⇓ L1, L2 : τ1 ∪ τ2, p1 ⊗ p2

(ColList)

Γ, τ s̀ ψ1 ⇓ φ1 : B, p1

Γ, τ s̀ ψ2 ⇓ φ2 : B, p2

Γ, τ s̀ ψ1 lop ψ2 ⇓ φ1 lop φ2 : B, p1 ⊗ p2

(PredLop)

Figure 4.8: Inference rules for specifiers
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To capture this intuition, the Pred rule uses the following Pφ function when

assigning a confidence score:

Pφ(c op E) =

{
1− ε if ∃v′ ∈ contents(c). v′ op E = >
ε otherwise

Here, ε is a small, non-zero constant that indicates low confidence.

Hence, predicate c op E is assigned a low score if there are no entries satisfying

it in the database. 4

Finally, we would also like to draw the reader’s attention to the Value

rule, which types constants in a quantitative manner. To gain intuition about

the necessity of quantitatively typing constants, consider the string constant

“forty two”. While this value may correspond to a string constant, it could also

be an integer (42) or a float (42.0). To deal with such ambiguity, our typing

rules use a function Pτ to estimate the probability that constant v has type β

and then cast v to a constant v′ of type β.

Example 4.2. Consider again the (tiny) database shown in Figure 4.4 and

the following query sketch:

Πg(avg(?score), ?department)(??score?./???)

According to the rules from Figures 4.7 and 4.8, the query

Πg(avg(score), dept)(Gradescid fk ./cid fkGrades) is not a valid completion because it

4Observe that this heuristic requires querying the underlying database. Hence, if Sqlizer
is used as part of an online system that has direct access to the live database, our synthesis
algorithm may place a load on the database by issuing multiple queries in short succession.
However, this problem can be avoided by forking the database rather than using the live
version.
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is not “well-typed” (i.e., dept is not a column in Gradescid fk ./cid fkGrades).

In contrast, the query Πg(avg(score), dept)(Gradesid ./cidCourses) is well-typed but

is assigned a low score because the column id in Grades is not a foreign key

referring to column cid in Courses. As a final example, consider the query:

Πg(avg(score), dept)(Gradescid fk ./cidCourses)

This query is both well-typed and is assigned a high score close to 1.

4.7 Sketch Refinement Using Repair

In the previous section, we saw how to generate a ranked list of possible

sketch completions using quantitative type inhabitation. However, in some

cases, it may not be possible to find well-typed, high-confidence completions

of any sketch. For instance, this situation can arise for at least two different

reasons:

1. Due to ambiguities in the user’s natural language description, the correct

sketch may not be in the top k sketches generated by the semantic parser.

2. In some cases, the user’s natural language description may be misleading.

For instance, in the context of query synthesis, the user might make

incorrect assumptions about the underlying data organization , so her

English description may not accurately reflect the general structure of

the target query.
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Algorithm 4.2 Fault Localization Algorithm

1: procedure FaultLocalize(S, Γ, τ)

2: Input: partial sketch S, schema Γ, record type τ
3: Output: faulty partial sketch S′ or null

4: if isRelation(S) then
5: for all (χi, ωi) ∈ SubRelations(S) do

6: χ′i = FaultLocalize(χi, Γ, τ)

7: if χ′i 6= null then return χ′i

8: θi = FindInhabitants(χi, Γ)

9: for all (Ij, Pj, τj) ∈ θi do

10: ω′ij = FaultLocalize(ωi, Γ, τj)

11: if ∀j. ω′ij 6= null then

12: if ∀j, k. ω′ij = ω′ik then return ω′i0

13: else if CanRepair(ωi) then return ωi

14: else if isSpecifier(S) then

15: for all ωi ∈SubSpecifiers(S) do

16: ω′i = FaultLocalize(ωi, Γ, τ)

17: if ω′i 6= null then return ω′i

18: θ = FindInhabitants(S, Γ, τ)

19: if MaxProb(θ) < ρ and CanRepair(S) then
20: return S

21: else return null

One of the key ideas underlying our synthesis methodology is to overcome

these problems through the use of automated sketch refinement. Given a

faulty sketch S, the goal of sketch refinement is to generate a new program

sketch S′ such that S′ repairs a potentially faulty sub-part of S. Similar to
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SubRelations(Πκ(χ)) = {(χ, κ)}

SubRelations(σψ(χ)) = {(χ, ψ)}

SubRelations(χ1?h1
./?h2χ2) = {(χ1, ?h1), (χ2, ?h2)}

SubSpecifiers(g(f(?h1), ?h2)) = {f(?h1), ?h2}

SubSpecifiers(κ1, κ2) = {κ1, κ2}

SubSpecifiers(?h op η) = {?h, η}

SubSpecifiers(¬ψ) = {ψ}

SubSpecifiers(ψ1 lop ψ2) = {ψ1, ψ2}

Figure 4.9: Auxiliary functions used in Algorithm 4.2

prior approaches on automated program repair, our method performs sketch

refinement using a combination of fault localization and a database of repair

tactics. However, since we do not have access to a concrete test case that

exhibits a specific bug, our sketch refinement procedure is again confidence-

driven. Specifically, we perform fault localization by identifying a minimal

fault subpart F of the sketch such that F does not have any high-confidence

inhabitants. The minimal faulty sub-sketch F has the property that all of its

strict sub-expressions have an inhabitant whose score exceeds our confidence

threshold, but F itself does not.
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4.7.1 Fault Localization

Algorithm 4.2 presents our fault localization algorithm for query sketches.

The recursive FaultLocalize procedure takes as input the database schema

Γ, a partial sketch S, which can be either a relation or a specifier. If S is a

specifier, FaultLocalize also takes as input a record type τ , which describes

the schema for the parent table. (Recall that sketch completion for specifiers

requires the parent table τ .) The return value of FaultLocalize is either the

faulty sub-sketch or null (if S cannot be repaired).

Let us now consider Algorithm 4.2 in more detail. If S is a relation, we

first recurse down to its subrelations and specifiers (see Figure 4.9) to identify

a smaller subterm that can be repaired (lines 4–13). On the other hand, if S

is a specifier (lines 14–17), we then recurse down to its subspecifiers, again to

identify a smaller problematic subterm. If we cannot identify any such subterm,

we then consider the current partial sketch S as the possible cause of failure.

That is, if S does not have any inhabitants that meet our confidence threshold,

we then check if S can be repaired using our database of repair tactics. If so,

we return S as the problematic subterm (lines 18–20).

One subtle part of the fault localization procedure is the handling

of specifiers in lines 11–13. Recall from Section 4.6 that the completion of

specifiers is dependent on the parent relation. Specifically, when we find the

inhabitant of a relation such as Πκ(χ), we need to know the type of χ when we

complete κ. Hence, there is a valid completion of Πκ(χ) if there exists a valid

completion of κ for some inhabitant of χ. Thus, we can only say that ωi (or
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one of its subterms) is faulty if it is faulty for all possible inhabitants of χ (i.e.,

∀j. ω′ij 6= null).

