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Abstract
Long-range dependence characteristics have been observed in many natural or physical phenomena. In
particular, a significant impact on data network performance has been shown in several papers. Congested
Internet situations, where TCP/IP buffers start to fill, show long-range dependent (LRD) self-similar chaotic
behaviour. The exponential growth of the number of servers, as well as the number of users, causes the
performance of the Internet to be problematic since the LRD traffic has a significant impact on the buffer
requirements. The Internet is a large-scale, wide-area network for which the importance of measurement and
analysis of traffic is vital. The intensity of the long-range dependence (LRD) of communications network
traffic can be measured using the Hurst parameter. A variety of techniques (such as R/S analysis, aggregated
variance-time analysis, periodogram analysis, Whittle estimator, Higuchi's method, wavelet-based estimator,
absolute moment method, etc.) exist for estimating Hurst exponent but the accuracy of the estimation is still a
complicated and controversial issue. Earlier research (Rezaul et al., 2006) introduced a novel estimator called
the Hurst exponent from the autocorrelation function (HEAF) and it was shown why lag 2 in HEAF (i.e.
HEAF (2)) is considered when estimating LRD of network traffic. HEAF estimates H by a process which is
simple, quick and reliable. In this research we extend these concepts by introducing a novel algorithm for
controlling the long-range dependence of network traffic, named CoLoRaDe which is shown to reduce the
LRD of packet sequences at the router buffer.
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Abstract- Long-range dependence characteristics have  been 
observed in many natural or physical phenomena. In 
particular, a significant impact on data network performance 
has been shown in several papers. Congested Internet 
situations, where TCP/IP buffers start to fill, show long-range 
dependent (LRD) self-similar chaotic behaviour. The 
exponential growth of the number of servers, as well as the 
number of users, causes the performance of the Internet to be 
problematic since the LRD traffic has a significant impact on 
the buffer requirements. The Internet is a large-scale, wide-
area network for which the importance of measurement and 
analysis of traffic is vital. The intensity of the long-range 
dependence (LRD) of communications network traffic can be 
measured using the Hurst parameter. A variety of techniques 
(such as R/S analysis, aggregated variance-time analysis, 
periodogram analysis, Whittle estimator, Higuchi’s method, 
Wavelet-based estimator, absolute moment method, etc.) exist 
for estimating Hurst exponent but the accuracy of the 
estimation is still a complicated and controversial issue. Earlier 
research [1] introduced a novel estimator called the Hurst 
Exponent from the Autocorrelation Function (HEAF) and it 
was shown why lag 2 in HEAF (i.e. HEAF (2)) is considered 
when estimating LRD of network traffic. HEAF estimates H by 
a process which is simple, quick and reliable. In this research 
we extend these concepts by introducing a novel algorithm for 
controlling the long-range dependence of network traffic, 
named CoLoRaDe which is shown to reduce the LRD of packet 
sequences at the router buffer. 
 

I.    INTRODUCTION 

The importance of Long-Range Dependence (LRD) in 
traffic engineering problems , such as traffic measurement, 
queuing behaviour and buffer sizing, admission control and 
congestion control, is vital. The research in  [2] shows that 
the consequences of LRD are packet delays and application 
level delays that cause a heavy-tailed distribution. TCP 
estimates the round trip timer values from the peer 
acknowledgements and as a result congestions appear more 
frequently while maintaining the impulsive behaviour with 
increase in load. The influence of LRD properties on the 
delay performance at packet and application level is reported 
in [3] and metrics of network performance, such as 
throughput, packet loss, latency and buffer occupancy 
levels , are affected by the presence of LRD phenomenon 
across many types  of networks. The work in [3] also claims 
that packet delay behaviour tends to be more heavy-tailed in 
the case of LRD traffic while the congestion window size is 
increased. The impact of LRD on quality of service (QoS) 
has been analysed in [4] showing that, the greater the LRD, 
the lower the QoS.  

