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ABSTRACT 
Background: Automatic static analysis (ASA) tools examine 
source code to discover “issues”, i.e. code patterns that are 
symptoms of bad programming practices and that can lead to 
defective behavior. Studies in the literature have shown that 
these tools find defects earlier than other verification activities, 
but they produce a substantial number of false positive 
warnings. For this reason, an alternative approach is to use the 
set of ASA issues to identify defect prone files and components 
rather than focusing on the individual issues. 
Aim :  We conducted an exploratory study to investigate whether 
ASA issues can be used as early indicators of faulty files and 
components and, for the first time, whether they point to a decay 
of specific software quality attributes, such as maintainability or 
functionality. Our aim is to understand the critical parameters 
and feasibility of such an approach to feed into future research 
on more specific quality and defect prediction models.  
Method: We analyzed an industrial C# web application using 
the Resharper ASA tool and explored if significant correlations 
exist in such a data set.                                                     

Results: We found promising results when predicting defect-
prone files. A set of  specific Resharper categories are better 
indicators of faulty files than common software metrics or the 
collection of issues of all issue categories, and these categories 
correlate to different software quality attributes.   

Conclusions: Our advice for future research is to perform 
analysis on file rather component level and to evaluate the 
generalizability of categories. We also recommend using larger 
datasets as we learned that data sparseness can lead to 
challenges in the proposed analysis process. 

Categories and Subject Descriptors 
D.2.8 [Metrics]: Product , D.2.0 [General]: Standards, D.2.4 
[Software/Program Verification]: Statistical Methods  

General Terms 

Measurement,  Experimentation, Verification. 

Keywords 
Automatic static analysis, software quality, defect prediction. 

1. INTRODUCTION 
Automatic program analysis is the process of extracting 

information about a software program from its source or 
artifacts (e.g., from byte or object code, or execution traces) 
using automatic tools [2]. Program analysis can be static (i.e. 
without executing the program) or dynamic (i.e. with executing 
the program): our work is focused on static analysis.  

Automatic Static Analysis (ASA) tools analyze the source 
code or intermediate code (e.g. byte code) to determine defect 
patterns and violations of good programming practices, naming 
conventions, security flaws and coding standards. Violations are 
called “issues” and could cause defective behavior of the 
software system. ASA tools are able to evaluate code from early 
stages in development onward, and do not require a running 
version of the program. Also, contrary to popular verification 
techniques such as unit and system tests, ASA tools do not 
necessitate the specification of a test oracle. Since ASA tools are 
applicable while developers write code (i.e. they operate in close 
to real-time), their usage suggests a benefit in terms of 
identifying problems as early as possible when compared to 
other verification activities such as testing. As a consequence, 
given that the time between a fault insertion and its removal 
correlates with the cost of removing that defect [3], the 
introduction of ASA tools in the development phase could lead 
to important economic benefits. 

Even if the usage of ASA tools promises benefits and high 
return on investment, the currently available tools and 
algorithms often have limitations when applied in practice. The 
most important and well-studied limitation is the large number 
of false positives returned when ASA is used to identify defects 
that would lead to faults in software applications. On realistic-
sized applications ASA tools typically generate thousands of 
issues, and so the output needs further refinement and tailoring 
from developers to be useful. One of the main questions is how 
to prioritize the long list of issues in order to find the most 
important defects as soon as possible. This can typically be done 
in two different ways. First, one can try to understand which 
ASA issues are real indicators of defects that lead to faults. This 
assumes that for each observed fault the related defect is actually 
signaled by an ASA issue, which is not always the case.  
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Secondly, one can use the large set of ASA issues to 
understand the coexistence of issues and real defects in the same 
source code file, or software component. This broader approach 
will not assume a cause-effect relationship between ASA issues 
and software faults, and could therefore capture cases where, for 
example, sloppy programming or Technical Debt [7] leads to 
defects and ASA issues at the same time. However it is also less 
specific in guiding the developer to the specific location of the 
defect (i.e. the line of code). 

Beyond simply predicting the occurrence of defects and 
faults, it is often also of interest to study how defects affect 
common software quality attributes, such as maintainability, 
functionality, usability, security, etc. For example, a security 
defect leading to an intrusion can be more expensive for an 
organization than a usability defect, and vice versa. What has 
not yet been studied is if ASA issues are able to effectively 
predict a defect (or a defect prone component) and to specify at 
the same time which software quality attribute this defect will 
affect.  

This exploratory study uses the second approach of using 
ASA issues to identify defect prone files and components and 
takes a first leap towards understanding the feasibility of 
identifying more specific quality problems. The study is 
inductive in its character and the main aim is to understand key 
parameters for future model building and to generate a set of 
hypotheses and recommendations for future research.     

 

2. RELATED WORK 
The effort of the research community has focused on evaluating 
ASA tools in two main streams: I) looking at single ASA issues 
to identify defects in single lines of code or II) looking at large 
sets of issues as early indicators of the more defect-prone 
modules (e.g. classes, files, software components).    