Example 4.3. Consider the query “Find the number of papers in OOPSLA

2010” from the motivating example in Section 4.2. The initial sketch generated

by semantic parsing is:

Πcount(?papers)(σ?=OOPSLA 2010(??papers))

Since there is no high-confidence completion of this sketch, we perform fault

localization using Algorithm 4.2. The innermost hole ??papers can be instan-

tiated with high confidence, so we next consider the subterm ? = OOPSLA

2010. Observe that there is no completion of ??papers under which ? =

OOPSLA 2010 has a high confidence score because no table in the database

contains the entry "OOPSLA 2010". Hence, fault localization identifies the

predicate as ? = OOPSLA 2010 as the root cause of failure.

4.7.2 Repair Tactics

Once we identify a faulty subpart F of sketch S, our method tries to

repair S by replacing F by some F′ obtained using a database of domain-specific

repair tactics. Figure 4.10 shows a representative subset of our repair tactics

for the query synthesis domain. At a high-level, our repair tactics describe

how to introduce new predicates, join operators, and columns into the relevant

sub-parts of the sketch.

To gain some intuition about our repair tactics for database queries, let
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split(v) = (v1, v2), v2 6= ε

?h op v  ?h op v1∧?h op v2

(AddPred)

σψ(χ) σψ(χ?ε./?ε??ε)
(AddJoin1)

Πκ(χ) Πκ(χ?ε./?ε??ε)
(AddJoin2)

χ1?h1
./?h2χ2  χ1?ε./?ε??ε?ε./?εχ2

(AddJoin3)

split(h) = (f ′, h′)

f ∈ AggrFunc, sim(f, f ′) ≥ δ

?h f(?h′)
(AddFunc)

?h op v  ?h op ?v
(AddCol)

Figure 4.10: Repair tactics. Here, split(v) tokenizes value v using predefined
delimiters: split(v) = (v1, v2) iff v1 occurs before the first occurrence of the
delimiter and v2 occurs after. If the delimiter doesn’t appear in v, then split(v)
= (v, ε).

us consider the rewrite rules in Figure 4.10 in more detail. The first tactic,

labeled AddPred, splits a predicate into two parts by introducing a conjunct.

For instance, consider a predicate ?h op v and suppose that v is a string that

contains a common delimiter (e.g., space, apostrophe etc.). In this case, the

AddPred tactic splits v into two parts v1, v2 occurring before and after the

delimiter and rewrites the predicate as ?h op v1∧?h op v2. For example, we
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have used this tactic in the motivating example from Section 4.2 when rewriting

?="OOPSLA 2010" as ?="OOPSLA" and ?="2010".

The rewrite rules labeled AddJoin in Figure 4.10 show how to introduce

additional join operators in selections, projections, and joins. Because users

may not be aware that the relevant information is spread across multiple

database tables, these tactics allow us to introduce join operators when the

user’s English description does not contain any clues about the necessity of

performing joins. For instance, recall that we use the AddJoin tactic in our

example from Section 4.2 to rewrite the term ??[papers] into ??[papers]

JOIN ??.

The next rule labeled AddFunc introduces an aggregate function if the

hint h in ?h contains the name of an aggregate function (e.g., count) or some-

thing similar to it. For instance, consider a hole ? with hint “average grade”.

Since “average” is also an aggregate function, the AddFunc rule can be used

to rewrite this as avg(?grade). Finally, the last rule labeled AddCol introduces

a new column in the predicate ?h op v. Since v may refer to the name of

a column rather than a constant string value, the AddCol rule allows us to

consider this alternative possibility.

As mentioned earlier, the particular repair tactics used in the context of

sketch refinement are quite domain-specific. However, since natural language is

inherently imprecise and ambiguous, we believe that the proposed methodology

of refining the program sketch using fault localization and repair tactics would

also be beneficial in other contexts where the goal is to synthesize a program
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from natural language.

4.8 Implementation

Our Sqlizer tool, written in a combination of C++ and Java, automat-

ically synthesizes SQL code from English queries. Sqlizer uses the Sempre

framework [29] and the Stanford CoreNLP library [124] in the implementation

of its semantic parser. For quantitative type inhabitation, Sqlizer uses the

Word2Vec [129] tool to compute a similarity metric between English hints in

the sketch and names of database tables and columns.

Recall that our synthesis algorithm presented in Section 4.3 only consid-

ers the top k query sketches and repairs each program sketch at most n times.

It also uses a threshold γ to reject low-confidence queries. While each of these

parameters can be configured by the user, the default values for k and n are

both 5, and the default value for γ is 0.35. In our experimental evaluation, we

also use these default values.

4.8.1 Training Data

Recall from Section 4.5 that our semantic parser uses supervised machine

learning to optimize the weights used in the likelihood score for each utterance.

Towards this goal, we used queries for a mock database accompanying a

databases textbook [54]. Specifically, this database contains information about

the employees, departments, and projects for a hypothetical company. In order

to train the semantic parser, we extracted the English descriptions of 108
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queries from the textbook and manually wrote the corresponding sketch for

each query. Please note that the query sketches were constructed directly from

the English description without manually “repairing” them to fit the actual

database schema. Also, while a training set of 108 queries may seem like a small

number compared to other supervised machine learning techniques, we can get

away with such a modest amount of training data for several reasons: First,

due to our use of query sketches as the logical form representation, we do not

need to train a statistical model to map English phrases to relational algebra

expressions over the database schema. Second, the grammar we implemented

in the semantic parser is carefully designed to minimize ambiguities. Finally,

the linguistic processor used in the semantic parser is pre-trained over a large

corpus, including ∼2,500 articles from the Wall Street Journal for part-of-speech

tagging and ∼15,000 sentences from the CoNLL-2003 dataset for named entity

recognition.

4.8.2 Optimizations

While our implementation closely follows the technical presentation

in this chapter, it performs two important optimizations that we have not

mentioned previously: First, because the fault localization procedure completes

the same sub-sketch many times, we memoize the result of sketch completion

for every subterm. Second, if the score for a subterm is less than a certain

confidence threshold, we reject the partially completed sketch without trying

to complete the remaining holes in the sketch.
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4.9 Evaluation

To evaluate Sqlizer, we perform experiments that are designed to

answer the following questions:

Q1. How effective is Sqlizer at synthesizing SQL queries from natural

language descriptions?

Q2. What is Sqlizer’s average running time per query?

Q3. How well does Sqlizer perform across different databases?

Q4. How does Sqlizer perform compared to other tools for synthesizing

queries from natural language?

Q5. What is the relative importance of type information and sketch repair in

practice?

Q6. How important are the various heuristics that we use to assign confidence

scores to type inhabitants?