The LRD property of traffic fluctuations has important 
implications on the performance, design and dimensioning 
of the network [5]. A simple, direct parameter, 
characterizing the degree of long-range dependence, is the 
Hurst parameter. The Hurst exponent (or Hurst parameter, 
H), which more than a half-century ago was proposed for 
analysis of long-term storage capacity of reservoirs [6], is 
used today to measure the intensity of LRD in network 
traffic. A number of methods have been proposed to 
estimate the Hurst parameter. Some of the most popular 
include the aggregated variance time (V/T) [7], Rescaled-
range (R/S) [5, 6], Higuchi method [8], wavelet-based 
method [9, 10] although there are many others. In all these 
methods, H is calculated by taking the slope from a log-log 
plot. Over time, the wavelet-based Hurst parameter has 
acquired popularity in estimating LRD traffic. However the 
study [11] explored the advantages and limitations of 
wavelet estimators and found that a traffic trace with a 
number of deterministic shifts in the mean rate results in a 
steep wavelet spectrum, which leads to an overestimate of 
the Hurst parameter. The intensity of long-range dependence 
is measured for file size or document size [12], packet 
counts (numb er of packets per unit time) [13, 14, 15], inter-
arrival time [16, 17], frame size [18], connection size [19], 
packet length [20], number of bytes per unit time [5], Bit or 
byte rate [21] amongst others.. 

This  paper is organised as follows. Section II describes 
the definitions of self-similarity, long-range dependence and 
the autocorrelation function. Section III elaborates the 
HEAF estimator. Section IV introduces the algorithm 
CoLoRaDe and its function. Section V depicts the 
complexity of the CoLoRaDe by experimental analysis. 
Finally we draw a conclusion and suggest future works in 
section VI. 
 

II.    SELF-SIMILARITY, LONG-RANGE DEPENDENCE AND 
AUTOCORRELATION FUNCTION 

In general two or more objects having the same 
characteristics are called self-similarity. A phenomenon that 
is self-similar looks the same or behaves the same when 
viewed at different degrees of magnification or different 
scales on a dimension and bursty over all time scales. Self-
similarity is the property of a series of data points to retain a 
pattern or appearance regardless of the level of granularity 
used and is the result of long-range dependence in the data 
series. If a self-similar process is bursty at a wide range of 
timescales, it may exhibit long-range- dependence. In 
general lagged autocorrelations are used in time series 
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analysis for empirical stationary tests.  Self-similarity 
manifests itself as long-range dependence (i.e., long 
memory) in the time series of arrivals. The evidence of very 
slow, linear decay in the sample lag autocorrelation finction 
(ACF) indicates the nonstationary behaviour [22]. The 
research [23] show that Internet traffic is nonstationary.  

Long-range-dependence means that all the values at any 
time are correlated in a positive and non-negligible way with 
values at all future instants. For a continuous time process 

( ){ }0, ≥= ttYY  is self-similar if it satisfies the following 
condition [24]:  

 ( ) ( ) 10,0, <<>∀−= HandataYHa
d

tY   
where H is the index of self-similarity, called Hurst 
parameter and the equality is in the sense of finite-
dimensional distributions. 

The stationary process X is said to be a long-range 
dependent process if its autocorrelation function (ACF) is 
non-summable [25] meaning that ∞=∑

∞

∞−=k kρ   

The details of how ACF decays with k  are of interest 
because the behaviour of the tail of ACF completely 
determines its summability. According to [5], X is said to 
exhibit long-range dependence if  

∞→
−−

kas
H

ktLk ,
)22(

)(~ρ                (2.1) 

where 1
2

1
<< H and (.)L  slowly varies at infinity, i.e., 

,1
)(

)(
lim =

∞→ tL

xtL

t
for all 0>x  

Equation (2.1) implies that the LRD is characterized by an 
autocorrelation function that decays hyperbolically rather 
than exponentially fast.  
 

LRD processes are characterized by a slowly decaying 
covariance function that is no more summable. When the 
network performance is affected by LRD the data are 
correlated over an unlimited range of time lags and this 
property results in a scale invariance phenomenon. Then no 
characteristic time scale can be identified in the process, 
they are all equivalent for describing its statistics, i.e., the 
part resembles the whole and vice e versa. This is why lrd is 
also called Self-Similarity [26]. 
 