2.1 First research stream: looking at single 
ASA issues to find defects 
Several studies in the literature have reported on the 

percentage of false positive ASA issues (i.e. issues not related to 
defects) of different tools and in different contexts. For instance, 
Wagner et al. [23] analyzed and classified with experienced 
developers issues from three ASA tools (FindBugs, QJPro and 
PMD) on four industrial projects and one university project, and 
they reported that the percentage of false positive was 47% for 
FindBugs, 31% for PMD and 96% for QJ Pro.  

Weydan et al. [24] reported  that more than 96% of 
FindBugs and IntelliJ issues did not relate to any fault or 
refactoring in two open source systems (jEdit and iText).  

Similar findings were reported by Vetro’ et al. [21] [20] 
applying the FindBugs tool to students’ Java projects. 

Lower percentages of false positives are reported by 
Ayewah et al. [1] running FindBugs on the JDK 1.6.0-b105; the 
authors report that almost 50% of medium/high priority issues 
related to  correctness had impact on the functionality, and 10% 
had a serious impact. On the flip side, 160 issues out of 379 
were trivial (i.e., no impact), while 5 issues were due to faulty 
analysis of FindBugs. A similar experiment with the same 
category of issues was performed at Google, with similar 
percentages of false positive issues, and a further validation 
conducted on Glassfish v2 showed an even better result: 50 
defects out of 58 disappeared due to changes made to 
specifically address the issues raised by FindBugs.  

Switching to the C languages, Boogerd and Moonen [4] [5] 
analyzed four industrial projects in C and C++ with an ASA tool 

for the MISRA standard [15], and they discovered that a small 
set of rule violations (12 out of 72 in [4] , and 10 out of 88 in 
[5]) were related to defects in source code. Finally, Nagappan et 
al. [16] reported that only 12.5% of defects fixed in Windows 
Server 2003 pre-release were found with two ASA tools 
(PREfix and PREfast). Precision was not reported in this study, 
so this figure is not directly comparable to the previously 
reported results. 

Overall, except for one study [1], we conclude that the 
precision of the ASA tools is rather low, because high ratios of 
false positives (i.e. low precision) were reported in many 
studies. 

 

2.2 Second research stream: using ASA 
issues to predict modules with more defects 

The second approach is to investigate whether static 
analysis issues can be used as early predictors for the most 
defect prone modules in software systems, rather than identify 
the single issues that point to specific defects. 

Nagappan et al. [16] discovered positive correlations (0.37 
and 0.58) between issue densities from two ASA tools, PREfix  
and PREfast, and the pre-release defect density. Moreover, they 
successfully used the ASA issue densities to discriminate 
between components of high and low quality.  

A  similar  approach  was  used  by the same author in  a  
study  carried  out  at  Nortel Networks [18], where automatic 
inspection defects found by ASA tools had a positive correlation 
with failures (0.40 and 0.49). Moreover, together with code 
churn, ASA issues were good discriminators in identifying fault-
prone modules. The study at Nortel continued and one year later 
Zheng et al. [26] reported even higher correlations between the 
number of ASA issues in files and three different indicators of 
external quality, i.e. number of tests failures, number of 
customer reported failures and number of total failures 
(respectively 0.71, 0.60 and 0.73). 

Other authors used a similar approach. For instance, Plosch 
et al. [19] studied the correlation between the number of 
FindBugs and PMD issues, and defects in Eclipse SDK 2.0, 2.1 
and 3.0. They found positive correlations for both tools (0.34, 
0.25 and 0.30 for PMD, and 0.20, 0.08, 0.20 for FindBugs). 
Excluding the LOC related metrics, PMD issues correlated 
better with defects than other static metrics (e.g., number of 
methods, number of fields, etc.) 

Finally, Marchenko and Abrahamsson [14] used two tools, 
namely CodeScanner and PC-LINT, to analyze five projects in 
the Symbian C++ environment. They computed the correlation 
between issues and critical defects in two snapshots of the 
project (i.e. within 90 days after the release and within 180 days 
after the release) and they observed contradictory results: 
CodeScanner obtained very high positive correlations (0.70 and 
0.90), while PC-LINT issues strongly correlated negatively (-
0.90 and -0.70) with defects. 

Overall, all the current results available in the literature but 
one [14] show that using ASA issues to find the most defect-
prone files or modules is more effective than using individual 
ASA issues to discover individual defects.  

 

2.3 Contributions of this study  
We are helping an industrial partner in understanding the 

usefulness and effectiveness of the Resharper ASA tool in their 
development projects and we decided to adopt the second 
approach because it is more promising than the first one, as 



 

 

summarized in the previous sections. Our long term aim is to 
provide our partner with models that use ASA issues to point to 
more specific quality problems. These models should be able to 
make recommendations for code inspections based on a set of 
quality characteristics of interest. For example, a security 
inspection should be able to use a prediction model pointing to 
software files and components with potential security flaws. Or, 
the user experience review should be able to use a model that 
selects parts of the software with potential usability problems. 