4.9.1 Experimental Setup

To answer these research questions, we evaluate Sqlizer on three real-

world databases, namely the Microsoft academic search database (MAS) used

for evaluating Nalir [113], the Yelp business reviewing database (YELP), and

the IMDB movie database (IMDB). 5 Table 4.1 provides statistics about each

database.
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Database Size #Tables #Columns
MAS 3.2GB 17 53
IMDB 1.3GB 16 65
YELP 2.0GB 7 38

Table 4.1: Database Statistics

Cat Description

C1 Does not use aggregate function or join operator

C2 Does not use aggregate function but Joins different tables

C3 Uses an aggregate function

C4 Uses subquery or self-join

Table 4.2: Categorization of different benchmarks

Benchmarks. To evaluate Sqlizer on these databases, we collected a total

of 455 natural language queries. For the MAS database, we use exactly the

196 benchmarks obtained from the Nalir dataset [113]. For the IMDB and

YELP databases, we asked a group of people at our organization to come up

with English queries that they might like to answer using IMDB and YELP.

Participants were given information about the type of data available in each

database (e.g., business names, cities, etc.), but they did not have any prior

knowledge about the underlying database schema, including names of database

tables and columns.

Checking correctness. To evaluate the accuracy of Sqlizer, we manually

inspected the SQL queries returned by Sqlizer. We consider a query to be

5All the benchmarks and databases are available at goo.gl/DbUBMM
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correct if (a) executing the query yields the desired information, and (b) the

synthesized query faithfully implements the data retrieval logic specified by

the user’s English description.

Categorization of benchmarks. To assess how Sqlizer performs on differ-

ent classes of queries, we manually categorize the benchmarks into four groups

based on the characteristics of their corresponding SQL query. Table 4.2 shows

our taxonomy and provides an English description for each category. While

there is no universal agreement on the difficulty level of a given database query,

we believe that benchmarks in category Ci+1 are generally harder for humans

to write than benchmarks in category Ci.

Hardware and OS. All of our experiments are conducted on an Intel Xeon(R)

computer with E5-1620 v3 CPU and 32GB memory, running the Ubuntu 14.04

operating system.

4.9.2 Accuracy and Running Time

Table 4.3 summarizes the results of evaluating Sqlizer on the 455

benchmarks involving the MAS, IMDB, and YELP databases. In this table, the

column labeled “Count” shows the number of benchmarks under each category.

The columns labeled “Top k” show the number (#) and percentage (%) of

benchmarks whose target query is ranked within the top k queries synthesized

by Sqlizer. Finally, the columns labeled “Parse time” and “Synth/repair

time” show the average time (in seconds) for semantic parsing and sketch
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D
B Cat

C
o
u
n
t Top 1 Top 3 Top 5 Parse

Synth/
repair

# % # % # %
time
(s)

time(s)

M
A

S

C1 14 12 85.7 14 100.0 14 100.0 0.41 0.08

C2 59 52 88.1 55 93.2 55 93.2 1.07 0.16

C3 60 49 81.7 55 91.6 56 93.3 1.11 0.29

C4 63 45 71.4 49 77.7 53 84.1 2.53 0.21

Total 196 158 80.6 173 88.3 178 90.8 1.50 0.21

IM
D

B

C1 18 16 88.9 17 94.4 17 94.4 0.50 0.21

C2 69 51 73.9 59 85.5 61 88.4 0.60 0.24

C3 27 24 88.8 26 96.2 26 96.2 0.71 0.34

C4 17 11 64.7 11 64.7 12 70.5 0.70 0.49

Total 131 102 77.9 113 86.3 116 88.5 0.61 0.28

Y
E

L
P

C1 8 6 75.0 7 87.5 7 87.5 0.55 0.02

C2 49 35 71.4 39 79.6 42 85.7 0.77 0.05

C3 51 40 78.4 48 94.1 49 96.0 0.72 0.05

C4 20 15 75.0 15 75.0 15 75.0 0.96 0.06

Total 128 96 75.0 109 85.2 113 88.3 0.77 0.05

Table 4.3: Summary of Sqlizer’s experimental evaluation

completion/refinement respectively.

As shown in Table 4.3, Sqlizer achieves close to 90% accuracy across

all three databases when we consider a benchmark to be successful if the

desired query appears within the top 5 results. Even if we adopt a stricter

definition of success and consider Sqlizer to be successful if the target query

is ranked within the top one (resp. top three) results, Sqlizer still achieves

approximately 78% (resp. 86%) accuracy. Also, observe that Sqlizer’s
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synthesis time is quite reasonable; on average, Sqlizer takes 1.22 seconds

to synthesize each query, with 85% of synthesis time dominated by semantic

parsing.

To gain intuition about cases in which Sqlizer does not work well, we

investigated the root causes of failures in our experimental evaluation. In most

cases, the problem is caused by domain-specific terms for which we cannot

accurately compute similarities using Word2Vec. For instance, in the context

of on-line reviewing systems such as Yelp, the terms “star” and “rating” are

used interchangeably, but the domain-agnostic Word2Vec system does not

consider these two terms to be similar. Clearly, this problem can be alleviated

by training the neural net for measuring word similarity on a corpus specialized

for this domain. However, since our goal is to develop a database-agnostic

system, we have not performed such domain-specific training for our evaluation.

4.9.3 Comparison with NALIR

To evaluate whether the results described in Section 4.9.2 improve

over the state-of-the-art, we also compare Sqlizer against Nalir, a recent

system that won a best paper award at VLDB’14 [113]. Rather than re-

implementing the ideas proposed in the VLDB’14 paper, we directly use the

Nalir implementation provided to us by Nalir’s developers.

Similar to Sqlizer, Nalir generates SQL queries from English and also

aims to be database-agnostic (i.e., does not require database-specific training).

However, unlike Sqlizer, which is fully automated, Nalir can also be used
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Figure 4.11: Comparison between Sqlizer and Nalir

in an interactive setting that allows the user to provide guidance by choosing

the right query structure or the names of database elements. In order to

perform a fair comparison between Sqlizer and Nalir, we use Nalir in the

non-interactive setting (recall that Sqlizer is fully automatic). Furthermore,

since Nalir only generates a single database query as its output, we compare

Nalir’s results with the top-ranked query produced by Sqlizer.

As shown in Figure 4.11, Sqlizer outperforms Nalir on all three

databases with respect to the number of benchmarks that can be solved.

In particular, Sqlizer’s average accuracy is 78% whereas Nalir’s average

accuracy is less than 32%. Observe that the queries for the MAS database are

138



the same ones used for evaluating Nalir, but Sqlizer outperforms Nalir

even on this dataset. Furthermore, even though Sqlizer’s accuracy is roughly

the same across all three databases, Nalir performs significantly worse on the

IMDB and YELP databases.

To provide some intuition about why Sqlizer performs better than

Nalir in our experiments, recall that Sqlizer can automatically refine query

sketches using a database of repair tactics and guided by the confidence scores

inferred during sketch completion. In contrast, Nalir does not automatically

resolve ambiguities and is more effective when it is used in its interactive

mode that allows the user to guide the system by choosing between different

candidate mappings between nodes in the parse tree to SQL components.

4.9.4 Evaluation of Different Components of Synthesis Methodol-
ogy

In this chapter, we argued that the use type information and automatic

sketch refinement are both very important for effective synthesis from natural

language. To justify this argument, we compare Sqlizer against two variants

of itself. One variant, referred to as NoType, does not use type information

to reject some of the generated SQL queries. The second variant, referred to

as NoRepair, does not perform sketch refinement.

