64 research outputs found

    A study of self-similar traffic generation for ATM networks

    Get PDF
    This thesis discusses the efficient and accurate generation of self-similar traffic for ATM networks. ATM networks have been developed to carry multiple service categories. Since the traffic on a number of existing networks is bursty, much research focuses on how to capture the characteristics of traffic to reduce the impact of burstiness. Conventional traffic models do not represent the characteristics of burstiness well, but self-similar traffic models provide a closer approximation. Self-similar traffic models have two fundamental properties, long-range dependence and infinite variance, which have been found in a large number of measurements of real traffic. Therefore, generation of self-similar traffic is vital for the accurate simulation of ATM networks. The main starting point for self-similar traffic generation is the production of fractional Brownian motion (FBM) or fractional Gaussian noise (FGN). In this thesis six algorithms are brought together so that their efficiency and accuracy can be assessed. It is shown that the discrete FGN (dPGN) algorithm and the Weierstrass-Mandelbrot (WM) function are the best in terms of accuracy while the random midpoint displacement (RMD) algorithm, successive random addition (SRA) algorithm, and the WM function are superior in terms of efficiency. Three hybrid approaches are suggested to overcome the inefficiency or inaccuracy of the six algorithms. The combination of the dFGN and RMD algorithm was found to be the best in that it can generate accurate samples efficiently and on-the-fly. After generating FBM sample traces, a further transformation needs to be conducted with either the marginal distribution model or the storage model to produce self-similar traffic. The storage model is a better transformation because it provides a more rigorous mathematical derivation and interpretation of physical meaning. The suitability of using selected Hurst estimators, the rescaled adjusted range (R/S) statistic, the variance-time (VT) plot, and Whittle's approximate maximum likelihood estimator (MLE), is also covered. Whittle's MLE is the better estimator, the R/S statistic can only be used as a reference, and the VT plot might misrepresent the actual Hurst value. An improved method for the generation of self-similar traces and their conversion to traffic has been proposed. This, combined with the identification of reliable methods for the estimators of the Hurst parameter, significantly advances the use of self-similar traffic models in ATM network simulation

    CoLoRaDe: A Novel Algorithm for Controlling Long-Range Dependent Network Traffic

    Get PDF
    Long-range dependence characteristics have been observed in many natural or physical phenomena. In particular, a significant impact on data network performance has been shown in several papers. Congested Internet situations, where TCP/IP buffers start to fill, show long-range dependent (LRD) self-similar chaotic behaviour. The exponential growth of the number of servers, as well as the number of users, causes the performance of the Internet to be problematic since the LRD traffic has a significant impact on the buffer requirements. The Internet is a large-scale, wide-area network for which the importance of measurement and analysis of traffic is vital. The intensity of the long-range dependence (LRD) of communications network traffic can be measured using the Hurst parameter. A variety of techniques (such as R/S analysis, aggregated variance-time analysis, periodogram analysis, Whittle estimator, Higuchi's method, wavelet-based estimator, absolute moment method, etc.) exist for estimating Hurst exponent but the accuracy of the estimation is still a complicated and controversial issue. Earlier research (Rezaul et al., 2006) introduced a novel estimator called the Hurst exponent from the autocorrelation function (HEAF) and it was shown why lag 2 in HEAF (i.e. HEAF (2)) is considered when estimating LRD of network traffic. HEAF estimates H by a process which is simple, quick and reliable. In this research we extend these concepts by introducing a novel algorithm for controlling the long-range dependence of network traffic, named CoLoRaDe which is shown to reduce the LRD of packet sequences at the router buffer

    Modelling of self-similar teletraffic for simulation

    Get PDF
    Recent studies of real teletraffic data in modern computer networks have shown that teletraffic exhibits self-similar (or fractal) properties over a wide range of time scales. The properties of self-similar teletraffic are very different from the traditional models of teletraffic based on Poisson, Markov-modulated Poisson, and related processes. The use of traditional models in networks characterised by self-similar processes can lead to incorrect conclusions about the performance of analysed networks. These include serious over-estimations of the performance of computer networks, insufficient allocation of communication and data processing resources, and difficulties ensuring the quality of service expected by network users. Thus, full understanding of the self-similar nature in teletraffic is an important issue. Due to the growing complexity of modern telecommunication networks, simulation has become the only feasible paradigm for their performance evaluation. In this thesis, we make some contributions to discrete-event simulation of networks with strongly-dependent, self-similar teletraffic. First, we have evaluated the most commonly used methods for estimating the self-similarity parameter H using appropriately long sequences of data. After assessing properties of available H estimators, we identified the most efficient estimators for practical studies of self-similarity. Next, the generation of arbitrarily long sequences of pseudo-random numbers possessing specific stochastic properties was considered. Various generators of pseudo-random self-similar sequences have been proposed. They differ in computational complexity and accuracy of the self-similar sequences they generate. In this thesis, we propose two new generators of self-similar teletraffic: (i) a generator based on Fractional Gaussian Noise and Daubechies Wavelets (FGN-DW), that is one of the fastest and the most accurate generators so far proposed; and (ii) a generator based on the Successive Random Addition (SRA) algorithm. Our comparative study of sequential and fixed-length self-similar pseudo-random teletraffic generators showed that the FFT, FGN-DW and SRP-FGN generators are the most efficient, both in the sense of accuracy and speed. To conduct simulation studies of telecommunication networks, self-similar processes often need to be transformed into suitable self-similar processes with arbitrary marginal distributions. Thus, the next problem addressed was how well the self-similarity and autocorrelation function of an original self-similar process are preserved when the self-similar sequences are converted into suitable self-similar processes with arbitrary marginal distributions. We also show how pseudo-random self-similar sequences can be applied to produce a model of teletraffic associated with the transmission of VBR JPEG /MPEG video. A combined gamma/Pareto model based on the application of the FGN-DW generator was used to synthesise VBR JPEG /MPEG video traffic. Finally, effects of self-similarity on the behaviour of queueing systems have been investigated. Using M/M/1/∞ as a reference queueing system with no long-range dependence, we have investigated how self-similarity and long-range dependence in arrival processes affect the length of sequential simulations being executed for obtaining steady-state results with the required level of statistical error. Our results show that the finite buffer overflow probability of a queueing system with self-similar input is much greater than the equivalent queueing system with Poisson or a short-range dependent input process, and that the overflow probability increases as the self-similarity parameter approaches one

