592 research outputs found

    Novel methodology for optimising the design, operation and maintenance of a multi-AGV system

    Get PDF
    Automated guided vehicles (AGVs) have long been identified as a potential driver to improve system efficiency and lower labour costs in material handling systems. Accordingly, the reliability and availability of AGV systems is crucial to assure the stability and efficiency of these systems. However, the reliability issues and maintenance strategies of AGVs have not previously been studied sufficiently. This is even more marked in the case of multi-AGV systems that consist of fleets of AGVs. To fill this knowledge gap, research is conducted considering a multi-AGV system, consisting of three AGVs, in order to develop a scientific methodology for optimising the layout design, operation and maintenance of a multi-AGV system. Once an AGV is failed, it will be towed to the maintenance site for repair by a recycle vehicle to prevent deadlock and conflict. The efficiency of the recycling process of failed AGVs in a multi-AGV system, with respect to the change of location of the maintenance site, is analysed by the approach of coloured Petri nets (CPNs). A CPN model simulating the corrective and periodic preventive maintenance processes of failed AGVs is also developed in order to investigate the impact of different AGV maintenance strategies on the operation efficiency of the multi-AGV system. The simulation results obtained clearly show that the location of maintenance sites and maintenance strategies do have significant influence on the performance of a multi-AGV system, where corrective maintenance is an effective measure to maintain the long-term reliability and stability of the system

    Enhancing the performance of automated guided vehicles through reliability, operation and maintenance assessment

    Get PDF
    Automated guided vehicles (AGVs), a type of unmanned moving robots that move along fixed routes or are directed by laser navigation systems, are increasingly used in modern society to improve efficiency and lower the cost of production. A fleet of AGVs operate together to form a fully automatic transport system, which is known as an AGV system. To date, their added value in efficiency improvement and cost reduction has been sufficiently explored via conducting in-depth research on route optimisation, system layout configuration, and traffic control. However, their safe application has not received sufficient attention although the failure of AGVs may significantly impact the operation and efficiency of the entire system. This issue becomes more markable today particularly in the light of the fact that the size of AGV systems is becoming much larger and their operating environment is becoming more complex than ever before. This motivates the research into AGV reliability, availability and maintenance issues in this thesis, which aims to answer the following four fundamental questions: (1) How could AGVs fail? (2) How is the reliability of individual AGVs in the system assessed? (3) How does a failed AGV affect the operation of the other AGVs and the performance of the whole system? (4) How can an optimal maintenance strategy for AGV systems be achieved? In order to answer these questions, the method for identifying the critical subsystems and actions of AGVs is studied first in this thesis. Then based on the research results, mathematical models are developed in Python to simulate AGV systems and assess their performance in different scenarios. In the research of this thesis, Failure Mode, Effects and Criticality Analysis (FMECA) was adopted first to analyse the failure modes and effects of individual AGV subsystems. The interactions of these subsystems were studied via performing Fault Tree Analysis (FTA). Then, a mathematical model was developed to simulate the operation of a single AGV with the aid of Petri Nets (PNs). Since most existing AGV systems in modern industries and warehouses consist of multiple AGVs that operate synchronously to perform specific tasks, it is necessary to investigate the interactions between different AGVs in the same system. To facilitate the research of multi-AGV systems, the model of a three-AGV system with unidirectional paths was considered. In the model, an advanced concept PN, namely Coloured Petri Net (CPN), was creatively used to describe the movements of the AGVs. Attributing to the application of CPN, not only the movements of the AGVs but also the various operation and maintenance activities of the AGV systems (for example, item delivery, corrective maintenance, periodic maintenance, etc.) can be readily simulated. Such a unique technique provides us with an effective tool to investigate larger-scale AGV systems. To investigate the reliability, efficiency and maintenance of dynamic AGV systems which consist of multiple single-load and multi-load AGVs traveling along different bidirectional routes in different missions, an AGV system consisting of 9 stations was simulated using the CPN methods. Moreover, the automatic recycling of failed AGVs is studied as well in order to further reduce human participation in the operation of AGV systems. Finally, the simulation results were used to optimise the design, operation and maintenance of multi-AGV systems with the consideration of the throughputs and corresponding costs of them.The research reported in this thesis contributes to the design, reliability, operation, and maintenance of large-scale AGV systems in the modern and rapidly changing world.</div

