
Computing and Informatics, Vol. 21, 2002, 347–362

MINING LARGE DATA SETS ON GRIDS:
ISSUES AND PROSPECTS

David Skillicorn

School of Computing

Queen’s University, Kingston, Canada

e-mail: skill@cs.queensu.ca

Domenico Talia

DEIS, Università della Calabria

Rende, Italy

e-mail: talia@deis.unical.it

Revised manuscript received 12 November 2002

Abstract. When data mining and knowledge discovery techniques must be used to
analyze large amounts of data, high-performance parallel and distributed comput-
ers can help to provide better computational performance and, as a consequence,

deeper and more meaningful results. Recently grids, composed of large-scale, geo-
graphically distributed platforms working together, have emerged as effective ar-
chitectures for high-performance decentralized computation. It is natural to con-
sider grids as tools for distributed data-intensive applications such as data mining,
but the underlying patterns of computation and data movement in such applica-
tions are different from those of more conventional high-performance computation.
These differences require a different kind of grid, or at least a grid with significantly
different emphases. This paper discusses the main issues, requirements, and de-
sign approaches for the implementation of grid-based knowledge discovery systems.
Furthermore, some prospects and promising research directions in datacentric and
knowledge-discovery oriented grids are outlined.

Keywords: Grid computing, data mining, distributed knowlege discovery, data-
centric models, high-performance computing, data-intensive systems.



348 D. Skillicorn, D. Talia

1 INTRODUCTION

In the sixteenth century the Italian philosopher Bernardino Telesio, in his De natura
rerum juxta propria principia (On the nature of things according to their own prin-
ciples), urging the importance of scientific knowledge based upon experience and
experiment, wrote that “Nature is information”. A few years later, the English
philosopher Francis Bacon, in proposing the application of the inductive method of
modern science, in his famous remark recognized that “Knowledge is power” (Nam
et ipsa scientia potestas est). After five centuries, the technology of information pro-
cessing has given new meanings and new horizons to these two remarks. Computer
science tools and systems allow us to represent many phenomena as collections of
information. Much of this information is captured and stored, stimulating interest
in automatic techniques and strategies for extracting useful knowledge from these
large repositories of data.

This trend towards capturing large amounts of data seems to have been driven
by two factors: the cost of storage media has been dropping rapidly throughout the
lifetime of computer technology; and more and more interactions are mediated by
computers, making it trivial to make a record of them. The amount of data stored
is doubling every nine months, and this trend shows no sign of slackening.

We are much better at storing data than at making use of it. It is easy to believe
that there are interesting nuggets of knowledge hidden inside large data reposito-
ries able to improve everything from transport scheduling to customer relationships
and weather prediction. Extracting such knowledge from data has proven more
difficult — some estimate that only 5–10% of data has ever been examined, even
superficially. If it is true that almost all data can produce useful knowledge, then
there is hardly an organization in the world that cannot benefit from data mining
and knowledge discovery; so this is an important problem.

Extracting knowledge from data is a demanding task: it requires large amounts
of computation; it requires moving entire datasets, at least between static storage
and processor(s); and it often requires resource sharing across substantial distance
and organizational boundaries. These requirements are not easily met by today’s
web and grid infrastructures [10].

Although there are many different varieties of grids, most aim to provide com-
putational performance to a user. Each user submits a job and the grid finds ap-
propriate resources, in principle anywhere, to complete it. In contrast, grids used
for data-intensive applications are constrained in where they execute jobs by the
location of the data. This changes the entire resource discovery and allocation prob-
lem. Furthermore, the range of knowledge discovery computations is actually quite
small, creating the interesting possibility of ‘caching’ both the execution plans of
computations and the results of such computations for others to use.

This paper discusses the main issues, requirements, and design approaches for
the implementation of grid-based knowledge discovery systems. Furthermore, some
prospects and promising research directions in datacentric and knowledge-discovery
oriented grids are outlined. The rest of the paper is organized as follows. Section 2



Mining Large Data Sets on Grids: Issues and Prospects 349

discusses the main design issues in distributed data mining. Sections 3 and 4 present
two models designed for distributed data mining on grids: the Knowledge Grid and
the Datacentric Grid. Section 5 discusses related work, and Section 6 concludes the
paper.

2 DESIGN ISSUES

We have already commented that datasets stored online are increasing in size and
number. Much of this data is stored automatically, for example every purchase
at a store, every mobile phone call, or every image taken by a satellite, and this
affects how and where such datasets are stored. Although small datasets can be
moved around, there are several reasons why large datasets should be regarded as
effectively immovable:

1. Pragmatics: although disks are cheap, very few sites can afford to keep enough
‘empty’ space to handle the sudden and unpredictable arrival of a large (say,
terabyte) dataset.

