

Investigating Automatic Static Analysis Results to Identify
Quality Problems: an Inductive Study

Antonio Vetro’1,2, Nico Zazworka1, Forrest Shull1, Carolyn Seaman1,3, Michele A. Shaw1

1Fraunhofer CESE

College Park, MD, USA

nzazworka@fc-md.umd.edu
 fshull@fc-md.umd.edu
mshaw@fc-md.umd.edu

2Automatics and Informatics Dept.

Politecnico di Torino, Torino, Italy

antonio.vetro@polito.it

3UMBC

Department of Information Systems

Baltimore, MD, USA

cseaman@umbc.edu

ABSTRACT
Background: Automatic static analysis (ASA) tools examine
source code to discover “issues”, i.e. code patterns that are
symptoms of bad programming practices and that can lead to
defective behavior. Studies in the literature have shown that
these tools find defects earlier than other verification activities,
but they produce a substantial number of false positive
warnings. For this reason, an alternative approach is to use the
set of ASA issues to identify defect prone files and components
rather than focusing on the individual issues.
Aim : We conducted an exploratory study to investigate whether
ASA issues can be used as early indicators of faulty files and
components and, for the first time, whether they point to a decay
of specific software quality attributes, such as maintainability or
functionality. Our aim is to understand the critical parameters
and feasibility of such an approach to feed into future research
on more specific quality and defect prediction models.
Method: We analyzed an industrial C# web application using
the Resharper ASA tool and explored if significant correlations
exist in such a data set.

Results: We found promising results when predicting defect-
prone files. A set of specific Resharper categories are better
indicators of faulty files than common software metrics or the
collection of issues of all issue categories, and these categories
correlate to different software quality attributes.

Conclusions: Our advice for future research is to perform
analysis on file rather component level and to evaluate the
generalizability of categories. We also recommend using larger
datasets as we learned that data sparseness can lead to
challenges in the proposed analysis process.

Categories and Subject Descriptors
D.2.8 [Metrics]: Product , D.2.0 [General]: Standards, D.2.4
[Software/Program Verification]: Statistical Methods

General Terms

Measurement, Experimentation, Verification.

Keywords
Automatic static analysis, software quality, defect prediction.

1. INTRODUCTION
Automatic program analysis is the process of extracting

information about a software program from its source or
artifacts (e.g., from byte or object code, or execution traces)
using automatic tools [2]. Program analysis can be static (i.e.
without executing the program) or dynamic (i.e. with executing
the program): our work is focused on static analysis.

Automatic Static Analysis (ASA) tools analyze the source
code or intermediate code (e.g. byte code) to determine defect
patterns and violations of good programming practices, naming
conventions, security flaws and coding standards. Violations are
called “issues” and could cause defective behavior of the
software system. ASA tools are able to evaluate code from early
stages in development onward, and do not require a running
version of the program. Also, contrary to popular verification
techniques such as unit and system tests, ASA tools do not
necessitate the specification of a test oracle. Since ASA tools are
applicable while developers write code (i.e. they operate in close
to real-time), their usage suggests a benefit in terms of
identifying problems as early as possible when compared to
other verification activities such as testing. As a consequence,
given that the time between a fault insertion and its removal
correlates with the cost of removing that defect [3], the
introduction of ASA tools in the development phase could lead
to important economic benefits.

Even if the usage of ASA tools promises benefits and high
return on investment, the currently available tools and
algorithms often have limitations when applied in practice. The
most important and well-studied limitation is the large number
of false positives returned when ASA is used to identify defects
that would lead to faults in software applications. On realistic-
sized applications ASA tools typically generate thousands of
issues, and so the output needs further refinement and tailoring
from developers to be useful. One of the main questions is how
to prioritize the long list of issues in order to find the most
important defects as soon as possible. This can typically be done
in two different ways. First, one can try to understand which
ASA issues are real indicators of defects that lead to faults. This
assumes that for each observed fault the related defect is actually
signaled by an ASA issue, which is not always the case.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/11429491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Secondly, one can use the large set of ASA issues to
understand the coexistence of issues and real defects in the same
source code file, or software component. This broader approach
will not assume a cause-effect relationship between ASA issues
and software faults, and could therefore capture cases where, for
example, sloppy programming or Technical Debt [7] leads to
defects and ASA issues at the same time. However it is also less
specific in guiding the developer to the specific location of the
defect (i.e. the line of code).

Beyond simply predicting the occurrence of defects and
faults, it is often also of interest to study how defects affect
common software quality attributes, such as maintainability,
functionality, usability, security, etc. For example, a security
defect leading to an intrusion can be more expensive for an
organization than a usability defect, and vice versa. What has
not yet been studied is if ASA issues are able to effectively
predict a defect (or a defect prone component) and to specify at
the same time which software quality attribute this defect will
affect.

This exploratory study uses the second approach of using
ASA issues to identify defect prone files and components and
takes a first leap towards understanding the feasibility of
identifying more specific quality problems. The study is
inductive in its character and the main aim is to understand key
parameters for future model building and to generate a set of
hypotheses and recommendations for future research.

2. RELATED WORK
The effort of the research community has focused on evaluating
ASA tools in two main streams: I) looking at single ASA issues
to identify defects in single lines of code or II) looking at large
sets of issues as early indicators of the more defect-prone
modules (e.g. classes, files, software components).