The main novelties that we introduce with respect to the 
previously conducted related work are: 

• We contribute to the body of evidence of the second 
research stream by adding a new 
tool/language/application combination (Resharper/ 
C#/ Web application). The Resharper tool has, to our 
knowledge, not yet been evaluated in past work. 

• We perform the analysis at two granularity levels, i.e. 
software components and source code files. 
Components are high-level functional units 
encapsulating one or more main functionalities of the 
software system, such as: “User Login”, “Database 
Access”, or “Admin Backend”. Source code files are 
low-level artifacts, usually containing classes that are 
the building blocks for components.  Since past 
studies were done at only one of the two levels this 
study will give some insight into the comparison 
between the two levels. 

• We investigate whether specific types of ASA issues 
can be linked to specific quality dimensions. This is 
helpful to understand if an increased importance of 
one quality dimension, such as usability, can help to 
pre-select the set of ASA issue types that will predict 
usability defects with the highest precision. Or more 
generally, the approach can be used to prioritize the 
set of ASA issues a reviewer would have to inspect, 
based on a prioritization of desired quality 
characteristics.  

To our knowledge, no past work has yet studied the correlation 
between ASA issue types and quality characteristics. The most 
similar works we found were two studies that investigated 
instead the typology of defects found by ASA tools. The first 
one is a study conducted by Nagappan  et al. [18], who classified 
defects found by the FlexeLint tool using the ODC classification 
schema [6] and found that defects associated with ASA fell into 
three ODC defect types: checking,    assignment/initialization, 
and interface. Wagner et al. [23] also classified ASA issues, but 
they focused on their effect on code rather than their causes. The 
authors used a 5-point scale of severity to classify the true 
positive issues signaled by FindBugs, PMD and QJPro on five 
industrial projects. The highest category level was “Defects that 
lead to a crash of the application”, while the lowest was 
“Defects that reduce the maintainability of the code”. The 
authors found that most of the true positives were related to 
maintainability of the code (e.g., readability and changeability). 
They also compared ASA issues with defects found using code 
reviews and unit tests, and they discovered that all defects found 
by ASA tools were also found by the review, while testing 
activities found different categories of defects.  

We adopt a different perspective from these two studies, 
and we focus on whether any ASA issues can predict defects 
relating to a very general set of software quality attributes, using 
the well-known ISO/IEC 9126 quality model [9] as a basis for 
defect classification. The ISO/IEC 9126 Software engineering 

Product Quality Model is an international standard for the 
evaluation of software quality.  It defines a quality model with 
six main characteristics namely, functionality (F), reliability (R), 
usability (U), efficiency (E), maintainability (M), and portability 
(P), which are further broken down into 22 sub-characteristics. 
The standard was revised in March 2011 by the ISO/IEC 25010 
standard committee [10]. Our defect classification based on the 
standard was created two months after the new standard was 
released, but we decided to keep the old standard because of its 
widespread use and because of the large overlap between the 
two. 

We proposed our defect classification in a previous work 
[22]; it is complementary to already existing defect 
classifications because it helps in understanding the impact of 
the software on different quality attributes. Such classification 
might help programmers and managers with practical tasks, such 
as the prioritization of defects according to the different 
stakeholders’ interests, the ease of process improvement 
measurement on specific quality dimensions or tuning 
verification activities according to specific quality dimensions. 
This work is specific to the latter point and it is a first step 
towards understanding whether different ASA issues could be 
related to specific quality dimensions. 

 

3. GOAL AND STUDY DESIGN  
The first goal of this study is to understand whether some 

predefined subsets of ASA issues (a.k.a. ASA issue categories1) 
are eligible as indicators of defect-proneness. The second goal is 
to understand whether and which categories of ASA issues are 
related to specific software quality dimensions. Both questions 
are analyzed at two levels of granularity: firstly with respect to 
components, and secondly source code files. The rationale 
behind the decision to perform analysis on different levels is to 
better comprehend if results would differ, be the same, or even 
contradict each other.   

3.1 Study Context 
The study was carried out at a software company  that 

develops web-based applications in C# (using .NET and Visual 
Studio). The company uses the JIRA tracking system2 to record 
defects.  

Of the current projects at this company, we selected one for 
in-depth analysis based on data quality. Preliminary analysis 
showed that data quality varied considerably between available 
projects, reflecting the level of process conformance [25] with 
which developers recorded defects in JIRA. We chose the 
project with the best data quality (according to the three criteria 
below) to reduce the influence of incomplete or noisy data on 
the results:  

A. Number of empty fields in defect reports (e.g. missing 
data). 

                                                                    
1 Issue categories vary depending on the ASA tool used. Typical 

categories for the Resharper tool used in this study are: 
Redundancies in Code, Common Practices and Code 
Improvements, Compiler Warnings, etc. 