2. Performance: some parts of the world are connected by fat pipes, but the
overall bandwidth between arbitrary sites is much smaller than these would
suggest — there are many bottlenecks, notably between ISP domains, where
bandwidths remain ludicrously small. So bandwidth will remain a significant
limiting factor in practice, even though peak bandwidths increase and prices
decrease.

As distributed computations reach global scale, the latency required to access
remote data is almost entirely time of flight (and so not susceptible to techno-
logical improvement). This latency cannot ultimately be hidden from end users.
Furthermore, data has an inertia-like property — it is relatively easy to store,
and easy to keep moving once in a transmission medium; but the transitions
between these two states are expensive in energy, time, and complexity.

3. Politics: Many countries have privacy legislation that prevents data movement
across their borders; hence data collected about individuals cannot be moved,
even if it were technically feasible. There are also social barriers to data move-
ment; for example, owners are often willing to make datasets public but not to
have them mirrored.

This does not, of course, mean that datasets can never be moved. What it does
suggest is that datasets should not be moved arbitrarily and extemporaneously.
Many grid designs assume, perhaps implicitly, that processor cycles are the limiting
resource. For data-intensive applications, the bandwidth required to move data is a
much more critical resource, suggesting that computations should be moved to data,
rather than the traditional processor-centric view in which it is data that moves.

This new scenario, in which data is immovable and computations move is more
like a converse to distributed computing than to sequential computing. Some



350 D. Skillicorn, D. Talia

datasets might be naturally stored in a single place; however, some of the pres-
sures that make moving data hard also make it likely that single (logical) datasets
will be stored in pieces that may be widely distributed. For example, data collected
in different countries may not be merged because of privacy restrictions, and data
collected by different parts of an organization may not be centralized. Applications
that use such datasets must deal with their distributed nature.

Some of the implications that follow from this view of data as both central to
knowledge discovery and other data-intensive applications and physically distributed
are:

1. Algorithms for knowledge discovery must be able to make significant progress
towards a global goal using only the data stored in each piece of a dataset.
In other words, we need new algorithms that can extract local knowledge that
can somehow be fitted together to make global knowledge without too much
redundancy and/or contradiction. There are connections between algorithms
that can work with distributed data and online algorithms, stream algorithms,
and some parallel algorithms, but this new class also has some differences.

2. Programming models must be redesigned to allow for the fact that data is ar-
ranged in some predetermined way (based on how and where it is collected)
and computations must be arranged to match. Many approaches to parallel
programming assume that data can be partitioned equally across processors, for
example, and this will no longer be true.

3. The nodes of a knowledge discovery grid must combine large computational
power with data storage so that the ‘pipe’ from storage to processor(s) is both
fat and short. Such nodes hardly exist in today’s grids (although see the Grid
Datafarm architecture [21]), but they will be necessary because neither clusters
nor network-attached storage, by themselves, are effective for data-intensive
applications.

There are also implications for the design of knowledge discovery grids that arise
from properties of typical applications:

1. The knowledge, in the form of models and statistics, that is extracted from
datasets is both costly and potentially reusable. It is reasonable to consider
caching such results, either for others to use directly or to act as the starting
place for higher-order knowledge discovery. This new opportunity arises because,
comparatively speaking, there are only a few different techniques for knowledge
extraction from data. This creates issues about representing what can be found
at a given data repository — either complex indexes must be made available and
updated regularly, or programs must be prepared to use data representations at
different levels of abstraction (and hence different representations) depending on
what they find when they arrive at a repository.

2. Knowledge discovery applications are characteristically iterative in the sense
that a user’s first computation may be followed by a sequence of quite simi-
lar computations, perhaps on slightly different data, or with slightly different



Mining Large Data Sets on Grids: Issues and Prospects 351

parameters. There is therefore a stronger advantage to be gained by caching
execution plans and strategies than for other kinds of computations.

3. Many datasets will be public, or at least widely visible. Since computations
take place at the site that holds the data, it will be hard to prevent others from
observing what is being computed. For some applications, even the fact that
certain data are being examined may create security problems.

Consider the following example, which illustrates a typical knowledge extraction
situation and some of the problems it creates. Suppose we wish to determine the
most popular DVD rental in a large city in a particular week. We assume that each
rental store keeps a list of its own popular rentals in decreasing order.

The processor-centric solution to this problem is to have each store send its
entire list of rentals and their frequency to some central site. The frequencies are
then summed across stores and sorted into decreasing order. The DVD at the top
of this combined list is the most popular.

