
HAL Id: inria-00447924
https://hal.inria.fr/inria-00447924

Submitted on 16 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Peer-to-Peer Metadata Management for Knowledge
Discovery Applications in Grids

Gabriel Antoniu, Antonio Congiusta, Sébastien Monnet, Domenico Talia,
Paolo Trunfio

To cite this version:
Gabriel Antoniu, Antonio Congiusta, Sébastien Monnet, Domenico Talia, Paolo Trunfio. Peer-
to-Peer Metadata Management for Knowledge Discovery Applications in Grids. Talia, Domenico;
Yahyapour, Ramin; Ziegler, Wolfgang (Eds.). Grid Middleware and Service Challenges and Solutions,
Springer, pp.219-233, 2008, CoreGrid Series, 978-0-387-78445-8 (Print) 978-0-387-78446-5 (Online).
�10.1007/978-0-387-78446-5_15�. �inria-00447924�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50117803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00447924
https://hal.archives-ouvertes.fr

PEER-TO-PEER METADATA MANAGEMENT FOR
KNOWLEDGE DISCOVERY APPLICATIONS IN GRIDS∗

Gabriel Antoniu1

Gabriel.Antoniu@irisa.fr

Antonio Congiusta2

acongiusta@deis.unical.it

Sébastien Monnet1,2

Sebastien.Monnet@irisa.fr

Domenico Talia2

talia@deis.unical.it

Paolo Trunfio2

trunfio@deis.unical.it

1 IRISA/INRIA
Campus de Beaulieu, 35042 Rennes cedex, FRANCE
2 DEIS, University of Calabria
Via P. Bucci 41C, 87036 Rende, Italy

Abstract Computational Grids are powerful platforms gathering computational power and
storage space from thousands of geographically distributed resources. The ap-
plications running on such platforms need to efficiently andreliably access the
various and heterogeneous distributed resources they offer. This can be achieved
by using metadata information describing all available resources. It is therefore
crucial to provide efficient metadata management architectures and frameworks.
In this paper we describe the design of a Grid metadata management service.
We focus on a particular use case: the Knowledge Grid architecture which pro-
vides high-level Grid services for distributed knowledge discovery applications.
Taking advantage of an existing Grid data-sharing service,namelyJuxMem,
the proposed solution lies at the border between peer-to-peer systems and Web
services.

∗This work was carried out for the CoreGRID IST project n˚004265, funded by the European Commission.

2

1. Introduction

Computational Grids are powerful platforms gathering computational power
and storage space from thousands of resources geographically distributed in
several sites. These platforms are large-scale, heterogeneous, geographically
distributed and dynamic architectures. Furthermore they contain many types
of resources such as software tools, data sources, specific hardware, etc. These
resources are spread over the whole platform. Therefore, itis crucial to pro-
vide a mean for the applications running on Grids to localizeand access the
available resources in such large-scale, heterogeneous, dynamic, distributed
environment.

Each Grid resource can be described by a metadata item (eg., an XML doc-
ument). Such a metadata document may contain the 1) the description of a
particular resource, 2) its localization and 3) information on the resource usage
(eg., command line options of a software tool, format of a data source, protocol
used to access a particular node, etc.). Thus, given a resource metadata, it is
possible to access the resource. All the metadata items, describing the whole
set of resources available in a given Grid have to be managed in an efficient and
reliable way especially in large-scale Grids.

In this paper we propose a software architecture of a scalable Grid metadata
management service. We focus on a particular use case: metadata management
for the Knowledge Grid [7]. The Knowledge Grid is aservice-oriented software
distributed framework that aims to offer high-level Grid services for knowledge
discovery applications running on computational Grids. The Knowledge Grid
services are built on top of existing, low-level Grid services such as GRAM [12],
GridFTP [1] or MDS [11].

Within the Knowledge Grid architecture, metadata providesinformation
about how an object (either a data source or an algorithm) canbe accessed.
It consists of information on its actual location and on its format (for a data
source) or its usage (for an algorithm).

