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An iterative initial-points refinement algorithm for 
categorical data clustering 

Ying Sun, Qiuming Zhu *, Zhengain Chen 

Department of Compmter Science, Digital Imaging and Computer Vision Laboratory, 
University of Nebraska at Omaha, Omaha, NE 68182-0050, USA 

8 Abstract 

9 The original k-means clustering algorithm is designed to work primarily on numeric data sets. This prohibits the 
10 algorithm from being directly applied to categorical data clustering in many data mining applications. The k-modes 
11 algorithm [Z. Huang, Clusteing large data sets with mixed numeric and categorical value, in: Proceedings of the First 
12 Pacific Asia Knowledge Discovery and Data Mining Conference. World Scientific, Singapore, 1997, pp. 21-34] ex-
13 tended the k-means paradigm to cluster categorical data by using a frequency-based method to update the cluster 
14 modes versus the k-means fashion of minimizing a numerically valued cost. However, as is the case with most data 
15 clustering algorithms, the algorithm requires a pre-setting or random selection of initial points (modes) of the clusters. 
16 The differences on the initial points often lead to considerable distinct cluster results. In this paper we present an ex-
17 perimental study on applying Bradley and Fayyad's iterative initial-point refinement algorithm to the k-modes clus-
18 tering to improve the accurate and repetitiveness of the clustering results [cf. P. Bradley, U. Fayyad, Refining initial 
19 points fork-mean clustering, in: Proceedings of the 15th International Conference on Machine Learning, Morgan 
20 Kaufmann, Los Altos, CA, 1998]. Experiments show that the k-modes clustering algorithm using refined initial points 
21 leads to higher precision results much more reliably than the random selection method without refinement, thus making 
22 the refinement process applicable to many data mining applications with categorical data. © 2001 Published by 
23 Elsevier Science B.V. 

24 Kt!ywords: Data clustering; Pattern classification; Refinement algorithm; Data mining 

25 1. Introduction 

26 Partitioning a set of objects in a data collection 
27 of multiple attributes into homogeneous groups 

• Corresponding author. Tel.: + 1-402-554-3685; fax: + 1-402-
554-3400. 

E-mail address: zhuq@unomaha.edu (Q. Zhu).

(clusters) of certain intra-relations is a fundamen- 28 
tal operation in data mining. The most distinct 29 
characteristic of clustering operation in data min- 30 
ing is that the data sets often contain both numeric 31 
and categorical (symbolic) attribute values. This 32 
requires the clustering algorithms to be capable of 33 
dealing with the complexity of the intra- and inter- 34 
relations of the data sets expressed in different 35 



36 types of the attributes, no matter numeric or cat-
37 egorical (Michalski et al., 1998). 
38 Among the clustering algorithms that have been 
39 developed, the k-means algorithm is the most 
40 popular one (Jain and Dubes, 1988). Many other 
41 clustering algorithms were derived from it, such as 
42 the fuzzy k-means algorithm, the ISODATA, the 
43 k-modes algorithm (Huang, 1998), etc. The k-
44 means algorithm is well known for its efficiency in 
45 clustering large data sets (MacQueen, 1967; An-
46 derberg, 1973). However, the original k-means al-
47 gorithm works only on numeric data because it 
48 aims at minimizing a cost function that is numer-
49 ically measured. This prohibits the k-means algo-
50 rithm from being directly used in applications 
51 where categorical data are involved, such as the 
52 data mining applications. 
53 Work on clustering data with categorical attri-
54 butes has been done by several researchers. Ra-
55 lambondrainy (1995) presented an approach by 
56 using the k-means algorithm to cluster categorical 
57 data. The approach is to convert multiple category 
58 attributes into binary attributes (using O and 1 to 
59 represent either a category absent or present) and 
60 to treat the binary attributes as numeric in the k-
61 means algorithm. The main drawback of the ap-
62 proach is that the cluster means, given by values 
63 between O and 1, often do not indicate the exact 
64 characteristics of the clusters. Gower and Diday 
65 (1991) used a similarity coefficient and other dis-
66 similarity measures to process data with categori-
67 cal attributes. However, the quadratic 
68 computational cost makes them unacceptable for 
69 clustering large data sets. 
70 Conceptual clustering algorithms developed in 
71 machine learning were able to cluster data sets 
72 with categorical values (Michalski and Stepp, 
73 1983) and also produce conceptual descriptions of 
74 the clusters (Lebowitz, 1987; Fisher, 1987). Unlike 
75 statistical clustering methods, the algorithms are 
76 based on a search for objects, which carry the same 
77 or similar concepts. Therefore, their efficiency re-
78 lies on good search strategies. For problems in 
79 data mining that often involve many concepts and 
80 very large object spaces, the concept-based search 
81 methods can become a potential handicap for 
82 these applications. 