The problems with this approach are obvious: it requires a lot of data to be
gathered; and, while stores from the same chain might be persuaded to send their
results to a central place, it is highly unlikely that stores from different chains would
do so for fear of revealing too much about their operations.

A datacentric approach to this problem would be to send a person (a computa-
tion) to each store to process their information locally and then report back enough
information to enable the global most-popular DVD to be discovered. This is not so
easy — it is not enough to ask each store for its most popular rental, for the most
popular overall may not have been most popular at many stores (in the limit, all but
one). Bringing back some prefix of the most popular rentals will suffice, although
it is hard to determine how large this prefix should be. Either a probabilistic al-
gorithm can be used [18] or some communication between the people at each store
can eliminate rentals that cannot possibly be most popular overall. This ‘algorithm’
requires much less data to be moved and is naturally parallel, since much of the
work is done at each store.

An alternate datacentric approach, resembling mobile agents, would be for one
person to visit each store in turn and build the global result incrementally from the
information available at each one. This requires even less communication, but takes
longer since it is sequential. There is an interesting tradeoff here between time and
communication.

In the next two sections, we examine two systems for grids directed at knowl-
edge discovery. The first, the Knowledge Grid, builds directly on existing grid
technologies, but specializes them for data-intensive applications. The second, the
Datacentric Grid, is more radical and is designed around immovable data. Both
systems are preliminary, but they illustrate the range of design decisions.



352 D. Skillicorn, D. Talia

3 THE KNOWLEDGE GRID

The Knowledge Grid architecture [3, 4], is built on top of a computational grid
that provides dependable, consistent, and pervasive access to high-end computa-
tional resources. This architecture uses the basic grid services, for instance the
Globus services, and defines two additional layers that implement a set of distributed
knowledge-discovery services on world wide connected computers, where each node
can be either a sequential or a parallel machine. The Knowledge Grid enables col-
laboration between scientists who must mine data that are stored in different sites
as well as analysts who need to use a knowledge-management system that operates
on data warehouses located in the different parts or sites of organizations.

The Knowledge Grid attempts to overcome the difficulties of wide area, multi-
site operation by exploiting the underlying grid infrastructure that provides basic
services such as communication, authentication, resource management, and infor-
mation. To this end, the Knowledge Grid architecture is organized so that more
specialized data mining tools are compatible with lower-level grid mechanisms and
also with the Globus Data Grid services. This approach benefits from “standard”
grid services that are increasingly utilized and offers an open Parallel and Distributed
Knowledge Discovery (PDKD) architecture that can be configured on top of grid
middleware in a simple way.

The Knowledge Grid services are organized in two hierarchical layers: the Core
K-Grid layer and the High level K-Grid layer. The former refers to knowledge
services directly implemented on the top of generic grid services, the latter is used to
describe, develop and execute knowledge discovery computations over the Knowledge
Grid (see Figure 1).

Fig. 1. Layers and components of the Knowledge Grid architecture

The Core K-Grid layer supports the definition, composition, and execution of a
knowledge discovery computation over the grid. Its main goals are the management
of all metadata describing characteristics of data sources, third-party data-mining



Mining Large Data Sets on Grids: Issues and Prospects 353

tools, and data-management and data-visualization tools and algorithms. Moreover,
this layer coordinates the execution of each knowledge discovery computation, at-
tempting to match each application’s requirements to the available grid resources.
This layer implements the following basic services:

• the Knowledge Directory Service (KDS) responsible for maintaining a descrip-
tion of all the data and tools used in the Knowledge Grid;

• the Resource Allocation and Execution Management services (RAEMS) used
to find a mapping between an execution plan and available resources, with the
goal of satisfying requirements (computing power, storage, memory, database,
network bandwidth and latency) and constraints.

The High-level K-Grid layer implements services used to compose, validate, and
execute a knowledge discovery computation. Moreover, the layer offers services to
store and analyze the knowledge obtained as result of knowledge discovery compu-
tations. The main services are:

• the Data Access Services (DAS) that are responsible for the search, selection
(Data Search Services), extraction, transformation and delivery (Data Extrac-
tion Services) of data to be mined;

• the Tools and Algorithms Access Services (TAAS) that are responsible for the
search, selection, and downloading of data-mining tools and algorithms;

• the Execution Plan Management Services (EPMS) that handle execution plans
as an abstract description of a knowledge discovery grid application. An exe-
cution plan is a graph describing: the interaction and data flows between data
sources, extraction tools, DM tools, visualization tools; and storing of knowledge
results in the Knowledge Base Repository;

• the Results Presentation Service (RPS) that specifies how to generate, present
and visualize the knowledge discovery results (rules, associations, models, clas-
sification, etc.).