As metadata is actually stored as pieces of data (eg., XML files), they may
be treated as such. We take advantage of the good properties exhibited by
an already existing Grid data-sharing service,JuxMem [2, 4], to store and
retrieve metadata. We then build a distributed and replicated hierarchical index
of available metadata.

In the next section we briefly present the architecture of theKnowledge Grid
and focus on its metadata management needs. Section 3 presents theJuxMem

Grid data-sharing service that we use to reliably store and retrieve both resource
metadata and the distributed replicated index. Section 4 describes our archi-
tecture for a metadata management Grid service tailored forthe Knowledge
Grid and based onJuxMem. Finally, Section 5 presents ongoing work and
concludes this paper.

Peer-to-Peer Metadata Management 3

2. The Knowledge Grid

2.1 Knowledge discovery in Grids

Nowadays, big companies have to deal with daily generated large amounts
of data. They need tools to both store this information and retrieve knowledge
from it. Computational Grids [14] offering high computational power and
large storage resources can be used to store and process large amounts of data.
Furthermore their geographically distributed nature fits well with the companies
architecture. Indeed companies data sources and computational power may be
spread all over the world.

However, performing knowledge discovery over such a distributed and of-
ten heterogeneous architecture, using data sources and data mining algorithms
spread over thousands of nodes is not a trivial task. Building and running a
distributed knowledge discovery application on a Grid requires high-level ser-
vices. Data sources to be mined have to be located, furthermore their format has
to be discovered somehow (they could be relational databases, text files, etc.).
As well, data mining algorithms and software tools have to belocalized and
their usage has to be known. Then the computations (data mining algorithms
running over data sources) have to be scheduled over available Grid nodes. A
knowledge discovery application can be complex, consisting in numerous se-
quential or parallel data mining algorithms working on identical or different
data sources. Some data mining algorithm may be run with the data produced
by another data mining algorithm, leading to task dependencies, etc.

The Knowledge Grid provides high-level services and a user-friendly inter-
face VEGA [9] that allows a user to easily describe a distributed knowledge
discovery application, it then takes care of locating the resources (data sources,
algorithms, computational nodes), scheduling tasks, and executing the applica-
tion. Within the Knowledge Grid, the application designer only has to describe
anabstract execution plan, with VEGA, he can even do it graphically. Anab-
stract execution plan defines at high level the algorithms to be executed and the
data sources to be mined. The Knowledge Grid services (called K-Grid services
for short thereafter) are responsible to locate the resources and services and in-
stantiate the execution plan which becomes aninstantiated execution plan like
the one presented in Figure 1.

An instantiated execution plan contains a set of tasks -withassigned Grid
resources- to be done (data transfers and computations). Itis executed by the
K-Grid services and it may be refined as resources may become available or
unavailable in a Grid.

4

<ExecutionPlan type="instantiated">
 <Task label="task1">
 <Program href="minos.cs.icar.cnr.it/software/DB2Extractor.xml"
 title="DB2Extractor on minos.cs.icar.cnr.it"/>
 <Input href="minos.cs.icar.cnr.it/data/car-imports_db2.xml"
 title="car-imports.db2 on minos.cs.icar.cnr.it"/>
 <Output href="minos.cs.icar.cnr.it/data/imports-85c_db2.xml"
 title="imports-85c.db2 on minos.cs.icar.cnr.it"/>
 </Task>

 <Task label="check1">
 <ResourceCheck method="soft"/>
 </Task>

 <Task label="task2">
 <Program href="minos.cs.icar.cnr.it/software/GridFTP.xml"
 title="GridFTP on minos.cs.icar.cnr.it"/>
 <Input href="minos.cs.icar.cnr.it/data/imports-85c_db2.xml"
 title="imports-85c.db2 on minos.cs.icar.cnr.it"/>
 <Output href="abstract_host1/data/imports-85c_db2.xml"
 title="imports-85c.db2 on abstract_host1"/>
 </Task>

...
 <Task label="task6">
 <Program href="abstract_host1/software/autoclass3-3-3.xml"
 title="autoclass on abstract_host1"/>
 <Input href="abstract_host1/data/imports-85c_db2.xml"
 title="imports-85c.db2 on abstract_host1"/>
 <Output href="abstract_host1/data/classes.xml"
 title="classes on abstract_host1"/>
 </Task>