2 http://www.atlassian.com/software/jira 



 

 

B. Number of defect report fields that were filled with the 
default value (which may indicate the default value was 
accepted rather than that the true value was investigated). 

C. Percentage of components that could be bound to files (our 
approach for this is described below).  

The selected application has about 35 KLocs and has been 
active in production since November 2009, with 4 developers 
working on it in parallel. At the time of the analysis, the JIRA 
system contained 78 fixed and closed3 defects for the selected 
project (which we will call J). 

3.2 Mapping between ASA issues, Defects, 
Files, and Components  

Our methodology for performing the mapping between 
components, files, and ASA issues, as illustrated in Figure 1, is 
based upon the fact that JIRA systems can track not only defects 
but any other element that can be associated with software 
artifacts. Those elements are called “JIRA issues”, and each 
project has its own set of issues. Example of JIRA issues are 
change requests, system incident reports, implementation tasks, 
etc. Moreover, developers establish links between files in the 
SVN code repository to JIRA issues by including ticket ids in 
their SVN commit comments. Finally, each JIRA issue is linked 
by the software developers to one or more software components. 

With this information one can build a frequency table (see 
Figure 2) of files (rows) and components (cells) indicating how 

                                                                    
3 JIRA defects with resolution “fixed” and status “closed” are 

the types of defects that were reported, found to be 
reproducible defects, fixed in the implementation, and 
validated as repairing the fault. Defects that were not 
considered in this analysis are, for example, “open and not yet 
fixed defects”, “defects that were duplicates of other reported 
defects”, “defects that could not be reproduced”, and  “defects 
that were fixed but not yet validated to solve the fault” 

often files were changed (i.e. added, modified, or deleted) when 
working on a component. If a JIRA issue is related to one or 
more logical components, then the set of modified files belong 
to the respective components. Using this method a mapping is 
built based on evidence of how the system changed and evolved 
over time.  

Since a file can belong to many logical components, we 
accept multiple classifications. Further we reduce some possible 
noise by mapping a file only to a component if it was linked to 
this component in at least 20% of all the files’ changes. This 
percentage was set after an analysis of frequency distributions. 
 

3.3 Study Execution 
We derive from our first goal two research questions on 

component (C) and file (F) level: 
 

RQ C1: Which ASA issue categories can identify defect-prone 
components?  

RQ F1: Which ASA issue categories can identify defect-prone 
files?  

 
Figure 1: Linkage between Resharper issues, source code files, issue and defect fixes, and components. Yellow defects indicate that a 

file is linked to at least one defect issue in JIRA. 

 

 
Figure 2: Evidence-based binding of files to logical components  



 

 

Additional research questions are derived from our second goal: 

RQ C2: Which ASA issue categories can point to defect-prone 
components that impact various system quality 
characteristics? 

RQ F2: Which ASA issue categories can point to defect-prone 
files that impact various system quality 
characteristics? 

 

We address these questions inductively, investigating whether 
the detection of defect-proneness was possible and if so, which 
types of ASA issues were useful for doing so. We discuss the 
metrics and the methodology separately for each research 
question below. 

RQ C1: Which ASA issue categories can identify defect-
prone components?  

To answer RQ1-C1, we first performed the mapping as 
described in sub-section 3.2 to link Resharper issues to 
components. Secondly, we checked to see if the number of 
Resharper issues is correlated with software size. This step was 
necessary to investigate a possible bias from code size. If such a 
correlation exists, it is necessary to normalize the data (e.g. by 
using issue density instead of number of issues). The same 
analysis is done for defects.  

In a third step we test for correlations between numbers of 
defects and numbers of Resharper issues in each Resharper 
category, per component. We use the Spearman coefficient 
correlation (a non-parametric statistic), since we observe a wide 
range of issues and defects that do not appear to follow any 
defined distribution (see Tables I and II). 

 
RQ F1: Which ASA issue categories can identify defect-

prone files?  
To answer this research question we used again the 

mapping procedure from sub-section 3.2. We also checked for 
possible bias as described in RQ-C1. Lastly, we tested for 
correlation between Resharper issue categories and defects by 
using a two sample Mann-Whitney test [23] after running an 
unsuccessful Shapiro test for normality. This type of test was 
more appropriate than the Spearman correlation due the 
sparseness of the data; it has also been used in previous studies 
[5] [21]. As the results will show, only a small number of files 
(about 10%) were associated with defects. Therefore, we 
partitioned the sample into non-defect-prone files and defect-
prone files in order to perform the Mann-Whitney test. This 
decision implies that the analysis will investigate if files with at 
least one defect can be identified by the Resharper issues 
residing in the same file. 

 
RQ C2: Which ASA issue categories can point to defect-prone 

components that impact various system quality 
characteristics? 