2.1 First research stream: looking at single
ASA issues to find defects
Several studies in the literature have reported on the

percentage of false positive ASA issues (i.e. issues not related to
defects) of different tools and in different contexts. For instance,
Wagner et al. [23] analyzed and classified with experienced
developers issues from three ASA tools (FindBugs, QJPro and
PMD) on four industrial projects and one university project, and
they reported that the percentage of false positive was 47% for
FindBugs, 31% for PMD and 96% for QJ Pro.

Weydan et al. [24] reported that more than 96% of
FindBugs and IntelliJ issues did not relate to any fault or
refactoring in two open source systems (jEdit and iText).

Similar findings were reported by Vetro’ et al. [21] [20]
applying the FindBugs tool to students’ Java projects.

Lower percentages of false positives are reported by
Ayewah et al. [1] running FindBugs on the JDK 1.6.0-b105; the
authors report that almost 50% of medium/high priority issues
related to correctness had impact on the functionality, and 10%
had a serious impact. On the flip side, 160 issues out of 379
were trivial (i.e., no impact), while 5 issues were due to faulty
analysis of FindBugs. A similar experiment with the same
category of issues was performed at Google, with similar
percentages of false positive issues, and a further validation
conducted on Glassfish v2 showed an even better result: 50
defects out of 58 disappeared due to changes made to
specifically address the issues raised by FindBugs.

Switching to the C languages, Boogerd and Moonen [4] [5]
analyzed four industrial projects in C and C++ with an ASA tool

for the MISRA standard [15], and they discovered that a small
set of rule violations (12 out of 72 in [4] , and 10 out of 88 in
[5]) were related to defects in source code. Finally, Nagappan et
al. [16] reported that only 12.5% of defects fixed in Windows
Server 2003 pre-release were found with two ASA tools
(PREfix and PREfast). Precision was not reported in this study,
so this figure is not directly comparable to the previously
reported results.

Overall, except for one study [1], we conclude that the
precision of the ASA tools is rather low, because high ratios of
false positives (i.e. low precision) were reported in many
studies.

2.2 Second research stream: using ASA
issues to predict modules with more defects

The second approach is to investigate whether static
analysis issues can be used as early predictors for the most
defect prone modules in software systems, rather than identify
the single issues that point to specific defects.

Nagappan et al. [16] discovered positive correlations (0.37
and 0.58) between issue densities from two ASA tools, PREfix
and PREfast, and the pre-release defect density. Moreover, they
successfully used the ASA issue densities to discriminate
between components of high and low quality.

A similar approach was used by the same author in a
study carried out at Nortel Networks [18], where automatic
inspection defects found by ASA tools had a positive correlation
with failures (0.40 and 0.49). Moreover, together with code
churn, ASA issues were good discriminators in identifying fault-
prone modules. The study at Nortel continued and one year later
Zheng et al. [26] reported even higher correlations between the
number of ASA issues in files and three different indicators of
external quality, i.e. number of tests failures, number of
customer reported failures and number of total failures
(respectively 0.71, 0.60 and 0.73).

Other authors used a similar approach. For instance, Plosch
et al. [19] studied the correlation between the number of
FindBugs and PMD issues, and defects in Eclipse SDK 2.0, 2.1
and 3.0. They found positive correlations for both tools (0.34,
0.25 and 0.30 for PMD, and 0.20, 0.08, 0.20 for FindBugs).
Excluding the LOC related metrics, PMD issues correlated
better with defects than other static metrics (e.g., number of
methods, number of fields, etc.)

Finally, Marchenko and Abrahamsson [14] used two tools,
namely CodeScanner and PC-LINT, to analyze five projects in
the Symbian C++ environment. They computed the correlation
between issues and critical defects in two snapshots of the
project (i.e. within 90 days after the release and within 180 days
after the release) and they observed contradictory results:
CodeScanner obtained very high positive correlations (0.70 and
0.90), while PC-LINT issues strongly correlated negatively (-
0.90 and -0.70) with defects.

Overall, all the current results available in the literature but
one [14] show that using ASA issues to find the most defect-
prone files or modules is more effective than using individual
ASA issues to discover individual defects.

2.3 Contributions of this study
We are helping an industrial partner in understanding the

usefulness and effectiveness of the Resharper ASA tool in their
development projects and we decided to adopt the second
approach because it is more promising than the first one, as

summarized in the previous sections. Our long term aim is to
provide our partner with models that use ASA issues to point to
more specific quality problems. These models should be able to
make recommendations for code inspections based on a set of
quality characteristics of interest. For example, a security
inspection should be able to use a prediction model pointing to
software files and components with potential security flaws. Or,
the user experience review should be able to use a model that
selects parts of the software with potential usability problems.

The main novelties that we introduce with respect to the
previously conducted related work are:

• We contribute to the body of evidence of the second
research stream by adding a new
tool/language/application combination (Resharper/
C#/ Web application). The Resharper tool has, to our
knowledge, not yet been evaluated in past work.

• We perform the analysis at two granularity levels, i.e.
software components and source code files.
Components are high-level functional units
encapsulating one or more main functionalities of the
software system, such as: “User Login”, “Database
Access”, or “Admin Backend”. Source code files are
low-level artifacts, usually containing classes that are
the building blocks for components. Since past
studies were done at only one of the two levels this
study will give some insight into the comparison
between the two levels.