Recently VEGA [5], a visual tool set that implements the main steps of appli-
cation composition and execution of the Knowledge Grid, has been implemented.
A user can compose a data-mining application as a set of workspaces where the steps
of a data-mining process can be defined in terms of computing nodes, datasets and
data-mining algorithms. The tool set generates an XML specification of the defined
execution plan and the Globus RSL code that will run the mining application on
the grid. VEGA embodies an implementation of the Knowledge Directory Service
and the Knowledge Metadata Repository of the Core K-Grid layer, and the Data
Access Service of the High level K-Grid layer [4].

In the Knowledge Grid, metadata describing relevant objects for knowledge dis-
covery computations, such as data sources and data mining software, are represented
by XML documents in a local repository (KMR), and their availability is indicated by
publishing entries in the Directory Information Tree maintained by a LDAP server,



354 D. Skillicorn, D. Talia

which is provided by the Grid Information Service (GIS) of the Globus Toolkit. The
main attributes of the LDAP entries specify the location of the repositories contain-
ing the XML metadata, whereas the XML documents maintain more specific infor-
mation for the effective use of resources. The basic tools of the DAS services have
been implemented to find, retrieve and select metadata about knowledge discovery
objects on the grid on the basis of different search parameters and selection filters.
Moreover, execution plans are modelled as graphs, where nodes represent computa-
tional elements (data sources, software programs, results, etc.) and arcs represent
basic operations (data movements, data filtering, program execution, etc.). Work on
considering different network parameters, such as topology, bandwidth and latency,
for knowledge discovery program execution optimization is ongoing.

The Knowledge Grid represents a step in the direction of studying the unification
of knowledge discovery and computational grid technologies and defining integrating
environments for distributed data mining and knowledge discovery based on grid
services. The definition of such architectures will accelerate progress on very large-
scale geographically distributed data mining by enabling the integration of currently
disjoint approaches and revealing technology gaps that require further research and
development.

4 THE DATACENTRIC GRID

The Datacentric Grid consists of four kinds of entities:

1. Data/Compute Servers (DCS), the nodes at which data-intensive computa-
tion takes place. Each DCS has three parts:

• A compute engine;

• A data repository;

• A metadata tree.

When an application builds a model from a base dataset and caches it for sub-
sequent use, the model becomes a new dataset which could be used by other
applications. For example, extracting a sample from a dataset is a particular
(simple) kind of data mining application. Such a sample may be worth keeping,
particularly if it is carefully chosen and/or much smaller than the base dataset.
Hence each dataset acquires a tree of models above it, each of which could be
regarded by other applications as the root of its own tree. The metadata tree
keeps track of the properties of each of these models and their relationships. The
compute engine and data repository might be implemented as a cluster backed
by a multiported RAID using today’s technology (but there are opportunities
to build interesting new architectures to support datacentric grids as well).

2. Grid Support Nodes (GSN), the nodes that maintain information about the
grid as a whole. GSNs hold two kinds of information:



Mining Large Data Sets on Grids: Issues and Prospects 355

• A directory of Data/Compute Servers, describing the static properties of
their compute engines and the dynamic information about their usage into
the future. As well, they contain information about what datasets and mo-
dels each DCS holds.

• An execution plan cache, containing recent execution plans parameterized by
their properties as tasks and also be their achieved performance. Note that
execution planning in a datacentric grid is simpler than in a computational
grid. A normal computation could possibly execute on a huge number of
different compute servers. A datacentric application can only execute on the
computer servers local to the data it needs. On the other hand, because
the models stored in a particular data repository change dynamically, an
application must be prepared to start at different places in the model hie-
rarchy, depending on what it finds when it reaches a given DCS. In the most
fortunate situation, the model it needs has already been computed; if not,
it may have to compute it from a larger model/dataset. Even though many
knowledge discovery applications are long running, it may not be possible to
keep information about each data repository current in each GSN.

3. User Support Nodes (USN), which carry out execution planning, and also
hold the results of computations for users who may not want to access them
immediately. USNs are separated from the sites that act as user interfaces to
the Datacentric Grid because both the descriptions of datacentric tasks and their
results can be small in size. Hence, it is possible to interact with the Datacentric
Grid using thin pipes. USNs act partly as proxies for users.

4. User Access Points (UAP), which allow users to create descriptions of com-
putations and see their results. We have already commented that only relatively
few techniques for model building are known, perhaps a few hundred, so it is
plausible that datacentric applications could be described using a query language
syntax. Such applications do not require a large device so that they might be
able to be run from handhelds. Similarly, the results of many datacentric compu-
tations are quite small (even though they may have required huge computations
on a global scale) so it is plausible to display them on a simple device. In this
setting it is natural to expect computations to run detached from uses; hence
the existence of USNs to interact with the Datacentric Grid when users are not
connected.