The k-modes algorithm (Huang, 1997) extends 83 
the k-means paradigm to cluster categorical data 84 
by using (1) a simple matching dissimilarity mea- 85 
sure for categorical objects, (2) modes instead of 86 
means for clusters, and (3) a frequency-based 87 
method to update modes in the k-means fashion to 88 
minimize the clustering cost function of clustering. 89 
Because the k-modes algorithm uses the same 90 
clustering process as k-means, it preserves the ef- 91 
ficiency of the k-means algorithm, which is highly 92 
desirable for data mining. A similar work that 93 
aims to cluster large data sets is the CLARA 94 
(abbreviated from Clustering LARge Application) 95 
algorithm (Kaufman and Rousseeuw, 1990). 96 
CLARA is a combination of a sampling procedure 97 
and the clustering program Partitioning Around 98 
Medoids (PAM). Given a set of objects X and the 99 
number of clusters k, PAM clusters Xby finding k 100 
medoids (representative objects of clusters) that 101 
can minimize the average dissimilarity of objects to 102 
their closest medoids. Ng and Han (1994) have 103 
analyzed that the computational complexity of 104 
PAM in a single iteration is O(k(n - k)2

) where n is 105 
the number of objects in X. Obviously, PAM is not 106 
efficient when clustering large data sets. That 107 
makes CLARA inefficient in clustering large data 108 
sets. 109 

As for the traditional clustering algorithms, 110 
most of the above-mentioned categorical data 111 
clustering algorithms, including the k-modes al- 112 
gorithm, require a random selection or setting up 113 
of initial data points in addition to a known or 114 
estimated number of clusters (also called starting 115 
conditions), before iteratively mapping the data 116 
records to separate clusters. This leads to the 117 
problem that the clustering results are often de- 118 
pendent on the selection of the initial points re- 119 
gardless of what measurement metric is used for 120 
the similarity (distance) evaluation operation. 121 
That is, the clustering solution is very much sen- 122 
sitive to the initial-point choices. An inappropriate 123 
setting up of initial points would lead to some 124 
unacceptable clustering results. For example, a 125 
large percent of data samples might be crowded 126 
into one or a few clusters with other clusters 127 
having only a few scarce samples, leaving users 128 
questioning its reality. Moreover, the clustering 129 
results often cannot be repetitively generated, 130 



131 causing problems in the validation of the cluster-
132 ing results. 
133 The intrinsic problem of initial-point selection 
134 in clustering algorithms and the computation cost 
135 of the categorical data clustering call for an ap-
136 proach that provides a better organized initial 
137 setting for improving the performance of cluster-
138 ing processes. Hopefully, the improved initial-
139 point sets would let the clustering algorithm con-
140 verge with the global optimal or close to the op-
141 timal solution more accurately and repetitively. 
142 That is, the selection of initial data points fits more 
143 appropriately and consistently with the nature and 
144 underlying distributions of the data sample sets. 
145 In this paper we present an experiment on ap-
146 plying the iterative refinement algorithm to the 
147 setting of the initial points so as to map the cate-
148 gorical data sets to clustering results that have 
149 better consistency rates. This paper is organized as 
150 follows. Section 2 discusses the basics of the k-
151 modes algorithms (Huang, 1997). Section 3 de-
152 scribes Bradley and Fayyad's initial-points refine-
153 ment algorithm and its principle (cf. Bradley and 
154 Fayyad, 1998). Section 4 presents our experimental 
155 results in applying the initial-points refinement to 
156 the k-modes algorithm for clustering categorical 
157 data samples. Section 5 concludes the presentation. 