• We investigate whether specific types of ASA issues
can be linked to specific quality dimensions. This is
helpful to understand if an increased importance of
one quality dimension, such as usability, can help to
pre-select the set of ASA issue types that will predict
usability defects with the highest precision. Or more
generally, the approach can be used to prioritize the
set of ASA issues a reviewer would have to inspect,
based on a prioritization of desired quality
characteristics.

To our knowledge, no past work has yet studied the correlation
between ASA issue types and quality characteristics. The most
similar works we found were two studies that investigated
instead the typology of defects found by ASA tools. The first
one is a study conducted by Nagappan et al. [18], who classified
defects found by the FlexeLint tool using the ODC classification
schema [6] and found that defects associated with ASA fell into
three ODC defect types: checking, assignment/initialization,
and interface. Wagner et al. [23] also classified ASA issues, but
they focused on their effect on code rather than their causes. The
authors used a 5-point scale of severity to classify the true
positive issues signaled by FindBugs, PMD and QJPro on five
industrial projects. The highest category level was “Defects that
lead to a crash of the application”, while the lowest was
“Defects that reduce the maintainability of the code”. The
authors found that most of the true positives were related to
maintainability of the code (e.g., readability and changeability).
They also compared ASA issues with defects found using code
reviews and unit tests, and they discovered that all defects found
by ASA tools were also found by the review, while testing
activities found different categories of defects.

We adopt a different perspective from these two studies,
and we focus on whether any ASA issues can predict defects
relating to a very general set of software quality attributes, using
the well-known ISO/IEC 9126 quality model [9] as a basis for
defect classification. The ISO/IEC 9126 Software engineering

Product Quality Model is an international standard for the
evaluation of software quality. It defines a quality model with
six main characteristics namely, functionality (F), reliability (R),
usability (U), efficiency (E), maintainability (M), and portability
(P), which are further broken down into 22 sub-characteristics.
The standard was revised in March 2011 by the ISO/IEC 25010
standard committee [10]. Our defect classification based on the
standard was created two months after the new standard was
released, but we decided to keep the old standard because of its
widespread use and because of the large overlap between the
two.

We proposed our defect classification in a previous work
[22]; it is complementary to already existing defect
classifications because it helps in understanding the impact of
the software on different quality attributes. Such classification
might help programmers and managers with practical tasks, such
as the prioritization of defects according to the different
stakeholders’ interests, the ease of process improvement
measurement on specific quality dimensions or tuning
verification activities according to specific quality dimensions.
This work is specific to the latter point and it is a first step
towards understanding whether different ASA issues could be
related to specific quality dimensions.

3. GOAL AND STUDY DESIGN
The first goal of this study is to understand whether some

predefined subsets of ASA issues (a.k.a. ASA issue categories1)
are eligible as indicators of defect-proneness. The second goal is
to understand whether and which categories of ASA issues are
related to specific software quality dimensions. Both questions
are analyzed at two levels of granularity: firstly with respect to
components, and secondly source code files. The rationale
behind the decision to perform analysis on different levels is to
better comprehend if results would differ, be the same, or even
contradict each other.

3.1 Study Context
The study was carried out at a software company that

develops web-based applications in C# (using .NET and Visual
Studio). The company uses the JIRA tracking system2 to record
defects.

Of the current projects at this company, we selected one for
in-depth analysis based on data quality. Preliminary analysis
showed that data quality varied considerably between available
projects, reflecting the level of process conformance [25] with
which developers recorded defects in JIRA. We chose the
project with the best data quality (according to the three criteria
below) to reduce the influence of incomplete or noisy data on
the results:

A. Number of empty fields in defect reports (e.g. missing
data).

1 Issue categories vary depending on the ASA tool used. Typical

categories for the Resharper tool used in this study are:
Redundancies in Code, Common Practices and Code
Improvements, Compiler Warnings, etc.

2 http://www.atlassian.com/software/jira

B. Number of defect report fields that were filled with the
default value (which may indicate the default value was
accepted rather than that the true value was investigated).

C. Percentage of components that could be bound to files (our
approach for this is described below).

The selected application has about 35 KLocs and has been
active in production since November 2009, with 4 developers
working on it in parallel. At the time of the analysis, the JIRA
system contained 78 fixed and closed3 defects for the selected
project (which we will call J).

3.2 Mapping between ASA issues, Defects,
Files, and Components

Our methodology for performing the mapping between
components, files, and ASA issues, as illustrated in Figure 1, is
based upon the fact that JIRA systems can track not only defects
but any other element that can be associated with software
artifacts. Those elements are called “JIRA issues”, and each
project has its own set of issues. Example of JIRA issues are
change requests, system incident reports, implementation tasks,
etc. Moreover, developers establish links between files in the
SVN code repository to JIRA issues by including ticket ids in
their SVN commit comments. Finally, each JIRA issue is linked
by the software developers to one or more software components.

With this information one can build a frequency table (see
Figure 2) of files (rows) and components (cells) indicating how

3 JIRA defects with resolution “fixed” and status “closed” are

the types of defects that were reported, found to be
reproducible defects, fixed in the implementation, and
validated as repairing the fault. Defects that were not
considered in this analysis are, for example, “open and not yet
fixed defects”, “defects that were duplicates of other reported
defects”, “defects that could not be reproduced”, and “defects
that were fixed but not yet validated to solve the fault”

often files were changed (i.e. added, modified, or deleted) when
working on a component. If a JIRA issue is related to one or
more logical components, then the set of modified files belong
to the respective components. Using this method a mapping is
built based on evidence of how the system changed and evolved
over time.

