393 research outputs found

    Circuits and Cycles in Graphs and Matroids

    Get PDF
    This dissertation mainly focuses on characterizing cycles and circuits in graphs, line graphs and matroids. We obtain the following advances. 1. Results in graphs and line graphs. For a connected graph G not isomorphic to a path, a cycle or a K1,3, let pc(G) denote the smallest integer n such that the nth iterated line graph Ln(G) is panconnected. A path P is a divalent path of G if the internal vertices of P are of degree 2 in G. If every edge of P is a cut edge of G, then P is a bridge divalent path of G; if the two ends of P are of degree s and t, respectively, then P is called a divalent (s, t)-path. Let l(G) = max{m : G has a divalent path of length m that is not both of length 2 and in a K3}. We prove the following. (i) If G is a connected triangular graph, then L(G) is panconnected if and only if G is essentially 3-edge-connected. (ii) pc(G) ≤ l(G) + 2. Furthermore, if l(G) ≥ 2, then pc(G) = l(G) + 2 if and only if for some integer t ≥ 3, G has a bridge divalent (3, t)-path of length l(G). For a graph G, the supereulerian width μ′(G) of a graph G is the largest integer s such that G has a spanning (k;u,v)-trail-system, for any integer k with 1 ≤ k ≤ s, and for any u, v ∈ V (G) with u ̸= v. Thus μ′(G) ≥ 2 implies that G is supereulerian, and so graphs with higher supereulerian width are natural generalizations of supereulerian graphs. Settling an open problem of Bauer, Catlin in [J. Graph Theory 12 (1988), 29-45] proved that if a simple graph G on n ≥ 17 vertices satisfy δ(G) ≥ n − 1, then μ′(G) ≥ 2. In this paper, we show that for 4 any real numbers a, b with 0 \u3c a \u3c 1 and any integer s \u3e 0, there exists a finite graph family F = F(a,b,s) such that for a simple graph G with n = |V(G)|, if for any u,v ∈ V(G) with uv ∈/ E(G), max{dG(u), dG(v)} ≥ an + b, then either μ′(G) ≥ s + 1 or G is contractible to a member in F. When a = 1,b = −3, we show that if n is sufficiently large, K3,3 is the only 42 obstacle for a 3-edge-connected graph G to satisfy μ′(G) ≥ 3. An hourglass is a graph obtained from K5 by deleting the edges in a cycle of length 4, and an hourglass-free graph is one that has no induced subgraph isomorphic to an hourglass. Kriesell in [J. Combin. Theory Ser. B, 82 (2001), 306-315] proved that every 4-connected hourglass-free line graph is Hamilton-connected, and Kaiser, Ryj ́aˇcek and Vr ́ana in [Discrete Mathematics, 321 (2014) 1-11] extended it by showing that every 4-connected hourglass-free line graph is 1- Hamilton-connected. We characterize all essentially 4-edge-connected graphs whose line graph is hourglass-free. Consequently we prove that for any integer s and for any hourglass-free line graph L(G), each of the following holds. (i) If s ≥ 2, then L(G) is s-hamiltonian if and only if κ(L(G)) ≥ s + 2; (ii) If s ≥ 1, then L(G) is s-Hamilton-connected if and only if κ(L(G)) ≥ s + 3. For integers s1, s2, s3 \u3e 0, let Ns1,s2,s3 denote the graph obtained by identifying each vertex of a K3 with an end vertex of three disjoint paths Ps1+1, Ps2+1, Ps3+1 of length s1,s2 and s3, respectively. We prove the following results. (i)LetN1 ={Ns1,s2,s3 :s1 \u3e0,s1 ≥s2 ≥s3 ≥0ands1+s2+s3 ≤6}. Thenforany N ∈ N1, every N-free line graph L(G) with |V (L(G))| ≥ s + 3 is s-hamiltonian if and only if κ(L(G)) ≥ s + 2. (ii)LetN2={Ns1,s2,s3 :s1\u3e0,s1≥s2≥s3≥0ands1+s2+s3≤4}.ThenforanyN∈N2, every N -free line graph L(G) with |V (L(G))| ≥ s + 3 is s-Hamilton-connected if and only if κ(L(G)) ≥ s + 3. 2. Results in matroids. A matroid M with a distinguished element e0 ∈ E(M) is a rooted matroid with e0 being the root. We present a characterization of all connected binary rooted matroids whose root lies in at most three circuits, and a characterization of all connected binary rooted matroids whose root lies in all but at most three circuits. While there exist infinitely many such matroids, the number of serial reductions of such matroids is finite. In particular, we find two finite families of binary matroids M1 and M2 and prove the following. (i) For some e0 ∈ E(M), M has at most three circuits containing e0 if and only if the serial reduction of M is isomorphic to a member in M1. (ii) If for some e0 ∈ E(M), M has at most three circuits not containing e0 if and only if the serial reduction of M is isomorphic to a member in M2. These characterizations will be applied to show that every connected binary matroid M with at least four circuits has a 1-hamiltonian circuit graph