...
 <TaskLink ep:from="task1" ep:to="check1"/>
 <TaskLink ep:from="check1" ep:to="task2"/>
 <TaskLink ep:from="task2" ep:to="task3"/>
 ...
 <TaskLink ep:from="task5" ep:to="task6"/>
 ...
 <ResourceInstantiation abstractResource="abstract_host1">
 <candidateResource>icarus.cs.icar.cnr.it</candidateResource>
 <candidateResource>telesio.cs.icar.cnr.it</candidateResource>
 </ResourceInstantiation>
</ExecutionPlan>

Figure 1. A sample instantiated execution plan (from [15]).

2.2 The Knowledge Grid architecture

The K-Grid services are organized in a two-layer software architecture: 1)
the High-level K-Grid layer and 2) the Core-level K-Grid layer. In its current
implementation, the different services composing the Knowledge Grid are Grid
services interacting by using the WSRF [10] standard. The organization of the
K-Grid services is described by Figure 2. The High-level K-Grid layer includes
services to compose, validate and execute distributed knowledge discovery ap-
plications. The main services of the High-level K-Grid services are:

TheData Access Service (DAS), responsible for data sources and mining
results publication and search.

TheTools and Algorithms Access Service (TAAS), responsible for data
mining and visualization tools and algorithms publicationand search.

The Execution Plan Management Service (EPMS), allowing to de-
scribe a distributed knowledge discovery application by building an ex-
ecution graph with constraints on resources. It generates an abstract
execution plan (resources are not know yet).

Peer-to-Peer Metadata Management 5

The Results Presentation Service (RPS), offering services for knowl-
edge discovery results presentation;

The services exhibited by the Core K-Grid layer are:

The Knowledge Discovery Service (KDS), responsible for metadata
management. Every resource (nodes, algorithms and tools, data sources
and mining results) of the Knowledge Grid is described by a metadata
item. In the Knowledge Grid, resource metadata is a XML document
stored in aKnowledge Metadata Repository (KMR).

TheResource Allocation and Execution Management Service (RAEMS),
responsible to instantiate an abstract execution plan. It uses the KDS ser-
vice to find resources satisfying the constraints imposed bythe abstract
execution plan. It is also responsible for the application execution man-
agement.

DAS TAAS EPMS RPS

RAEMS

Knowledge discovery

Data access

Service access service

Execution plan

management service

Results

presentation service

service exec. manag. service

Resources alloc. and

Core−level K−Grid layer

KDS

KBR

KMR KEPR

Tools and algorithms

Hight−level K−Grid layer

Figure 2. The Knowledge Grid software architecture.

2.3 Current KDS design and limitations

The Knowledge Directory Service (KDS) is responsible for handling meta-
data describing Knowledge Grid resources. A sample metadata is presented by
Figure 3. Such resources include hosts, data repositories,tools and algorithms
used to extract, analyze, and manipulate data, execution plans, and knowledge
models obtained as result of mining processes.

The metadata information is represented by XML documents stored in a
component called Knowledge Metadata Repository (KMR). Thefunctionalities

6

<DataMiningSoftware name="AutoClass">

 <Description>

 <KindOfData>flat file</KindOfData>
 <KindOfKnowledge>clusters</KindOfKnowledge>
 <KindOfTecnique>statistics</KindOfTecnique>
 <DrivingMethod>autonomous knowledge miner</DrivingMethod>

 </Description>

 <Usage>

 ...

 <Syntax>

 <Arg description="executable" type="required" value="/usr/autoclass/autoclass">
 <Arg description="make a classification" type="alternative" value="-search">
 <Arg description="a .db2 file" type="required"/>
 <Arg description="a .hd2 file" type="required"/>
 <Arg description="a .model file" type="required"/>
 <Arg description="a .s-params file" type="required"/>

 </Arg>

 <Arg description="create a report" type="alternative" value="-reports">
 <Arg description="a .results-bin file" type="required"/>

 ...

 </Arg>

 ...

