3,549 research outputs found

    Ensemble of Example-Dependent Cost-Sensitive Decision Trees

    Get PDF
    Several real-world classification problems are example-dependent cost-sensitive in nature, where the costs due to misclassification vary between examples and not only within classes. However, standard classification methods do not take these costs into account, and assume a constant cost of misclassification errors. In previous works, some methods that take into account the financial costs into the training of different algorithms have been proposed, with the example-dependent cost-sensitive decision tree algorithm being the one that gives the highest savings. In this paper we propose a new framework of ensembles of example-dependent cost-sensitive decision-trees. The framework consists in creating different example-dependent cost-sensitive decision trees on random subsamples of the training set, and then combining them using three different combination approaches. Moreover, we propose two new cost-sensitive combination approaches; cost-sensitive weighted voting and cost-sensitive stacking, the latter being based on the cost-sensitive logistic regression method. Finally, using five different databases, from four real-world applications: credit card fraud detection, churn modeling, credit scoring and direct marketing, we evaluate the proposed method against state-of-the-art example-dependent cost-sensitive techniques, namely, cost-proportionate sampling, Bayes minimum risk and cost-sensitive decision trees. The results show that the proposed algorithms have better results for all databases, in the sense of higher savings.Comment: 13 pages, 6 figures, Submitted for possible publicatio

    Counterexample Generation in Probabilistic Model Checking

    Get PDF
    Providing evidence for the refutation of a property is an essential, if not the most important, feature of model checking. This paper considers algorithms for counterexample generation for probabilistic CTL formulae in discrete-time Markov chains. Finding the strongest evidence (i.e., the most probable path) violating a (bounded) until-formula is shown to be reducible to a single-source (hop-constrained) shortest path problem. Counterexamples of smallest size that deviate most from the required probability bound can be obtained by applying (small amendments to) k-shortest (hop-constrained) paths algorithms. These results can be extended to Markov chains with rewards, to LTL model checking, and are useful for Markov decision processes. Experimental results show that typically the size of a counterexample is excessive. To obtain much more compact representations, we present a simple algorithm to generate (minimal) regular expressions that can act as counterexamples. The feasibility of our approach is illustrated by means of two communication protocols: leader election in an anonymous ring network and the Crowds protocol

    A Logical Approach to Efficient Max-SAT solving

    Get PDF
    Weighted Max-SAT is the optimization version of SAT and many important problems can be naturally encoded as such. Solving weighted Max-SAT is an important problem from both a theoretical and a practical point of view. In recent years, there has been considerable interest in finding efficient solving techniques. Most of this work focus on the computation of good quality lower bounds to be used within a branch and bound DPLL-like algorithm. Most often, these lower bounds are described in a procedural way. Because of that, it is difficult to realize the {\em logic} that is behind. In this paper we introduce an original framework for Max-SAT that stresses the parallelism with classical SAT. Then, we extend the two basic SAT solving techniques: {\em search} and {\em inference}. We show that many algorithmic {\em tricks} used in state-of-the-art Max-SAT solvers are easily expressable in {\em logic} terms with our framework in a unified manner. Besides, we introduce an original search algorithm that performs a restricted amount of {\em weighted resolution} at each visited node. We empirically compare our algorithm with a variety of solving alternatives on several benchmarks. Our experiments, which constitute to the best of our knowledge the most comprehensive Max-sat evaluation ever reported, show that our algorithm is generally orders of magnitude faster than any competitor

    To boldly go:an occam-π mission to engineer emergence

    Get PDF
    Future systems will be too complex to design and implement explicitly. Instead, we will have to learn to engineer complex behaviours indirectly: through the discovery and application of local rules of behaviour, applied to simple process components, from which desired behaviours predictably emerge through dynamic interactions between massive numbers of instances. This paper describes a process-oriented architecture for fine-grained concurrent systems that enables experiments with such indirect engineering. Examples are presented showing the differing complex behaviours that can arise from minor (non-linear) adjustments to low-level parameters, the difficulties in suppressing the emergence of unwanted (bad) behaviour, the unexpected relationships between apparently unrelated physical phenomena (shown up by their separate emergence from the same primordial process swamp) and the ability to explore and engineer completely new physics (such as force fields) by their emergence from low-level process interactions whose mechanisms can only be imagined, but not built, at the current time

    Revisiting the Training of Logic Models of Protein Signaling Networks with a Formal Approach based on Answer Set Programming

    Get PDF
    A fundamental question in systems biology is the construction and training to data of mathematical models. Logic formalisms have become very popular to model signaling networks because their simplicity allows us to model large systems encompassing hundreds of proteins. An approach to train (Boolean) logic models to high-throughput phospho-proteomics data was recently introduced and solved using optimization heuristics based on stochastic methods. Here we demonstrate how this problem can be solved using Answer Set Programming (ASP), a declarative problem solving paradigm, in which a problem is encoded as a logical program such that its answer sets represent solutions to the problem. ASP has significant improvements over heuristic methods in terms of efficiency and scalability, it guarantees global optimality of solutions as well as provides a complete set of solutions. We illustrate the application of ASP with in silico cases based on realistic networks and data

    Weighted-Sequence Problem: ASP vs CASP and Declarative vs Problem-Oriented Solving

    Get PDF
    Search problems with large variable domains pose a challenge to current answer-set programming (ASP) systems as large variable domains make grounding take a long time, and lead to large ground theories that may make solving infeasible. To circumvent the “grounding bottleneck” researchers proposed to integrate constraint solving techniques with ASP in an approach called constraint ASP (CASP). In the paper, we evaluate an ASP system clingo and a CASP system clingcon on a handcrafted problem involving large integer domains that is patterned after the database task of determining the optimal join order. We find that search methods used by clingo are superior to those used by clingcon, yet the latter system, not hampered by grounding, scales up better. The paper provides evidence that gains in solver technology can be obtained by further research on integrating ASP and CSP technologies
    corecore