93,691 research outputs found

    An iterative initial-points refinement algorithm for categorical data clustering

    Get PDF
    The original k-means clustering algorithm is designed to work primarily on numeric data sets. This prohibits the algorithm from being directly applied to categorical data clustering in many data mining applications. The k-modes algorithm [Z. Huang, Clustering large data sets with mixed numeric and categorical value, in: Proceedings of the First Pacific Asia Knowledge Discovery and Data Mining Conference. World Scientific, Singapore, 1997, pp. 21–34] extended the k-means paradigm to cluster categorical data by using a frequency-based method to update the cluster modes versus the k-means fashion of minimizing a numerically valued cost. However, as is the case with most data clustering algorithms, the algorithm requires a pre-setting or random selection of initial points (modes) of the clusters. The differences on the initial points often lead to considerable distinct cluster results. In this paper we present an experimental study on applying Bradley and Fayyad\u27s iterative initial-point refinement algorithm to the k-modes clustering to improve the accurate and repetitiveness of the clustering results [cf. P. Bradley, U. Fayyad, Refining initial points for k-mean clustering, in: Proceedings of the 15th International Conference on Machine Learning, Morgan Kaufmann, Los Altos, CA, 1998]. Experiments show that the k-modes clustering algorithm using refined initial points leads to higher precision results much more reliably than the random selection method without refinement, thus making the refinement process applicable to many data mining applications with categorical data

    Clustering Categorical Data: Soft Rounding k-modes

    Full text link
    Over the last three decades, researchers have intensively explored various clustering tools for categorical data analysis. Despite the proposal of various clustering algorithms, the classical k-modes algorithm remains a popular choice for unsupervised learning of categorical data. Surprisingly, our first insight is that in a natural generative block model, the k-modes algorithm performs poorly for a large range of parameters. We remedy this issue by proposing a soft rounding variant of the k-modes algorithm (SoftModes) and theoretically prove that our variant addresses the drawbacks of the k-modes algorithm in the generative model. Finally, we empirically verify that SoftModes performs well on both synthetic and real-world datasets

    Diversity-based Attribute Weighting for K-modes Clustering

    Get PDF
    Categorical data is a kind of data that is used for computational in computer science. To obtain the information from categorical data input, it needs a clustering algorithm. There are so many clustering algorithms that are given by the researchers. One of the clustering algorithms for categorical data is k-modes. K-modes uses a simple matching approach. This simple matching approach uses similarity values. In K-modes, the two similar objects have similarity value 1, and 0 if it is otherwise. Actually, in each attribute, there are some kinds of different attribute value and each kind of attribute value has different number. The similarity value 0 and 1 is not enough to represent the real semantic distance between a data object and a cluster. Thus in this paper, we generalize a k-modes algorithm for categorical data by adding the weight and diversity value of each attribute value to optimize categorical data clustering

    A fuzzy k-modes algorithm for clustering categorical data

    Get PDF
    This correspondence describes extensions to the fuzzy k-means algorithm for clustering categorical data. By using a simple matching dissimilarity measure for categorical objects and modes instead of means for clusters, a new approach is developed, which allows the use of the k-means paradigm to efficiently cluster large categorical data sets. A fuzzy k-modes algorithm is presented and the effectiveness of the algorithm is demonstrated with experimental results.published_or_final_versio

    Optimal mathematical programming and variable neighborhood search for k-modes categorical data clustering

    Get PDF
    The conventional k-modes algorithm and its variants have been extensively used for categorical data clustering. However, these algorithms have some drawbacks, e.g., they can be trapped into local optima and sensitive to initial clusters/modes. Our numerical experiments even showed that the k-modes algorithm could not identify the optimal clustering results for some special datasets regardless the selection of the initial centers. In this paper, we developed an integer linear programming (ILP) approach for the k-modes clustering, which is independent to the initial solution and can obtain directly the optimal results for small-sized datasets. We also developed a heuristic algorithm that implements iterative partial optimization in the ILP approach based on a framework of variable neighborhood search, known as IPO-ILP-VNS, to search for near-optimal results of medium and large sized datasets with controlled computing time. Experiments on 38 datasets, including 27 synthesized small datasets and 11 known benchmark datasets from the UCI site were carried out to test the proposed ILP approach and the IPO-ILP-VNS algorithm. The experimental results outperformed the conventional and other existing enhanced k-modes algorithms in literature, updated 9 of the UCI benchmark datasets with new and improved results
    • …
    corecore