    Notions of Relative Ubiquity for Invariant Sets of Relational Structures

    Get PDF
    Given a finite lexicon L of relational symbols and equality, one may view the collection of all L-structures on the set of natural numbers w as a space in several different ways. We consider it as: (i) the space of outcomes of certain infinite two-person games; (ii) a compact metric space; and (iii) a probability measure space. For each of these viewpoints, we can give a notion of relative ubiquity, or largeness, for invariant sets of structures on w. For example, in every sense of relative ubiquity considered here, the set of dense linear orderings on w is ubiquitous in the set of linear orderings on w

    On better-quasi-ordering classes of partial orders

    Full text link
    We provide a method of constructing better-quasi-orders by generalising a technique for constructing operator algebras that was developed by Pouzet. We then generalise the notion of σ\sigma-scattered to partial orders, and use our method to prove that the class of σ\sigma-scattered partial orders is better-quasi-ordered under embeddability. This generalises theorems of Laver, Corominas and Thomass\'{e} regarding σ\sigma-scattered linear orders and trees, countable forests and N-free partial orders respectively. In particular, a class of countable partial orders is better-quasi-ordered whenever the class of indecomposable subsets of its members satisfies a natural strengthening of better-quasi-order.Comment: v1: 45 pages, 8 figures; v2: 44 pages, 11 figures, minor corrections, fixed typos, new figures and some notational changes to improve clarity; v3: 45 pages, 12 figures, changed the way the paper is structured to improve clarity and provide examples earlier o

    Defining Recursive Predicates in Graph Orders

    Full text link
    We study the first order theory of structures over graphs i.e. structures of the form (G,τ\mathcal{G},\tau) where G\mathcal{G} is the set of all (isomorphism types of) finite undirected graphs and τ\tau some vocabulary. We define the notion of a recursive predicate over graphs using Turing Machine recognizable string encodings of graphs. We also define the notion of an arithmetical relation over graphs using a total order t\leq_t on the set G\mathcal{G} such that (G,t\mathcal{G},\leq_t) is isomorphic to (N,\mathbb{N},\leq). We introduce the notion of a \textit{capable} structure over graphs, which is one satisfying the conditions : (1) definability of arithmetic, (2) definability of cardinality of a graph, and (3) definability of two particular graph predicates related to vertex labellings of graphs. We then show any capable structure can define every arithmetical predicate over graphs. As a corollary, any capable structure also defines every recursive graph relation. We identify capable structures which are expansions of graph orders, which are structures of the form (G,\mathcal{G},\leq) where \leq is a partial order. We show that the subgraph order i.e. (G,s\mathcal{G},\leq_s), induced subgraph order with one constant P3P_3 i.e. (G,i,P3\mathcal{G},\leq_i,P_3) and an expansion of the minor order for counting edges i.e. (G,m,sameSize(x,y)\mathcal{G},\leq_m,sameSize(x,y)) are capable structures. In the course of the proof, we show the definability of several natural graph theoretic predicates in the subgraph order which may be of independent interest. We discuss the implications of our results and connections to Descriptive Complexity

    Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model. Some history and some recent results

    Get PDF
    We review some history and some recent results concerning Toeplitz determinants and their applications. We discuss, in particular, the crucial role of the two-dimensional Ising model in stimulating the development of the theory of Toeplitz determinants.Comment: 70 pages, with additions to the tex

    Nonperturbative renormalization in light-front dynamics and applications

    Get PDF
    We present a general framework to calculate the properties of relativistic compound systems from the knowledge of an elementary Hamiltonian. Our framework provides a well-controlled nonperturbative calculational scheme which can be systematically improved. The state vector of a physical system is calculated in light-front dynamics. From the general properties of this form of dynamics, the state vector can be further decomposed in well-defined Fock components. In order to control the convergence of this expansion, we advocate the use of the covariant formulation of light-front dynamics. In this formulation, the state vector is projected on an arbitrary light-front plane \omega \cd x=0 defined by a light-like four-vector ω\omega. This enables us to control any violation of rotational invariance due to the truncation of the Fock expansion. We then present a general nonperturbative renormalization scheme in order to avoid field-theoretical divergences which may remain uncancelled due to this truncation. This general framework has been applied to a large variety of models. As a starting point, we consider QED for the two-body Fock space truncation and calculate the anomalous magnetic moment of the electron. We show that it coincides, in this approximation, with the well-known Schwinger term. Then we investigate the properties of a purely scalar system in the three-body approximation, where we highlight the role of antiparticle degrees of freedom. As a non-trivial example of our framework, we calculate the structure of a physical fermion in the Yukawa model, for the three-body Fock space truncation (but still without antifermion contributions). We finally show why our approach is also well-suited to describe effective field theories like chiral perturbation theory in the baryonic sector.Comment: 17 pages, 19 figures "Relativistic Description of Two- and Three-Body Systems in Nuclear Physics", ECT*, October 19-23 200
    corecore