RQ F2: Which ASA issue categories can point to defect-prone 
files that impact various system quality 
characteristics? 

 
For both of these research questions, we used the ISO/IEC 

9126 quality model as a basis for classifying the defects 
according to different quality characteristics. The method for 
classifying defects in this way was developed and validated in a 
prior experiment [22], which also used the same project as the 
subject project. In that study, six different subjects, divided into 
two groups with respect to their expertise, classified the 78 
defects using the ISO/IEC 9126 quality main characteristics and 

sub-characteristics. Subjects read the defect reports and assigned 

TABLE I. RESHARPER ISSUES DETECTED 

Resharper category Number of 
issues 

ASP.NET 2 
Common Practices and Code Improvements 521 
Compiler Warnings 36 
Constraints Violations 445 
Language Usage Opportunities 591 
Potential Code Quality Issues 14 
Redundancies in Code 645 
Redundancies in Symbol Declarations 82 
Unused Symbols 7 
Sum of issues 2343 

 

TABLE II.  RESHARPER ISSUES ON COMPONENTS 

Component Sum of 
ReSharper 

issues Defects NCSS 

Cmp 1  1407 43 3192 
Cmp 2 324 13 961 
Cmp 3  232 6 711 
Cmp 4 29 5 97 
Cmp 5  7 4 9 
Cmp 6  29 4 97 
Cmp 7  0 3 0 
Cmp 8  119 2 246 
Cmp 9  93 1 208 
Cmp 10  0 0 0 
Cmp 11 428 0 1392 
Cmp 12  0 0 0 
Cmp 13 0 0 147 
Cmp 14 0 0 0 
Cmp 15 0 0 0 

 

Figure 3: Defect Classification 
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each defect to one or more quality characteristics and sub-
characteristics (the classification is not orthogonal). The 
underlying idea is that each defect reduces a software capability 
and impacts the corresponding characteristic and sub-
characteristic. 

We observed that more experienced software engineers 
produced classifications with less variability, and that the 
classification at characteristic level was more reliable than those 
at sub-characteristics level. As a consequence, we adopted as the 
final classification the one created by experts at the 
characteristics level.  

Using that classification we were then able to check, in the 
work described in this paper, whether various types of Resharper 
issues are correlated to the defects related to specific quality 
characteristics.  

4. RESULTS 
We collected metrics on the revision of the target project 

preceding the first defect fix commit to include as many defects 
as possible. Resharper reported 2343 issues on the source code 
of the web application: Table I reports the issues per each 
Resharper category and Table II reports, for each logical 
component, total number of Resharper issues, number of defects 
and non-commented source statements. Some components have 
0 NCSS for two reasons: a component was built after the version 
of the software analyzed, or the files-component mapping 
produced zero files for a component, or in some cases both. 
Resharper reported issues on files with extension .aspx, .xaml, 
.csproj, .cs (including .xaml.cs, .ascx.cs, .aspx.cs, .ashx.cs, 
.Master.cs). .  

Among the 78 fixed and closed defects, 65 had commits 
linked to them.  According to the experts’ classification [22] 
(Figure 3), the majority of defects (58%) impacted only 
functionality, followed by usability (26%) and reliability (6%). 
Mixed classifications (FR and FU) accounted for 5% each, while 
no defects had impact in the remaining three categories. 

The total number of files with at least one defect fix is 58. 
However, excluding those files that were out of scope of the 
Resharper analysis (e.g., .sql files, .css files) and those files that 
were added after the revision we analyzed, only 11 of the 58 
remained. These files are listed in Table III.  As with 
components, the data indicates that there is not a clear 
relationship between number of defects and Resharper issues: 
the most defect prone file (C) has 35 issues whereas some of the 
less defect prone files (G,I,J) have up to twice the issue count.   

As this is an exploratory study, when analyzing statistical 
significance we ran our tests at a 90% confidence level. As we 
are intending to discover relationships that can be later more 
rigorously examined, we would prefer to err on the side of 
finding false positives, rather than missing any relationship. 

We now answer separately each research question. 

4.1 RQ C1-C2: Which ASA issue categories 
can identify defect-prone components?  

Table IV, first column, reports Spearman correlations 
between Resharper issues densities of specific issue categories 
and defects. Statistically significant values (i.e., p-value ≤ 0.10) 
are shown in bold. 