    Search-based system architecture development using a holistic modeling approach

    Get PDF
    This dissertation presents an innovative approach to system architecting where search algorithms are used to explore design trade space for good architecture alternatives. Such an approach is achieved by integrating certain model construction, alternative generation, simulation, and assessment processes into a coherent and automated framework. This framework is facilitated by a holistic modeling approach that combines the capabilities of Object Process Methodology (OPM), Colored Petri Net (CPN), and feature model. The resultant holistic model can not only capture the structural, behavioral, and dynamic aspects of a system, allowing simulation and strong analysis methods to be applied, it can also specify the architectural design space. Both object-oriented analysis and design (OOA/D) and domain engineering were exploited to capture design variables and their domains and define architecture generation operations. A fully realized framework (with genetic algorithms as the search algorithm) was developed. Both the proposed framework and its suggested implementation, including the proposed holistic modeling approach and architecture alternative generation operations, are generic. They are targeted at systems that can be specified using object-oriented or process-oriented paradigm. The broad applicability of the proposed approach is demonstrated on two examples. One is the configuration of reconfigurable manufacturing systems (RMSs) under multi-objective optimization and the other is the architecture design of a manned lunar landing system for the Apollo program. The test results show that the proposed approach can cover a huge number of architecture alternatives and support the assessment of several performance measures. A set of quality results was obtained after running the optimization algorithm following the proposed framework --Abstract, page iii

    Monte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System

    Get PDF
    We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobshop manufacturing system. The current methods for modeling reliability of a system involve determination of system state probabilities and transition states. Since, the failure of the machines and AGVs could be considered in different states, therefore a Markovian model is proposed for reliability assessment. The traditional Markovian computation is compared with a neural network methodology. Monte Carlo simulation has verified the neural network method having better performance for Markovian computations.We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobshop manufacturing system. The current methods for modeling reliability of a system involve determination of system state probabilities and transition states. Since, the failure of the machines and AGVs could be considered in different states, therefore a Markovian model is proposed for reliability assessment

    A petri-net based methodology for modeling, simulation, and control of flexible manufacturing systems

    Get PDF
    Global competition has made it necessary for manufacturers to introduce such advanced technologies as flexible and agile manufacturing, intelligent automation, and computer-integrated manufacturing. However, the application extent of these technologies varies from industry to industry and has met various degrees of success. One critical barrier leading to successful implementation of advanced manufacturing systems is the ever-increasing complexity in their modeling, analysis, simulation, and control. The purpose of this work is to introduce a set of Petri net-based tools and methods to address a variety of problems associated with the design and implementation of flexible manufacturing systems (FMSs). More specifically, this work proposes Petri nets as an integrated tool for modeling, simulation, and control of flexible manufacturing systems (FMSs). The contributions of this work are multifold. First, it demonstrates a new application of PNs for simulation by evaluating the performance of pull and push diagrams in manufacturing systems. Second, it introduces a class of PNs, Augmented-timed Petri nets (ATPNs) in order to increase the power of PNs to simulate and control flexible systems with breakdowns. Third, it proposes a new class of PNs called Realtime Petri nets (RTPNs) for discrete event control of FMS s. The detailed comparison between RTPNs and traditional discrete event methods such as ladder logic diagrams is presented to answer the basic question \u27Why is a PN better tool than ladder logic diagram?\u27 and to justify the PN method. Also, a conversion procedure that automatically generates PN models from a given class of logic control specifications is presented. Finally, a methodology that uses PNs for the development of object-oriented control software is proposed. The present work extends the PN state-of-the-art in two ways. First, it offers a wide scope for engineers and managers who are responsible for the design and the implementation of modem manufacturing systems to evaluate Petri nets for applications in their work. Second, it further develops Petri net-based methods for discrete event control of manufacturing systems

    Colored Petri net modelling and evaluation of drone inspection methods for distribution networks

    Get PDF
    The UAV industry is developing rapidly and drones are increasingly used for monitoring industrial facilities. When designing such systems, operating companies have to find a system configuration of multiple drones that is near-optimal in terms of cost while achieving the required monitoring quality. Stochastic influences such as failures and maintenance have to be taken into account. Model-based systems engineering supplies tools and methods to solve such problems. This paper presents a method to model and evaluate such UAV systems with coloured Petri nets. It supports a modular view on typical setup elements and different types of UAVs and is based on UAV application standards. The model can be easily adapted to the most popular flight tasks and allows for estimating the monitoring frequency and determining the most appropriate grouping and configuration of UAVs, monitoring schemes, air time and maintenance periods. An important advantage is the ability to consider drone maintenance processes. Thus, the methodology will be useful in the conceptual design phase of UAVs, in monitoring planning, and in the selection of UAVs for specific monitoring tasks

    Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda

    Get PDF
    Autonomous mobile robots (AMR) are currently being introduced in many intralogistics operations, like manufacturing, warehousing, cross-docks, terminals, and hospitals. Their advanced hardware and control software allow autonomous operations in dynamic environments. Compared to an automated guided vehicle (AGV) system in which a central unit takes control of scheduling, routing, and dispatching decisions for all AGVs, AMRs can communicate and negotiate independently with other resources like machines and systems and thus decentralize the decision-making process. Decentralized decision-making allows the system to react dynamically to changes in the system state and environment. These developments have influenced the traditional methods and decision-making processes for planning and control. This study identifies and classifies research related to the planning and control of AMRs in intralogistics. We provide an extended literature review that highlights how AMR technological advances affect planning and control decisions. We contribute to the literature by introducing an AMR planning and control framework t