In summary, the differences between the Datacentric Grid and more conventional
computational grids are twofold: the execution planning functionality is both simpler
with respect to cycles and more complex with respect to data; and there is a much
greater emphasis on caching and reusing both results and execution strategies.



356 D. Skillicorn, D. Talia

5 RELATED WORK

A number of projects are built on the assumption that available bandwidth will
grow as rapidly as online datasets. These projects are building data grids, which
add to computational grids the functionality to move large datasets from place to
place on demand. Example projects of this class are the EU DataGrid project,
the Grid DataFarm [21], and the TeraGrid [22], a collaboration between four U.S.
high-performance computing centers built around 40 Gbps links.

There are two difficulties with this approach:

1. Even if some regions of the Internet are well connected, sites outside them see
much lower effective bandwidths — often orders of magnitude lower. A new
data divide may be created between those with access to large datasets and
those without.

2. Bandwidth may not be the limiting factor — it may be the allocation of storage
space for transient, but large, datasets. Even if storage space becomes cheap,
the machinery and overheads to capture large datasets arriving dynamically may
still create significant overheads.

Thus data grid approaches work well at present, but they may not be scalable, either
with size or time.

As suggested in recent work [1, 12] and by significant recent research projects,
such as UK e-Science programme, the creation of datacentric and knowledge grids
on the top of computational grid middleware is an important enabling condition for
new grid applications in many strategic areas. Emerging architectures and models
for data mining on grids can be roughly classified as: domain-specific systems such as
ADaM and the AstroGrid project; and generic architectures such as the Knowledge
Grid, the Datacentric Grid, and Discovery Net.

The TeraGrid project is building a powerful grid infrastructure, connecting four
main sites in USA (San Diego Supercomputer Center, National Center for Supercom-
puting Applications, Caltech and Argonne National Lab), that will provide access
to tera-scale amounts of data [22]. The most challenging application on the Tera-
Grid will be the synthesis of knowledge from data. The development of knowledge-
synthesis tools and services will enable the TeraGrid to operate as a knowledge
grid.

The ADaM (Algorithm Development and Mining) systems is an agent-based
data mining framework developed at the University of Alabama in Huntsville used
to mine in parallel hydrology data from four sites [11]. The system includes a mining
engine and a daemon-controlled database. The database contains information about
the data to be mined including its type and its location. A user provides the mining
engine with a mining plan (i.e. the sequential list of mining operations that are
to be performed along with any parameters that may be required for each mining
operation). The mining engine consults the database in order to find out where the
data to be mined is stored and then applies the mining plan to the set of data that



Mining Large Data Sets on Grids: Issues and Prospects 357

has been identified in the database. In the grid version of ADaM, the database and
its associated daemon reside on a processor distinct from that of the mining engine.
The data is managed at multiple sites by SRB/MCAT and GridFTP.

The Discovery Net is an EPSRC project launched at Imperial College, UK [6].
Its main goal is to design, develop and implement a generic architecture to support
realtime processing, interaction, integration, visualization and mining of massive
amounts of time-critical data generated by high-throughput devices. The know-
ledge discovery process will be applied to raw and processed data from biotech-
nology, pharmacogenomic, remote sensing and renewable energy data. The DNET
architecture aims to develop Large-scale Dynamic Realtime Decision support, used
in renewable energy and remote sensing applications.

The National Center for Data Mining (NCDM) at the University of Illinois at
Chicago (UIC) is developing several testbeds for knowledge discovery over grids [23].
The Terra Wide Data Mining Testbed is an infrastructure built for the remote
analysis, distributed mining, and real time exploration of scientific, engineering,
business, and other complex data. The Terra testbeds are currently developed for
Climate data, Health Care Data Astronomical Data and High Energy Physics.

The Terabyte Challenge Testbed consists of ten sites distributed over three con-
tinents connected by high-performance links. It has been instrumented for network
measurements and provides a platform for experimental discovery of scientific, engi-
neering, business, and e-business data. The testbed includes a variety of distributed
data-mining applications, including the analysis of climate data, astronomical data,
network data, web data, and business data.

Finally, the Global Discovery Network is a collaboration between the National
Center for Data Mining (Laboratory for Advanced Computing) and the Discovery
Net project (mentioned above). The new Global Discovery Network will link the
Discovery Net to the Terra Wide Data Mining Testbed to create a combined global
testbed with a critical mass of data.

