172,958 research outputs found

    Utilizing semantic networks to database and retrieve generalized stochastic colored Petri nets

    Get PDF
    Previous work has introduced the Planning Coordinator (PCOORD), a coordinator functioning within the hierarchy of the Intelligent Machine Mode. Within the structure of the Planning Coordinator resides the Primitive Structure Database (PSDB) functioning to provide the primitive structures utilized by the Planning Coordinator in the establishing of error recovery or on-line path plans. This report further explores the Primitive Structure Database and establishes the potential of utilizing semantic networks as a means of efficiently storing and retrieving the Generalized Stochastic Colored Petri Nets from which the error recovery plans are derived

    Performance Analysis of Open Source Machine Learning Frameworks for Various Parameters in Single-Threaded and Multi-Threaded Modes

    Full text link
    The basic features of some of the most versatile and popular open source frameworks for machine learning (TensorFlow, Deep Learning4j, and H2O) are considered and compared. Their comparative analysis was performed and conclusions were made as to the advantages and disadvantages of these platforms. The performance tests for the de facto standard MNIST data set were carried out on H2O framework for deep learning algorithms designed for CPU and GPU platforms for single-threaded and multithreaded modes of operation Also, we present the results of testing neural networks architectures on H2O platform for various activation functions, stopping metrics, and other parameters of machine learning algorithm. It was demonstrated for the use case of MNIST database of handwritten digits in single-threaded mode that blind selection of these parameters can hugely increase (by 2-3 orders) the runtime without the significant increase of precision. This result can have crucial influence for optimization of available and new machine learning methods, especially for image recognition problems.Comment: 15 pages, 11 figures, 4 tables; this paper summarizes the activities which were started recently and described shortly in the previous conference presentations arXiv:1706.02248 and arXiv:1707.04940; it is accepted for Springer book series "Advances in Intelligent Systems and Computing

    Countering the Fear of Black-boxed AI in Maintenance: Towards a Smart Colleague

    Get PDF
    Digitalization forces improved maintenance in shop-floor systems. Companies have begun to upgrade their existing production lines by equipping them with new machinery or sensors. This enables intelligent tracking and control of manufacturing activities. Simultaneously, the advancement of computing power enables complex analyses including the adaptation of machine learning algorithms to gain new knowledge. However, previous research has revealed that intelligent decision support systems are only applied successfully if they are comprehensible for employees within the factory. Therefore, we have developed a prototype based on a comprehensible set of rules for automated anomaly identification in real-time. We include employee’s expert knowledge from the very beginning to establish a sense of participation. This is improved and enhanced by techniques from the fields of process mining and machine learning. Thus, the prototype presents previously unknown error correlations in an understandable and descriptive way combining intelligent anomaly detection by a linked knowledge database system

    Automated Intelligent real-time system for aggregate classification

    Get PDF
    Traditionally, mechanical sieving and manual gauging are used to determine the quality of the aggregates. In order to obtain aggregates with better characteristics, it must pass a series of mechanical, chemical and physical tests which are often performed manually, and are slow, highly subjective and laborious. This research focuses on developing an intelligent real-time classification system called NeuralAgg which consists of 3 major subsystems namely the real-time machine vision, the intelligent classification and the database system. The image capturing system can send high quality images of moving aggregates to the image processing subsystem, and then to the intelligent system for shape classification using artificial neural network. Finally, the classification information is stored in the database system for data archive, which can be used for post analysis purposes. These 3 subsystems are integrated to work in real-time mode which takes an average of 1.23 s for a complete classification process. The system developed in this study has an accuracy of approximately 87% and has the potential to significantly reduce the processing and/or classification time and workload

    Intelligent Systems Research in the Construction Industry

    Get PDF
    YesWith the increasing complexity of problems in the construction industry, researchers are investigating computationally rigorous intelligent systems with the aim of seeking intelligent solutions. The purpose of this paper is therefore to analyse the research published on ‘intelligent systems in the construction industry’ over the past two decades. This is achieved to observe and understand the historical trends and current patterns in the use of different types of intelligent systems and to exhibit potential directions of further research. Thus, to trace the applications of intelligent systems to research in the construction industry, a profiling approach is employed to analyse 514 publications extracted from the Scopus database. The prime value and uniqueness of this paper lies in analysing and compiling the existing published material by examining variables (such as yearly publications, geographic location of each publication, etc.). This has been achieved by synthesising existing publications using 14 keywords2 ‘Intelligent Systems’, ‘Artificial Intelligence’, ‘Expert Systems’, ‘Fuzzy Systems’, ‘Genetic Algorithms’, ‘Knowledge-Based Systems’, ‘Neural Networks’, ‘Context Aware Applications’, ‘Embedded Systems’, ‘Human–Machine Interface’, ‘Sensing and Multiple Sensor Fusion’, ‘Ubiquitous and Physical Computing’, ‘Case-based Reasoning’ and ‘Construction Industry’. The prime contributions of this research are identified by associating (a) yearly publication and geographic location, (b) yearly publication and the type of intelligent systems employed/discussed, (c) geographic location and the type of research methods employed, and (d) geographic location and the types of intelligent systems employed. These contributions provide a comparison between the two decades and offer insights into the trends in using different intelligent systems types in the construction industry. The analysis presented in this paper has identified intelligent systems studies that have contributed to the development and accumulation of intellectual wealth to the intelligent systems area in the construction industry. This research has implications for researchers, journal editors, practitioners, universities and research institutions. Moreover, it is likely to form the basis and motivation for profiling other database resources and specific types of intelligent systems journals in this area
    • …
    corecore