We used issue densities (issues/NCSS) in the following 
computations because a positive Spearman correlation 
(rho=0.93, pval < 0.01) was found between NCSS and number 
of issues. We did not normalize the number of defects because 
the correlation between defects and size was not significant 
(rho= 0.42, pval= 0.15)  

The total number of Resharper issues has an insignificant 
but positive correlation with defect-proneness (0.19, p = 0.29) 
with all defects. Looking at Table IV, column “All RQ C1”, we 
observe positive correlations for all but one category (Common 
Practices and Code Improvements), and one (Language Usage 
Opportunities, rho= 0.57) is significant at the 90% confidence 
level (in bold). Hence, the answer to RQ C1 is: Only a few issue 
categories, such as Language Usage Opportunities in this 
example, are positively correlated with defects at the component 
level. Issues in the category Language Usage Opportunities 
identify optimizations at code level based on specific 
characteristics of C#. The most frequent detections were: 

 

TABLE III.  DEFECTS PER FILE  

File 
ID 

Component(s) Resharper 
issues 

Defects 

A C1, 29 1 

B C1,C2, 15 4 

C  35 6 

D C1, 84 3 

E  7 1 

F C1,C2, 73 4 

G C3,C1,C2, 73 2 

H  1 2 

I C1, 45 1 

J C1, 65 2 

K C5,C9, 7 2 

TABLE  IV.  CORRELATION BETWEEN DENSITY OF RESHARPER ISSUE 
TYPES AND DEFECT DENSITIES 

Defect types: All 

 
RQ1C1 

F 

 

FR  

 

FU  

 

R  

 

U  

 

ASP.NET       

Common 
Practicesand 
Code 
Improvements 

-0.14 -0.13 -0.34 0.07 0 -0.2 

Compiler 
Warnings 

0.3 0.31 0.48 0.28 0.04 0.25 

Constraints 
Violations 

0.11 0.1 0.03 0.09 0.23 0.18 

Language 
Usage 
Opportunities 

0.57 0.53 0.55 0.5 0.2 0.43 

Potential Code 
Quality Issues 

0.54 0.5 0.51 0.44 0.22 0.44 

Redundancies 
in Code 

0.52 0.49 0.47 0.33 0.39 0.53 

Redundancies 
in Symbol 
Declarations 

0.42 0.45 0.01 0.28 0.17 0.14 

Unused 
symbols 

0.53 0.53 0.75 0.57 0.33 0.56 

Sum of 
Resharper 
issues 

0.19 0.18 0.1 0.09 0.23 0.23 



 

 

• Convert 'if' statement to 'switch' statement  
• Invert 'if' statement to reduce nesting 
• Loop can be converted into LINQ-expression 
• Use 'var' keyword when initializer explicitly 

declares type 
• Use 'var' keyword when possible  

 
Possible root causes for this correlation are that the usage of more 
advances language features leads to less defect (i.e. the more 
language usage opportunities, the less code features are used in 
the code). Or, it might be that junior developers use less 
advanced language features than their more experience peers, and 
also produce more defect prone code.  

Table IV, columns 2-6, reports on the correlations between 
Resharper issue densities and defects, divided into the ISO\IEC 
9126 quality characteristics. The only category with significant 
positive correlations (in bold) is Unused Symbols: 0.75 with FR 
defects, 0.57 with FU defects, 0.56 with U defects. All Unused 
symbols issues were type members never used. We answer the 
research question the following way: Only very few indicators 
can be mapped to defects on the component level, and these 
indicators point to a wider range of quality characteristics rather 
than on a single one. 

We performed a follow-up analysis to see whether the two 
categories Language Usage Opportunities and Unused Symbols 
could be used as defect locators. We tested their capability to 
detect defects earlier than metrics of size and complexity, widely 
used in the defect prediction literature (e.g., [13], [17], [11], [8], 
[12]). Figure 4 shows the cumulative distribution of defects 
found ranking logical components with respect to the following 
indicators: 

• An ideal indicator that perfectly rank logical 
components from the faultiest one to the ones 
with no defect. 

• The density of issues of each of the following  
Resharper issues categories: 

   • Unused Symbols  
• Language usage opportunities  

• The density of all Resharper issues. 
• The number of statements (NCSS). 
• The average McCabe complexity. 

 
In other words, the curves in Figure 4 represent how 

quickly defects would be found if components were tested in 
different orders, sorted by the criteria listed above. A horizontal 
line on the graph indicates the point at which 80% of defects 
have been found. 

 We observe in Figure 4 that the first 3 components contain 
80% of the defects using the ideal locator. Language Usage 
Opportunities issue density and the total Resharper issue density 
find 80% of defects at the 5th component, and all the other 
indicators at the 6th (Unused Symbols, Complexity and Size). 
The figure also shows that the two selected Resharper categories 
are overall close to the “all issues” data line which does not 
consider the category of Resharper issues. This indicates that, at 
the component level, the distinction between issue categories 
might lead to small but not vast improvement compared to using 
all issues. 

4.2 RQ F1-F2: Which ASA issue categories 
can identify defect-prone files?  
    Tables V and Table VI show, both for defect prone files and 
non-defect prone files and for each Resharper issue category, 
mean and standard deviation of Resharper issues densities, the 

number of files for each set and the p-value of the Mann-
Whitney test on the difference between the two sets. Bold 
percentages indicate p-values that are significant at our chosen 
confidence level of 90%. Table VI presents only combinations 
of Resharper categories and ISO\IEC 9126 defect classifications 
for which the null hypothesis was rejected. 