Since a file can belong to many logical components, we
accept multiple classifications. Further we reduce some possible
noise by mapping a file only to a component if it was linked to
this component in at least 20% of all the files’ changes. This
percentage was set after an analysis of frequency distributions.

3.3 Study Execution
We derive from our first goal two research questions on

component (C) and file (F) level:

RQ C1: Which ASA issue categories can identify defect-prone
components?

RQ F1: Which ASA issue categories can identify defect-prone
files?

Figure 1: Linkage between Resharper issues, source code files, issue and defect fixes, and components. Yellow defects indicate that a

file is linked to at least one defect issue in JIRA.

Figure 2: Evidence-based binding of files to logical components

Additional research questions are derived from our second goal:

RQ C2: Which ASA issue categories can point to defect-prone
components that impact various system quality
characteristics?

RQ F2: Which ASA issue categories can point to defect-prone
files that impact various system quality
characteristics?

We address these questions inductively, investigating whether
the detection of defect-proneness was possible and if so, which
types of ASA issues were useful for doing so. We discuss the
metrics and the methodology separately for each research
question below.

RQ C1: Which ASA issue categories can identify defect-
prone components?

To answer RQ1-C1, we first performed the mapping as
described in sub-section 3.2 to link Resharper issues to
components. Secondly, we checked to see if the number of
Resharper issues is correlated with software size. This step was
necessary to investigate a possible bias from code size. If such a
correlation exists, it is necessary to normalize the data (e.g. by
using issue density instead of number of issues). The same
analysis is done for defects.

In a third step we test for correlations between numbers of
defects and numbers of Resharper issues in each Resharper
category, per component. We use the Spearman coefficient
correlation (a non-parametric statistic), since we observe a wide
range of issues and defects that do not appear to follow any
defined distribution (see Tables I and II).

RQ F1: Which ASA issue categories can identify defect-

prone files?
To answer this research question we used again the

mapping procedure from sub-section 3.2. We also checked for
possible bias as described in RQ-C1. Lastly, we tested for
correlation between Resharper issue categories and defects by
using a two sample Mann-Whitney test [23] after running an
unsuccessful Shapiro test for normality. This type of test was
more appropriate than the Spearman correlation due the
sparseness of the data; it has also been used in previous studies
[5] [21]. As the results will show, only a small number of files
(about 10%) were associated with defects. Therefore, we
partitioned the sample into non-defect-prone files and defect-
prone files in order to perform the Mann-Whitney test. This
decision implies that the analysis will investigate if files with at
least one defect can be identified by the Resharper issues
residing in the same file.

RQ C2: Which ASA issue categories can point to defect-prone

components that impact various system quality
characteristics?

RQ F2: Which ASA issue categories can point to defect-prone
files that impact various system quality
characteristics?

For both of these research questions, we used the ISO/IEC

9126 quality model as a basis for classifying the defects
according to different quality characteristics. The method for
classifying defects in this way was developed and validated in a
prior experiment [22], which also used the same project as the
subject project. In that study, six different subjects, divided into
two groups with respect to their expertise, classified the 78
defects using the ISO/IEC 9126 quality main characteristics and

sub-characteristics. Subjects read the defect reports and assigned

TABLE I. RESHARPER ISSUES DETECTED

Resharper category Number of
issues

ASP.NET 2
Common Practices and Code Improvements 521
Compiler Warnings 36
Constraints Violations 445
Language Usage Opportunities 591
Potential Code Quality Issues 14
Redundancies in Code 645
Redundancies in Symbol Declarations 82
Unused Symbols 7
Sum of issues 2343

TABLE II. RESHARPER ISSUES ON COMPONENTS

Component Sum of
ReSharper

issues Defects NCSS

Cmp 1 1407 43 3192
Cmp 2 324 13 961
Cmp 3 232 6 711
Cmp 4 29 5 97
Cmp 5 7 4 9
Cmp 6 29 4 97
Cmp 7 0 3 0
Cmp 8 119 2 246
Cmp 9 93 1 208
Cmp 10 0 0 0
Cmp 11 428 0 1392
Cmp 12 0 0 0
Cmp 13 0 0 147
Cmp 14 0 0 0
Cmp 15 0 0 0

Figure 3: Defect Classification

Functionality
58%

Usability
26%

Reliability
6%

Functionality
& Reliability

5%

Functionality
& Usability

5%

each defect to one or more quality characteristics and sub-
characteristics (the classification is not orthogonal). The
underlying idea is that each defect reduces a software capability
and impacts the corresponding characteristic and sub-
characteristic.

We observed that more experienced software engineers
produced classifications with less variability, and that the
classification at characteristic level was more reliable than those
at sub-characteristics level. As a consequence, we adopted as the
final classification the one created by experts at the
characteristics level.

Using that classification we were then able to check, in the
work described in this paper, whether various types of Resharper
issues are correlated to the defects related to specific quality
characteristics.

4. RESULTS
We collected metrics on the revision of the target project

preceding the first defect fix commit to include as many defects
as possible. Resharper reported 2343 issues on the source code
of the web application: Table I reports the issues per each
Resharper category and Table II reports, for each logical
component, total number of Resharper issues, number of defects
and non-commented source statements. Some components have
0 NCSS for two reasons: a component was built after the version
of the software analyzed, or the files-component mapping
produced zero files for a component, or in some cases both.
Resharper reported issues on files with extension .aspx, .xaml,
.csproj, .cs (including .xaml.cs, .ascx.cs, .aspx.cs, .ashx.cs,
.Master.cs). .

