12,808 research outputs found

    Linking design and manufacturing domains via web-based and enterprise integration technologies

    Get PDF
    The manufacturing industry faces many challenges such as reducing time-to-market and cutting costs. In order to meet these increasing demands, effective methods are need to support the early product development stages by bridging the gap of communicating early design ideas and the evaluation of manufacturing performance. This paper introduces methods of linking design and manufacturing domains using disparate technologies. The combined technologies include knowledge management supporting for product lifecycle management (PLM) systems, enterprise resource planning (ERP) systems, aggregate process planning systems, workflow management and data exchange formats. A case study has been used to demonstrate the use of these technologies, illustrated by adding manufacturing knowledge to generate alternative early process plan which are in turn used by an ERP system to obtain and optimise a rough-cut capacity plan

    Model-based provisioning and management of adaptive distributed communication in mobile cooperative systems

    Get PDF
    Adaptation of communication is required to maintain the reliable connection and to ensure the minimum quality in collaborative activities. Within the framework of wireless environment, how can host entities be handled in the event of a sudden unexpected change in communication and reliable sources? This challenging issue is addressed in the context of Emergency rescue system carried out by mobile devices and robots during calamities or disaster. For this kind of scenario, this book proposes an adaptive middleware to support reconfigurable, reliable group communications. Here, the system structure has been viewed at two different states, a control center with high processing power and uninterrupted energy level is responsible for global task and entities like autonomous robots and firemen owning smart devices act locally in the mission. Adaptation at control center is handled by semantic modeling whereas at local entities, it is managed by a software module called communication agent (CA). Modeling follows the well-known SWRL instructions which establish the degree of importance of each communication link or component. Providing generic and scalable solutions for automated self-configuration is driven by rule-based reconfiguration policies. To perform dynamically in changing environment, a trigger mechanism should force this model to take an adaptive action in order to accomplish a certain task, for example, the group chosen in the beginning of a mission need not be the same one during the whole mission. Local entity adaptive mechanisms are handled by CA that manages internal service APIs to configure, set up, and monitors communication services and manages the internal resources to satisfy telecom service requirements

    High Energy Physics Forum for Computational Excellence: Working Group Reports (I. Applications Software II. Software Libraries and Tools III. Systems)

    Full text link
    Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to develop an effective response to a series of expected challenges. In order to help shape the desired response, the HEP Forum for Computational Excellence (HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers -- 1) software effectiveness, and 2) infrastructure and expertise advancement. The HEP-FCE formed three working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3) Systems (including systems software), to provide an overview of the current status of HEP computing and to present findings and opportunities for the desired HEP computational roadmap. The final versions of the reports are combined in this document, and are presented along with introductory material.Comment: 72 page

    LaCOLLA: A Middleware to Support Self-sufficient Collaborative Groups

    Get PDF
    In a decentralised and distributed environment, collaboration requiring the sharing and building of applications is a complex task. For this reason, we propose LaCOLLA, a fully decentralised peer-to-peer middleware that aims to simplify the process of incorporating collaborative functionalities into any application. It provides applications with certain essential collaborative functionalities: dissemination of information, storage, presence and transparency of location, management of members and groups, and execution of tasks. A distinguishing feature of LaCOLLA is that participants provide resources for the benefit of the group. This enables collaboration activities to take place in a collective environment using only the resources provided by participants in the collaboration (self-sufficiency). In this paper we present and evaluate the architecture of LaCOLLA, its API, and key aspects of its implementation

    Component-based Adaptation Methods for Service-Oriented Peer-to-Peer Software Architectures

    Get PDF
    Service-oriented peer-to-peer architectures aim at supporting application scenarios of dispersed collaborating groups in which the participating users are capable of providing and consuming local resources in terms of peer services. From a conceptual perspective, service-oriented peer-to-peer architectures adopt relevant concepts of two well-established state-of-the-art software architectural styles, namely service-oriented architectures (also known as SOA) and peer-to-peer architectures (P2P). One major argumentation of this thesis is that the adoption of end-user adaptability (or tailorability) concepts is of major importance for the successful deployment of service-oriented peer-to-peer architectures that support user collaboration. Since tailorability concepts have so far not been analyzed for both peer-to-peer and service-oriented architectures, no relevant models exist that could serve as a tailorability model for service-oriented peer-to-peer architectures. In order to master the adaptation of peer services, as well as peer service compositions within service-oriented peer-to-peer architectures, this dissertation proposes the adoption of component-oriented development methods. These so-called component-based adaptation methods enable service providers to adapt their provided services during runtime. Here, a model for analyzing existing dependencies on subscribed ser-vice consumers ensures that a service provider is able to adapt his peer services without violating any dependencies. In doing so, an adaptation policy that can be pre-arranged within a peer group regulates the procedures of how to cope with existing dependencies in the scope of a group. The same methods also serve as a way to handle exceptional cases, in particular the failure of a dependent service provider peer and, hence, a service that is part of a local service composition. In this, the hosting runtime environment is responsible for detecting exceptions and for initiating the process of exception resolution. During the resolution phase, a user can be actively involved at selected decision points in order to resolve the occurred exception in unpredictable contexts. An exception could also be the reason for the violation of an integrity constraint that serves as a contract between various peers that interact within a given collaboration. The notion of integrity constraints and the model of handling the constraint violation aim at improving the reliability of target-oriented peer collaborations. This dissertation is composed of three major parts that each makes a significant contribution to the state of the art. First of all, a formal architectural style (SOP2PA) is introduced to define the fundamental elements that are necessary to build service-oriented peer-to-peer architectures, as well as their relationships, constraints, and operational semantics. This architectural style also formalizes the above-mentioned adaptation methods, the exception handling model that embraces these methods, the analysis model for managing consumer dependencies, as well as the integrity constraints model. Subsequently, on this formal basis, a concrete (specific) service-oriented peer-to-peer architecture (DEEVOLVE) is conceptualized that serves as the default implementation of that style. Here, the notions described above are materialized based on state-of-the-art software engineering methods and models. Finally, the third contribution of this work outlines an application scenario stemming from the area of construction informatics, in which the default implementation DEEVOLVE is deployed in order to support dispersed planning activities of structural engineers
    • 

    corecore