9,751 research outputs found

    Adaptive development and maintenance of user-centric software systems

    Get PDF
    A software system cannot be developed without considering the various facets of its environment. Stakeholders – including the users that play a central role – have their needs, expectations, and perceptions of a system. Organisational and technical aspects of the environment are constantly changing. The ability to adapt a software system and its requirements to its environment throughout its full lifecycle is of paramount importance in a constantly changing environment. The continuous involvement of users is as important as the constant evaluation of the system and the observation of evolving environments. We present a methodology for adaptive software systems development and maintenance. We draw upon a diverse range of accepted methods including participatory design, software architecture, and evolutionary design. Our focus is on user-centred software systems

    AOSD Ontology 1.0 - Public Ontology of Aspect-Orientation

    Get PDF
    This report presents a Common Foundation for Aspect-Oriented Software Development. A Common Foundation is required to enable effective communication and to enable integration of activities within the Network of Excellence. This Common Foundation is realized by developing an ontology, i.e. the shared meaning of terms and concepts in the domain of AOSD. In the first part of this report, we describe the definitions of an initial set of common AOSD terms. There is general agreement on these definitions. In the second part, we describe the Common Foundation task in detail

    Investigating Automatic Static Analysis Results to Identify Quality Problems: an Inductive Study

    Get PDF
    Background: Automatic static analysis (ASA) tools examine source code to discover "issues", i.e. code patterns that are symptoms of bad programming practices and that can lead to defective behavior. Studies in the literature have shown that these tools find defects earlier than other verification activities, but they produce a substantial number of false positive warnings. For this reason, an alternative approach is to use the set of ASA issues to identify defect prone files and components rather than focusing on the individual issues. Aim: We conducted an exploratory study to investigate whether ASA issues can be used as early indicators of faulty files and components and, for the first time, whether they point to a decay of specific software quality attributes, such as maintainability or functionality. Our aim is to understand the critical parameters and feasibility of such an approach to feed into future research on more specific quality and defect prediction models. Method: We analyzed an industrial C# web application using the Resharper ASA tool and explored if significant correlations exist in such a data set. Results: We found promising results when predicting defect-prone files. A set of specific Resharper categories are better indicators of faulty files than common software metrics or the collection of issues of all issue categories, and these categories correlate to different software quality attributes. Conclusions: Our advice for future research is to perform analysis on file rather component level and to evaluate the generalizability of categories. We also recommend using larger datasets as we learned that data sparseness can lead to challenges in the proposed analysis proces

    History and development of validation with the ESP-r simulation program

    Get PDF
    It is well recognised that validation of dynamic building simulation programs is a long-term complex task. There have been many large national and international efforts that have led to a well-established validation methodology comprising analytical, inter-program comparison and empirical validation elements, and a significant number of tests have been developed. As simulation usage increases, driven by such initiatives as the European Energy Performance of Buildings Directive, such tests are starting to be incorporated into national and international standards. Although many program developers have run many of the developed tests, there does not appear to have been a systematic attempt to incorporate such tests into routine operation of the simulation programs. This paper reports work undertaken to address this deficiency. The paper summarizes the tests that have been applied to the simulation program ESP-r. These tests have been developed within International Energy Agency Annexes, within CEN standards, within various large-scale national projects, and by the UK's Chartered Institution of Building Services Engineers. The structure used to encapsulate the tests allows developers to ensure that recent code modifications have not resulted in unforeseen impacts on program predictions, and allows users to check for themselves against benchmarks

    A Fast and Accurate Cost Model for FPGA Design Space Exploration in HPC Applications

    Get PDF
    Heterogeneous High-Performance Computing (HPC) platforms present a significant programming challenge, especially because the key users of HPC resources are scientists, not parallel programmers. We contend that compiler technology has to evolve to automatically create the best program variant by transforming a given original program. We have developed a novel methodology based on type transformations for generating correct-by-construction design variants, and an associated light-weight cost model for evaluating these variants for implementation on FPGAs. In this paper we present a key enabler of our approach, the cost model. We discuss how we are able to quickly derive accurate estimates of performance and resource-utilization from the design’s representation in our intermediate language. We show results confirming the accuracy of our cost model by testing it on three different scientific kernels. We conclude with a case-study that compares a solution generated by our framework with one from a conventional high-level synthesis tool, showing better performance and power-efficiency using our cost model based approach

    Model-Driven Methodology for Rapid Deployment of Smart Spaces based on Resource-Oriented Architectures

    Get PDF
    Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym

    Improving Reuse of Distributed Transaction Software with Transaction-Aware Aspects

    Get PDF
    Implementing crosscutting concerns for transactions is difficult, even using Aspect-Oriented Programming Languages (AOPLs) such as AspectJ. Many of these challenges arise because the context of a transaction-related crosscutting concern consists of loosely-coupled abstractions like dynamically-generated identifiers, timestamps, and tentative value sets of distributed resources. Current AOPLs do not provide joinpoints and pointcuts for weaving advice into high-level abstractions or contexts, like transaction contexts. Other challenges stem from the essential complexity in the nature of the data, operations on the data, or the volume of data, and accidental complexity comes from the way that the problem is being solved, even using common transaction frameworks. This dissertation describes an extension to AspectJ, called TransJ, with which developers can implement transaction-related crosscutting concerns in cohesive and loosely-coupled aspects. It also presents a preliminary experiment that provides evidence of improvement in reusability without sacrificing the performance of applications requiring essential transactions. This empirical study is conducted using the extended-quality model for transactional application to define measurements on the transaction software systems. This quality model defines three goals: the first relates to code quality (in terms of its reusability); the second to software performance; and the third concerns software development efficiency. Results from this study show that TransJ can improve the reusability while maintaining performance of TransJ applications requiring transaction for all eight areas addressed by the hypotheses: better encapsulation and separation of concern; loose Coupling, higher-cohesion and less tangling; improving obliviousness; preserving the software efficiency; improving extensibility; and hasten the development process

    Incremental Consistency Checking in Delta-oriented UML-Models for Automation Systems

    Full text link
    Automation systems exist in many variants and may evolve over time in order to deal with different environment contexts or to fulfill changing customer requirements. This induces an increased complexity during design-time as well as tedious maintenance efforts. We already proposed a multi-perspective modeling approach to improve the development of such systems. It operates on different levels of abstraction by using well-known UML-models with activity, composite structure and state chart models. Each perspective was enriched with delta modeling to manage variability and evolution. As an extension, we now focus on the development of an efficient consistency checking method at several levels to ensure valid variants of the automation system. Consistency checking must be provided for each perspective in isolation, in-between the perspectives as well as after the application of a delta.Comment: In Proceedings FMSPLE 2016, arXiv:1603.0857
    corecore