 </Arg>

 </Syntax>

 <Hostname>icarus.cs.icar.cnr.it</Hostname>
 <ManualPath>/usr/autoclass/read-me.text</ManualPath>
 <DocumentationURL>http://ic-www.arc.nasa.gov/ic/projects/...</DocumentationURL>

 ...

 </Usage>
</DataMiningSoftware>

Figure 3. An extract from an XML metadata sample for the AutoClass software (presented in
[15]).

of the KDS are mostly used by DAS and TAAS services while publishing and
searching for datasets and tools to be used in a KDD application. DAS and
TAAS services always interact with a local instance of the KDS, which in turn
may invoke one or more other remote KDS instances.

The KDS exports three main operations:
- publishResource, used to publish metadata related to a given resource

into the KMR;
- searchResource, for locating resources that match some given search

criteria;
- retrieveMetadata, invoked to retrieve metadata associated to a given

resource identified by a provided KDS URL.
It should be noted that when apublishResource is performed, only an

interaction between a DAS/TAAS service and the local KDS is needed, be-
cause each KMR instance stores metadata about resources available on the
same Grid node on which the KMR itself is hosted. On the contrary, when
a searchResource is invoked, the related query is first dispatched from the
DAS/TAAS to the co-located KDS service, which then answers by checking
the local KMR, and in turn forwards the same query to remote KDSs with the
aim of finding more matches.

TheretrieveMetadata receives a KDS URL returned by a previous invo-
cation of thesearchResource operation, and uses it to contact the remote KDS
on which the resource is available to retrieve the associated metadata document.

Peer-to-Peer Metadata Management 7

It appears clear, thus, that thesearchResource is the most complex activity
performed by the KDS, because it involves interactions and coordination with
remote instances of the same service. On the other hand, it should be mentioned
that the architecture of the Knowledge Grid does not prescribe any particular
mode of interaction and/or protocol between the different KDS instances.

The current implementation, for instance, is adopting to such purpose one
of the simplest strategies: the query forwarding is performed by contacting
concurrently all of the known remote KDS instances (avoiding loops).

In this paper we propose a new KDS design based on a shared distributed
index handled by a Grid data-sharing service and a peer-to-peer technique.
This is useful for reducing the number of remote KDS instances contacted
when forwarding a search query.

Resources metadata like the one presented by Figure 3 shouldbe stored in
a persistent and fault tolerant storage. Furthermore, theymay be shared by
multiple applications, and sometimes updated. Therefore,it is necessary to
maintain the consistency between the different copies thatmay exist in the
Grid. Thus we use a data-sharing service,JuxMem, which offers transparent
access to persistent mutable data, to store the XML files corresponding to pieces
of metadata.

3. JuxMem: a Grid data-sharing service

In this section we present theJuxMem Grid data-sharing service used in
the design of the metadata management Grid service.

3.1 A hierarchical architecture

From the metadata management Grid service perspective,JuxMem is a
service providing transparent access to persistent, mutable, shared data. When
allocating memory, a client has to specify in how many sites1 the data should
be replicated, and on how many nodes in each site. This results into the in-
stantiation of a set of data replicas, associated to a group of peers calleddata
group. Usually each node runs one single peer. The allocation primitive returns
a globaldata-ID, which can be used by the other nodes to identify existing data.
To obtain read and/or write access to a data block, the clients only need to use
this data-ID.

The data group is hierarchically organized, as illustratedon Figure 4: the
Global Data Group (GDG) gathers all provider nodes holding a replica of the
same piece of data. These nodes can be distributed in different sites, thereby

1A site is a set of clustered nodes, it can be a physical clusterwithin a cluster federation, or close from a
latency viewpoint.

8

increasing the data availability if faults occur. The GDG isdivided intoLocal
Data Groups (LDG), which correspond to data copies located in a same site.

In order to access a piece of data, a client has to be attached to a specific
LDG (to “map” the data). Then, when the client performs the read/write and
synchronization operations, the consistency protocol layer manages data syn-
chronization and data transmission between clients, LDGs and GDG, within
the strict respect of the consistency model.

