9 research outputs found

    EEG-based effective connectivity distinguishes between unresponsive states with and without report of conscious experience and correlates with brain complexity

    Get PDF
    Objective methods for distinguishing conscious from unconscious states in humans are of key importance for clinical evaluation of general anesthesia and patients with disorders or consciousness. Here, we test the generalizability of a DTF-based algorithm - a measure of effective connectivity - as an objective measure of conscious experience during anesthesia and correlate it with a well-tested index of consciousness: the Perturbational Complexity Index (PCI). We reanalyzed EEG data from an experimental study in which 18 healthy volunteers were randomly assigned to one of three types of general anesthesia: propofol, xenon, and ketamine. EEG was recorded before and during anesthesia, and DTF was calculated from every 1-second segment of the EEG data to quantify the effective connectivity between channel pairs. This was used to classify the state of each participant as either conscious or unconscious, and the classifications were compared with the participant鈥檚 delayed report of experience, and the PCI. The algorithm was more likely to classify participants as conscious in the awake state than during propofol and xenon anesthesia (p0.05). Furthermore, the DTF-based confidence of being classified as conscious was highly correlated with PCI (r2=0.48, p<0.05). These results provide further support for the notion that effective connectivity measured between EEG electrodes can be used to distinguish between conscious and unconscious states in humans

    Graph analysis of TMS鈥揈EG connectivity reveals hemispheric differences following occipital stimulation

    Get PDF
    (1) Background: Transcranial magnetic stimulation combined with electroencephalography (TMS鈥揈EG) provides a unique opportunity to investigate brain connectivity. However, possible hemispheric asymmetries in signal propagation dynamics following occipital TMS have not been investigated. (2) Methods: Eighteen healthy participants underwent occipital single-pulse TMS at two different EEG sites, corresponding to early visual areas. We used a state-of-the-art Bayesian estimation approach to accurately estimate TMS-evoked potentials (TEPs) from EEG data, which has not been previously used in this context. To capture the rapid dynamics of information flow patterns, we implemented a self-tuning optimized Kalman (STOK) filter in conjunction with the information partial directed coherence (iPDC) measure, enabling us to derive time-varying connectivity matrices. Subsequently, graph analysis was conducted to assess key network properties, providing insight into the overall network organization of the brain network. (3) Results: Our findings revealed distinct lateralized effects on effective brain connectivity and graph networks after TMS stimulation, with left stimulation facilitating enhanced communication between contralateral frontal regions and right stimulation promoting increased intra-hemispheric ipsilateral connectivity, as evidenced by statistical test (p &lt; 0.001). (4) Conclusions: The identified hemispheric differences in terms of connectivity provide novel insights into brain networks involved in visual information processing, revealing the hemispheric specificity of neural responses to occipital stimulation

    Effects of Sensorimotor Perturbations on Balance Performance and Electrocortical Dynamics

    Full text link
    Humans must frequently adapt their posture to prevent loss of balance. Such balance control requires complex, precisely-timed coordination among sensory input, neural processing, and motor output. Despite its importance, our current understanding of cortical involvement during balance control remains limited by traditional neuroimaging methods, which are stationary and have poor time resolution. High-density electroencephalography (EEG), combined with independent component analysis, has become a promising tool for recording cortical dynamics during balance perturbations due to its portability and high temporal resolution. Additionally, recent improvements in immersive virtual reality headsets may provide new rehabilitative paradigms, but the effects of virtual reality on balance and cortical function remain poorly understood. In my first study, I recorded high-density EEG from healthy, young adult subjects as they walked along a beam with and without virtual reality high heights exposure. While virtual high heights did induce stress, the use of virtual reality during the task increased performance errors and EEG measures of cognitive loading compared to real-world viewing without a headset. In my second study, I collected high-density EEG from healthy young adults as they walked along a treadmill-mounted balance beam to determine the effect of a transient visual perturbation on training in virtual reality. Subjects in the perturbations group improved comparably to those that trained without virtual reality, indicating that the perturbation helped subjects overcome the negative effects of virtual reality on motor learning. The perturbation primarily elicited a cognitive change. In my third study, healthy, young adult EEG was recorded during physical pull and visual rotation perturbations to tandem walking and tandem standing. I found similar electrocortical patterns for both perturbation types, but different cortical areas were involved for each. In my fourth study, I used a phantom head to validate EEG connectivity methods based on Granger causality in a real-world environment. In general, connectivity measures could determine the underlying connections, but many were susceptible to high-frequency false positives. Using data from my third study, my fifth study analyzed corticomuscular connectivity patterns following sensorimotor balance perturbations. I found strong occipito-parietal connections regardless of perturbation type, along with evidence of direct muscular control from the supplementary motor area during the standing perturbation response. Taken together, the work presented in this dissertation greatly expands upon the current knowledge of cortical processing during sensorimotor balance perturbations and the effect of such perturbations on short-term motor learning, providing multiple avenues for future exploration.PHDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147615/1/stepeter_1.pd

    Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends

    Get PDF
    Understanding how different areas of the human brain communicate with each other is a crucial issue in neuroscience. The concepts of structural, functional and effective connectivity have been widely exploited to describe the human connectome, consisting of brain networks, their structural connections and functional interactions. Despite high-spatial-resolution imaging techniques such as functional magnetic resonance imaging (fMRI) being widely used to map this complex network of multiple interactions, electroencephalographic (EEG) recordings claim high temporal resolution and are thus perfectly suitable to describe either spatially distributed and temporally dynamic patterns of neural activation and connectivity. In this work, we provide a technical account and a categorization of the most-used data-driven approaches to assess brain-functional connectivity, intended as the study of the statistical dependencies between the recorded EEG signals. Different pairwise and multivariate, as well as directed and non-directed connectivity metrics are discussed with a pros-cons approach, in the time, frequency, and information-theoretic domains. The establishment of conceptual and mathematical relationships between metrics from these three frameworks, and the discussion of novel methodological approaches, will allow the reader to go deep into the problem of inferring functional connectivity in complex networks. Furthermore, emerging trends for the description of extended forms of connectivity (e.g., high-order interactions) are also discussed, along with graph-theory tools exploring the topological properties of the network of connections provided by the proposed metrics. Applications to EEG data are reviewed. In addition, the importance of source localization, and the impacts of signal acquisition and pre-processing techniques (e.g., filtering, source localization, and artifact rejection) on the connectivity estimates are recognized and discussed. By going through this review, the reader could delve deeply into the entire process of EEG pre-processing and analysis for the study of brain functional connectivity and learning, thereby exploiting novel methodologies and approaches to the problem of inferring connectivity within complex networks

    M贸zgowe mechanizmy kontroli emocji : rola proces贸w uwagowych i poznawczych w reinterpretacji