Among the 78 fixed and closed defects, 65 had commits
linked to them. According to the experts’ classification [22]
(Figure 3), the majority of defects (58%) impacted only
functionality, followed by usability (26%) and reliability (6%).
Mixed classifications (FR and FU) accounted for 5% each, while
no defects had impact in the remaining three categories.

The total number of files with at least one defect fix is 58.
However, excluding those files that were out of scope of the
Resharper analysis (e.g., .sql files, .css files) and those files that
were added after the revision we analyzed, only 11 of the 58
remained. These files are listed in Table III. As with
components, the data indicates that there is not a clear
relationship between number of defects and Resharper issues:
the most defect prone file (C) has 35 issues whereas some of the
less defect prone files (G,I,J) have up to twice the issue count.

As this is an exploratory study, when analyzing statistical
significance we ran our tests at a 90% confidence level. As we
are intending to discover relationships that can be later more
rigorously examined, we would prefer to err on the side of
finding false positives, rather than missing any relationship.

We now answer separately each research question.

4.1 RQ C1-C2: Which ASA issue categories
can identify defect-prone components?

Table IV, first column, reports Spearman correlations
between Resharper issues densities of specific issue categories
and defects. Statistically significant values (i.e., p-value ≤ 0.10)
are shown in bold.

We used issue densities (issues/NCSS) in the following
computations because a positive Spearman correlation
(rho=0.93, pval < 0.01) was found between NCSS and number
of issues. We did not normalize the number of defects because
the correlation between defects and size was not significant
(rho= 0.42, pval= 0.15)

The total number of Resharper issues has an insignificant
but positive correlation with defect-proneness (0.19, p = 0.29)
with all defects. Looking at Table IV, column “All RQ C1”, we
observe positive correlations for all but one category (Common
Practices and Code Improvements), and one (Language Usage
Opportunities, rho= 0.57) is significant at the 90% confidence
level (in bold). Hence, the answer to RQ C1 is: Only a few issue
categories, such as Language Usage Opportunities in this
example, are positively correlated with defects at the component
level. Issues in the category Language Usage Opportunities
identify optimizations at code level based on specific
characteristics of C#. The most frequent detections were:

TABLE III. DEFECTS PER FILE

File
ID

Component(s) Resharper
issues

Defects

A C1, 29 1

B C1,C2, 15 4

C 35 6

D C1, 84 3

E 7 1

F C1,C2, 73 4

G C3,C1,C2, 73 2

H 1 2

I C1, 45 1

J C1, 65 2

K C5,C9, 7 2

TABLE IV. CORRELATION BETWEEN DENSITY OF RESHARPER ISSUE
TYPES AND DEFECT DENSITIES

Defect types: All

RQ1C1

F

FR

FU

R

U

ASP.NET

Common
Practicesand
Code
Improvements

-0.14 -0.13 -0.34 0.07 0 -0.2

Compiler
Warnings

0.3 0.31 0.48 0.28 0.04 0.25

Constraints
Violations

0.11 0.1 0.03 0.09 0.23 0.18

Language
Usage
Opportunities

0.57 0.53 0.55 0.5 0.2 0.43

Potential Code
Quality Issues

0.54 0.5 0.51 0.44 0.22 0.44

Redundancies
in Code

0.52 0.49 0.47 0.33 0.39 0.53

Redundancies
in Symbol
Declarations

0.42 0.45 0.01 0.28 0.17 0.14

Unused
symbols

0.53 0.53 0.75 0.57 0.33 0.56

Sum of
Resharper
issues

0.19 0.18 0.1 0.09 0.23 0.23

• Convert 'if' statement to 'switch' statement
• Invert 'if' statement to reduce nesting
• Loop can be converted into LINQ-expression
• Use 'var' keyword when initializer explicitly

declares type
• Use 'var' keyword when possible

Possible root causes for this correlation are that the usage of more
advances language features leads to less defect (i.e. the more
language usage opportunities, the less code features are used in
the code). Or, it might be that junior developers use less
advanced language features than their more experience peers, and
also produce more defect prone code.

Table IV, columns 2-6, reports on the correlations between
Resharper issue densities and defects, divided into the ISO\IEC
9126 quality characteristics. The only category with significant
positive correlations (in bold) is Unused Symbols: 0.75 with FR
defects, 0.57 with FU defects, 0.56 with U defects. All Unused
symbols issues were type members never used. We answer the
research question the following way: Only very few indicators
can be mapped to defects on the component level, and these
indicators point to a wider range of quality characteristics rather
than on a single one.

We performed a follow-up analysis to see whether the two
categories Language Usage Opportunities and Unused Symbols
could be used as defect locators. We tested their capability to
detect defects earlier than metrics of size and complexity, widely
used in the defect prediction literature (e.g., [13], [17], [11], [8],
[12]). Figure 4 shows the cumulative distribution of defects
found ranking logical components with respect to the following
indicators:

• An ideal indicator that perfectly rank logical
components from the faultiest one to the ones
with no defect.

• The density of issues of each of the following
Resharper issues categories:

 • Unused Symbols
• Language usage opportunities

• The density of all Resharper issues.
• The number of statements (NCSS).
• The average McCabe complexity.

