5,813 research outputs found

    A fiber-optic current sensor for aerospace applications

    Get PDF
    A robust, accurate, broad-band, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60 Hz terrestrial power systems and in 400 Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology contained in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given

    Application of distributed optical fiber sensors for the health monitoring of two real structures in Barcelona

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis Group in Structure and Infrastructure Engineering on 2018, available online at: http://www.tandfonline.com/10.1080/15732479.2018.1438479The versatility and ease of installation of Distributed Optical Fibre Sensors (DOFS) compared with traditional monitoring systems are important characteristics to consider when facing the Structural Health Monitoring (SHM) of real world structures. The DOFS used in this study provide continuous (in space) strain data along the optical fibre with high spatial resolution. The main issues and results of two different existing structures monitored with DOFS, are described in this paper. The main SHM results of the rehabilitation of an historical building used as hospital and the enlargement of a pre-stressed concrete bridge are presented. The results are obtained using a novel DOFS based on an Optical Backscattered Reflectometry (OBR) technique. The application of the optical fibre monitoring system to two different materials (masonry and concrete) provides also important insights on the great possibilities of this technique when monitoring existing structures. In fact, the influence of strain transfer between the DOFS and the bonding surface is one of the principal effects that should be considered in the application of the OBR technique to real structures. Moreover, and because structural surfaces generally present considerable roughness, the procedure to attach the optical fibre to the two monitored structures is described.Peer ReviewedPostprint (author's final draft

    Optical fibre sensors - applications and potential

    Get PDF
    Fibre optic sensors have progressed considerably during the past few years and are now establishing their potential as very real contenders in the environmental, structural monitoring and industrial sensing areas. This paper will explore some examples of these emerging applications and analyse the benefits which optical fibre technology offers within these measurement sectors. We shall then continue to explore emerging prospects which offer new opportunities for future research and exploitation

    The trade-off characteristics of acoustic and pressure sensors for the NASP

    Get PDF
    Results of a trade study for the development of pressure and acoustic sensors for use on the National Aerospace Plane (NASP) are summarized. Pressure sensors are needed to operate to 100 psia; acoustic sensors are needed that can give meaningful information about a 200 dB sound pressure level (SPL) environment. Both sensors will have to operate from a high temperature of 2000 F down to absolute zero. The main conclusions of the study are the following: (1) Diaphragm materials limit minimum size and maximum frequency response attainable. (2) No transduction is available to meet all the NASP requirements with existing technology. (3) Capacitive sensors are large relative to the requirement, have limited resolution and frequency response due to noise, and cable length is limited to approximately 20 feet. (4) Eddy current sensors are large relative to the requirement and have limited cable lengths. (5) Fiber optic sensors provide the possibility for a small sensor, even though present developments do not exhibit that characteristic. The need to use sapphire at high temperature complicates the design. Present high temperature research sensors suffer from poor resolution. A significant development effort will be required to realize the potential of fiber optics. (6) Short-term development seems to favor eddy current techniques with the penalty of larger size and reduced dynamic range for acoustic sensors. (7) Long-term development may favor fiber optics with the penalties of cost, schedule, and uncertainty

    Review: optical fiber sensors for civil engineering applications

    Get PDF
    Optical fiber sensor (OFS) technologies have developed rapidly over the last few decades, and various types of OFS have found practical applications in the field of civil engineering. In this paper, which is resulting from the work of the RILEM technical committee “Optical fiber sensors for civil engineering applications”, different kinds of sensing techniques, including change of light intensity, interferometry, fiber Bragg grating, adsorption measurement and distributed sensing, are briefly reviewed to introduce the basic sensing principles. Then, the applications of OFS in highway structures, building structures, geotechnical structures, pipelines as well as cables monitoring are described, with focus on sensor design, installation technique and sensor performance. It is believed that the State-of-the-Art review is helpful to engineers considering the use of OFS in their projects, and can facilitate the wider application of OFS technologies in construction industry

    Optical Current Sensors for High Power Systems: A Review

    Get PDF
    The intrinsic advantages of optical sensor technology are very appealing for high voltage applications and can become a valuable asset in a new generation of smart grids. In this paper the authors present a review of optical sensors technologies for electrical current metering in high voltage applications. A brief historical overview is given together with a more detailed focus on recent developments. Technologies addressed include all fiber sensors, bulk magneto-optical sensors, piezoelectric transducers, magnetic force sensors and hybrid sensors. The physical principles and main advantages and disadvantages are discussed. Configurations and strategies to overcome common problems, such as interference from external currents and magnetic fields induced linear birefringence and others are discussed. The state-of-the-art is presented including commercial available systems.info:eu-repo/semantics/publishedVersio

    Distribution automation applications of fiber optics

    Get PDF
    Motivations for interest and research in distribution automation are discussed. The communication requirements of distribution automation are examined and shown to exceed the capabilities of power line carrier, radio, and telephone systems. A fiber optic based communication system is described that is co-located with the distribution system and that could satisfy the data rate and reliability requirements. A cost comparison shows that it could be constructed at a cost that is similar to that of a power line carrier system. The requirements for fiber optic sensors for distribution automation are discussed. The design of a data link suitable for optically-powered electronic sensing is presented. Empirical results are given. A modeling technique that was used to understand the reflections of guided light from a variety of surfaces is described. An optical position-indicator design is discussed. Systems aspects of distribution automation are discussed, in particular, the lack of interface, communications, and data standards. The economics of distribution automation are examined

    Polymer Based Miniature Fabry-Perot Pressure Sensors with Temperature Compensation: Modeling, Fabrication, and Experimental studies

    Get PDF
    Miniature Fabry-Perot (FP) pressure sensors have been of great interest because of their advantages of small sizes, high performance, and immunity to electromagnetic interference. Most of these sensors are built with silicon/silica materials that have good mechanical, chemical, and thermal stabilities. However, due to the large Young's modulus of silica/silicon, developing a high sensitivity miniature sensor becomes difficult. In addition, fabrication of these sensors often involves high temperature fusion bonding and harsh acid etching. On the other hand, a polymer material becomes an attractive choice for high sensitive and miniature pressure sensors due to its small Young's modulus relative to that of silicon/glass. Moreover, polymer processes can be performed under ambient pressure and temperature without hazardous chemicals. However, a polymer-based sensor suffers from high temperature sensitivity, which must be compensated to obtain accurate pressure measurements. In this dissertation, three types of polymer based FP miniature sensors for static or quasi-static pressure measurements are investigated through modeling, microfabrication, and experiments. First, co-axial and cross-axial FP sensors with a built-in fiber Bragg grating (FBG) for temperature measurement and compensation are studied. In both sensors, the FP cavity is precisely self-aligned with the optical axis by using the fiber as a natural mask, which eliminates the need for a photo mask and tedious optical alignments. Second, a FP sensor composed of a UV-molded optical cavity with a pre-written FBG is developed. For the first time, a UV molding process with an optical fiber based mold is developed for fabrication of miniature FP sensors. This process enables high accuracy optical alignment for UV molding. Taking advantage of the UV molding process, the third type of sensor features a hybrid dual FP cavity for simultaneous temperature and pressure measurements. A novel signal processing method is developed to retrieve the multiple cavity lengths with an improved speed, resolution, and noise resistance. Experimental studies show that these polymer based sensors have good pressure and temperature sensing performance as well as temperature compensation capabilities. In addition, blood pressure and intradiscal pressure measurements of a swine are performed, which demonstrates the feasibility of these sensors for biomedical applications
    • …
    corecore