GDG

Site A

LDG LDG

Site B

Figure 4. JuxMem: a hierarchical architecture.

3.2 JuxMem software architecture

The JuxMem Grid service is composed of a set of layers presented in
Figure 5. The lower layer Juk is theJuxMem kernel. It relies on JXTA [16] to
offer to the uppers layers publish/subscribe operations, efficient communication
and storage facilities. Every node involved or usingJuxMem is therefore
managed in a peer-to-peer way using JXTA. JXTA is is a set of protocols
allowing nodes (Grid nodes, PDA, etc.) to communicate and collaborate in
a P2P manner. The implementations of these protocols provide the ability to
obtain efficient communications on Grids [6].

Above Juk, a fault-tolerance layer is responsible for hierarchical data repli-
cation. It offers the concept ofSelf-Organizing Group (SOG), a SOG is a
replication group that is able to adapt itself in case of dynamic changes (by
creating new replicas or removing old ones), this provides the ability to keep
fault tolerance guarantees even in presence of failures.

The upper layer is responsible for data consistency management, it serves
data access requests, manages locks and maintain pending requests lists.

A multi-protocol architecture. The layers presented above are built as inter-
changeable software modules. Therefore, it is possible foreach data item stored
by the Grid data-sharing service to specify a particular consistency protocol or
a particular SOG implementation.

Peer-to-Peer Metadata Management 9

JuxMem Kernel

Consistency management layer

Fault tolerance layer
Self organizing groups (SOG)

Juk

Figure 5. JuxMem layered software architecture.

TheJuxMem service can not be used in its current design to manage meta-
data, but additional features must be provided. Data storedin JuxMem is
accessible (localizable)only by using its associated data-ID. Metadata items
have to be localizable using only names and attributes. The following sec-
tion presents our approach to build a metadata management service using the
JuxMem data-sharing service.

4. A Grid metadata management service

From the Knowledge Grid viewpoint, the Grid metadata management service
consists of a particular design and implementation for the KDS service and the
KMR repository. The service presented below serves requests from the TAAS
and the DAS High-level K-Grid services but also from the RAEMS Core K-Grid
service (see Figure 2).

Our approach relies on the use of theJuxMem Grid data-sharing service
prototype presented in the previous section. Metadata items are stored within
the Grid data-sharing service.

4.1 Metadata storage and retrieval

Requirements. Resources metadata should remain available in the Grid.
Therefore they should be stored in afault tolerant andpersistent manner. This
may provide the ability to access metadata information in spite of failures and
disconnections. Furthermore, some metadata should beupdatable. In the
Knowledge Grid use case, a piece of metadata may describe theresult of a
knowledge discovery task, this result may be refined later which leads to meta-
data modifications. If a resource location is changing, it should also be reflected
by updating the associated metadata. Finally, metadata hasto be localizable by
providing name, attributes and constraints upon the described resource.

10

Storing metadata in a Grid data-sharing service. To achieve high avail-
ability of metadata despite failures we store them in theJuxMem Grid data-
sharing service. Each metadata item describing a resource is though replicated
and associated to one unique ID as described in Section 3. This ID can then be
used to retrieve metadata information stored in the Grid data-sharing service.
Availability and consistency (eg., in case of concurrent updates) is then also
managed by the Grid data-sharing service. The metadata items that will not
be updated (e.g. describing a large data source that will notbe updated and
will not be moved) can take advantage ofJuxMem multi-protocol feature by
using a very simple and efficient consistency protocol without synchronization
operations. Thus,JuxMem is used as afault-tolerant, distributed andshared
KMR (see Section 2) andJuxMem’s data-IDs are used as KDS URLs.

Locality. Metadata information is strongly linked with the resource it de-
scribes. Therefore if the resource becomes unavailable, its corresponding
metadata information would become useless (it can also become misleading).
Therefore, regardingJuxMem hierarchical architecture, metadata information
should be stored within the site containing the resource it describes (i.e. over
one uniqueJuxMem LDG). If all the nodes of the site fail (due to a power
failure in a computer room for instance) the resources metadata of this site be-
come unavailable but it is also the case of the described resources. Thus, we
choose to store metadata information in the described resources’ site using only
oneJuxMem LDG per metadata item. However notice that LDG are reliable
self-organizing groups, ie. the failure of a node does not lead to the loss of
metadata items.