158 2. The k-modes algorithm for categorical data 
159 clustering 

160 Let S = {X1,X2, ••. ,X,.} denote a set of n data 
161 objects, and X, = (Xi1 ,X12, ... ,Xld], i = 1, 2, ... , n, 
162 be an object represented by d attribute values. Let 
163 k be a positive integer. The objective of k-means 
164 clustering is to find a partition that divides object 
165 set S into k disjoint regions that meet certain cri-
166 teria and constraints. For a given n and k, the 
167 number of possible partitions is definite but could 
168 be extremely large. A common way of solving it is 
169 to choose a clustering criterion that guides the 
170 search for an approximate solution. The most 
171 common criterion has been the minimization of 
172 the total distances of the data points to their 
173 cluster centers. Formulated as a mathematical 
174 programming problem P(W, Q), the k-means 
175 clustering algorithm has been traditionally ex-

pressed as the following (Hartigan, 1975; Bo- 176 
browski and Bezdek, 1991): 177 

k " 
Minimize P(W, Q) = L L W1,1d(X,, Qi), 

l=l i=l 

k 

Subject to Lwi,l = 1, 1 ~i~n; wi,l E {0, 1}, 
l=l 

1 ~ i ~ n, 1 ~ l ~ k, 

where W is an n x k partitioning matrix; Q = 179 
{Q1, Q2, ... , Qk}, namely the k-means, is a set of 180 
objects in the same object domain; d(·, ·) is the 181 
distance metric, e.g, a squared Euclidean as the 182 
most common one, between two objects. 183 

Problem P(W, Q) is solvable by iteratively 184 
solving the following two sub-problems: 185 
1. Sub-problem P1: Fix Q = Q and solve the re- 186 

duced problem P(W, Q). 187 
2. Sub-problem P2: Fix W = W and solve the re- 188 

duced problem P(W, Q). 189 
Sub-problem P1 is solved by 190 

W;,/ =1 if d(X,, Q1) ~ d(X,, Qi) 
for 1 ~ t ~ k or w1,1 = 0 for t =f, l; 

and sub-problem P2 is solved by 192 

q1J = E:=1 wi,/X;J for 1 ~ l ~ k and 1 ~j ~ m. 
Li=1W1,I 

The basic algorithm to solve problem P(W, Q) 194 
is given as follows: 195 
1. Choose an initial(! and solve P(W, (!) to ob- 196 

tain W°. Sett= 0. 197 
2. Let W = W' and solve P(W, Q) to obtain Q'+l. 198 

If P(W,Q') =P(w,g+1), output W,Q' and 199 
stop; otherwise, go to 3. 200 

3. Let Q = Q'+I and solve P(W, Q) to obtain wi+1• 201 
If P(Wt,Q) =P(W'+1 ,Q), output W',Q and202 
stop; otherwise, let t = t + 1 and go to 2. 203 
The computational cost of the algorithm is 204 

0(11cn), where Tis the number of iterations and n 205 
the number of objects in the input data set. 206 

