183 research outputs found

    The Knowledge Grid: A Platform to Increase the Interoperability of Computable Knowledge and Produce Advice for Health

    Full text link
    Here we demonstrate how more highly interoperable computable knowledge enables systems to generate large quantities of evidence-based advice for health. We first provide a thorough analysis of advice. Then, because advice derives from knowledge, we turn our focus to computable, i.e., machine-interpretable, forms for knowledge. We consider how computable knowledge plays dual roles as a resource conveying content and as an advice enabler. In this latter role, computable knowledge is combined with data about a decision situation to generate advice targeted at the pending decision. We distinguish between two types of automated services. When a computer system provides computable knowledge, we say that it provides a knowledge service. When computer system combines computable knowledge with instance data to provide advice that is specific to an unmade decision we say that it provides an advice-giving service. The work here aims to increase the interoperability of computable knowledge to bring about better knowledge services and advice-giving services for health. The primary motivation for this research is the problem of missing or inadequate advice about health topics. The global demand for well-informed health advice far exceeds the global supply. In part to overcome this scarcity, the design and development of Learning Health Systems is being pursued at various levels of scale: local, regional, state, national, and international. Learning Health Systems fuse capabilities to generate new computable biomedical knowledge with other capabilities to rapidly and widely use computable biomedical knowledge to inform health practices and behaviors with advice. To support Learning Health Systems, we believe that knowledge services and advice-giving services have to be more highly interoperable. I use examples of knowledge services and advice-giving services which exclusively support medication use. This is because I am a pharmacist and pharmacy is the biomedical domain that I know. The examples here address the serious problems of medication adherence and prescribing safety. Two empirical studies are shared that demonstrate the potential to address these problems and make improvements by using advice. But primarily we use these examples to demonstrate general and critical differences between stand-alone, unique approaches to handling computable biomedical knowledge, which make it useful for one system, and common, more highly interoperable approaches, which can make it useful for many heterogeneous systems. Three aspects of computable knowledge interoperability are addressed: modularity, identity, and updateability. We demonstrate that instances of computable knowledge, and related instances of knowledge services and advice-giving services, can be modularized. We also demonstrate the utility of uniquely identifying modular instances of computable knowledge. Finally, we build on the computing concept of pipelining to demonstrate how computable knowledge modules can automatically be updated and rapidly deployed. Our work is supported by a fledgling technical knowledge infrastructure platform called the Knowledge Grid. It includes formally specified compound digital objects called Knowledge Objects, a conventional digital Library that serves as a Knowledge Object repository, and an Activator that provides an application programming interface (API) for computable knowledge. The Library component provides knowledge services. The Activator component provides both knowledge services and advice-giving services. In conclusion, by increasing the interoperability of computable biomedical knowledge using the Knowledge Grid, we demonstrate new capabilities to generate well-informed health advice at a scale. These new capabilities may ultimately support Learning Health Systems and boost health for large populations of people who would otherwise not receive well-informed health advice.PHDInformationUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146073/1/ajflynn_1.pd

    Peer-to-Peer Metadata Management for Knowledge Discovery Applications in Grids

    Get PDF
    Computational Grids are powerful platforms gathering computational power and storage space from thousands of geographically distributed resources. The applications running on such platforms need to efficiently and reliably access the various and heterogeneous distributed resources they offer. This can be achieved by using metadata information describing all available resources. It is therefore crucial to provide efficient metadata management architectures and frameworks. In this paper we describe the design of a Grid metadata management service. We focus on a particular use case: the Knowledge Grid architecture which provides high-level Grid services for distributed knowledge discovery applications. Taking advantage of an existing Grid data-sharing service, namely JuxMem, the proposed solution lies at the border between peer-to-peer systems and Web services

    Creating Intelligent Linking for Information Threading in Knowledge Networks

    Full text link
    Informledge System (ILS) is a knowledge network with autonomous nodes and intelligent links that integrate and structure the pieces of knowledge. In this paper, we aim to put forward the link dynamics involved in intelligent processing of information in ILS. There has been advancement in knowledge management field which involve managing information in databases from a single domain. ILS works with information from multiple domains stored in distributed way in the autonomous nodes termed as Knowledge Network Node (KNN). Along with the concept under consideration, KNNs store the processed information linking concepts and processors leading to the appropriate processing of information.Comment: 5 Pages, 6 Figures, 2 Tables, India Conference (INDICON), 201

    Mining Large Data Sets on Grids: Issues and Prospects

    Get PDF
    When data mining and knowledge discovery techniques must be used to analyze large amounts of data, high-performance parallel and distributed computers can help to provide better computational performance and, as a consequence, deeper and more meaningful results. Recently grids, composed of large-scale, geographically distributed platforms working together, have emerged as effective architectures for high-performance decentralized computation. It is natural to consider grids as tools for distributed data-intensive applications such as data mining, but the underlying patterns of computation and data movement in such applications are different from those of more conventional high-performance computation. These differences require a different kind of grid, or at least a grid with significantly different emphases. This paper discusses the main issues, requirements, and design approaches for the implementation of grid-based knowledge discovery systems. Furthermore, some prospects and promising research directions in datacentric and knowledge-discovery oriented grids are outlined
    corecore