4.2 Fault-tolerant distributed indexes

While looking for metadata information using thesearchResource opera-
tion, applications2 can provide information like a name (eg., a data source name
“clientdata1” or an algorithm name “J48”) or a set of attributes and constraints
as the one in the “Description” section of the metadata presented in Figure 3.
An accurate description of the kind of requests the KDS service should be able
to serve is given in [15].

Therefore it is necessary to have a mean to find a metadata identifier (which
then permit to retrieve the metadata information itself) using names and at-
tributes that represent the resource described by the metadata.

Distributed indexes. Usual approaches rely on the use of a centralized
indexing system. It can be either a relational database likeMySQL [18] or a

2In our current use case the applications are the DAS, TAAS andRAEMS K-Grid services.

Peer-to-Peer Metadata Management 11

LDAP [13] server (used in previous Knowledge Grid implementations). We use
distributed indexes: in each site composing the Grid, we maintain asite index
of the published resources metadata within this site. This site index contains
tuples consisting of the resource name, attributes (as a byte vector) and the
resource metadata identifier (itsJuxMem data-ID).

Fault tolerance. There again we rely on theJuxMem data-sharing ser-
vice: the site indexes are data item that can be stored inJuxMem. Therefore
they are automatically replicated for fault tolerance. Notice that a site index
only contains information of its own site, furthermore it does not contain the
whole metadata information but only metadata item names andsome relevant
attributes. Thus, a site index size remains limited.

Index sharing. The WSRF KDS instances servingpublishResource and
searchResource requests are clients of theJuxMem service. In each site
it is possible to have multiple KDS services having mapped the site’s index
as illustrated in Figure 6. The KDS are responsible for parsing the index,
finding the metadata identifier, fetching the metadata (using the identifier) and
sending back the retrieved metadata to the requester (either DAS, TAAS or
RAEMS). These tasks are achieved by interacting with theJuxMem service.
It is important to notice that the site index is a data item stored byJuxMem and
mapped by the multiple KDS: the consistency of the shared index is ensured by
the grid data-sharing service while new publications occur.

The shared site indexes allows KDS instances to retrievelocally (on their
node) KDS URLs of metadata describing resources spread overtheir site nodes.

4.3 Big picture

4.3.1 Metadata publication. Metadata publications done by the DAS
and the TAAS are made through thepublishResource operation provided by
KDS. When a KDS receives such a request:

1 It stores the corresponding XML file withinJuxMem,

2 locks the index to ensure no concurrent publish occurs,

3 updates it, adding the new resource metadata index entry (attributes and
JuxMem data-ID of the XML file).

The KDS then releases the lock upon the index. To allow the other KDS to
continue serving search requests while an update occurs, weuse a particular
consistency protocol allowing read operations concurrentto a write operation.
Such a protocol is available inJuxMem, it is described and evaluated in details
in [3]. Note that the publication of a site resource affects only the index stored

12

RPS

(JuxMem client)

KDS

TAAS

DAS

JuxMem data−sharing service

index
Replicated local

(metadata information)

list
Replicated KDS

Replicated
XML files

Node 2

KDS

KEPR

RAEMS
KBR

Node 1

(distributed and replicated KMR)

DAS TAAS EPMS

Figure 6. In each site KDS interact with theJuxMem service to access 1) the local index, 2)
the KDS list, and 3) the metadata information itself.

in this site and used by the local KDSs, furthermore resources metadata are
also stored on intra-siteJuxMem providers (in LDGs). Therefore a publish
operation does not imply inter-site communications.