In other words, the curves in Figure 4 represent how

quickly defects would be found if components were tested in
different orders, sorted by the criteria listed above. A horizontal
line on the graph indicates the point at which 80% of defects
have been found.

 We observe in Figure 4 that the first 3 components contain
80% of the defects using the ideal locator. Language Usage
Opportunities issue density and the total Resharper issue density
find 80% of defects at the 5th component, and all the other
indicators at the 6th (Unused Symbols, Complexity and Size).
The figure also shows that the two selected Resharper categories
are overall close to the “all issues” data line which does not
consider the category of Resharper issues. This indicates that, at
the component level, the distinction between issue categories
might lead to small but not vast improvement compared to using
all issues.

4.2 RQ F1-F2: Which ASA issue categories
can identify defect-prone files?
 Tables V and Table VI show, both for defect prone files and
non-defect prone files and for each Resharper issue category,
mean and standard deviation of Resharper issues densities, the

number of files for each set and the p-value of the Mann-
Whitney test on the difference between the two sets. Bold
percentages indicate p-values that are significant at our chosen
confidence level of 90%. Table VI presents only combinations
of Resharper categories and ISO\IEC 9126 defect classifications
for which the null hypothesis was rejected.

The categories with highest differences on Resharper issues
densities in defect prone/non defect prone files are
Redundiancies in Code and Language usage opportunities.
Redundancies in Code are related to Functionality and Usability
defects, both separately and together. Constraints violations are
related to Functionality and Functionality-Usability, while
Language usage opportunities only with Usability.

We already presented examples of the issues of the
category Language Usage. Examples of Redundancies in Code
are:

• Assignment is not used
• Explicit delegate creation expression is redundant
• Expression is always 'true' or always 'false'
• Redundant boolean comparison
• Redundant cast
• Redundant 'else' keyword
• Redundant explicit type in array creation
• Redundant 'this.' qualifier
We performed the same follow up analysis that we did for

components and we report in Figure 5 the cumulative
distribution of defects found ranking files with respect to the
following indicators:

Figure 4. Cumulative distribution of defects in components

and indicators

Figure 5. Cumulative distribution of defects in files and

indicators

• an ideal indicator that perfectly rank logical
components from the faultiest one to the ones with no
defect;

• the density of issues of each of the following
Resharper issues categories:
• Language Usage Opportunities
• Redundancies in code

• the density of all Resharper issues;
• the average McCabe complexity ;
• the number of statements (NCSS).
A horizontal line in the graphs indicates the point at which

80% of defects are found.
Results at file level are more diverse than at component

level: Selecting files based on the density of Redundancies in
code issues outperforms all the other indicators, reaching 80% of
defects at the 41st file (compared to the 9th file of the ideal

locator). The second best indicator is the sum of Resharper
issues: however, it reaches the threshold at the 74th position.
NCSS and McCabe complexity are less precise indicators at file
level: they are able to identify the 80% of defects only very late:
a user will have to examine at 90% of all files before capturing
80% of all defect prone ones.

Overall we answer the research questions on file level the
following way:

1. Multiple Resharper categories are good
candidates for building predictive models for
defect prone modules.

2. There is a set of promising candidates of
Resharper categories that is able to predict the
quality impact of defect more precisely.

TABLE V. RESEARCH QUESTION F1: RESULTS

 Defect prone files (11) Non defect prone files (101)
Pval

 Resharper issues
Mean

Resharper
issue/NCSS

Sd Resharper
issues/NCSS

Mean
Resharper

issues/NCSS

Sd Resharper
issues/NCSS

ASP.NET 0 0 0 0 NA

Common Practices and Code Improvements 0.13 0.19 0.21 0.18 0.983

Compiler Warnings 0 0.01 0 0.01 0.333

Constraints Violations 0.13 0.05 0.08 0.05 0.014

Language Usage Opportunities 0.14 0.07 0.08 0.08 0.026

Potential Code Quality Issues 0 0.01 0 0 0.021

Redundancies in Code 0.27 0.20 0.08 0.11 <0.001

Redundancies in Symbol Declarations 0 0 0.06 0.1 0.969

Unused.Symbols 0 0 0 0 NA

Sum 0.67 0.24 0.52 0.23 0.133

TABLE VI. RESEARCH QUESTION F2 (ONLY STATISTICALLY SIGNIFICANT RESULTS)

Quality characteristic –
Resharper issue category

Defect prone files Non defect prone files
Pval

Mean

Resharper
issues/NCSS

Sd Resharper
issues/NCSS

Nr of
files

Mean
Resharper

issues/NCSS

Sd Resharper
issues/NCSS

Nr of
files

F – Constraints Violations 0.14 0.06 6 0.08 0.05 94 0.013

F – Redundancies in Code 0.23 0.14 6 0.09 0.13 94 0.002

FR – Compiler Warnings 0.02 NA 1 0 0.01 99 0.001

FU – Constraints Violations 0.18 0.04 3 0.08 0.05 97 0.002

FU – Redundancies in Code 0.35 0.05 3 0.09 0.13 97 0.004

FU - Sum 0.74 0.09 3 0.53 0.24 97 0.062

R – Redundancies in Code 0.39 0.39 2 0.09 0.12 98 0.033

R - Sum 0.93 0.21 2 0.53 0.23 98 0.029

U – Constraints Violations 0.13 0.07 4 0.08 0.05 96 0.085

U – Language Usage
Opportunities 0.15 0.07 4 0.09 0.08 96 0.042

U – Potential Code Quality Issues 0.01 0.01 4 0 0 96 <0.001

U – Redundancies in Code 0.16 0.12 4 0.09 0.13 96 0.033

In a follow up analysis we picked two quality characteristics of
interest, Functionality (F) and Usability (U), and plotted the
same graphs as before (see Figure 6 and 7) for the respective
significant issue categories from Table VI. In both cases
Redundancies in Code is a more efficient predictor than the sum
of all issues.

