8,132 research outputs found

    Waves In Space Plasmas (WISP)

    Get PDF
    Waves in space plasmas (WISP) utilizes powerful radio transmitters and sensitive receivers to probe the secrets of the magnetosphere, ionosphere and atmosphere. The scientific objective is to achieve a better understanding of the physical processes occurring in these regions. For example, audio frequency radio waves will be radiated from the long WISP antenna, will travel to the outer reaches of the magnetosphere, and will interact with Van Allen belt particles, releasing some of their energy which amplifies the waves. Study of this interaction will give us a better understanding of a major magnetospheric process, wave particle interactions. Radio waves from WISP at higher frequencies (AM radio and beyond) will be reflected by the ionosphere and will, for example, advance our understanding of bubbles in the equatorial ionosphere which affect satellite communications

    Ionospheric signal propagation simulator for earth observation missions

    Get PDF
    Following the discovery of the ionosphere by Marconi in 1901, different disciplines have been influenced from the ionospheric effects on radio-waves, such as communications or Earth Observation missions. The ionosphere acts as an electrical layer that is continuously changing due mainly to solar activity. Therefore, it is not a trivial work to predict how radio signals would be affected. This study presents the implementation of a Matlab ray-tracer to predict radio-wave propagation through the ionosphere. This program is inspired on a Fortran code developed in the 70's, but it is extended to include the state-of-the-art models, such as the IRI (International Reference Ionosphere), the IGRF (International Geomagnetic Reference Field), and the NRLMSISE-00 (Naval Research Lab, atmospheric model). A statistical model of bubbles and depletions is also included for increased accuracy. The simulator provides several graphs and a text document, both summarizing the ray trajectories and main propagations effects. This tool is being developed as part of an ESA project devoted to the study of ionospheric effects in low frequency radars, namely radar sounders and Synthetic Aperture Radars, and GNSS systems.Peer ReviewedPostprint (author's final draft

    Environmental assessment overview

    Get PDF
    The assessment program has as its objectives: to identify the environmental issues associated with the SPS Reference System; to prepare a preliminary assessment based on existing data; to suggest mitigating strategies and provide environmental data and guidance to other components of the program as required; and to plan long-range research to reduce the uncertainty in the preliminary assessment. The key environmental issues associated with the satellite power system are discussed and include human health and safety, ecosystems, climate, and interaction with electromagnetic systems

    The European COST (Co-operation in the field of Scientific and Technical Research) Actions: an important chance to cooperate and to grow for all the international ionospheric community

    Get PDF
    The current COST (Co-operation in the field of Scientific and Technical Research) Action 296 on Mitigation of Ionospheric Effects on Radio Systems, along with previous COST238 (Prediction and Retrospective Ionospheric Modelling over Europe), COST251 (Improved Quality of Service in Ionospheric Telecommunication Systems Planning and Operation) and COST271 (Effects of the Upper Atmosphere on Terrestrial and Earth-Space Communications) Actions have addressed investigations of the different effects of the ionosphere on terrestrial telecommunication systems and on Earth-space systems. Throughout their lifetime of 20 years, these COST actions have achieved a great deal in long-term archiving of synoptic soundings of the state of the ionosphere, in enhancing understanding of the morphology of the ionosphere and its dependence on space weather and in producing ionosphere-plasmasphere as well as propagation models for terrestrial radio services available to variety of radio users. Besides the formal contributions to ITU-R and the contributions to international organisations such as URSI, COSPAR, EGU and ESA, these COST Actions have provided a forum for the establishment of collaborative European initiatives, a centre of expertise and excellence in ionosphere knowledge when none other equivalent in Europe or elsewhere exists. In this paper, we review the main achievements of the COST 238, 251 and 271 actions as developed in the past studies