In principle the formulation of problem Pin the 207 
above is also valid for categorical and mixed-type 208 
data objects. The reason that the k-means algo- 209 
rithm cannot cluster categorical objects is its dis- 210 
similarity measure used to solve problem P2. These 211 
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224 
225 

barriers can be removed by making the following 
modifications: 
1. Using a simple matching dissimilarity measure 

for categorical objects. 
2. Replacing means of clusters by modes. 
3. Using a frequency-based method to find the 

modes to solve problem P2. 
Let X, Ybe two categorical objects described by 

m categorical attributes. The dissimilarity measure 
between X and Y can be defined by the total 
mismatches of the corresponding attribute cate
gories of the two objects. This measure is often 
referred to as simple matching (Kaufman and 
Rousseeuw, 1990). Formally, we have 

m 

d1 (X, Y) = L o(x1,y1), where 
j=l 

) { 
0 (x1 = Y1), 

o(x1,Y1 = 1 (x1 -f:. Y1)· 

227 Let X be a set of categorical objects described 
228 by categorical attributes, A1,A2, ... ,Am, a mode of 
229 X = {X1,X2, ... ,Xn} is a vector Q = [q1,q2, ... ,qm] 
230 that minimizes 

n 

D(X, Q) = L d1 {X;, Q). 
i=l 

232 Here, Q is not necessarily an element of X. Let nctJ 

233 be the number of objects having the kth category 
234 c1J in attribute A1, and fr(Ai = c1JIX) = (nct)n) 
235 the relative frequency of category c1J in X. The 
236 function D(X, Q) is minimized iff 

fr(A1 = q1IX) ~ fr(A1 = CkJIX) for qi -f:. CkJ, 

for all j = 1, ... , m. 

238 The above expression defines a way to find Q 
239 from a given X, and therefore is important because 
240 it allows the k-means paradigm to be used to 
241 cluster categorical data. The expression implies 
242 that the mode of a data set Xis not unique. For 
243 example, the mode of set {[a,b], [a,c], [c,b], [b,c]} 
244 can be either [a, b] or [a, c]. 
245 When the above is used as the dissimilarity 
246 measure for categorical objects, the cost function 
247 becomes 

k n m 

P(W, Q) = L L L w;,1i5(x;J, qlJ), where 
l=l i=l j=l 

W;,l E W and Qi= [q1,1,q1,2, · · · ,q1,m] E Q. 

That is, to minimize the cost function, the k-modes 249 
algorithm proceeds by: (1) using the simple 250 
matching dissimilarity measure to solve the prob- 251 
lem P1, and (2) using modes for clusters instead of 252 
means and selecting modes to solve the problem 253 
~- ~4 

3. Initial points reftoing algorithm for data cluster- 255 
iog 256 

As mentioned above, both k-means and k
modes algorithms draw an initial estimation (ap
proximation model) of the clusters represented by 
(! from a randomly selected subset of the data 
points in the constraint object space. The algo
rithms then subsequently extend the model as
ymptotically to the whole data set by gradually 
adjusting the k-means or modes as more data 
points are accumulatively included. The process is 
iterated until a complete solution (which may be 
optimal or sub-optimal) of a clustering model is 
obtained. 

The idea of applying a refinement procedure to 
the initial-point selection for obtaining a better 
approximation of the true clusters in the set-up 
stage was proposed by Bradley et al. (1998). The 
heuristics behind the idea is that every data cluster 
has an underlying model ( or distribution) that 
governs the positioning of the data samples (Ah
rens and Dieter, 1973). This underlying model 
behaves on both large and small sets of data 
samples, except that it is more precisely presented 
in larger data sets and less precisely in smaller data 
sets. If one can draw a sufficiently precise model 
from the smaller data sets, then the model can be 
used to describe, or guide the description of, the 
larger data set. In clustering, it means that if one 
can make a proper modeling on the subset of the 
data samples, then this model can be used to 
quickly and accurately derive the underlying clus
ters of the larger ( or the whole) data set. 
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288 One practical problem of a simple sub-sampling 
289 approach is that severely sub-sampling the data 
290 will naturally bias the samples to representatives 
291 "near" the tails (or edges) of the data sets, while it 
292 makes nonsense to sub-sample a sufficiently large 
293 subset that is close to the actual data set. Fig. 1 
294 shows a data set drawn from a mixture of two 
295 Gaussian models (clusters) in 2-D with means at 
296 [1.5, 1.5] and [4, 4], respectively. A small sub-sam-
297 ple set is shown in Fig. 2, which was expected to 
298 provide information on the models of the joint 
299 probability density function of the original data set 
300 of Fig. 1. Each of the points on the Fig. 2 may be 