Figure 4.12 shows the results of our evaluation comparing Sqlizer

against these two variants of itself. As we can see from this figure, disabling

either of these features dramatically reduces the accuracy of the system. In
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Figure 4.12: Comparison between different variations of Sqlizer on Top 5
results

particular, while the full Sqlizer system ranks the target query within the

top 5 results in over 88% of the cases, the average accuracy of both variants is

below 35%. We believe that these results demonstrate that the use of types

and automated repair are both crucial for the overall effectiveness of Sqlizer.

4.9.5 Evaluation of Heuristics for Assigning Confidence Scores

A key ingredient of the synthesis methodology is quantitative type

inhabitation in which we use domain-specific heuristics to assign confidence

scores to programs. In the context of the database domain, we proposed three

different heuristics for assigning confidence scores to queries. The first heuristic,
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Figure 4.13: Impact of heuristics for assigning confidence scores on Top 5
results

referred to as Hints, computes the similarity between the natural language

hints in the sketch and the names of schema elements. The second heuristic,

referred to as Keys, uses a function P./ to assign scores to join operators using

information about foreign keys. The third heuristic, referred to as Content,

uses a function Pφ that assigns confidence scores to selection operations using

the contents of the database.

We evaluate the relative importance of each of these heuristics in Fig-

ure 4.13. Specifically, the variant of Sqlizer labeled NoX disables the scoring

heuristic called X. As we can see from the figure, all of our proposed heuristics

are quite important for Sqlizer to work effectively as an end-to-end synthesis
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Figure 4.14: Impact of different confidence thresholds on Top 5 results

tool.

4.9.6 Evaluation of Different Confidence Thresholds

Recall from Algorithm 4.1 that our synthesis algorithm rejects queries

with a confidence score below a certain threshold γ. As mentioned in Section 4.8,

we use the default value γ = 0.35 in all of our experiments. To understand the

impact of this confidence threshold on our results, we also run the same set of

experiments using different confidence thresholds in the range [0.15, 0.5]. As

shown in Figure 4.14, Sqlizer is not very sensitive to the exact value of γ

as long as it is in the range [0.25, 0.45]; however, accuracy drops sharply if γ
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is chosen to be either below 0.25 or above 0.45. If the threshold γ is too low

(i.e., below 0.25), Sqlizer seems to generate many incorrect queries, thereby

affecting the overall ranking of the target query. On the other hand, if γ is too

high (i.e., above 0.45), Sqlizer ends up ruling out more queries, sometimes

including the desired query. Hence, overall precision decreases in both cases.

4.10 Limitation

In this section, we discuss the current limitations of our system and

possible ways to improve it in the future.

Recall that Sqlizer uses domain-specific heuristics to assign confidence

scores to query completions, and one of these heuristics (namely, Pφ) uses

database contents when performing quantitative type inhabitation. The strat-

egy of assigning low confidence scores to queries that yield an empty relation

works very well in most cases, but it may prevent Sqlizer from generating the

right query if the query legitimately returns an empty table. Another situation

in which this heuristic may not work well is if the user’s natural language

query does not exactly match the contents of the database, such as in cases

where the user’s description uses an abbreviation or contains a misspelling. A

possible solution to this problem is to look for syntactically or semantically

similar entries in the database rather than insisting on an exact match.

Another limitation of Sqlizer is that the user ultimately needs to

decide which (if any) of the top k queries returned by Sqlizer is the right one.

An interesting avenue for future work is to explore user-friendly mechanisms to
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help the user make this decision. One possibility is to present the user with

a natural language description of the query rather than the SQL query itself.

However, this solution would still require the user to be knowledgeable about

the underlying database schema. Another possibility is to present the query

result rather than the query itself and let the user decide if the result is sensible.

An even better solution would be to further improve the system’s accuracy

so that the desired SQL query is ranked number one in more cases. However,

given that Sqlizer is already capable of returning the desired query as the

top result in 78% of the cases, we believe that Sqlizer is still quite useful to

end-users as is.

4.11 Summary

In this chapter, we have proposed a new methodology for synthesizing

programs from natural language and applied it to the problem of synthesizing

SQL code from English queries. Starting with an initial program sketch

generated using semantic parsing, our approach enters an iterative refinement

loop that alternates between quantitative type inhabitation and sketch repair.

Specifically, our method uses domain-specific knowledge to assign confidence

scores to type (i.e., sketch) inhabitants and uses these confidence scores to

guide fault localization. The faulty subterms pinpointed using error localization

are then repaired using a database of domain-specific repair tactics.

We have implemented the proposed approach in a tool called Sqlizer,

an end-to-end system for generating SQL queries from natural language. Our
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experiments on 455 queries from three different databases shows that Sqlizer

ranks the desired query as top one in 78% of the cases and among top 5 in ∼ 90%

of the time. Our experiments also show that Sqlizer significantly outperforms

Nalir, a state-of-the-art system for generating SQL code from natural language

queries. Finally, our evaluation also justifies the importance of type information

and program repair and shows that our proposed domain-specific heuristics

are necessary and synergistic.
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Chapter 5

Related Work

The work presented in this dissertation is related to a variety of different

topics from the programming languages, databases, and natural language

processing communities. In what follows, we compare and our work against

existing techniques.

5.1 Program Synthesis

Program synthesis has recently received much attention in the program-

ming languages community. The techniques proposed in this dissertation borrow

insights from other researches on program synthesis. In particular, the use of

the term sketch in Sqlizer is inspired by the Sketch system [165, 166, 164] in

which the user writes a program sketch containing holes (unknown expressions).

However, in contrast to the Sketch system where the holes are instantiated

with constants, holes in our query sketches are completed using database

tables, columns, and predicates. Similar to Sqlizer, some prior techniques

(e.g., [194, 60]) have also decomposed the synthesis task into two separate

sketch generation and sketch completion phases. However, to the best of our

knowledge, we are the first to generate program sketches from natural language
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using semantic parsing.

In addition to program sketching, our SQL query synthesizer also draws

insights from recent work on type-directed program synthesis [135, 80, 140, 62].

Among these projects, the most related one is the InSynth system, which

synthesizes small code snippets in a type-directed manner. Similar to our

proposed methodology in Chapter 4, InSynth also performs quantitative type

inhabitation to synthesize type-correct expressions at a given program point.

Specifically, InSynth assigns weights to each type inhabitant, where lower

weights indicate higher relevance of the synthesized term. These weights are

derived using a training corpus and the structure of the code snippet. At a high

level, our use of quantitative type inhabitation is similar to InSynth in that

we both use numerical scores to evaluate which term is most likely to be the

inhabitant desired by the user. However, the way in which we assign confidence

scores to type inhabitants is very different from the way InSynth assigns

weights to synthesized code snippets. Furthermore, in contrast to InSynth

where lower weights indicate higher relevance, Sqlizer assigns lower scores to

inhabitants that are less likely to be correct.