    Advances in ionospheric propagation modelling at high-latitudes

    Get PDF

    Genesis of the 1000-Foot Arecibo Dish

    Get PDF
    The giant radar/radio astronomy dish near Arecibo, Puerto Rico, was conceived by William E. Gordon in early 1958 as a back-scattering radar system to measure the density and temperature of the Earth’s ionosphere up to a few thousand kilometers. Gordon calculated the required size of the antenna by using the Thomson cross-section for scattering by the electrons, and assuming that the elementary scattered waves would be incoherent. During the summer and autumn of 1958 Gordon led a study group that published a design report in December 1958. The report showed that a dish 1000 feet in diameter would be required, and described a limestone sinkhole in Puerto Rico that would make a suitable support for such a dish. Meanwhile, in November 1958, Kenneth L. Bowles per-formed an ionospheric radar experiment that showed that the Gordon calculation for the scattered power was roughly correct, but that the calculated spectral width was too big. The consequence of these results was that a dish substantially smaller than 1000 feet could have satisfied the original goals for the radar. However, from the spring of 1958 the value of 1000 feet had been in the minds of the study team, and a large suite of important experiments that such a dish could do had been identified. These apparently became the raison d’être for the project, and the possibility of shrinking the dish to accomplish only the original goals seems to have been ignored. The project was sold to a new federal funding agency, the Advanced Research Projects Agency (ARPA), which was interested, in part at least, because ballistic missiles traveled through the ionosphere and it was important to fully understand that environment. Gordon’s original calculation contained a remarkably beneficial error. Without it, it is doubtful that such a large dish would have been built

    Optimization of PEDOT: PSS thin film for organic solar cell application

    Get PDF
    As a clean and renewable energy source, the development of the organics solar cells is very promising due to the inorganic solar cell inconvenient production process and material shortness. In this work, P3HT: PCBM bulk-heterojunction devices were produced by spin coating organic layers onto ITO coated glass in air, and deposited it with an Au layer as top metal electrode. Inverted devices were fabricated with and without PEDOT:PSS. Then, several attempts have been conducted to improve power conversion efficiency by optimizing different thicknesses of the interlayer between active layer and metal. Power conversion efficiency, short circuit current, open circuit voltage and fill factor were measured on all produced devices. In contrast, the devices with 50 nm thickness of PEDOT: PSS layer showed as better solar cell with 0.0394% efficiency compared to the devices without PEDOT:PSS. As a result, introduction of PEDOT:PSS layer on active layer improves hole collection at the metal / active layer interface

    Charge Analyzer Responsive Local Oscillations

    Get PDF
    The first transatlantic radio transmission, demonstrated by Marconi in December of 1901, revealed the essential role of the ionosphere for radio communications. This ionized layer of the upper atmosphere controls the amount of radio power transmitted through, reflected off of, and absorbed by the atmospheric medium. Low-frequency radio signals can propagate long distances around the globe via repeated reflections off of the ionosphere and the Earth's surface. Higher frequency radio signals can punch through the ionosphere to be received at orbiting satellites. However, any turbulence in the ionosphere can distort these signals, compromising the performance or even availability of space-based communication and navigations systems. The physics associated with this distortion effect is analogous to the situation when underwater images are distorted by convecting air bubbles. In fact, these ionospheric features are often called 'plasma bubbles' since they exhibit some of the similar behavior as underwater air bubbles. These events, instigated by solar and geomagnetic storms, can cause communication and navigation outages that last for hours. To help understand and predict these outages, a world-wide community of space scientists and technologists are devoted to researching this topic. One aspect of this research is to develop instruments capable of measuring the ionospheric plasma bubbles. Figure 1 shows a photo of the Charge Analyzer Responsive to Local Oscillations (CARLO), a new instrument under development at NASA Marshall Space Flight Center (MSFC). It is a frequency-domain ion spectrum analyzer designed to measure the distributions of ionospheric turbulence from 1 Hz to 10 kHz (i.e., spatial scales from a few kilometers down to a few centimeters). This frequency range is important since it focuses on turbulence scales that affect VHF/UHF satellite communications, GPS systems, and over-the-horizon radar systems. CARLO is based on the flight-proven Plasma Local Anomalous Noise Environment (PLANE) instrument, previously flown on a U.S. Air Force low-Earth orbiting satellite, which successfully measured ion turbulence in five frequency decades from 0.1 Hz to 10 kHz (fig 2)
    • …
    corecore