4.3.2 Metadata search. When K-Grid services need to search a partic-
ular resource metadata, they request the KDS running on the same node or a
randomly chosen remote KDS within their own site3. The KDS receiving such
a request search in its mapped (in its local memory) site index. If the resource
is found, it gets the corresponding XML file using the data-IDstored in the site
index. In this case the resource is available within the samesite. If a corre-
sponding resource can not be found in the site index, the KDS forwards it to
one randomly chosen KDS in each other site involved in the Grid using JXTA
peer-to-peer communication layers as illustrated by Figure 7. To achieve this, a
partial list of KDS instances is stored and maintained within theJuxMem Grid

3A round robin policy could also be used.

Peer-to-Peer Metadata Management 13

data-sharing service. This list is replicated hierarchically in the whole platform
using the GDG/LDG hierarchy presented in Section 3.

KDS

JuxMem data−sharing service
(distributed and replicated KMR)

Replicated local
index 1

Replicated local
index 2

Replicated
XML files

Replicated

XML files

Replicated KDS list

Site BSite A

KDS

Node B1

KDS

Node B2

KDS

Node B3

KDS
Node A2

Request forwarding among sites

Node A1

Figure 7. Among sites, KDS cooperate using the hierarchically replicated KDS list.

At initialization, a KDS maps its site index and the KDS list,it can then
add itself into this list. If a KDS does not answer to a request(either publish
or search), it is removed from this list. The KDS list is not expected to be
frequently updated as Grid nodes are assumed more stable than peers in peer-
to-peer systems.

4.4 Technical concerns

From a technical view point our solution implies integrating theJuxMem

and the Knowledge Grid research prototypes.JuxMem entities are managed
in a peer-to-peer manner, using Sun Microsystems JXTA protocols, while the
entities involved in the Knowledge Grid service use the WSRFGrid standard.

The junction between the two different sets of protocols is done by the new
KDS implementation: KDS instances are part of both theJuxMem platform,
as clients of theJuxMem Grid service, and they serve WSRF requests from
the Knowledge Grid services (publishResource andsearchResource).

The KDSs are also responsible to parse the distributed index. The distributed
nature of the index implies a cooperation between the KDS instances distributed
in different sites all over the Grid. This cooperation is made is a peer-2-peer

14

manner, taking advantage of the Grid data-sharing service to store, manage and
share a neighbor list (the KDS list).

5. Conclusion

Metadata data management in large scale, heterogeneous, geographically
distributed and dynamic architectures such as computational Grids is an impor-
tant problem. Providing an efficient and reliable metadata management service
allows applications to easily access heterogeneous resources spread over thou-
sands of nodes.

The solution we presented in this paper takes advantage of already exist-
ing work in Grids. By integrating theJuxMem Grid data-sharing service in
the design of a metadata management service for the Knowledge Grid, XML
metadata files are stored on a fault tolerant and consistent support, and are kept
close to the resources they describe. The proposed two-level index hierarchy
allows the applications to get resources located in their own site if they exist or
in remote ones otherwise, enhancing locality.

The integration of the two research prototypes is in progress, and we plan to
evaluate this solution on a real Grid platform such as Grid’5000 [17, 8]. The
format of the distributed index should then be further investigated, using bina-
ries trees for instance. The peer-to-peer cooperation between KDS instances
should also be enhanced, for instance by selecting several KDSs for inter-site
cooperation.

References

[1] Bill Allcock, Joe Bester, John Bresnahan, Ann L. Chervenak, Carl Kesselman, Sam Meder,
Veronika Nefedova, Darcy Quesnel, Steven Tuecke, and Ian Foster. Secure, Efficient Data
Transport and Replica Management for High-Performance Data-Intensive Computing. In
Proceedings of the 18th IEEE Symposium on Mass Storage Systems (MSS 2001), Large
Scale Storage in the Web, page 13, Washington, DC, USA, 2001. IEEE Computer Society.

[2] Gabriel Antoniu, Marin Bertier, Eddy Caron, Frédéric Desprez, Luc Bougé, Mathieu
Jan, Sébastien Monnet, and Pierre Sens.Future Generation Grids, chapter GDS: An
Architecture Proposal for a Grid Data-Sharing Service, pages 133–152. CoreGRID series.
Springer-Verlag, 2006.