8 

7 

6 

5 

thought of as a "guest" at the possible location of 301 
a model in the underlying distribution. It is seen 302 
that the sub-sample set exhibits certain "expected" 303 
behavior of the original data set. Worthy of note 304 
here is that the sub-sampling points are fairly 305 
spread out over the distribution region of the 306 
original data set. This observation indicates that 307 
the solutions obtained by clustering over a small 308 
sub-sample may not provide good initial estimates 309 
of the true means, or centroids, in the data. The 310 
simple sub-sampling method often produces noisy 311 
estimates due to single small sub-samples, espe- 312 
cially in skewed distributions and high dimensions. 313 
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314 In general, one cannot guard against the pos-
315 sibility of having points from the tails appearing in 
316 the sub-samples. However, if we sub-sample the 
317 data set enough times, the tailing will disappear 
318 and the combination of the sub-samples will rep-
319 resent the actual data set in certain precision. 
320 Thus, in Bradley's random sampling refinement 
321 procedure, the k-means algorithm is first applied 
322 to a small percentage of the samples randomly 
323 selected under the assumption that the smaller 
324 initialization set has the same distribution as the 
325 full sample set (Bradley and Fayyad, 1998). The 
326 refinement algorithm is featured with an iterative, 
327 multiple subset sampling and refinement process to 
328 derive a proper initial-point set for the clustering 
329 algorithms. The k-means obtained from these 
330 random samples are then used as initial points for 
331 a full scale conducting of the k-means algorithm 
332 on the entire data set. 
333 The iterative refinement algorithm has three 
334 major steps. In the first step, a number J of small 
335 sub-samples of data, S;, i = 1, ... ,J, are chosen 
336 randomly from the whole data set. The J is se-
337 lected for the purpose of avoiding solutions "cor-
338 rupted" by outliers included in the sub-sample S;, 
339 commonly, J ranges from 0.1(11/k) to 0.5(11/k), 
340 depending on the data set size. The sub-samples 
341 are clustered via a selected clustering algorithm (k-
342 modes in our case) using randomly determined 
343 initial points. The sets CM;, i = 1, ... , J are these 
344 clustering solutions (cluster means) over the sub-
345 sample S;. Let CM be the union of CM;, 
346 CM= l.i=1CM;. 

34 7 In the second step, where the refinement actu-
348 ally takes place, the CM is treated as the data set 
349 and clustered via the selected clustering algorithm 
350 again. The CM is clustered J times using CM;, 
351 i = 1, ... ,J as the initial points. Each clustering 
352 solution over CM forms the sets FMi, i = 1, ... ,J. 
353 Let FMS be the union of sets FM;, FMS = Lt=1FM;. 
354 The FMS represents a candidate set of the refined 
355 initial points. The candidate initial-point sets FM;, 
356 i = 1, ... ,J, in FMS are further evaluated by a 
357 distortion measurement function Distortion 
358 (FM;, CM) for the selection of the initial points to 
359 be used in the clustering process. 

In the distortion measurement, the function 360 
Distortion(FM;, CM) is simply the summation of the 361 
distance between the data items in CM and the 362 
point FM;. A smaller value for the distortion 363 
measure indicates that the model parameters (i.e. 364 
initial points FM;) are a better fit to the whole data 365 
set. The FM; that has the minimal distortion over 366 
the set CM then is selected as the initial points for 367 
the clustering algorithm. 368 

The refinement algorithm takes these parame- 369 
ters as input: 370 
• Data - the data set to be clustered; 
• K - the number of desired clusters, and 
• J - the number of small sub-samples to be taken 

from Data. 374 
The algorithm is described as follows: 375 

Algorithm. Iterative Initial-Points-Refinement 
(Data,K,J) 