    Get PDF
    T艂o i cel. Badania prowadzone na gruncie psychologii emocji wskazuj膮, i偶 skuteczne kontrolowanie negatywnych emocji jest podstaw膮 zdrowia psychicznego, a najbardziej skuteczn膮 strategi膮 ich kontroli jest reinterpretacja poznawcza (ang. reappraisal, cognitive control of emotion). Reinterpretacja poznawcza polega na zmianie sposobu my艣lenia o negatywnym bod藕cu poprzez nadanie mu nowego znaczenia, tak by jego odbi贸r sta艂 si臋 bardziej neutralny. Dzi臋ki temu, negatywno艣膰 prze偶ywanych emocji zostaje znacz膮co obni偶ona. Na przyk艂ad, osoba widz膮ca scen臋 gro藕nego wypadku samochodowego mo偶e zastosowa膰 strategi臋 reinterpretacji, my艣l膮c, 偶e "cho膰 wypadek wygl膮da powa偶nie, wszyscy jego uczestnicy wyszli ze zdarzenia bez szwanku". Pomimo, i偶 skutki stosowania strategii reinterpretacji s膮 dobrze poznane i wyja艣nione w literaturze, a strategia jest szeroko wykorzystywana w praktyce terapeutycznej, nadal nie wiadomo jaki m贸zgowy mechanizm odpowiada za jej dzia艂anie. Mechanizm proponowany w literaturze jest bowiem niespecyficzny i nie t艂umaczy istoty jej dzia艂ania. Obszar m贸zgu aktywowany podczas reinterpretacji poznawczej - g艂贸wnie grzbietowa-boczna kora przedczo艂owa (ang. dorsolateral prefrontal cortex, DLPFC) - uwa偶any za m贸zgowy substrat reinterpretacji, jest aktywny tak偶e podczas innych operacji umys艂owych na materiale emocjonalnym. Sugeruje to, i偶 pewne etapy przetwarzania bod藕ca emocjonalnego obecne w reinterpretacji s膮 wsp贸lne r贸偶nym operacjom poznawczym, stanowi膮c przyczyn臋 zbie偶nych aktywacji. Istotnie, zanim bod藕cowi emocjonalnego, w toku reinterpretacji, zostanie nadane nowe znaczenie (etap nadania znaczenia), najpierw musi on zosta膰 zarejestrowany przez system uwagowy (etap uwagowy), a nast臋pnie przetworzony przez system poznawczy (etap poznawczej elaboracji). Cho膰 zidentyfikowanie roli reinterpretacji w ka偶dym z wymienionych etap贸w wydaje si臋 by膰 kluczowe dla zrozumienia specyficznego mechanizmu jej dzia艂ania, 偶adne z dotychczasowych bada艅 nie podj臋艂o takiej pr贸by, sprowadzaj膮c proces reinterpretacji wy艂膮cznie do etapu nadania znaczenia. Celem mojej rozprawy doktorskiej by艂o g艂臋bsze poznanie m贸zgowego mechanizmu reinterpretacji poznawczej poprzez uwzgl臋dnienie w analizie nie tylko etapu nadania znaczenia, ale tak偶e poprzedzaj膮cych go etap贸w uwagowego i poznawczego. Dzi臋ki wykorzystywaniu zaawansowanych sposob贸w analizy aktywno艣ci bioelektrycznej m贸zgu (EEG) oraz innowacyjnej metodologii, seria moich trzech oryginalnych bada艅 znacz膮co przybli偶y艂y mnie do tego celu, potwierdzaj膮c, i偶 uwzgl臋dnienie tr贸jetapowo艣ci procesu reinterpretacji jest kluczowe dla zrozumienia mechanizmu jej dzia艂ania. Eksperyment 1. Celem eksperymentu 1 by艂o sprawdzenie mo偶liwo艣ci wyst臋powania oddzia艂ywa艅 pomi臋dzy DPLFC, m贸zgowym substratem reinterpretacji, a obszarami zwi膮zanymi z dzia艂aniem uwagi i percepcji, stanowi膮cymi substrat pierwszego etapu reinterpretacji. W badaniu mierzono aktywno艣膰 elektryczn膮 m贸zgu podczas zadania reinterpretacji i w warunku kontrolnym. W analizie danych wykorzystano innowacyjn膮 metod臋 z klasy effective connectivity (DTF). Metoda pozwoli艂a bardzo precyzyjnie oszacowa膰 kierunek i przyczynowo艣膰 interakcji pomi臋dzy analizowanymi obszarami kory m贸zgowej, a w efekcie okre艣li膰 wp艂yw DLPFC na uwagowy etap reinterpretacji. Warto podkre艣li膰, 偶e metoda DTF zosta艂a po raz pierwszy wykorzystana w badaniach nad reinterpretacj膮, co umo偶liwi艂o uzyskanie prekursorskich wynik贸w. Proces reinterpretacji istotnie wi膮za艂 si臋 z odzia艂ywaniem DLPFC na rejony percepcyjno-uwagowe. W efekcie, badanie dowiod艂o, 偶e m贸zgowy mechanizm reinterpretacji jest zwi膮zany z wp艂ywem na procesy uwagowe, stanowi膮ce pierwszy etap przetwarzania bod藕ca emocjonalnego. Jest to teza, kt贸rej nigdy wcze艣niej nie uda艂o si臋 potwierdzi膰. Eksperyment 2. Celem drugiego badania by艂o sprawdzenie czy bardzo proste zadania - kt贸re podobnie jak reinterpretacja - anga偶uj膮 odg贸rne procesy sterowania uwag膮 - mog膮 wp艂ywa膰 na przetwarzanie emocjonalnych bod藕c贸w. W celu wyizolowania tych proces贸w, zaprojektowano specjalne zadanie, w kt贸rym uczestnicy badania musieli reagowa膰 na niewielkie litery prezentowane na zdj臋ciach. W zale偶no艣ci od r贸偶nych warunk贸w badania, nat臋偶enie odg贸rnych proces贸w uwagi nie by艂o nasilone lub by艂o nasilone w stopniu niewielkim lub umiarkowanym. U偶ywaj膮c metody potencja艂贸w wywo艂anych, wykazano, i偶 w warunkach nat臋偶enia proces贸w uwagi odg贸rnej - zmniejsza si臋 g艂臋boko艣膰 przetwarzania zdj臋膰. Badanie dowiod艂o, i偶 nawet bardzo niewielkie zaanga偶owanie proces贸w odg贸rnej uwagi mo偶e wp艂yn膮膰 na spos贸b przetwarzania bod藕c贸w. Jednocze艣nie wskazuje, i偶 samo zaanga偶owanie takich proces贸w w reinterpretacji