In summary, most of these emerging data and knowledge grids are aimed at
specific application domains. A few generalize to multiple domains but usually only
scientific ones in which, for example, security issues are not considered critical.

Other research work is directed at providing interfaces to large static datasets
so that they can be more readily accessed remotely. Few of these provide the func-
tionality of a datacentric grid node of the kind we have suggested, but many provide
some aspects of it.

All grid approaches share a common problem of how to allow a computation
sent by A to be executed on a system owned by B without compromising either A’s
result or B’s system. Authentication of users is technically feasible, but protecting
against malicious users or malicious hosts is much more difficult. Sites that hold data
repositories have a slightly simpler problem to solve, since the kinds of programs they
are asked to run may be more stylized and chosen from a smaller repertoire than in
other kinds of grids. In particular, if the required computation can be described by
giving a set of parameters, rather than executable code, then a web services interface
can be used. Such an interface can range from a web form (in the ordinary http sense)



358 D. Skillicorn, D. Talia

up to a coordination language interface (in the style of Netsolve, for example). In
fact, a web search engine can be regarded as a simple datacentric node, with the
query as a small program, since the cycles used and the data accessed both reside on
the search engine site. Some examples of these kinds of interfaces are Espresso [20],
which makes climate modelling data available via a web browser interface, and the
Distributed Computational Laboratory at Georgia Tech [16], There are also a large
number of grid portal projects (see www.gridcomputing.com for an up-to-date list).

Another piece of related work is the PMML (Predictive Model Markup Lan-
guage) [7], which makes it possible to describe both data and models within a single
XML-based framework. PMML goes some way towards defining how the results of
data-mining operations could be labelled, for example.

6 RESEARCH PROSPECTS

Grids for data-intensive applications raise research questions that either do not occur
in computational grids or occur in quite different ways. Here are some of the major
ones:

• Which applications can be decomposed in a way that permits useful progress on
partial (local) data as well as composition of partial results into global results?
There is a large class of computations that might be called reductive, in which
the global answer is easily computed from answers obtained from local pieces of
a dataset. The simplest example is to compute the sum of an attribute across
an entire distributed dataset. Applications such as these are the target of the
DataCutter system [2]. It is more surprising that many other results can also
be obtained by local computations supplemented by relatively small volumes
of communication between each site. In the easiest scenario, each site contains
information about different objects, but all share the same attributes. Then,
for example, many kinds of neural networks can be trained by training identical
networks on each local piece of the dataset using batch learning, and then ex-
changing the errors vectors and summing them to give an overall result [17]. The
information being communicated consists of sets of weights, which are orders of
magnitude smaller than the dataset itself. A harder scenario is when each site
contains only some of the attributes of each object. Kargupta et al. have shown
that it is still often possible to learn useful information locally by finding a basis
such that local information requires only a few non-zero coefficients to repre-
sent it with respect to the basis. This has been done successfully for Fourier
bases [13], and wavelets [15]; and also by Yang and Skillicorn for SVD [19].

• How can the security of applications be preserved, so that it is not possible to
determine either the results of asking certain questions about a dataset, nor
even that those questions are being asked? Many existing grid systems assume
either that the grid is internal to a single organization (e.g. Entropia), or involve
computations that are essentially in the public domain such as scientific research.
Hence, the threat model is of unauthorized use rather than subversion or theft of



Mining Large Data Sets on Grids: Issues and Prospects 359

ideas. Data-intensive applications such as data mining, while relevant to scien-
tific inquiry, are more likely to involve enterprise-critical computations, and so
the security problem is more difficult. Furthermore, many interesting questions
will require data from inside and outside an organization, forcing consideration
of a world that is at least partly open. In such enterprise-critical applications,
traffic analysis, that is knowing what knowledge is being sought, may also be an
important threat.

• What is the best programming model for data-intensive applications? We have
already noted that many data-intensive applications involve a relatively small
set of model-building techniques. This suggests that perhaps a query language
or high-level scripting language might be appropriate.

• How do applications find datasets and/or models? Nodes in computational grids
have relatively few wares to offer: processor cycles of certain speeds, numbers of
processors, intracluster bandwidth, and so on. In contrast, nodes on datacentric
grids contain data with many possible descriptors: what the objects are, what
the attributes are, how it was generated, when it was updated, and so on.
Furthermore, if the results of computations are cached, this information changes
rapidly. Data-intensive applications may find it difficult to discover which site(s)
hold the datasets they wish to use, and may have to be prepared to handle
different versions of them, discovering which one only when their code arrives
at the site on which it will execute.