5. DISCUSSION
The presented data indicates that the answer to the research

questions is not straight forward in all cases. Most statistics on
component level were rather inconclusive and showed only
small correlations or a small set of useful issue categories. We
believe that this indicates the high-level component view is
perhaps not the right perspective for future research direction.
The more promising results showed on file level, even if we had
to deal with a sparse data set. The results indicated that number
of promising indicators is larger, and this also holds for the
number of categories pointing to specific quality problems.

On both analysis levels we could improve the defect
prediction quality by using selected single predictors, e.g. as
Figures 4-7 show. Results also indicate that ASA issues are
more promising to be good defect predictors than traditional
software metrics, such as complexity or size.

Some of the inspected issue categories, such as
redundancies in code and unused symbols (both components and
file level) indicate problems regarding memory waste. Vetro’ et
al. [20] also found a correlation between a similar category of
FindBugs issues (unused variables) and defects in students’
projects. The authors commented that this correlation could be
the consequence of the programmers’ difficulties in the design
of the class, because they planned to use more/different
variables that indeed were not necessary. A similar explanation
could be extended for these categories of Resharper.

Further, some of the issues of category Language Usage
Opportunities can also be an indicator of the level of
programmers’ knowledge on the language.

6. THREATS TO VALIDITY
We identify a first construct threat in the mapping files-

components. Even though this heuristic eliminates the
subjectivity of the manual mapping, 18% of the files were not
assigned to any component.

Another threat is subjectivity in the ISO 9126 defect
classification. We controlled this threat selecting the most
reliable classification made by the experts. A more
comprehensive discussion of this threat is found in the original
study [22].

The small number of components and of files with defects
(11) make statistical significance and a definitive answer to our
research questions hard to obtain. We were aware of this threat
and also for this reason we performed an explorative study and
findings will be evaluated and better investigated in future work.

As in any inductive study, the generalization of these
findings is debatable because they are tied to the specific context
of the analysis. Our research design reflects this concern: in this
study we were focused on identifying whether there was any
evidence that Resharper issues could be used as early indicators
of defect-prone parts of the system, and especially whether
estimates could be made regarding the type of quality impacted
by those defects. Having obtained an initial indication that this is
in fact a feasible approach, further study is necessary to
determine whether the specific correlations found in this study
can be replicated elsewhere.

7. CONCLUSIONS
Recent work in the literature ([23] [24] [4] [5] [15] [21]

[20]) showed that automatic static analysis tools signal too many
false positive issues, i.e. issues not related to any defect. As a
consequence, looking at the single issues can be time consuming
and not efficient. For this reason, researchers recently
investigated whether using the ASA issues can help technical
managers and developers to identify faulty modules: several
studies ([16] [18] [26] [19] [14]]) reported a positive answer.
The study presented in this paper is in the second stream of
research, adding the following contributions:

• We evaluate a combination tool-language
(Resharper,C#) not yet evaluated in past works,
up to our knowledge.

• We performed and compared the analysis at two
granularity levels, i.e. logical components and
files.

• We investigate whether ASA issues are able to
identify specific categories of defects belonging to
specific quality dimension.

We found that few Resharper categories had positive
correlations with defects at component level, while several
categories were more efficient at file level. The issues with
higher correlations identify problems regarding code readability,
performance, and more in general related to maintainability
problems.

Moreover, classifying the defects according to the ISO
9126 quality characteristics, different ASA issues categories
were positively correlated to different quality characteristics.

Figure 7: Predictor Performance for Usability

Figure 6: Predictor Performance for Functionality

We compared the capability of Resharper issues to detect
the faultiest modules, both at components and files levels with
the result that specific ASA issues were more efficient than the
sum of them or traditional indicators (i.e. software metrics).

Based on the experience of this study, we provide future
researchers with the following set of recommendations:

• Analysis on file level might lead to more
promising results than on component level.

• The size of the project should be at least, but
preferably larger than our medium sized project,
to avoid data sparseness problems as we found in
our study.

Considering future research directions, we suggest to better
understand if results for specific categories are useful in other
environments (e.g. if redundancies in code also predict usability
problems when using other ASA tools), or if this approach will
always require a process of exploration, data analysis, and
tailoring towards a specific software environment. In latter case,
the contribution of future research should focus on building
practitioner-oriented methods to build such prediction models
rather than building new models.

8. REFERENCES
[1] Nathaniel Ayewah, William Pugh, J. David Morgenthaler,
John Penix, and YuQian Zhou. Evaluating static analysis defect
warnings on production software. In Proceedings of the 7th
ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, PASTE ’07, pages 1–8, New
York, NY, USA, 2007. ACM.

[2] D. Binkley. Source code analysis: A road map. In Future of
Software Engineering, 2007. FOSE ’07, pages 104 –119, may
2007.

[3] Barry Boehm and Victor R. Basili. Software defect reduction
top 10 list. Computer, 34:135–137, January 2001.