[3] Gabriel Antoniu, Loïc Cudennec, and Sébastien Monnet. Extending the entry consis-
tency model to enable efficient visualization for code-coupling grid applications. In6th
IEEE/ACM International Symposium on Cluster Computing and the Grid, pages 552–555,
Singapore, May 2006. CCGrid 2006.

[4] Gabriel Antoniu, Jean-François Deverge, and Sébastien Monnet. How to bring together
fault tolerance and data consistency to enable grid data sharing. Concurrency and Com-
putation: Practice and Experience, (17), 2006. To appear.

[5] Gabriel Antoniu, Philip Hatcher, Mathieu Jan, and DavidA. Noblet. Performance Eval-
uation of JXTA Communication Layers. InProceedings of the Workshop on Global and
Peer-to-Peer Computing (GP2PC 2005), Cardiff, UK, May 2005. Held in conjunction

Peer-to-Peer Metadata Management 15

with the 5th IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGrid ’05). Best presentation award.

[6] Gabriel Antoniu, Mathieu Jan, and David A. Noblet. Enabling the P2P JXTA Platform for
High-Performance Networking Grid Infrastructures. InProceedings of the 1st Interna-
tional Conference on High Performance Computing and Communications (HPCC ’05),
number 3726 in Lecture Notes in Computer Science, pages 429–440, Sorrento, Italy,
September 2005. Springer.

[7] Mario Cannataro and Domenico Talia. The knowledge grid.Commun. ACM, 46(1):89–93,
2003.

[8] Franck Cappello, Eddy Caron, Michel Dayde, Frédéric Desprez, Emmanuel Jeannot, Yvon
Jegou, Stéphane Lanteri, Julien Leduc, Nouredine Melab, Guillaume Mornet, Raymond
Namyst, Pascale Primet, and Olivier Richard. Grid’5000: A Large Scale, Reconfigurable,
Controlable and Monitorable Grid Platform. InProceedings of the 6th IEEE/ACM In-
ternational Workshop on Grid Computing (Grid ’05), Seattle, Washington, November
2005.

[9] Antonio Congiusta, Domenico Talia, and Paolo Trunfio. VEGA: A Visual Environment
for Developing Complex Grid Applications. InProc. of the First International Workshop
on Knowledge Grid and Grid Intelligence (KGGI 2003), pages 56–66, Halifax, Canada,
October 2003. Department of Mathematics and Computing Science, Saint Mary’s Uni-
versity. ISBN 0-9734039-0-X.

[10] Antonio Congiusta, Domenico Talia, and Paolo Trunfio. Distributed data mining services
leveraging WSRF.Future Generation Computer Systems, 23(1):34–41, January 2007.

[11] Karl Czajkowski, Steven Fitzgerald, Ian Foster, and Carl Kesselman. Grid Information
Services for Distributed Resource Sharing. InProceedings of the Tenth IEEE International
Symposium on High-Performance Distributed Computing, pages 181–184, San Francisco,
CA, August 2001. IEEE Press.

[12] Karl Czajkowski, Ian Foster, Nick Karonis, Cral Kesselman, Stewart Martin, Warren
Smith, and Steve Tuecke. Resource Management Architecturefor Metacomputing Sys-
tems. InProc. IPPS/SPDP:Workshop on Job Scheduling Strategies for Parallel Process-
ing, pages 62–82, March 1998.

[13] Jeff Hodges and Robert Morgan. Lightweight Directory Access Protocol (v3): Technical
Specification. IETF Request For Comment 3377, Network Working Group, 2002.

[14] Carl Kesselman and Ian Foster.The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, November 1998.

[15] Carlo Mastroianni, Domenico Talia, and Paolo Trunfio. Metadata for managing grid
resources in data mining applications.Journal of Grid Computing, 2(1):85–102, March
2004.

[16] Bernard Traversat, Ahkil Arora, Mohamed Abdelaziz, Mike Duigou, Carl Haywood, Jean-
Christophe Hugly, Eric Pouyoul, and Bill Yeager. Project JXTA 2.0 Super-Peer Virtual
Network. http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf,
May 2003.

[17] Grid’5000 Project.http://www.grid5000.org/.

[18] MySQL. http://www.mysql.com/.