Step 1: I/Sub-sampling 
1.0 CM=O 
1.1 Fori= 1, ... ,J 

1.1.1. Let S; be a small random sub-sample 
set of Data 
1.1.2. Let SP; be a randomly selected K 
sample from S, 
1.1.3. CM;= Clustering(SP,S;,K) 
1.1.4. CM = CM U CM; 

Step 2: II Refinement 
2.0FMS=O 
2.1 For i = 1, ... ,J 

2.1.1. Let FM;= Clustering(CM;, CM,K) 
2.1.2. Let FMS = FMS U FM; 

Step 3: 1/Sekction 
3.1. Let FM= ArgMinJiMJ {Distortion(FM;, 
CM)} 
3.2. Return (FM) 

The refinement algorithm has a computational 
complexity of O(JK(IIS;II)), where K(IISdl) is the 
computation needed for clustering IIS;II number of 
data points into k clusters. 

The iterative initial-point refinement algorithm 
has been applied successfully in clustering numer
ically valued data sets. We present our testing and 
experimental results of the algorithm on the cate
gorical data clustering in the following section. 
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405 4. Experimental results of initial-point refinement 
406 for categorical data clustering 

Q O ....-IT""""I 

0000 

407 We used the Michalski well-known soybean 0 0 00 

408 disease data set (Michalski and Stepp, 1983) to test 
0000 

409 the refined initial-point setting algorithm with the 
410 k-modes method. We compare the result with the 0 0 00 

411 method of picking the initial points randomly 0 0 00 

412 from the data set. We also compare our result .................... 
413 obtained from applying k-modes clustering algo-
414 rithms with initial-point refinement to those from 0 0 """" 

415 Michalski's conceptual clustering algorithm. o-oo 

ON 00 

Table 1 oo-o 
~ 

Multi-valued variables used to describe cases of soybean disease -8 T""""I O ......... ,.......... 

Environment variables Plant global variables ~ 

J 
....,... 0 00 

Time of occurrence (7) Severity .,..... ~ ...... ~ 
Plant stand (3) Seed treatment 
Precipitation (2) Seed germination "' ('f"'l O ....-IT""""I 

Temperature (4) Plant height I ..................... "' Occurrence of hail (3) I Number of years crop (2) ..,........ .......... ..,........ 

repeated ~ 0 0 00 
Damaged area (3) 

1 0 0 00 
Plant local variables (:!, 
Conditional of leaves (2) Condition of stem 

~ 
0 0 00 

Leaf spots (2) Presence of lodging 
"' NNNN 

Leaf spots margin (2) Stem cankers .a 
Leaf spot size (5) Canker lesion color " N N NN 

Shotholinglshreading (2) Fruiting bodies on stem J Leaf malformation (2) External decay of stem 0000 

Leaf mildew growth (2) Mycelium on stem 

l 
..,......... ..................... ..,......... 

Condition of seed (3) Internal discoloration 
Seed mold growth (4) Sclerotia intemaVextemal ................. .,..... 

Seed discoloration (2) Condition of fruit pods ... 
.E ..,......... ..................... .,.... 

Seed size (2) Fruit spots 0() 

Seed shriveling (2) Condition of roots °' .......................... 
0 ... 
0 .,..... .................. 

r .,.... N """"".,.... 

Table 2 
Summary of 20 results set 

....................... 

1 Accuracy Cases with Cases with no 
.,.... .............. .,.... 

refinement refinement :I 
il .,.... ..... 0.,..... 

0.98 14 5 e NON-

0.94 2 ! 0 0 ......... .,.... 