III.  HEAF: A ‘HURST EXPONENT BY AUTOCORRELATION 
FUNCTION’ ESTIMATOR  

A new estimator has been introduced [1] by extending 
the approach of Kettani and Gubner [27]. As in [27], for a 
given observed data iX  (i.e. nXX ,,.........1 ), the sample 

autocorrelation function can be calculated by the following 
method: 

Let ∑
=

=
n

i iX
n

n 1

1
µ̂    (3.1) 

and ( ) ( ) ( )nkiX
kn

i niX
n

kn µµγ ˆ
1

ˆ
1

ˆ −+∑
−

=
−=  , (3.2) 

where k=0,1, 2, ….., n,    

with ( )0ˆ2ˆ nn γσ = .   (3.3) 

Then the sample autocorrelations of lag k  are given by 
( )
2ˆ

ˆ
ˆ

n

kn
k

σ

γ
ρ =     (3.4) 

(Equations (3.1), (3.2), (3.3) and (3.4) denote the sample 
mean, the sample covariance, the sample variance and the 
sample autocorrelation, respectively). A second-order 
stationary process is said to be exactly second-order self-
similar with Hurst exponent 12/1 << H if 

]2)1(222)1([5.0 HkHkHkk −+−+=ρ   (3.5) 

From equation (3.5), Kettani and Gubner suggest a moment 
estimator of H . They consider the case where k  =1 and 
replace 1ρ  by its sample estimate 1ρ̂ , as defined in 
equation (3.4). This gives an estimate for H of the form 

)1ˆ1(log
2log2

1

2

1ˆ ρ++= e
e

H   (3.6) 

Clearly, this estimate is straightforward to evaluate, 
requiring no iterative calculations. For more details of the 
properties of this estimator, see Kettani and Gubner [27]. 

An alternative estimator of H is proposed based upon 
equation (3.5), by considering the cases where k>1. Note 
that the sample equivalent of equation (3.5) can be 
expressed as  

   
.0}

2
)1(

2
2

2
)1{(5.0ˆ)(

=−+−

+−=

H
k

H
k

H
kkHf ρ

 (3.7) 

Thus, for a given observed kρ̂ , k>1, a suitable numerical 

procedure can be used to solve this equation, and find an 
estimate of H. This is denoted as a HEAF(k) estimate of H. 

To solve equation (3.7) for H the well-known Newton-
Raphson (N-R) method is used. This requires the derivative 
of f(H). Here note that k  ? 1,  

( )
( ) ( )

( ) ( )
( ) ( ) 
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2
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5.0

  (3.8)  

Hence, the algorithm to estimate HEAF(k), for any lag k, 
consists of the following steps: 
1. Compute the sample autocorrelations for lag k  of a 

given data set by equation (3.4). (Note that iX  can be 

denoted as the number of bits, bytes, packets or bit rates 
observed during the i th interval. If iX  is a Gaussian 

process, it is known as fractional Gaussian noise). 
2. Make an initial guess of H, e.g. H1 = 0.6, then calculate 

H2, H3, H4,….., successively using 
)(/)(1 rHfrHfrHrH ′−=+ , until convergence, to find 

the estimate Ĥ  for the given lag k . An initial 
consideration is of the case where k  = 2 in equation 
(3.2); i.e. HEAF(2) is considered first. 

One of the major advantages of the HEAF estimator is 
speed, as the NR-method converges very quickly to a root. 
There is no general convergence criterion for NR. Its 
convergence depends on the nature of the function and on 
the accuracy of the initial guess. Fortunately the form of the 
function (i.e., equation (3.7)) appears to converge quickly 
(within at most four iterations) for any initial guess in  the 
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range of interest, namely H in (0.2, 1). If an iteration value, 
Hr is such that ( ) 0≅′ rHf , then one can face “division by 
zero” or a near-zero number. This will give a large 
magnitude for the next value, Hr+1 which in turn stops the 
iteration. This problem can be resolved by increasing the 
tolerance parameter in the N-R program. A HEAF(k), for k 
= 2, …,11, have been considered and no difficulty in finding 
the root in (0.5, 1) have been encountered. 
 

IV.  COLORADE : AN ALGORITHM FOR CONTROLLING LRD 
TRAFFIC 

Figure 1 illustrates a schematic view of the operation of 
the CoLoRaDe algorithm at the router buffer. 
Here P1, P2, P3, ……, Pn are the slots of the packet 
sequences. 
S1, S2, S3, …….., Sn are the sets constructed by shuffling the 
slots of the packet sequences. 
P1S, P2S, P3S,……., PnS are the blocks (groups) of the sets  
of the slots P1, P2, P3, ……, Pn respectively. 
(P1S)minH, (P2S)minH, (P3S)minH, ……., (PnS)minH are the 
individual sets of packet sequences  from the blocks  (i.e. 
P1S, P2S, P3S,……., PnS) which possess the minimum Hurst 
parameter. In other words, each block (e.g. P1S) consists of 
several sets where one of the sets possesses the minimum 
value of Hurst parameter. 

