2,204 research outputs found

    The Asymptotic value of the Locating-Chromatic number of nn-ary Tree

    Full text link
    In 2013, Welyyanti et al. proved that χL(T(n,k))n+k1\chi_L(T(n,k))\leq n+k-1 for all positive integers n,k2n,k\geq2. In this paper we prove that for any fixed integer k2k\geq2, almost all nn-ary Tree T(n,k)T(n,k) satisfy χL(T(n,k))=n+k1\chi_L(T(n,k))=n+k-1, moreover limnχL(T(n,k))n=k1\lim\limits_{n\to \infty} \chi_L(T(n,k))-n=k-1.Comment: 4 Pages, 1 figur

    On the size of identifying codes in triangle-free graphs

    Get PDF
    In an undirected graph GG, a subset CV(G)C\subseteq V(G) such that CC is a dominating set of GG, and each vertex in V(G)V(G) is dominated by a distinct subset of vertices from CC, is called an identifying code of GG. The concept of identifying codes was introduced by Karpovsky, Chakrabarty and Levitin in 1998. For a given identifiable graph GG, let \M(G) be the minimum cardinality of an identifying code in GG. In this paper, we show that for any connected identifiable triangle-free graph GG on nn vertices having maximum degree Δ3\Delta\geq 3, \M(G)\le n-\tfrac{n}{\Delta+o(\Delta)}. This bound is asymptotically tight up to constants due to various classes of graphs including (Δ1)(\Delta-1)-ary trees, which are known to have their minimum identifying code of size nnΔ1+o(1)n-\tfrac{n}{\Delta-1+o(1)}. We also provide improved bounds for restricted subfamilies of triangle-free graphs, and conjecture that there exists some constant cc such that the bound \M(G)\le n-\tfrac{n}{\Delta}+c holds for any nontrivial connected identifiable graph GG

    Neighbor-locating colorings in graphs

    Get PDF
    A k -coloring of a graph G is a k -partition ¿ = { S 1 ,...,S k } of V ( G ) into independent sets, called colors . A k -coloring is called neighbor-locating if for every pair of vertices u,v belonging to the same color S i , the set of colors of the neighborhood of u is different from the set of colors of the neighborhood of v . The neighbor-locating chromatic number ¿ NL ( G ) is the minimum cardinality of a neighbor-locating coloring of G . We establish some tight bounds for the neighbor-locating chromatic number of a graph, in terms of its order, maximum degree and independence number. We determine all connected graphs of order n = 5 with neighbor-locating chromatic number n or n - 1. We examine the neighbor-locating chromatic number for two graph operations: join and disjoint union, and also for two graph families: split graphs and Mycielski graphsPreprin

    PEA265: Perceptual Assessment of Video Compression Artifacts

    Full text link
    The most widely used video encoders share a common hybrid coding framework that includes block-based motion estimation/compensation and block-based transform coding. Despite their high coding efficiency, the encoded videos often exhibit visually annoying artifacts, denoted as Perceivable Encoding Artifacts (PEAs), which significantly degrade the visual Qualityof- Experience (QoE) of end users. To monitor and improve visual QoE, it is crucial to develop subjective and objective measures that can identify and quantify various types of PEAs. In this work, we make the first attempt to build a large-scale subjectlabelled database composed of H.265/HEVC compressed videos containing various PEAs. The database, namely the PEA265 database, includes 4 types of spatial PEAs (i.e. blurring, blocking, ringing and color bleeding) and 2 types of temporal PEAs (i.e. flickering and floating). Each containing at least 60,000 image or video patches with positive and negative labels. To objectively identify these PEAs, we train Convolutional Neural Networks (CNNs) using the PEA265 database. It appears that state-of-theart ResNeXt is capable of identifying each type of PEAs with high accuracy. Furthermore, we define PEA pattern and PEA intensity measures to quantify PEA levels of compressed video sequence. We believe that the PEA265 database and our findings will benefit the future development of video quality assessment methods and perceptually motivated video encoders.Comment: 10 pages,15 figures,4 table

    Trees and Markov convexity

    Full text link
    We show that an infinite weighted tree admits a bi-Lipschitz embedding into Hilbert space if and only if it does not contain arbitrarily large complete binary trees with uniformly bounded distortion. We also introduce a new metric invariant called Markov convexity, and show how it can be used to compute the Euclidean distortion of any metric tree up to universal factors

    Some invariants related to threshold and chain graphs

    Full text link
    Let G = (V, E) be a finite simple connected graph. We say a graph G realizes a code of the type 0^s_1 1^t_1 0^s_2 1^t_2 ... 0^s_k1^t_k if and only if G can obtained from the code by some rule. Some classes of graphs such as threshold and chain graphs realizes a code of the above mentioned type. In this paper, we develop some computationally feasible methods to determine some interesting graph theoretical invariants. We present an efficient algorithm to determine the metric dimension of threshold and chain graphs. We compute threshold dimension and restricted threshold dimension of threshold graphs. We discuss L(2, 1)-coloring of threshold and chain graphs. In fact, for every threshold graph G, we establish a formula by which we can obtain the {\lambda}-chromatic number of G. Finally, we provide an algorithm to compute the {\lambda}-chromatic number of chain graphs

    Colour Communication Within Different Languages

    Get PDF
    For computational methods aiming to reproduce colour names that are meaningful to speakers of different languages, the mapping between perceptual and linguistic aspects of colour is a problem of central information processing. This thesis advances the field of computational colour communication within different languages in five main directions. First, we show that web-based experimental methodologies offer considerable advantages in obtaining a large number of colour naming responses in British and American English, Greek, Russian, Thai and Turkish. We continue with the application of machine learning methods to discover criteria in linguistic, behavioural and geometric features of colour names that distinguish classes of colours. We show that primary colour terms do not form a coherent class, whilst achromatic and basic classes do. We then propose and evaluate a computational model trained by human responses in the online experiment to automate the assignment of colour names in different languages across the full three-dimensional colour gamut. Fourth, we determine for the first time the location of colour names within a physiologically-based cone excitation space through an unconstrained colour naming experiment using a calibrated monitor under controlled viewing conditions. We show a good correspondence between online and offline datasets; and confirm the validity of both experimental methodologies for estimating colour naming functions in laboratory and real-world monitor settings. Finally, we present a novel information theoretic measure, called dispensability, for colour categories that predicts a gradual scale of basicness across languages from both web- and laboratory- based unconstrained colour naming datasets. As a result, this thesis contributes experimental and computational methodologies towards the development of multilingual colour communication schemes

    Master index of volumes 161–170

    Get PDF
    corecore