0.89 2 ·i:: '8 
0.77 3 i )1 ..,, .,, ~ ...... 
0.70 5 "" 13 ~ 0.68 5 .., ._, 
0.66 3 ~ ~ = -N ""o 

!--< .;!,: 0 000 



Table 4 
The description of Dl obtained by conceptual clustering, described by a plant pathologist, and obtained by k-modes algorithm 

Variable Range determined by Range determined Range determined by k-modes 

Precipitation 
Temperature 
Stem cankers 
Canker lesion color 
Fruiting bodies 
Condition of fruit pods 
Time of occurrence 
No. yrs. crop repeated 
Plant stand 
External decay of stem 
Int. diacolor of stem 
Sclerotia int. or ext. 
Condition of roots 
Damaged areas 
Severity 
Leaf spots 
Shotholing/shreading 
Leaf malformation 
Leaf mildew growth 
Condition of stem 
Plant height 
Condition of leaves 
Mycelium on stem 
Condition of seed 
Seed treatment 

Table 5 

conceptual clustering by plant pathologist with initial-point refinement 

Above normal 
Normal 
Above second node 
Brown or n.a. 
Present 
Normal 
July-October 
Several years 
Normal 
Firm and dry 
None 
Absent 
Normal 
Scattered areas or low areas 
Potentially severe or severs 
Absent 
Absent 
Absent 
Absent 
Abnormal 
Abnormal 
Abnormal 
Absent 
Normal 
None or fungicide 

Normal or above normal 
Normal or above normal 
Above second node 
Brown 
Present 
Normal 
August-September 
Several years 

Not present 
In expert 
Description 

Above normal 
Normal 
Above second node 
Dark brown/black 
Present 
Normal 
September 

Normal 
Firm and dry 
None 
Absent 
Normal 
Low areas 
Pot-severe 
Absent 
Absent 
Absent 
Absent 
Abnormal 
Abnormal 
Abnormal 
Absent 
Normal 
Fungicide 

Discriminate characteristics for clusters of soybean disease cases produced by conceptual clustering algorithm 

Variable Quster 1 - Diaporthe Cluster 2 - Quster 3 - Quster 4 -
stem canker Charcoal rot Rhizotonia root rot Phytophtbora rot 

Precipitation Above normal Below normal Above normal Normal/above 
Temperature Normal Normal/above Below normal Normal/below 
Stem cankers Above second node Absent Below soil line Below or slightly above 

soil line 
Canker lesion color Brown or n.a. Tan Brown Dark brown/black 
Fruiting bodies Present Absent Absent Absent 
Condition of fruit pods Normal Normal Few/none Irrelevant 
Plant stand Normal Normal Irrelevent Less than normal 
External decay of stem Firm and dry Absent Firm and dry AbsenUfinn and dry 
Int. diacolor of stem None Black None None 
Sclerotia int. or ext. Absent Present Absent Absent 
Condition of roots Normal Normal Normal/rotted Rotted 
Damaged areas Scattered areas or low Whole fields, upland Low area Whole fields, low area 

areas areas 

416 The Michalski problem is to reconstruct a 
417 classification of selected soybean diseases. Given in 
418 the data set are 47 cases of soybean diseases each 

characterized by 35 multi-valued variables. These 419 
cases are drawn from four populations - each 420 
population representing one of the following soy- 421 



Table 6 
Discriminate characteristics for clusters of soybean disease cases produced by k-modes cluster algorithm with initial-point refinement 

Variable Cluster 1 - Diaporthe Cluster 2 - Charcoal rot Cluster 3 - Rhizotonia Cluster 4 - Phytoph-
stem canker root rot thora rot 

Precipitation Above normal Less than normal Above normal Normal 
Temperature Normal Normal Below normal Normal 
Stem cankers Above second node Absent Below soil line Below soil line 
Canker lesion color Brown or n.a. Tan Brown Dark brown/black 
Fruiting bodies Present Absent Absent Absent 
Condition of fruit pods Normal Normal Few Irrelevant 
Plant stand Normal Normal Less than normal Less than normal 
External decay of stem Firm and dry Absent Firm and dry Absent/firm and dry 
Int. discolor of stem None Black None None 
Sclerotia int. or ext. Absent Present Absent Absent 
Condition of roots Normal Normal Rotted Rotted 
Damaged areas Scattered areas or low Upland areas Low area Low area 