Let us assume that the client networks (such as C1, C2, 
C3,….., Cn) are connected to the main Internet service 
provider (ISP) router.  The packet sequences from different 
sources are queued at the point Q. Then the packet 
sequences are slotted into various length (e.g. N = 12, N = 
25, N = 50 etc.) sequences. Each slot of these sequences is 
shuffled for a particular number of times so that it has 
several sets. Then the Hurst parameter (H) for each set of a 
slot is  estimated. In other words, H’s have been estimated 
for P1S (i.e.   P1S1, P1S2, P1S3,……., P1Sn), P2S, P3S,……., 
PnS  respectively and will be scheduled to the transmitter 
according to (P1S)minH, (P2S)minH, (P3S)minH, ……., (PnS)minH 
and finally sent out to the core network (i.e. Internet) on a 
FIFO basis  as shown in figure. The CoLoRaDe algorithm is 
given in Table I. 

The algorithm is implemented in Java and a sample 
output given in Table II. Here the impact of Hurst estimates 
on the queuing process can be observed 

V.  COMPLEXITY OF THE ALGORITHM, COLORADE 

To explore the complexity of CoLoRaDe, we chose six 
workstations with different specifications which are 
represented in Table III. We investigated several lengths of 
packet sequences such as N = 1000, N = 2000, N = 3000, N 
= 5000, N = 10000, N = 15000, N = 20000, N = 25000, N = 
30000, N = 35000, N = 40000, N = 45000 and N = 50000. 
According to CoLoRaDe, these length sequences have been 
slotted by considering a certain number of samples (NS). 
For instance,  for  N =1000, we slot this length of sequences 
by NS =12, NS =25, NS =50, NS =100, NS =200, NS =500 
and  NS =1000. Similar procedures have been followed for 
other types of length of sequences. In our research we 
mainly concentrate on the time complexity of the algorithm. 

A router introduces delay (latency) as it processes the 
packets it receives. Consequently, time is a crucial factor 
here as we cannot not accept increased delay in processing 
the packets. Figure 2 represents the elapsed time observed 
using different PC’s for a particular length of packet 
sequences where we consider different number of samples 
(NS) in each slot. It is clear that smaller numbers of samples 
per slot in the length of packet sequences contribute to 
longer periods of elapsed time to execute the algorithm. NS 
= 200 per slot gives the best performance as the algorithm 
takes the least time to execute in this case when using PC2, 
PC3, PC4, PC5 and PC6.  
 

Table I. The ColoRaDe algorithm 
 

 
 
 
 

 

 
noOfSets = Number of sets  
noOfSamples = number of samples (e.g. packet sequence) in 
a set 
N = Total number of incoming samples (e.g. packet) 
slot = N/noOfSamples 
temp = array of samples 
p = current slot 
 
Pick up the certain number of packets (X) from the router 
buffer that are waiting to be scheduled for transmission. 
 
acf () 
(This function calculates the samples autocorrelation function) 

1.  set p = 1 
2.  while (p<=slot) 

i) set start = 1+ noOfSamples*(p-1) 
                set end = noOfSamples * p 
             ii) set m = 0 
                    for n = start to end 
                       temp[m] = X[n]  // (copy all samples into 
                                                     temp) 
                       m = m+1 
             iii)    for  noOfShuffle = 1 to noOfSets  
                    a)  if not first set of samples 
                               then Shuffle(temp) 
                    b)   for i = 0 to noOfSamples  
                 setsOfShuffle[noOfShuffle] [i] = temp[i] 
                    c)   Find acf for setsOfShuffle 
                    d)   rk[ ] = acf   // copy acf of set of packet’s   
                                               sequences into rk 
                    e) call Heaf (rk[], Hursts[], noOfHurstParameter) 
             iv)  Find out the minimum Hurst parameter from the  
                   Hursts of all sets of samples (e.g. packet  
                   sequence) 
             v)   Find the set that corresponds to minimum Hurst  
                  parameter 
             vi) Transmit the set (of the packets) that contains  
                  minimum Hurst 
             vii) p = p+1 (increment of slot number) 