5.1.1 Programing by Natural Language (PBNL)

The techniques we proposed in Chapter 4 are also related to program-

ming by natural language [78, 47, 149, 148, 110]. Natural language has been

used as the preferred specification mechanism in various contexts such as

smartphone automation scripts [110], “if-then-else recipes” [148], spreadsheet
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programming [78], and string manipulation [149]. Among these systems, the

NLyze tool [78] is most closely related to Sqlizer in that it also combines

semantic parsing with type-directed synthesis. However, NLyze does not gen-

erate program sketches and uses type-based synthesis to mitigate the low recall

of semantic parsing. In contrast, Sqlizer uses semantic parsing to generate

an initial query sketch, which is refined using repair tactics and completed

using quantitative type inhabitation. Furthermore, NLyze targets spreadsheets

rather than relational databases and proposes a new DSL for this domain.

Most recently, [47] have proposed a general framework for constructing

synthesizers that can generate programs in a domain-specific DSL from English

descriptions. The framework requires a DSL definition and a set of domain-

specific training data in the form of pairs of English sentences and their

corresponding programs in the given DSL. While this framework can, in

principle, be instantiated for SQL query synthesis, it would require database-

specific training data.

5.1.2 Programing by Example (PBE)

The proposed methods in Chapters 2 and 3 perform synthesis from

examples. The problem of automatically synthesizing programs that satisfy

a given set of input-output examples has been the subject of research in the

past four decades [159]. Recent advances in algorithmic and logical reasoning

techniques have led to the development of PBE systems in a variety of domains

including string transformations [73, 161], data filtering [178], data structure
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manipulations [61], table transformations [59, 83], SQL queries [176, 194]

network policies [190], and map-reduce distributed programs [163].

Many of these approaches focus on non-hierarchical data like numbers,

strings, and tables [162, 74, 84, 27, 138]. However, several recent efforts

study the synthesis of programs over recursive data structures [98, 13, 62, 136,

109]. For example, FlashExtract synthesizes programs made from higher-order

combinators using a custom deductive procedure [109], and Escher uses goal-

directed enumerative search to synthesize first-order programs with recursive

functions [13]. Similarly, λ2 synthesizes higher-order functional programs

using a combination of deduction and cost-directed enumeration [62]. Osera

et al. study a similar problem and offer a solution based on type-directed

deduction [136].

Comparison with Hades. Unlike the above approaches, Hades algorithm

is based on a reduction of synthesis over trees to synthesis over lists, which

is performed using SMT solving and decision tree learning. Furthermore,

since in Hades we specifically target hierarchical data transformations (rather

than synthesis of arbitrary programs), this tighter focus allows us handle tree

transformation benchmarks whose complexity exceeds those in prior work. For

example, unlike prior efforts, our method is able to synthesize transformations

that alter the hierarchical structure of an input tree. So far as we know (and

as demonstrated empirically in Section 2.7), such benchmarks fall outside the

scope of prior approaches to example-driven synthesis.
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Our subroutine for synthesizing path transformations in Hades bears

similarities to FlashFill’s strategy for synthesizing string transformations [74].

Similar to our InferPathTrans procedure, FlashFill uses a combination of

partitioning and unification; but the algorithmic details are very different. For

example, FlashFill maintains a DAG representation of all string transformations

that fit a set of examples. In contrast, we use a numerical representation of

the input-output examples and reduce unification to SMT solving.

The StriSynth tool described in [79] extends FlashFill and uses it to

automate certain kinds of file manipulation tasks, such as renaming files and

directories. While the StriSynth approach can handle sophisticated transforma-

tions involving file names, it does not address transformations that handle the

directory structure. In contrast, Hades addresses general tree transformations

and can synthesize bash scripts that modify the directory structure.

Comparison with Mitra. Among existing PBE techniques, Hades is the

most relevant work to Mitra. While Hades uses a similar internal representa-

tion as HDTs defined in Mitra, Hades focuses on tree-to-tree transformations

and cannot automate transformations from hierarchical to relational data.

Although a relational table can be represented as an HDT, Hades’ approach

of decomposing trees to a set of paths omits relations between different paths

(i.e., columns in the relational table) and can therefore not automate most

kinds of interesting tree-to-table transformations. To the best of our knowledge,

the only prior PBE-based tool that aims to automate transformations from

semi-structured to relational data is FlashExtract [108]. While the main
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focus of FlashExtract is data stored in spreadsheets, it also supports some

tree-structured data, such as HTML documents. However, FlashExtract

is less expressive than Mitra, as it cannot infer relations between different

nodes in the tree structure.

5.2 Databases

Out proposed techniques are also related to recent work in the database

community. In particular, our methodology for automatic migration of hi-

erarchical data to relational tables is related to data exchange and XML to

relational mapping researches, and the idea of query synthesis has been studied

in depth in the database community.

5.2.1 Data Exchange

The problem of converting hierarchically structured documents to a

relational format is a form of data exchange problem, where the goal is to

transform a data instance of a source schema into a data instance of a target

schema [57]. Due to the difficulty of manually performing such transformations,

there has been significant work on automating data exchange tasks [142, 56,

150, 130, 58]. A common approach popularized by Clio [142] decomposes the

data exchange task into two separate phases: schema mapping and program

generation. A schema mapping describes the relationship between the source

and target schemas and is typically specified in the form of declarative logic

constraints, such as GLAV (Global-and-Local-As-View) constraints [102]. Given
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a schema mapping, the second program generation phase “translates” this

mapping into executable code [56].

Because manual construction of schema mappings requires non-trivial

effort from data architects, there has been significant work on automatically

inferring such mappings from various kinds of informal specifications provided

by the user. For instance, users may specify element correspondences by

drawing lines between elements that contain related data [56, 94, 122, 50,

132, 55]. More recently, examples have become more popular as a way of

communication between users and the system. Such example-based approaches

can be broadly categorized into two classes depending on what the examples

are used for. One approach uses examples to specify the desired schema

mapping [145, 16, 14, 17]. To the best of our knowledge, all of these approaches

use GLAV (or similar formalisms) as the schema mapping language, and hence

can only handle cases where the source and target schemas are both relational.

The other approach uses examples to help users understand and refine the

generated schema mappings [187, 15], and the learning procedure still takes

visual correspondences (lines between elements) as specification. Mitra can

be viewed as an instantiation of the first approach. However, our method is

different from previous methods of this approach in three important aspects.

First, we can synthesize programs that convert tree-structured to relational

data. Second, we design a DSL as the intermediate language which can express

mappings between hierarchical and relational formats. Finally, our PBE-based

synthesis algorithm combines finite automata and predicate learning to enable
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efficient mapping generation.

5.2.2 XML-to-Relational Mapping

There is a significant body of research on using relational database

management systems to store and query XML (and JSON) documents [103,

155, 52, 188, 88, 172, 156, 20, 24]. A typical approach for this problem consists

of three steps: First, the tree structure of the document is converted into a flat,

relational schema; next, the XML document is “shredded” and loaded into

the relational database tables, and, finally, XML queries are translated into

corresponding SQL queries. The goal of these systems is quite different from

Mitra’s: In particular, they aim to efficiently answer queries about the XML

document by leveraging RDBMS systems, whereas our goal is to answer SQL

queries on a desired relational representation of the underlying data.

