7,757 research outputs found

    Algorithms to Find Linear Geodetic Numbers and Linear Edge Geodetic Numbers in Graphs

    Get PDF
    Given two vertices u and v of a connected graph G=(V, E), the closed interval I[u, v] is that set of all vertices lying in some u-v geodesic in G. A subset of V(G) S={v1,v2,v3,….,vk} is a linear geodetic set or sequential geodetic set if each vertex x of G lies on a vi – vi+1 geodesic where 1 ? i < k . A linear geodetic set of minimum cardinality in G is called as linear geodetic number lgn(G) or sequential geodetic number sgn(G). Similarly, an ordered set S={v1,v2,v3,….,vk} is a linear edge geodetic set if for each edge e = xy in G, there exists an index i, 1 ? i < k such that e lies on a vi – vi+1 geodesic in G. The cardinality of the minimum linear edge geodetic set is the linear edge geodetic number of G denoted by legn(G). The purpose of this paper is to introduce algorithms using dynamic programming concept to find minimum linear geodetic set and thereby linear geodetic number and linear edge geodetic set and number in connected graphs

    Algorithms and Complexity for Geodetic Sets on Planar and Chordal Graphs

    Get PDF
    We study the complexity of finding the geodetic number on subclasses of planar graphs and chordal graphs. A set S of vertices of a graph G is a geodetic set if every vertex of G lies in a shortest path between some pair of vertices of S. The Minimum Geodetic Set (MGS) problem is to find a geodetic set with minimum cardinality of a given graph. The problem is known to remain NP-hard on bipartite graphs, chordal graphs, planar graphs and subcubic graphs. We first study MGS on restricted classes of planar graphs: we design a linear-time algorithm for MGS on solid grids, improving on a 3-approximation algorithm by Chakraborty et al. (CALDAM, 2020) and show that MGS remains NP-hard even for subcubic partial grids of arbitrary girth. This unifies some results in the literature. We then turn our attention to chordal graphs, showing that MGS is fixed parameter tractable for inputs of this class when parameterized by their treewidth (which equals the clique number minus one). This implies a linear-time algorithm for k-trees, for fixed k. Then, we show that MGS is NP-hard on interval graphs, thereby answering a question of Ekim et al. (LATIN, 2012). As interval graphs are very constrained, to prove the latter result we design a rather sophisticated reduction technique to work around their inherent linear structure

    Statistical testing of directions observations independence

    Get PDF
    Independence of observations is often assumed when adjusting geodetic network. Unlike the\ud distance observations, no dependence of environmental conditions is known for horizontal\ud direction observations. In order to determine the dependence of horizontal direction observations,\ud we established test geodetic network of a station and four observation points. Measurements of\ud the highest possible accuracy were carried out using Leica TS30 total station along with precise\ud prisms GPH1P. Two series of hundred sets of angles were measured, with the first one in bad\ud observation conditions. Using different methods, i.e. variance–covariance matrices, x2 test and analyses of time series, the independence of measured directions, reduced directions and horizontal angles were tested. The results show that the independence of horizontal direction\ud observations is not obvious and certainly not in poor conditions. In this case, it would be appropriate for geodetic network adjustments to use variance–covariance matrix calculated from measurements instead of diagonal variance–covariance matrix

    The graph bottleneck identity

    Get PDF
    A matrix S=(sij)∈Rn×nS=(s_{ij})\in{\mathbb R}^{n\times n} is said to determine a \emph{transitional measure} for a digraph GG on nn vertices if for all i,j,k∈{1,.˙.,n},i,j,k\in\{1,\...,n\}, the \emph{transition inequality} sijsjk≤siksjjs_{ij} s_{jk}\le s_{ik} s_{jj} holds and reduces to the equality (called the \emph{graph bottleneck identity}) if and only if every path in GG from ii to kk contains jj. We show that every positive transitional measure produces a distance by means of a logarithmic transformation. Moreover, the resulting distance d(⋅,⋅)d(\cdot,\cdot) is \emph{graph-geodetic}, that is, d(i,j)+d(j,k)=d(i,k)d(i,j)+d(j,k)=d(i,k) holds if and only if every path in GG connecting ii and kk contains jj. Five types of matrices that determine transitional measures for a digraph are considered, namely, the matrices of path weights, connection reliabilities, route weights, and the weights of in-forests and out-forests. The results obtained have undirected counterparts. In [P. Chebotarev, A class of graph-geodetic distances generalizing the shortest-path and the resistance distances, Discrete Appl. Math., URL http://dx.doi.org/10.1016/j.dam.2010.11.017] the present approach is used to fill the gap between the shortest path distance and the resistance distance.Comment: 12 pages, 18 references. Advances in Applied Mathematic

    The Walk Distances in Graphs

    Get PDF
    The walk distances in graphs are defined as the result of appropriate transformations of the ∑k=0∞(tA)k\sum_{k=0}^\infty(tA)^k proximity measures, where AA is the weighted adjacency matrix of a graph and tt is a sufficiently small positive parameter. The walk distances are graph-geodetic; moreover, they converge to the shortest path distance and to the so-called long walk distance as the parameter tt approaches its limiting values. We also show that the logarithmic forest distances which are known to generalize the resistance distance and the shortest path distance are a subclass of walk distances. On the other hand, the long walk distance is equal to the resistance distance in a transformed graph.Comment: Accepted for publication in Discrete Applied Mathematics. 26 pages, 3 figure
    • …
    corecore