3.  Go to step 1 until the packets awaiting at the router  
     buffer  
4.  End of acf () 

               
Heaf (rk[], Hursts[],noOfHurstParameter): this function 
estimates the Hurst parameter by HEAF(2) method for a 
given samples. 
Shuffle (array): this function shuffles the set of samples 
main (): this is the main method which calls acf () 
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Fig. 1.  Illustration of packets management for controlling LRD at router buffer 
 
Table II.  Sample output by CoLoRaDe algorithm 
 
Set # 1 
40.0   
45.0   
552.0   
40.0   
72.0   
80.0   
41.0   
40.0   
72.0   
44.0   
80.0   
40.0 

Set # 2  
40.0   
80.0   
44.0   
72.0   
40.0   
72.0   
45.0   
552.0   
40.0   
80.0   
40.0   
41.0   

Set # .3 
72.0   
40.0   
40.0   
552.0   
72.0   
80.0   
40.0   
44.0   
41.0   
45.0   
40.0   
80.0   

Set  # 4 
72.0   
72.0   
40.0   
40.0   
41.0   
44.0   
552.0   
80.0   
40.0   
40.0   
80.0   
45.0   

Set # 5 
552.0   
72.0   
44.0   
80.0   
40.0   
80.0   
41.0   
40.0   
40.0   
45.0   
72.0   
40.0   

Set # 6 
40.0   
80.0   
41.0   
72.0   
40.0   
552.0   
40.0   
44.0   
45.0   
40.0   
80.0   
72.0   

 
Estimated Hurst parameter for all sets are : 
 0.6654197669965659    
 0.6950803356916133    
 0.671880547095466    
 0.6465780923490018    
 0.6886795520389399    
 0.6736553256908231    
 
 *** Minimum Hurst is  0.6465780923490018 
 
The corresponding set  (ready to transmit) is: 
72.0     
72.0     
40.0     
40.0     
41.0     
44.0     
552.0     
80.0     
40.0     
40.0     
80.0     
45.0     

 
Figure 3 depicts the elapsed time for adifferent length of 

packet sequences while the performance is observed with 
different PC’s. Number of packet sequences (NS) in each 
slot considered here are NS = 50, NS = 100, NS =200 and 

NS = 500. It is clear that PC5 outperforms for all cases as it 
contains higher specifications.   
 
Table III.  Workstations with different specification  

Work station Specification 

pc1 Intel Pentium (R) 4, CPU 2.4 GHz, 512 MB of RAM 

pc2  Intel Pentium (R) 4, CPU 3.0 GHz, 0.99 GB of RAM 

pc3 Intel Pentium (R) 4, CPU 3.0 GHz, 504 MB of RAM 

pc4 Intel Pentium (R) 3, CPU 866 MHz, 384 MB of RAM 

pc5 Intel Centrino Duo Core, CPU T2250 @ 1.73 GHz, 
1024 MB of RAM 

pc6 Intel Pentium (R) 4, CPU 1.80 GHz, 256 MB of RAM 

 

VI.  CONCLUSIONS AND FUTURE WORK 

In this research we introduce a novel algorithm called 
CoLoRaDe to control the intensity of LRD traffic. 
Experimental results show that the CoLoRaDe is capable of 
reducing the LRD of packet sequences received at the router 
buffer before they are transmitted to the core network (i.e. 
Internet).  The complexity analyses of CoLoRaDe suggest 
that the number of packet sequences  (NS) in each set of a 
slot should be around NS = 200 which makes the best value 
to execute the algorithm faster. To estimate the Hurst 
parameter, we used the process of HEAF (2) estimator, 
which is simple, reliable and capable of yielding quick 
estimation. It potentially can be used for real-time traffic 
measurement and control at the edge routers. As the main 
function of the CoLoRaDe algorithm is to reduce the LRD 
of packet traffic, it can contribute in reducing the network 
load towards the improvement of quality of service of future 
Internet. Future work will include evaluation of the 
applicability of the CoLoRaDe algorithm for real-time  
implementations in routers. 
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Fig. 2.  Elapsed time for different length of packet sequences where each block or slot contains different length of sequences 
(e.g. NS = 12 indicates 12 different packet sequences in each slot.) 
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Fig. 3.  Elapsed time for different length of packet sequences while performance is observed with different PC’s.  
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