29,973 research outputs found

    Independent Orbiter Assessment (IOA): Analysis of the displays and controls subsystem

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Displays and Controls (D and C) subsystem hardware. The function of the D and C hardware is to provide the crew with the monitor, command, and control capabilities required for management of all normal and contingency mission and flight operations. The D and C hardware for which failure modes analysis was performed consists of the following: Acceleration Indicator (G-METER); Head Up Display (HUD); Display Driver Unit (DDU); Alpha/Mach Indicator (AMI); Horizontal Situation Indicator (HSI); Attitude Director Indicator (ADI); Propellant Quantity Indicator (PQI); Surface Position Indicator (SPI); Altitude/Vertical Velocity Indicator (AVVI); Caution and Warning Assembly (CWA); Annunciator Control Assembly (ACA); Event Timer (ET); Mission Timer (MT); Interior Lighting; and Exterior Lighting. Each hardware item was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode

    ICAP: An Interactive Cluster Analysis Procedure for analyzing remotely sensed data

    Get PDF
    An Interactive Cluster Analysis Procedure (ICAP) was developed to derive classifier training statistics from remotely sensed data. The algorithm interfaces the rapid numerical processing capacity of a computer with the human ability to integrate qualitative information. Control of the clustering process alternates between the algorithm, which creates new centroids and forms clusters and the analyst, who evaluate and elect to modify the cluster structure. Clusters can be deleted or lumped pairwise, or new centroids can be added. A summary of the cluster statistics can be requested to facilitate cluster manipulation. The ICAP was implemented in APL (A Programming Language), an interactive computer language. The flexibility of the algorithm was evaluated using data from different LANDSAT scenes to simulate two situations: one in which the analyst is assumed to have no prior knowledge about the data and wishes to have the clusters formed more or less automatically; and the other in which the analyst is assumed to have some knowledge about the data structure and wishes to use that information to closely supervise the clustering process. For comparison, an existing clustering method was also applied to the two data sets

    The presence of the analyst in Lacanian treatment

    Get PDF
    Transference implies the actualization of the analyst in the analytic encounter. Lacan developed this idea through the syntagm presence of the analyst. In the course of his seminars, however, two completely different presences emerge, with major implications for how the treatment is directed. In the light of Lacan's idea that the transference is constituted in Real, Symbolic, and Imaginary dimensions, it can be seen how in his early work the analyst's presence is a phenomenon at the crossroads between signifiers and images. From the 1960s onward, however, the analyst's presence comes to necessarily involve the Real. This means it points to the moment at which symbolization reaches its limits. The clinical implications of this later interpretation of the presence of the analyst as incorporating the Real are manifold and affect psychoanalytic practice with regard to the position and the interventions of the analyst. Specifically, interventions targeted at provoking changes in defenses against experiences of excess or senselessness are discussed and illustrated with case vignettes and a published case. With transference considered the navel of the treatment, the necessity that traumatic material will emerge in relation to the analyst becomes clear

    Assay strategies for the discovery and validation of therapeutics targeting <i>Brugia pahangi</i> Hsp90

    Get PDF
    The chemotherapy of lymphatic filariasis relies upon drugs such as diethylcarbamazine and ivermectin that largely target the microfilarial stages of the parasite, necessitating continued treatment over the long reproductive life span of the adult worm. The identification of compounds that target adult worms has been a long-term goal of WHO. Here we describe a fluorescence polarization assay for the identification of compounds that target Hsp90 in adult filarial worms. The assay was originally developed to identify inhibitors of Hsp90 in tumor cells, and relies upon the ability of small molecules to inhibit the binding of fluorescently labelled geldanamycin to Hsp90. We demonstrate that the assay works well with soluble extracts of Brugia, while extracts of the free-living nematode C. elegans fail to bind the probe, in agreement with data from other experiments. The assay was validated using known inhibitors of Hsp90 that compete with geldanamycin for binding to Hsp90, including members of the synthetic purine-scaffold series of compounds. The efficacy of some of these compounds against adult worms was confirmed in vitro. Moreover, the assay is sufficiently sensitive to differentiate between binding of purine-scaffold compounds to human and Brugia Hsp90. The assay is suitable for high-throughput screening and provides the first example of a format with the potential to identify novel inhibitors of Hsp90 in filarial worms and in other parasitic species where Hsp90 may be a target

    Ametryn removal by Metarhizium brunneum: Biodegradation pathway proposal and metabolic background revealed

    Get PDF
    Ametryn is a representative of a class of s-triazine herbicides absorbed by plant roots and leaves and characterized as a photosynthesis inhibitor. It is still in use in some countries in the farming of pineapples, soybean, corn, cotton, sugar cane or bananas; however, due to the adverse effects of s-triazine herbicides on living organisms use of these pesticides in the European Union has been banned. In the current study, we characterized the biodegradation of ametryn (100 mg L-1) by entomopathogenic fungal cosmopolite Metarhizium brunneum. Ametryn significantly inhibited the growth and glucose uptake in fungal cultures. The concentration of the xenobiotic drops to 87.75 mg L-1 at the end of culturing and the biodegradation process leads to formation of four metabolites: 2-hydroxy atrazine, ethyl hydroxylated ametryn, S-demethylated ametryn and deethylametryn. Inhibited growth is reflected in the metabolomics data, where significant differences in concentrations of L-proline, gamma-aminobutyric acid, L-glutamine, 4-hydroxyproline, L-glutamic acid, ornithine and L-arginine were observed in the presence of the xenobiotic when compared to control cultures. The metabolomics data demonstrated that the presence of ametryn in the fungal culture induced oxidative stress and serious disruptions of the carbon and nitrogen metabolism. Our results provide deeper insights into the microorganism strategy for xenobiotic biodegradation which may result in future enhancements to ametryn removal by the tested strain.National Science Center, Poland (Project No. 2015/19/B/NZ9/00167

    Catalytic molecularly imprinted polymer membranes: Development of the biomimetic sensor for phenols detection

    Get PDF
    Portable biomimetic sensor devices for the express control of phenols content in water were developed. The synthetic binding sites mimicking active site of the enzyme tyrosinase were formed in the structure of free-standing molecularly imprinted polymer membranes. Molecularly imprinted polymer membranes with the catalytic activity were obtained by co-polymerization of the complex Cu (II)–catechol–urocanic acid ethyl ester with (tri)ethyleneglycoldimethacrylate, and oligourethaneacrylate. Addition of the elastic component oligourethaneacrylate provided formation of the highly cross-linked polymer with the catalytic activity in a form of thin, flexible, and mechanically stable membrane. High accessibility of the artificial catalytic sites for the interaction with the analyzed phenol molecules was achieved due to addition of linear polymer (polyethyleneglycol Mw 20,000) to the initial monomer mixture before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) were formed. The cross-linked component of the semi-IPN was represented by the highly cross-linked catalytic molecularly imprinted polymer, while the linear one was represented by polyethyleneglycol Mw 20,000. Extraction of the linear polymer from the fully formed semi-IPN resulted in formation of large pores in the membranes’ structure. Concentration of phenols in the analyzed samples was detected using universal portable device oxymeter with the oxygen electrode in a close contact with the catalytic molecularly imprinted polymer membrane as a transducer. The detection limit of phenols detection using the developed sensor system based on polymers–biomimics with the optimized composition comprised 0.063 mM, while the linear range of the sensor comprised 0.063–1 mM. The working characteristics of the portable sensor devices were investigated. Storage stability of sensor systems at room temperature comprised 12 months (87%). As compared to traditional methods of phenols detection the developed sensor system is characterized by simplicity of operation, compactness, an
    corecore