• What is the best architecture for nodes that must supply both large datasets and
high-performance computing cycles? Clusters have revolutionized the provision
of computing cycles, making the slice price for a large parallel system very close
to the single processor price. A similar revolution has not taken place for data
storage. Databases greatly increase the storage cost per byte above the cost for
raw disks. RAIDS reduce the storage cost somewhat but do not cheaply allow
channels to many processors.

• How can ontologies help and to improve knowledge discovery on grids? A know-
ledge-discovery process that includes grid resources needs to manage distributed
objects such as datasets, mining algorithms, computing nodes, and data models.
The definition and deployment of ontologies that integrate metadata services in
supporting identification, search, and discovery of objects involved in knowledge-
discovery applications will improve the description of a grid environment and
help users in developing applications. This approach may represent a step to-
wards a Semantic Grid able to support knowledge-management processes.

7 CONCLUSION

Extracting knowledge from data is a demanding task: it requires large amounts of
computation and it needs moving entire datasets, at least between static storage and
processor(s). In a distributed setting it requires resource sharing across substantial



360 D. Skillicorn, D. Talia

distance and organizational boundaries. These requirements are not easily met by
today’s web and grid infrastructures.

In particular, grids for data-intensive and knowledge discovery applications raise
design and implementation issues that either do not occur in computational grids
or occur in quite different ways. However, despite the limited efforts devoted to
knowledge-extraction grids, it is natural to consider grids as tools for distributed
data-intensive applications such as data mining.

This paper has discussed the main issues, requirements, and design approaches
for the implementation of grid-based knowledge-discovery systems. Two specific
grid-based architectures, the Knowledge Grid and the Datacentric Grid, which ad-
dress several issues in knowledge-extraction grids, have been presented. The Know-
ledge Grid is designed to run in the context of today’s Grid environments. It is
described in terms of services, without necessarily committing itself to where these
services will run, and what underlying architecture they will use. The Knowledge
Grid also assumes that some datasets can be moved (which is a reasonable near-term
assumption) and that underlying grid services such as GridFTP will be available to
handle the required transfers. The Datacentric Grid is more radical in the sense that
it assumes the existence of particular architectures (for example, co-located clusters
and data repositories) that are not common today. Hence its design is expressed
in terms of entities which have an assumed architectural substrate. It is intended
for the medium term, a time when the flexibility to move datasets around will be
reduced by lack of on-demand bandwidth and storage.

Clearly the Knowledge Grid architecture could eventually be implemented on
a Datacentric Grid. When this happens, some simplification of the design of the
Knowledge Grid may be possible because the middleware required, at present, to
interface to existing Grids will not be necessary. The Knowledge Grid and the
Datacentric Grid can be viewed as extensions of Data Grids to deal, first, with
data-access driven applications such as data mining, and then subsequently to deal
with the problems of large, immovable data.

Beside the presentation and discussion of the Knowledge Grid and the Data-
centric Grid, the paper has also sketched some prospects and promising research
directions in datacentric and knowledge-discovery oriented grids. As a general out-
come of our work, we conclude that the development of grid models and architectures
specifically designed for the analysis of very large datasets is raising new challenges
and will significantly improve our ability to retrieve and process huge volumes of
data available across a large number of geographically dispersed repositories. This
approach will allow grid users to capture, enrich, classify and structure knowledge
about scientific experiments or provided by virtual organizations and remote re-
search teams.



Mining Large Data Sets on Grids: Issues and Prospects 361

REFERENCES

[1] Berman F.: From TeraGrid to Knowledge Grid. Communications of the ACM,
Vol. 44, 2001, No. 11, pp. 27–28.

[2] Beynon, M.—Ferreira, R.—Kurc, T.—Sussman, A.—Saltz, J.: DataCutter:
Middleware for Filtering Very Large Scientific Datasets on Archival Storage Systems.
IEEE Symposium on Mass Storage Systems, 2000, pp. 119–134.

[3] Cannataro, M.—Talia, D.: Parallel and Distributed Knowledge Discovery on
the Grid: A Reference Architecture. Proc. of the 4th International Conference on
Algorithms and Architectures for Parallel Computing (ICA3PP), Hong Kong, World
Scientific Publ., 2000, pp. 662–673.

[4] Cannataro, M.—Talia, D.—Trunfio, P.: Knowledge Grid: High Performance
Knowledge Discovery Services on the Grid. Proc. GRID 2001, Vol. LNCS 2242,
Springer-Verlag, 2001, pp. 38–50.

[5] Cannataro, M.—Congiusta, A.—Talia, D.—Trunfio P.: A Data Mining
Toolset for Distributed High-performance Platforms. Proc. Conf. Data Mining 2002,
Wessex Inst. Press, 2002, pp. 41–50.