    CoLoRaDe: A Novel Algorithm for Controlling Long-Range Dependent Network Traffic

    Full text link

    Some aspects of traffic control and performance evaluation of ATM networks

    Get PDF
    The emerging high-speed Asynchronous Transfer Mode (ATM) networks are expected to integrate through statistical multiplexing large numbers of traffic sources having a broad range of statistical characteristics and different Quality of Service (QOS) requirements. To achieve high utilisation of network resources while maintaining the QOS, efficient traffic management strategies have to be developed. This thesis considers the problem of traffic control for ATM networks. The thesis studies the application of neural networks to various ATM traffic control issues such as feedback congestion control, traffic characterization, bandwidth estimation, and Call Admission Control (CAC). A novel adaptive congestion control approach based on a neural network that uses reinforcement learning is developed. It is shown that the neural controller is very effective in providing general QOS control. A Finite Impulse Response (FIR) neural network is proposed to adaptively predict the traffic arrival process by learning the relationship between the past and future traffic variations. On the basis of this prediction, a feedback flow control scheme at input access nodes of the network is presented. Simulation results demonstrate significant performance improvement over conventional control mechanisms. In addition, an accurate yet computationally efficient approach to effective bandwidth estimation for multiplexed connections is investigated. In this method, a feed forward neural network is employed to model the nonlinear relationship between the effective bandwidth and the traffic situations and a QOS measure. Applications of this approach to admission control, bandwidth allocation and dynamic routing are also discussed. A detailed investigation has indicated that CAC schemes based on effective bandwidth approximation can be very conservative and prevent optimal use of network resources. A modified effective bandwidth CAC approach is therefore proposed to overcome the drawback of conventional methods. Considering statistical multiplexing between traffic sources, we directly calculate the effective bandwidth of the aggregate traffic which is modelled by a two-state Markov modulated Poisson process via matching four important statistics. We use the theory of large deviations to provide a unified description of effective bandwidths for various traffic sources and the associated ATM multiplexer queueing performance approximations, illustrating their strengths and limitations. In addition, a more accurate estimation method for ATM QOS parameters based on the Bahadur-Rao theorem is proposed, which is a refinement of the original effective bandwidth approximation and can lead to higher link utilisation

    Application of learning algorithms to traffic management in integrated services networks.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN027131 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Autonomous grid scheduling using probabilistic job runtime scheduling

    Get PDF
    Computational Grids are evolving into a global, service-oriented architecture – a universal platform for delivering future computational services to a range of applications of varying complexity and resource requirements. The thesis focuses on developing a new scheduling model for general-purpose, utility clusters based on the concept of user requested job completion deadlines. In such a system, a user would be able to request each job to finish by a certain deadline, and possibly to a certain monetary cost. Implementing deadline scheduling is dependent on the ability to predict the execution time of each queued job, and on an adaptive scheduling algorithm able to use those predictions to maximise deadline adherence. The thesis proposes novel solutions to these two problems and documents their implementation in a largely autonomous and self-managing way. The starting point of the work is an extensive analysis of a representative Grid workload revealing consistent workflow patterns, usage cycles and correlations between the execution times of jobs and its properties commonly collected by the Grid middleware for accounting purposes. An automated approach is proposed to identify these dependencies and use them to partition the highly variable workload into subsets of more consistent and predictable behaviour. A range of time-series forecasting models, applied in this context for the first time, were used to model the job execution times as a function of their historical behaviour and associated properties. Based on the resulting predictions of job runtimes a novel scheduling algorithm is able to estimate the latest job start time necessary to meet the requested deadline and sort the queue accordingly to minimise the amount of deadline overrun. The testing of the proposed approach was done using the actual job trace collected from a production Grid facility. The best performing execution time predictor (the auto-regressive moving average method) coupled to workload partitioning based on three simultaneous job properties returned the median absolute percentage error centroid of only 4.75%. This level of prediction accuracy enabled the proposed deadline scheduling method to reduce the average deadline overrun time ten-fold compared to the benchmark batch scheduler. Overall, the thesis demonstrates that deadline scheduling of computational jobs on the Grid is achievable using statistical forecasting of job execution times based on historical information. The proposed approach is easily implementable, substantially self-managing and better matched to the human workflow making it well suited for implementation in the utility Grids of the future
    corecore