mo偶e by膰 istotnym czynnikiem stanowi膮cym o mechanizmie jej dzia艂ania. Eksperyment 3. Celem trzeciego eksperymentu by艂o okre艣lenie roli etapu poznawczej elaboracji bod藕ca w mechanizmie dzia艂ania reinterpretacji. Celowi temu s艂u偶y膰 mia艂a innowacyjna procedura badawcza. Zaprojektowano warunek badawczy, nazwany zadaniem retrospekcji. Zadanie polega艂o na wyobra偶eniu tego, co mog艂o si臋 sta膰 na chwil臋 przed zrobieniem zaprezentowanego zdj臋cia. Podobnie jak warunek reinterpretacji, warunek retrospekcji wymaga艂 proces贸w elaboracji bod藕ca: zrozumienia zaprezentowanej sceny oraz stworzenia na jej podstawie wyobra偶enia. To, co r贸偶ni艂o warunki reinterpretacji i retrospekcji to fakt, 偶e tylko w warunku reinterpretacji wyst臋powa艂 specyficzny etap nadania nowego znaczenia bod藕cowi, etap stanowi膮cy istot臋 procesu reinterpretacji. W por贸wnaniu z warunkiem kontrolnym, emocjonalna odpowied藕 m贸zgu (komponent LPP) na prezentowane zdj臋cia by艂a mniejsza: zar贸wno w warunku retrospekcji jak i warunku reinterpretacji. Potwierdza to moje za艂o偶enia, i偶 same procesy elaboracji bod藕ca, poprzedzaj膮ce nadanie mu nowej interpretacji mog膮 obni偶y膰 odpowied藕 m贸zgu na emocjonalny bodziec. Nigdy wcze艣niej nie wykazano, i偶 procesy poznawczej elaboracji bod藕ca mog膮 odgrywa膰 wa偶n膮 rol臋 w mechanizmie dzia艂ania reinterpretacji. Wnioski. Seria trzech dotychczasowych bada艅 jednoznacznie dowodzi, 偶e, reinterpretacja poznawcza nie jest tak prostym i jednorodnym procesem, jak dotychczas zak艂adano. Aby zrozumie膰 na czym polega specyficzne dzia艂anie reinterpretacji, konieczne jest oddzielenie jej poszczeg贸lnych etap贸w. Jej oddzia艂ywania mog膮 bowiem dotyczy膰 uwagowego etapu przetwarzania bod藕ca, a poznawcza elaboracja, obok nadania nowego znaczenia, tak偶e mo偶e przyczynia膰 si臋 do obni偶enia emocjonalno艣ci przetwarzanego bod藕ca. Zaprezentowane wyniki bada艅 s膮 nie tylko nowatorskie (metoda DTF, zadanie retrospekcji) i przyczyniaj膮 si臋 do g艂臋bszego zrozumienia reinterpretacji poznawczej na podstawowym poziomie proces贸w m贸zgowych, ale r贸wnie偶 maj膮 du偶e znaczenie spo艂eczne, gdy偶 reinterpretacja stanowi najbardziej skuteczn膮 metod臋 radzenia sobie z negatywnymi emocjami. Dodatkowo, moje badania wskazuj膮 na nadmierny redukcjonizm podej艣cia naukowc贸w, traktuj膮cych reinterpretacj臋 jako proces jednoetapowy. Na podstawie uzyskanych wynik贸w oraz istniej膮cej literatury proponuj臋 nowy, wieloetapowy model dzia艂ania reinterpretacji, kt贸ry w lepszy spos贸b t艂umaczy istot臋 jej dzia艂ania.Background and aim. Research conducted in the field of psychology of emotions indicates that effective control of negative emotions determines our mental health, and that the most effective strategy for controlling negative emotions is reappraisal. The strategy is used to decrease the intensity of affective responses by conceptually reinterpreting the meaning of the emotionally arousing stimuli. For example, when one is viewing an unpleasant scene of a car accident, he or she can downregulate intensity of emotional reaction by imaging an optimistic outcome of the situation (e.g. "All accident victims will recover fully soon"). Although the effects of reappraisal usage are well understood, it is still unclear what brain mechanism is responsible for the effectiveness of the strategy. The area of the brain considered to be the cerebral substrate of the reappraisal (mainly the dorsolateral prefrontal cortex, DLPFC) is also active during other mental operations carried out on emotional material. This suggests that some stages of emotional stimuli processing present in reappraisal are shared between various cognitive operations. Indeed, during reappraisal process, before a new interpretation is given to the emotional stimulus (the stage of cognitive change), the stimulus must first be registered by the attentional systems (attentional stage), and then understood and processed by the cognitive system (stage of cognitive elaboration). Although identifying the role of reappraisal in each of these stages seems to be crucial for understanding the specific mechanism of reappraisal effectiveness, none of the research so far undertaken such an attempt. Instead, the whole reappraisal process has been reduced only to the stage of cognitive change. The aim of my doctoral dissertation was to understand the brain mechanism of reappraisal more deeply by taking into account all of the postulated reappraisal stages. Thanks to the use of advanced methods of analysis and innovative methodology, a series of my three original studies have significantly brought me closer to this goal, confirming that the assumption about the three-stages of reappraisal process is crucial to