The categories with highest differences on Resharper issues 
densities in defect prone/non defect prone files are 
Redundiancies in Code and Language usage opportunities. 
Redundancies in Code are related to Functionality and Usability 
defects, both separately and together. Constraints violations are 
related to Functionality and Functionality-Usability, while 
Language usage opportunities only with Usability.  

We already presented examples of the issues of the 
category Language Usage. Examples of Redundancies in Code 
are: 

• Assignment is not used 
• Explicit delegate creation expression is redundant 
• Expression is always 'true' or always 'false' 
• Redundant boolean comparison 
• Redundant cast 
• Redundant 'else' keyword 
• Redundant explicit type in array creation 
• Redundant 'this.' qualifier 
We performed the same follow up analysis that we did for 

components and we report in Figure 5 the cumulative 
distribution of defects found ranking files with respect to the 
following indicators: 

 
Figure 4. Cumulative distribution of defects in components 

and indicators 

 
Figure 5. Cumulative distribution of defects in files and 

indicators  



 

 

• an ideal indicator that perfectly rank logical 
components from the faultiest one to the ones with no 
defect; 

• the density of issues of each of the following  
Resharper issues categories: 
• Language Usage Opportunities  
• Redundancies in code  

• the density of all Resharper issues; 
• the average McCabe complexity ; 
• the number of statements (NCSS). 
A horizontal line in the graphs indicates the point at which 

80% of defects are found. 
Results at file level are more diverse than at component 

level: Selecting files based on the density of Redundancies in 
code issues outperforms all the other indicators, reaching 80% of 
defects at the 41st file (compared to the 9th file of the ideal 

locator). The second best indicator is the sum of Resharper 
issues: however, it reaches the threshold at the 74th position. 
NCSS and McCabe complexity are less precise indicators at file 
level: they are able to identify the 80% of defects only very late: 
a user will have to examine  at 90% of all files before capturing 
80% of all defect prone ones. 

Overall we answer the research questions on file level the 
following way:  

1. Multiple Resharper categories are good 
candidates for building predictive models for 
defect prone modules.  

2. There is a set of promising candidates of 
Resharper categories that is able to predict the 
quality impact of defect more precisely. 

 

TABLE V. RESEARCH QUESTION F1: RESULTS 

 Defect prone files (11) Non defect prone files (101) 
Pval 

 Resharper issues 
Mean 

Resharper 
issue/NCSS 

Sd Resharper 
issues/NCSS 

Mean 
Resharper 

issues/NCSS 

Sd Resharper 
issues/NCSS 

ASP.NET 0 0 0 0 NA 

Common Practices and Code Improvements 0.13 0.19 0.21 0.18 0.983 

Compiler Warnings 0 0.01 0 0.01 0.333 

Constraints Violations 0.13 0.05 0.08 0.05 0.014 

Language Usage Opportunities 0.14 0.07 0.08 0.08 0.026 

Potential Code Quality Issues 0 0.01 0 0 0.021 

Redundancies in Code 0.27 0.20 0.08 0.11 <0.001 

Redundancies in Symbol Declarations 0 0 0.06 0.1 0.969 

Unused.Symbols 0 0 0 0 NA 

Sum 0.67 0.24 0.52 0.23 0.133 

TABLE VI.   RESEARCH QUESTION F2 (ONLY STATISTICALLY SIGNIFICANT RESULTS) 

Quality characteristic – 
Resharper issue category 

Defect prone files Non defect prone files  
Pval 

 
Mean 

Resharper 
issues/NCSS 

Sd Resharper 
issues/NCSS 

Nr of 
files 

Mean 
Resharper 

issues/NCSS 

Sd Resharper 
issues/NCSS 

Nr of 
files 

F – Constraints Violations 0.14 0.06 6 0.08 0.05 94 0.013 

F – Redundancies in Code 0.23 0.14 6 0.09 0.13 94 0.002 

FR – Compiler Warnings 0.02 NA 1 0 0.01 99 0.001 

FU – Constraints Violations 0.18 0.04 3 0.08 0.05 97 0.002 

FU – Redundancies in Code 0.35 0.05 3 0.09 0.13 97 0.004 

FU - Sum 0.74 0.09 3 0.53 0.24 97 0.062 

R – Redundancies in Code 0.39 0.39 2 0.09 0.12 98 0.033 

R - Sum 0.93 0.21 2 0.53 0.23 98 0.029 

U – Constraints Violations 0.13 0.07 4 0.08 0.05 96 0.085 

U – Language Usage 
Opportunities 0.15 0.07 4 0.09 0.08 96 0.042 

U – Potential Code Quality Issues 0.01 0.01 4 0 0 96 <0.001 

U – Redundancies in Code 0.16 0.12 4 0.09 0.13 96 0.033 

 



 

 

In a follow up analysis we picked two quality characteristics of 
interest, Functionality (F) and Usability (U), and plotted the 
same graphs as before (see Figure 6 and 7) for the respective 
significant issue categories from Table VI. In both cases 
Redundancies in Code is a more efficient predictor than the sum 
of all issues.  