5.2.3 Query Synthesis

There is a significant body of work on automatically synthesizing

database queries. Related work in this area can be categorized into three

classes, depending on the form of specifications provided by the user. In one

line of work on query synthesis, users convey their intent to the system through

the use of input-output examples [194, 173, 196, 176]. Specifically, the input to

the system is a miniature version of the database, and the output is the desired

table that should be extracted from this database using the target query. In

our Sqlizer work, we prefer natural language specifications over input-output
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examples for two important reasons: First, in order to provide input-output

examples, the user must be familiar with the database schema, which is not

always the case. Second, since a database may contain several tables with

many different columns, providing input-output examples may be prohibitively

cumbersome.

The second line of work on query synthesis uses natural language

descriptions to convey user intent [21, 22, 179, 114, 144, 143, 113]. Early

work in this area focuses on systems that are hand-crafted to specific

databases [183, 85, 179, 43]. Later work describes NLIDB systems that can be

reused for multiple databases with appropriate customization [70, 192, 170].

However, these techniques are not database-agnostic in that they require addi-

tional customization for each database. In contrast, our technique in Chapter 4

does not require database-specific training.

Similar to our proposed approach in Sqlizer, the Nalir system [113]

also aims to be database-agnostic. Specifically, Nalir leverages an English

dependency parser to generate linguistic parse trees, which are subsequently

translated into query trees, possibly with guidance from the user. In addition to

being relatively easy to convert to SQL, these query trees can also be translated

back into natural language with the goal of facilitating user interaction. In

contrast, our goal in Sqlizer is to develop a system that is as reliable as Nalir

without requiring guidance from the user. In particular, since users may not

be familiar with the underlying database schema, it may be difficult for them

to answer some of the questions posed by a Nalir-style system. In contrast,
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our approach does not assume that users are familiar with the organization of

information in the database.

The third line of work on query synthesis generates more efficient SQL

queries from code written in conventional programming languages [181, 41]. For

instance, QBS [41] transforms parts of the application logic into SQL queries

by automatically inferring loop invariants. This line of work is not tailored

towards end-users and can be viewed as a form of query optimization using

static analysis of source code.

5.3 Natural Language Processing

Unlike syntactic parsing which focuses on the grammatical divisions

of a sentence, semantic parsing aims to represent a sentence through logical

forms expressed in some formal language [29, 116, 191, 97, 170, 106]. Previous

techniques have used semantic parsing to directly translate English sentences to

database queries [131, 192, 97, 170, 106]. Unlike these techniques, in Sqlizer

we only use semantic parsing to generate an initial query sketch rather than

the full query. We believe that there are two key advantages to our approach:

First, our technique can be used to answer queries on a database on which it

has not been previously trained. Second, the use of sketch refinement allows

us to handle situations where the user’s description does not accurately reflect

the underlying database schema.
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5.4 Program Repair

The sketch refinement strategy in Sqlizer is inspired by prior work on

fault localization [25, 68, 91, 90, 93, 92] and program repair [119, 120, 180, 67,

133]. Similar to other techniques on program repair, the repair tactics employed

by Sqlizer can be viewed as a pre-defined set of templates for mutating the

program. However, to the best of our knowledge, we are the first to apply

repair at the level of program sketches rather than programs.

Fault localization techniques [25, 68, 91, 90, 93, 92] aim to pinpoint

a program expression that corresponds to the root cause of a bug. Similar

to these fault localization techniques, Sqlizer tries to identify the minimal

faulty subpart of the “program”. However, we perform fault localization at

the level of program sketches by finding a minimal sub-sketch for which no

high-confidence completion exists.
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Chapter 6

Conclusion and Future Work

Lack of programming knowledge forces many end-users to spend a

considerable amount of time on manually performing data manipulation tasks

such as restructuring data structures or converting them from one format

to another. To address this problem, in this dissertation we introduced new

methodologies for automatic generation of data transformation and extraction

programs from informal specifications. In particular, we presented a new

system, Hades, for synthesizing hierarchical data transformation programs

from input-output examples. We also introduced Mitra, an example based

synthesis tool which automatically migrates hierarchical data structures to

relational tables. Finally, we proposed a novel approach for generating SQL

queries from natural language in a system called Sqlizer.

We evaluated all of our systems on real-world benchmarks collected

from online forums such as Stackoverflow and other publicly available data

sources (e.g. Microsoft Academic Search database). Our results demonstrated

that our systems can efficiently synthesize programs to automate practical data

manipulation tasks. Moreover, since all of these systems only rely on informal

problem descriptions, they can be used by any end-users, regardless of their
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programming knowledge.

We believe future research can improve the systems presented in this

dissertation to overcome their current limitations. In particular, the algorithm

presented in Chapter 2 for synthesizing tree to tree transformations can only

synthesize tree transformations that are expressible as a combination of in-

dependent path transformations. That is, our method cannot synthesize a

program where the transformation for one path of the tree depends on a prop-

erty of a different path. While the majority of the tasks we have encountered

on online forums conform to our requirements, not every tree transformation

script is synthesizable using our approach. For future work, we are interested

in extending our system to overcome this limitation and be able to synthesize a

broader class of tree transformations. Also, we believe that the idea of reducing

the synthesis of a tree transformation program to synthesizing a transformation

program over its path can be used to automate the transformation of other

data structures such as graphs.

In order to improve our methodology for migrating tree-structured

documents to relational tables, we are interested in further optimizing the

data migration programs generated by Mitra. In particular, our method

performs data migration by running a separate program per database table.

However, because these programs operate over the same dataset, we can reduce

overall execution time by memoizing results across different programs. Another

limitation is that our synthesis algorithm described in Chapter 3 does not

return anything if there is no DSL program that satisfies the given examples. To
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provide more meaningful results to the user in such cases, we plan to investigate

techniques that can synthesize programs that maximize the number of satisfied

input-output examples.

In the future, we also plan to apply our proposed synthesis methodology

in Chapter 4 to other domains where it is beneficial to generate code from

English descriptions. For instance, we believe that our proposed synthesis

methodology could be also useful for querying data stored in other forms

(e.g., noSQL databases, XML documents, file systems) or for synthesizing

simple scripts, such as if-then-else recipes or robot control commands. Another

interesting direction for future work is to conduct a comprehensive survey

study that compares and contrasts existing NLIDB systems developed by

researchers from different areas such as natural language processing, databases

and programming languages. Through out past several decades many NLIDB

systems have been developed and tested on different datasets and databases. A

survey that evaluates the existing NLIDB systems on a unified set of datasets

and databases illustrates the strengths and weaknesses of each of these systems

and shows a roadmap for future researches on this topic.