[6] Curcin, V. et al.: Discovery Net: Towards a Grid of Knowledge Discovery. Proc.
Conf. on Knowledge Discovery in Databases, 2002.

[7] Data Mining Group: www.dmg.org.

[8] Fayyad, U. M.—Piatesky-Shapiro, G.—Smyth P.: From Data Mining to
Knowledge Discovery: an Overview. In Advances in Knowledge Discovery and Data
Mining, AAAI MIT Press, 1996, pp. 1–34.

[9] Foster, I.—Kesselman C.: Globus: A Metacomputing Infrastructure Toolkit.
International Journal of Supercomputing Applications, Vol. 11, 1997, pp. 115–128.

[10] Foster, I.—Kesselman C.: The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann Publ., 1999.

[11] Hinke, T.—Novonty J.: Data Mining on NASA’s Information Power Grid. Proc.
Ninth IEEE International Symposium on High Performance Distributed Computing,
2000.

[12] Johnston, W. E.: Computational and Data Grids in Large-Scale Science and Engi-
neering. Future Generation Computer Systems, Vol. 18, 2002, No. 8, pp. 1085–1100.

[13] Kargupta, H.—Park B. H.: Mining Decision Trees from Data Streams in a Mobile
Environment. Proc. ICDM, 2001, pp. 281–288.

[14] Kargupta, H.—Chan P. (Eds.): Advances in Distributed and Parallel Knowledge
Discovery. AAAI/MIT Press, 2000.

[15] Hershberger, D.—Kargupta, H.: Distributed Multivariate Regression Using
Wavelet-Based Collective Data Mining. Journal of Parallel and Distributed Com-
puting, Vol. 61, 2001, No. 3, pp. 372–400.

[16] Plale, B.—Elling, V.—Eisenhauer, G.—Schwan, K.—King D.—Martin,

V.: Realizing Distributed Computational Laboratories. Int. J. Parallel and Dis-
tributed Systems and Networks, 1999.



362 D. Skillicorn, D. Talia

[17] Rogers, R.—Skillicorn D.: Using the BSP Cost Model to Optimize Paral-

lel Neural Network Training. Future Generation Computer Systems, Vol. 14, 1998,
pp. 409–424.

[18] Skillicorn, D.: Parallel Frequent Set Counting. Parallel Computing, Vol. 28, 2002,
pp. 815–825.

[19] Skillicorn, D.—Yang X.: High-Performance Singular Value Decomposition. In
Data Mining for Scientific and Engineering Applications, Kluwer, 2002, pp. 401–424.

[20] Taylor, J.—Dvorak M.—Mickelson S.: Developing Grid Based Infrastructure
for Climate Modeling, Climate and Global Change Report ANL/CGC-010-0102, Ja-
nuary 2002.

[21] Tatebe, O.—Morita, Y.—Matsuoka, S.—Soda, N.—Sekiguchi, S.: Grid
Datafarm Architecture for Petascale Data Intensive Computing. VIII International
Workshop on Advanced Computing and Analysis Techniques in Physics Research,
Moscow, June 2002.

[22] Teragrid: www.teragrid.org.

[23] National Center for Data Mining: Laboratory for Advanced Computing at the
University of Illinois at Chicago, http://www.ncdm.uic.edu/testbeds.htm, 2002.

David Skilliorn received his Ph.D. from the University of
Manitoba. After a brief time at Dalhousie University, he moved
to Queen’s where he is now a professor. His research interests are
in high-performance computing, where he has published exten-
sively on parallel programming models, and non-numeric compu-
tation, where he has worked on structured text and data mining.
His interests at the moment centre on migrating strategies and
techniques for parallel data mining to more distributed settings.

Domenico Talia is a professor of computer science at the Fa-
culty of Engineering at the University of Calabria, Italy. Talia
received the Laurea degree in physics at University of Calabria.
From 1985 to 1996 he was a researcher at CRAI (Consortium
for Research and Applications of Informatics) and from 1997
to 2001 he was a senior researcher at the ISI-CNR — Institute
of Systems Analysis and Information Technology of the Italian
National Research Council. His main research interests include
parallel computation, parallel data mining, grid computing, cel-
lular automata, and computational science. He is a member of

the Editorial Boards of the IEEE Computer Society Press, the Future Generation Com-
puter Systems journal, the Parallel and Distributed Practices journal, and the Information
journal. He is also a member of the Advisory Board of Euro-Par and a Distinguished
Speaker in the IEEE Computer Society Distinguished Visitors Program. He published
three books and more than 120 papers in international journals and conference proceed-
ings. He is member of the ACM and the IEEE Computer Society.