areas 

422 bean diseases: Dl - Diaporthe stem canker, D3 - Next we compare our cluster centroids (cluster 450 
423 Rhizoctonia root rot, D2 - Charcoat rot, and D4 - modes) obtained from the k-modes algorithm to 451 
424 Phytophthorat rot. Table 1 shows the 35 variables refined initialization with Michalski's results (Mi- 452 
425 to categorize these diseases. Ideally, a clustering chalski and Stepp, 1983). Michalski used concep- 453 
426 method should partition these given cases into tual clustering algorithm to cluster the same 454 
427 four groups corresponding to the diseases. soybean disease data set. We use the cases that 455 
428 We run the program that implements the k- have 0.98 accuracy in our algorithm to compare 456 
429 modes with iterative initial-point refinement algo- with Michalski's results. Table 3 listed the modes 457 
430 rithm 20 times and compared the results with that of the four clusters from k-modes algorithm. 458 
431 of non-refinement initializations. The results are Table 4 represents the complete complex for 459 
432 evaluated using clustering an accuracy rate r de- cluster Dl - Diaporthe stem canker. The first 460 
433 fined as column is the name of the 25 attributes used to 461 

_ I::=1 ai 
describe the characteristics of cluster Dl. The 462 
second column contains the values for the 25 463 ----, 

n variables from Michalski's conceptual clustering 464 
435 where a1 is the number of instances occurring in algorithm. The third column represents values of 465 
436 both cluster i and its corresponding class, k is the variables used by an expert plant pathologist to 466 
437 number of clusters (4 in this case), and n is the describe the same disease for diagnosis. We re- 467 
438 number of instances in the data set (47 in this constructed the values of all attributes for cluster 468 
439 case). The clustering error is defined as e = 1 - r. D 1 and listed them in the fourth column of the 469 
440 The 20 results are summarized in Table 2. table. As we can see from the table that the de- 470 
441 The experiment results show that 70% (14 cases) scription of the disease determined by k-modes 471 
442 of the results has accuracy of 0.98 (only miss one algorithm contains all the symptoms of the disease 472 
443 case) for refinement initializations. But only 45% specified by Michalski's conceptual clustering al- 473 
444 of the results have accuracy of 0.89 or above for gorithm and by the plant pathologist. Table 5 474 
445 non-refinement initializations. This demonstrates shows the values of discriminate variables for each 475 
446 that the refinement initialization algorithm yields cluster derived from conceptual clustering algo- 476 
447 better clustering results than non-refinement ini- rithm. In Table 6 we show the same values derived 477 
448 tialization methods in clustering categorical data from the k-modes with initial-point refinement 478 
449 sets. 



4 79 algorithm. Once again the two set results match 
480 very well. 

481 5. Conclusion 

482 In this paper, an experiment on an iterative 
483 initial-point refinement process to k-modes clus-
484 tering algorithm for clustering data set containing 
485 categorical (symbolically valued) values is pre-
486 sented. The procedure is motivated by the obser-
487 vation that sub-sampling can provide guidance 
488 regarding the location of the data modes governed 
489 by a joint probability density function assuming to 
490 have generated the data. The refinement algorithm 
491 operates over small sets of sub-samples of a given 
492 data set, hence requiring a small portion of the 
493 total memory needed to store the full data and 
494 making this approach very appealing for large-
495 scale clustering problems. By initializing a general 
496 clustering estimation near the true modes, the true 
497 clusters are discovered more often in the repetitive 
498 applications of the program. However, more study 
499 is needed on the scalability and adaptiveness of the 
500 algorithms for much larger and complicated dis-
501 tributed data sets. On the other hand, the tech-
502 nique dealt with in this research is independent of 
503 the data set size in terms of algorithmic analysis of 
504 the technique presented. Therefore it can be ex-
505 pected that the algorithm is to perform equally 
506 well on other data sets in principle. 
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