The work presented in this dissertation shows that recent advances in

the field of program synthesis enable us to automatically generate programs

from informal problem descriptions. Although most of the state-of-the-art

program synthesis systems, including the ones presented in this dissertation, are

based on either programming-by-example or programming-by-natural-language,

recent researches try to develop hybrid synthesis systems which combine PBE
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and PBNL approaches. We believe this hybrid methodology can improve the

accuracy of synthesis systems and result in generating more complex programs.
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Appendix A

Proofs of Theorems

A.1 Hades

A.1.1 Proof of Theorem 2.1

Part 1, ⇒. Suppose T ≡ T ′. We show that paths(T ) = paths(T ′).

Since T ≡ T ′, we have height(T ) = height(T ′) = h. Let v = root(T ) and

v′ = root(T ′). Since T ≡ T ′, we have L(v) = L(v′) = ` and D(v) = D′(v′) = d.

The proof proceeds using induction on h. For the base case, we consider

h = 1. In this case, V = {v}, V ′ = {v′}, E = E ′ = ∅. Hence, paths(T ) =

paths(T ′) = (`, d). For the inductive case, let h = k + 1 where k ≥ 1. Let

C = children(v) and let C ′ = children(v′). Since T ≡ T ′, L(C) = L′(C ′),

and since T and T ′ are well-formed, there exists a one-to-one correspondence

f : C → C ′ such that: f(vc) = v′c iffL(vc) = L′(v′c). Using this fact and

condition (3) of Definition 2.4, we know that, for every vc ∈ children(v) = C,

subtree(T, vc) ≡ subtree(T ′, f(vc)). Now, observe that:

paths(T ) =
⋃
vc∈C

{((`, d), pi) | pi ∈ paths(subtree(T, vc))}

and paths(T ′) is equal to:

⋃
f(vc)∈C′

{((`, d), p′i) | p′i ∈ paths(subtree(T ′, f(vc)))}
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Using the inductive hypothesis, we have paths(T ) = paths(T ′).

Part 2, ⇐. Suppose paths(T ) = paths(T ′), and let v = root(T ) and v′ =

root(T ′) and L(v) = `, L(v′) = `′, D(v) = d,D(v′) = d′. We show that T ≡ T ′.

First, observe that paths(T ) = paths(T ′) implies height(T ) = height(T ′). The

proof proceeds by induction on h. When h = 1, paths(T ) = {(`, d)} and

paths(T ′) = {(`′, d′)}. Since paths(T ) = paths(T ′), this implies ` = `′ and

d = d′. Hence, T ≡ T ′. For the inductive case, let h = k + 1 where k ≥ 1. Let

C = children(v) and let C ′ = children(v′). Now, we have:

paths(T ) =
⋃
vi∈C

{((`, d), pi) | pi ∈ paths(subtree(T, vi))}

and

paths(T ′) =
⋃
v′i∈C′
{((`′, d′), p′i) | p′i ∈ paths(subtree(T ′, v′i))}

Since paths(T ) = paths(T ′), this implies ` = `′ and d = d′ and, since

T, T ′ are well-formed, for each vi ∈ C, there must be a one-to-one cor-

respondence f : C → C ′ such that v′i = f(vi) iff paths(subtree(T, vi)) =

paths(subtree(T ′, v′i)). Now, for any pair (vi, f(vi)), we have L(vi) = L′(f(vi))

because paths(subtree(T, vi)) = paths(subtree(T ′, v′i)). Note that this implies

condition (2) of Definition 2.4. Furthermore, since paths(subtree(T, vi)) =

paths(subtree(T ′, f(vi))), the inductive hypothesis implies subtree(T, vi) ≡

subtree(T, v′i). Hence, condition (3) of Definition 2.4 is also satisfied.
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A.1.2 Proof of Path Transformer Property

Now we prove that any path transformer f returned by InferPath-

Trans in Section 2.4.4 must satisfy:

∀p ∈ inputs(E). (p′ ∈ f(p)⇔ (p, p′) ∈ E)

Where E is the set of path transformation examples. Let Φ = {P1, . . . , Pk} be

the set of partitions inferred by InferPathTrans at the end of Phase I (see

Figure 2.2), and let each Pi be the triple 〈Ei, χi, φi〉. Then the path transformer

f synthesized by InferPathTrans is:

λx. {φ1 → χ1 ⊕ . . .⊕ φk → χk}

We first prove that ((p, p′) ∈ E)⇒ (p′ ∈ f(p)). First, observe that, for

any k, if Partition(∅,E, k) 6= ∅, we have:

( ⋃
Pi∈Φ

Ei
)

= E

Hence, any (p, p′) ∈ E must belong to the examples of some partition Pi. Fur-

thermore, our classification algorithm guarantees that, for any p ∈ inputs(Ei),

we have φi[p/x] ≡ true. Hence, we know that χi ∈ f(p). Since Unify(Ei) =

χi 6= null, we have χi[p/x] = p′. This implies p′ ∈ f(p).

We now prove the other direction of the property, i.e.:

((p ∈ inputs(E) ∧ p′ ∈ f(p))⇒ (p, p′) ∈ E)
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Suppose that p ∈ inputs(E) and p′ ∈ f(p). Since p′ ∈ f(p), there must exist

some Pi = 〈Ei, χi, φi〉 such that φi[p/x] ≡ true and χi[p/x] = p′. Recall that

classification guarantees:

(a) ∀p ∈ inputs(Ei). (φi[p/x] ≡ true)
(b) ∀p ∈ (inputs(E)− inputs(Ei)). (φi[p/x] ≡ false)

Since p ∈ inputs(E), this implies p ∈ inputs(Ei); otherwise we would have

φi[p/x] ≡ false. Hence, we must have (p, p′) ∈ Ei, which in turn implies

(p, p′) ∈ E.

A.1.3 Proof of Theorem 2.2

Suppose P (T ) = T ∗. We will show paths(T ∗) = paths(T ′), which

implies T ∗ ≡ T ′ by Theorem 2.1. First, we show that, if p′ ∈ paths(T ′), then

p′ ∈ paths(T ∗). By the unambiguity criterion, there exists a unique p ∈ paths(T )

such that p ∼ p′. By the correctness requirement for path transformer f , we

know p′ ∈ f(p) and p′ 6= ⊥ since p′ ∈ paths(T ′). Hence, p′ ∈ S ′ where S ′ =

{p′ | p′ ∈ f(p) ∧ p ∈ paths(T ) ∧ p′ 6= ⊥}. Since T ∗ = Splice(S ′) (recall code

generation in Section 2.4) and Splice guarantees that paths(T ∗) = S ′, we also

have p′ ∈ paths(T ∗). Now, we show that, if p∗ ∈ paths(T ∗), then p∗ ∈ paths(T ′).

Since p∗ ∈ paths(T ∗), there must exist a p ∈ paths(T ) such that p∗ ∈ f(p).

Since p ∈ inputs(E′), correctness of f implies there exists some (p, p∗) ∈ E′.

Now, suppose p∗ 6∈ paths(T ′). Since (p, p∗) ∈ E′ but p∗ 6∈ paths(T ′), there are

two possibilities: (i) Either p∗ = ⊥, or (ii) there is some other (T1, T2) ∈ E that

results in p∗ getting added to E′. Now, (i) is not possible because paths(T ∗)

cannot contain ⊥, and (ii) is not possible due to the unambiguity requirement.
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A.2 Mitra

A.2.1 Proof of Theorem 3.1

We first prove the soundness of A – i.e., if A accepts a column extraction

program π in our DSL, then we have ∀(T,R) ∈ E. [[π]]{T.root},T ⊇ column(R, i).