understand the mechanism of its effectiveness. Experiment 1. The aim of experiment 1 was to check the possibility of interactions between DLPFC (the brain substrate of reappraisal) and areas related to the operation of attention and perception (which are the substrate of the first stage of stimuli processing in reappraisal). In the study I measured the electrical activity of the brain (EEG) during the reappraisal task and control condition. The data analysis was conducted with an usage of an advanced method for estimating cortical effective connectivity (Directed Transfer Function, DTF). The DTF method allowed for a very precise estimation of the directions of interactions between the analysed areas of the cerebral cortex. Moreover, the DTF method was used for the first time in reappraisal research, which made it possible to obtain novel results. Compared with the control condition, the reappraisal was associated with the top-down influences from the DLPFC towards perceptual and attention areas. As such, the research proved that the brain mechanism of reappraisal is related to the influence on attention processes, constituting the first stage of emotional stimulus processing. This is the thesis that has never been confirmed before. Experiment 2. The purpose of the second study was to check whether very simple attentional tasks - which, like reappraisal - involve top-down attention control processes - can affect the processing of emotional stimuli. In order to isolate these processes, a special task was designed in which participants had to respond to the small letters imposed on the pictures. Depending on the different conditions, the intensification of top-down attention processes was relatively small, moderate or not present at all (control condition). Using the evoked potential method (ERP), it was shown that activation of top-down attention processes decreases the depth of image processing. As such, the study indicated that the mere involvement of such processes during reappraisal can be an important factor determining its effectiveness. Experiment 3. The purpose of the third experiment was to determine the role of the cognitive elaboration stage in the mechanism of reappraisal. The innovative research procedure was designed to serve this purpose. An additional control condition - called a retrospective task - was introduced. The task was to imagine what could have happened a moment before the presented photo was taken. Like the condition of reappraisal, the condition of retrospection required involvement elaboration processes: participants needed to see the presented scene, understand its content, and create some alternative imagination of the situation. What distinguished the conditions of reappraisal and retrospection was the fact that only the reappraisal condition required a specific process of giving a new meaning to the stimulus (cognitive change stage). This design allowed to isolate unspecific factors that could affect image processing during reappraisal procedures (cognitive elaboration stage). The evoked potentials (ERP) in response to the images were measured. In comparison with the control condition, the emotional response of the brain (LPP component) was smaller both in the condition of retrospection and the condition of reappraisal. This confirms my assumptions that the processes of elaboration of the stimulus, preceding the stage of giving it a new interpretation, can lower the brain's response to the emotional stimulus. It has never been demonstrated before that the processes of elaboration can play an important role in the mechanism of reappraisal. Conclusions. A series of three studies clearly proves that reappraisal is not as simple and homogeneous process as it was assumed to be so far. In order to understand the effectiveness of reappraisal, it is necessary to separate its individual stages. It has been proved that regulatory effects of reappraisal are caused not only by giving a new meaning to stimuli (cognitive change stage) but also by unspecific processes of attentional involvement (attentional stage), and the cognitive elaboration of stimuli (cognitive elaboration stage). The presented research results are innovative (DTF method, retrospective task) and contribute to a deeper understanding of reappraisal mechanism. Overall, my doctoral dissertation indicates excessive reductionism of the approach of scientists treating reappraisal as a one-step process. Based on the obtained results and existing literature, I propose a new, multi-stage, model of reappraisal that better explains the mechanism of the reappraisal's effectiveness
    corecore