[4] C. Boogerd and L. Moonen. Assessing the value of coding
standards: An empirical study. In Software Maintenance, 2008.
ICSM 2008. IEEE International Conference on, pages 277 –286,
28 2008-oct. 4 2008.

[5] C. Boogerd and L. Moonen. Evaluating the relation between
coding standard violations and faultswithin and across software
versions. In Mining Software Repositories, 2009. MSR ’09. 6th
IEEE International Working Conference on, pages 41 –50, May
2009.

[6] R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S.
Moebus, B.K. Ray, and M.-Y. Wong. Orthogonal defect
classification-a concept for in-process measurements. Software
Engineering, IEEE Transactions on, 18(11):943 –956, nov
1992.

[7] Ward Cunningham. The wycash portfolio management
system. In Addendum to the proceedings on Object-oriented
programming systems, languages, and applications
(Addendum), OOPSLA ’92, pages 29–30, New York, NY, USA,
1992. ACM.

[8] Norman E. Fenton and Niclas Ohlsson. Quantitative analysis
of faults and failures in a complex software system. IEEE Trans.
Softw. Eng., 26:797–814, August 2000.

[9] ISO/IEC. Iso/iec 9126. software engineering – product
quality, 2001.

[10] ISO/IEC. Iso/iec 25010. systems and software engineering
– systems and software quality requirements and evaluation
(square) – system and software quality models, 2011.

[11] A. Günes Koru, Khaled El Emam, Dongsong Zhang,
Hongfang Liu, and Divya Mathew. Theory of relative defect
proneness. Empirical Softw. Engg., 13:473–498, October 2008.

[12] A. Günes Koru and Hongfang Liu. An investigation of the
effect of module size on defect prediction using static measures.
SIGSOFT Softw. Eng. Notes, 30:1–5, May 2005.

[13] A. Gunes Koru, Dongsong Zhang, and Hongfang Liu.
Modeling the effect of size on defect proneness for open-source
software. In Proceedings of the Third International Workshop
on Predictor Models in Software Engineering, PROMISE ’07,
pages 10–, Washington, DC, USA, 2007. IEEE Computer
Society.

[14] Artem Marchenko and Pekka Abrahamsson. Predicting
software defect density: a case study on automated static code
analysis. In Proceedings of the 8th international conference on
Agile processes in software engineering and extreme
programming, XP’07, pages 137–140, Berlin, Heidelberg, 2007.
Springer-Verlag.

[15] MIRA Ltd. MISRA-C:2004 Guidelines for the use of the C
language in critical systems, October 2004.

[16] Nachiappan Nagappan and Thomas Ball. Static analysis
tools as early indicators of pre-release defect density. In
Proceedings of the 27th international conference on Software
engineering, ICSE ’05, pages 580–586, New York, NY, USA,
2005. ACM.

[17] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller.
Mining metrics to predict component failures. In Proceedings of
the 28th international conference on Software engineering,
ICSE ’06, pages 452–461, New York, NY, USA, 2006. ACM.

[18] Nachiappan Nagappan, Laurie Williams, John Hudepohl,
Will Snipes, and Mladen Vouk. Preliminary results on using
static analysis tools for software inspection. Software Reliability
Engineering, International Symposium on, 0:429–439, 2004.

[19] R. Plosch, H. Gruber, A. Hentschel, G. Pomberger, and
S. Schiffer. On the relation between external software quality
and static code analysis. In Software Engineering Workshop,
2008. SEW ’08. 32nd Annual IEEE, pages 169 –174, oct. 2008.

[20] A. Vetro’, M. Morisio, and M. Torchiano. An empirical
validation of findbugss issues related to defects. IET Seminar
Digests, 2011(1):144–153, 2011.

[21] A. Vetro’, M. Torchiano, and M. Morisio. Assessing the
precision of findbugs by mining java projects developed at a
university. In IEEE CS Press, editor, Proceedings of MSR 2010,
pages 110–113, 2010.

[22] A. Vetro’, N. Zazworka, C. Seaman, and F. Shull. Using
the ISO/IEC 9126 product quality model to classify defects : a
controlled experiment. In Proceedings of the 16th International
Conference on Evaluation & Assessment in Software
Engineering (EASE 2012), 2012.

[23] Stefan Wagner, Jan Jï¿½rjens, Claudia Koller, and Peter
Trischberger. Comparing defect finding tools with reviews and
tests. In IN PROC. 17TH INTERNATIONAL CONFERENCE
ON TESTING OF COMMUNICATING SYSTEMS (TESTCOM
2005), VOLUME 3502 OF LNCS, pages 40–55. Springer, 2005.

[24] F. Wedyan, D. Alrmuny, and J.M. Bieman. The
effectiveness of automated static analysis tools for fault
detection and refactoring prediction. In Software Testing
Verification and Validation, 2009. ICST ’09. International
Conference on, pages 141 –150, april 2009.

[25] Nico Zazworka, Kai Stapel, Eric Knauss, Forrest Shull,
Victor R. Basili, and Kurt Schneider. Are developers complying
with the process: an xp study. In Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’10, pages 14:1–14:10,
New York, NY, USA, 2010. ACM.

[26] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J.P.
Hudepohl, and M.A. Vouk. On the value of static analysis for
fault detection in software. Software Engineering, IEEE
Transactions on, 32(4):240 – 253, april 2006.