Recall that A is the intersection of each Aj(j = 1, ··, |E|) constructed using

rules shown in Figure 3.11. We prove A is sound by proving the soundness of

each Aj. Since rule (5) in Figure 3.11 marks a state qs to be a final state only

if we have s ⊇ column(R, i) and any program π accepted by Aj must evaluate

to the value s in a final state qs, we have that any program π accepted by Aj

satisfies example Ej. Therefore, we have proved the soundness of A also holds.

Now, we prove the completness of A – i.e., if there exists a DSL program

π such that we have ∀(T,R) ∈ E. [[π]]{T.root},T ⊇ column(R, i), then π is accepted

by A. We also prove this by showing the completeness of each Aj(j = 1, ··, |E|)

which is constructed using rules in Figure 3.11. This can be proved because (a)

the construction rules exhaustively apply all the DSL operators until no more

value can be produced by any DSL program, and (b) any state qs such that we

have s ⊇ column(R, i) is marked as a final state. Therefore, we have proved

the completeness of A.

A.2.2 Proof of Theorem 3.2

Given a set of examples E and a table extractor ψ, assume there exists

a formula ϕ (a boolean combination of atomic predicates) in our predicate

language such that we have ∀(T,R) ∈ E. [[filter(ψ, λt.ϕ)]]T = R, now we prove
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that Algorithm 3.3 returns a formula φ such that (a) we have ∀(T,R) ∈

E. [[filter(ψ, λt.φ)]]T = R, and (b) formula φ has the smallest number of unique

atomic predicates.

First, given a set Φ∗ of atomic predicates and suppose there exists a

formula constructed as a boolean combination of atomic predicates in Φ∗ that

can filter out all spurious tuples, it is obvious that Algorithm 3.3 (lines 14–16)

is guaranteed to find such a formula φ.

Then, we show that the call to the FindMinCover procedure (given in

Algorithm 3.4) at line 13 in Algorithm 3.3 returns a set Φ∗ of atomic predicates

such that (1) there exists a boolean combination of predicates in Φ∗ that can

filter out all spurious tuples, and (2) the set Φ∗ is smallest. In particular,

condition (1) holds because Algorithm 3.4 learns all the necessary atomic

predicates for differentiating the positive examples and negative examples

among all possible atomic predicates in our DSL, and conditional (2) holds due

to our ILP formulation (lines 7–10).

Now, we have proved that Algorithm 3.3 returns a formula φ that is a

valid filtering formula and has the smallest number of atomic predicates.

A.2.3 Proof of Theorem 3.3

Given a set of input-output examples E, we show that for each example

Ej: (a) the learnt column extraction program for column i overapproximates

column i in the output table, (b) the learnt table extraction program overap-

proximates the output table, and (c) the synthesized filter program returns
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exactly the output table.

First, condition (a) holds due to Theorem 3.1. Condition (b) also holds

because our synthesis algorithm constructs the table extraction program by

taking the cross-product of all column extraction programs. Finally, condition

(c) holds because of Theorem 3.2. Therefore, we conclude the proof.

A.2.4 Proof of Theorem 3.4

This theorem holds because (1) the completeness of column extraction

program synthesis (as proved in Theorem 3.1), and (2) the completness of

the predicate learning algorithm (as proved in Theorem 3.2).

A.2.5 Proof of Theorem 3.5

Our synthesis algorithm (shown in Algorithm 3.1) iterates over all

possible table extraction programs (line 8). For each candidate table extraction

program ψ, our algorithm learns the smallest formula φ (line 11) and constructs

a corresponding filter program (line 13). Because our cost function θ always

assigns a lower cost to a smaller formula, the learnt filter program in each

iteration is guaranteed to have the lowest cost among all the filter programs

that use the same table extraction program. Finally, the synthesized filter

program P ∗ (line 15) has the lowest cost due to the update at line 14. Therefore,

we conclude the proof.
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Appendix B

Program Optimization in Mitra

Mitra’s DSL decomposes a tree-to-table transformation task into two

subproblems, namely (i) generating a set of column extractors and (ii) learning

a filtering predicate. While this DSL is chosen intentionally to facilitate

the synthesis task, the resulting programs may be inefficient. In particular,

programs represented in this DSL first extract all possible values for each

column of the table from the input tree, then generate all possible tuples as

the cross-product of those columns, and finally remove all spurious tuples. The

goal of the program optimization step is to apply the predicate as early as

possible to avoid the generation of undesired tuples rather than filtering them

out later.

The program optimization step in Mitra works as follows: Consider

a synthesized program of the form λτ.filter(ψ, λt.φ) where ψ = π1 × . . .× πk.

Without any optimization, this program would be implemented as:

R = ∅
for n1 ∈ π1(T )

for n2 ∈ π2(T )
. . .

for nk ∈ πk(T )
if(φ((n1, n2, . . . , nk)))

R = R ∪ {(n1, n2, . . . , nk)}
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The optimizer first converts the predicate φ to a CNF formula φ =

φ1 ∧ . . . ∧ φm. It then generates two formulas ψ and χ such that ψ is used to

guide the optimization, and χ corresponds to the remaining filtering predicate

that is not handled by the optimization. Specifically, ψ, χ are both initialized

to true and updated as follows:: For each clause φi of the CNF formula, we

conjoin it with ψ if it is of the form ((λn.ϕ1) t[i])E ((λn.ϕ2) t[j]) and with χ

otherwise.

Now, we use formula ψ to optimize the program by finding shared paths

of different column extractors. For each φk = ((λn.ϕ1) t[i])E ((λn.ϕ2) t[j] ∈ ψ

and extractors πi, πj for columns i and j, the optimizer generates two extractors

π
′
i = ϕ1(πi) and π

′
j = ϕ2(πj). Then, it checks whether π

′
i and π

′
j are semantically

equivalent programs. If they are not equivalent, the optimizer removes φk

from ψ and conjoins it with χ. If π
′
i is equivalent to π

′
j and it is a prefix of

both πi and πj , then we can represent πi = πisuffix(π
′
i) and πj = πjsuffix(π

′
i). This

transformation allows us to share the execution of π
′
i for columns i and j and

has the following two benefits: First, it eliminates redundant computation,

and, even more importantly, it guarantees that extracted nodes ni and nj

satisfy predicate ψ. This kind of reasoning allows us to generate the following

optimized program:
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R = ∅
for n1 ∈ π1(T )

. . .
for nij ∈ π

′
i(T )

ni = πisuffix(nij)

nj = πjsuffix(nij)

. . .
for nk ∈ πk(T )

if(χ((n1, n2, . . . , nk)))
R = R ∪ {(n1, n2, . . . , nk)}

Observe that the optimized code has a single loop for nodes ni and nj

rather than a nested loop.
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