5. DISCUSSION 
The presented data indicates that the answer to the research 

questions is not straight forward in all cases. Most statistics on 
component level were rather inconclusive and showed only 
small correlations or a small set of useful issue categories. We 
believe that this indicates the high-level component view is 
perhaps not the right perspective for future research direction. 
The more promising results showed on file level, even if we had 
to deal with a sparse data set. The results indicated that number 
of promising indicators is larger, and this also holds for the 
number of categories pointing to specific quality problems. 

On both analysis levels we could improve the defect 
prediction quality by using selected single predictors, e.g. as 
Figures 4-7 show. Results also indicate that ASA issues are 
more promising to be good defect predictors than traditional 
software metrics, such as complexity or size.  

Some of the inspected issue categories, such as 
redundancies in code and unused symbols (both components and 
file level) indicate problems regarding memory waste. Vetro’ et 
al. [20] also found a correlation between a similar category of 
FindBugs issues (unused variables) and defects in students’ 
projects. The authors commented that this correlation could be 
the consequence of the programmers’ difficulties in the design 
of the class, because they planned to use more/different 
variables that indeed were not necessary. A similar explanation 
could be extended for these categories of Resharper.  

Further, some of the issues of category Language Usage 
Opportunities can also be an indicator of the level of 
programmers’ knowledge on the language.  

6. THREATS TO VALIDITY  
We identify a first construct threat in the mapping files- 

components. Even though this heuristic eliminates the 
subjectivity of the manual mapping, 18% of the files were not 
assigned to any component. 

Another threat is subjectivity in the ISO 9126 defect 
classification. We controlled this threat selecting the most 
reliable classification made by the experts. A more 
comprehensive discussion of this threat is found in the original 
study [22]. 

The small number of components and of files with defects 
(11) make statistical significance and a definitive answer to our 
research questions hard to obtain. We were aware of this threat 
and also for this reason we performed an explorative study and 
findings will be evaluated and better investigated in future work.  

As in any inductive study, the generalization of these 
findings is debatable because they are tied to the specific context 
of the analysis. Our research design reflects this concern: in this 
study we were focused on identifying whether there was any 
evidence that Resharper issues could be used as early indicators 
of defect-prone parts of the system, and especially whether 
estimates could be made regarding the type of quality impacted 
by those defects. Having obtained an initial indication that this is 
in fact a feasible approach, further study is necessary to 
determine whether the specific correlations found in this study 
can be replicated elsewhere. 

7. CONCLUSIONS 
Recent work in the literature ([23] [24] [4] [5] [15] [21] 

[20]) showed that automatic static analysis tools signal too many 
false positive issues, i.e. issues not related to any defect. As a 
consequence, looking at the single issues can be time consuming 
and not efficient. For this reason, researchers recently 
investigated whether using the ASA issues can help technical 
managers and developers to identify faulty modules: several 
studies ([16] [18] [26] [19] [14]]) reported a positive answer. 
The study presented in this paper is in the second stream of 
research, adding the following contributions: 

• We evaluate a combination tool-language 
(Resharper,C#) not yet evaluated in past works, 
up to our knowledge. 

• We performed and compared the analysis at two 
granularity levels, i.e. logical components and 
files.  

• We investigate whether ASA issues are able to 
identify specific categories of defects belonging to 
specific quality dimension. 

We found that few Resharper categories had positive 
correlations with defects at component level, while several 
categories were more efficient at file level. The issues with 
higher correlations identify problems regarding code readability, 
performance, and more in general related to maintainability 
problems.  

Moreover, classifying the defects according to the ISO 
9126 quality characteristics, different ASA issues categories 
were positively correlated to different quality characteristics.  

 
Figure 7: Predictor Performance for Usability 

 

 
Figure 6: Predictor Performance for Functionality 



 

 

We compared the capability of Resharper issues to detect 
the faultiest modules, both at components and files levels with 
the result that specific ASA issues were more efficient than the 
sum of them or traditional indicators (i.e. software metrics).  

Based on the experience of this study, we provide future 
researchers with the following set of recommendations: 

• Analysis on file level might lead to more 
promising results than on component level. 

• The size of the project should be at least, but 
preferably larger than our medium sized project, 
to avoid data sparseness problems as we found in 
our study. 

Considering future research directions, we suggest to better 
understand if results for specific categories are useful in other 
environments (e.g. if redundancies in code also predict usability 
problems when using other ASA tools), or if this approach will 
always require a process of exploration, data analysis, and 
tailoring towards a specific software environment. In latter case, 
the contribution of future research should focus on building 
practitioner-oriented methods to build such prediction models 
rather than building new models. 
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