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 ā€“ April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    Robotized Warehouse Systems: Developments and Research Opportunities

    Get PDF
    Robotized handling systems are increasingly applied in distribution centers. They require little space, provide flexibility in managing varying demand requirements, and are able to work 24/7. This makes them particularly fit for e-commerce operations. This paper reviews new categories of robotized handling systems, such as the shuttle-based storage and retrieval systems, shuttle-based compact storage systems, and robotic mobile fulfillment systems. For each system, we categorize the literature in three groups: system analysis, design optimization, and operations planning and control. Our focus is to identify the research issue and OR modeling methodology adopted to analyze the problem. We find that many new robotic systems and applications have hardly been studied in academic literature, despite their increasing use in practice. Due to unique system features (such as autonomous control, networked and dynamic operation), new models and methods are needed to address the design and operational control challenges for such systems, in particular, for the integration of subsystems. Integrated robotized warehouse systems will form the next category of warehouses. All vital warehouse design, planning and control logic such as methods to design layout, storage and order picking system selection, storage slotting, order batching, picker routing, and picker to order assignment will have to be revisited for new robotized warehouses

    Safetyā€oriented discrete event model for airport Aā€SMGCS reliability assessment

    Get PDF
    A detailed analysis of State of the Art Technologies and Procedures into Airport Advanced-Surface Movement Guidance and Control Systems has been provided in this thesis, together with the review ofStatistical Monte Carlo Analysis, Reliability Assessment and Petri Nets theories. This practical and theoretical background has lead the author to the conclusion that there is a lack of linkage in between these fields. At the same of time the rapid increasing of Air Traffic all over the world, has brought in evidence the urgent need of practical instruments able to identify and quantify the risks connected with Aircraft operations on the ground, since the Airport has shown to be the actual ā€˜bottle neckā€™ of the entire Air Transport System. Therefore, the only winning approach to such a critical matter has to be multi-disciplinary, sewing together apparently different subjects, coming from the most disparate areas of interest and trying to fulfil the gap. The result of this thesis work has come to a start towards the end, when a Timed Coloured Petri Net (TCPN) model of a ā€˜sampleā€™ Airport A-SMGCS has been developed, that is capable of taking into account different orders of questions arisen during these recent years and tries to give them some good answers. The A-SMGCS Airport model is, in the end, a parametric tool relying on Discrete Event System theory, able to perform a Reliability Analysis of the system itself, that: ā€¢ uses a Monte Carlo Analysis applied to a Timed Coloured Petri Net, whose purpose is to evaluate the Safety Level of Surface Movements along an Airport ā€¢ lets the user to analyse the impact of Procedures and Reliability Indexes of Systems such as Surface Movement Radars, Automatic Dependent Surveillance-Broadcast, Airport Lighting Systems, Microwave Sensors, and so onā€¦ onto the Safety Level of Airport Aircraft Transport System ā€¢ not only is a valid instrument in the Design Phase, but it is useful also into the Certifying Activities an in monitoring the Safety Level of the above mentioned System with respect to changes to Technologies and different Procedures.This TCPN model has been verified against qualitative engineering expectations by using simulation experiments and occupancy time schedules generated a priori. Simulation times are good, and since the model has been written into Simulink/Stateflow programming language, it can be compiled to run real-time in C language (Real-time workshop and Stateflow Coder), thus relying on portable code, able to run virtually on any platform, giving even better performances in terms of execution time. One of the most interesting applications of this work is the estimate, for an Airport, of the kind of A-SMGCS level of implementation needed (Technical/Economical convenience evaluation). As a matter of fact, starting from the Traffic Volume and choosing the kind of Ground Equipment to be installed, one can make predictions about the Safety Level of the System: if the value is compliant with the TLS required by ICAO, the A-SMGCS level of Implementation is sufficiently adequate. Nevertheless, even if the Level of Safety has been satisfied, some delays due to reduced or simplified performances (even if Safety is compliant) of some of the equipment (e.g. with reference to False Alarm Rates) can lead to previously unexpected economical consequences, thus requiring more accurate systems to be installed, in order to meet also Airport economical constraints. Work in progress includes the analysis of the effect of weather conditions and re-sequencing of a given schedule. The effect of re-sequencing a given schedule is not yet enough realistic since the model does not apply inter arrival and departure separations. However, the model might show some effect on different sequences based on runway occupancy times. A further developed model containing wake turbulence separation conditions would be more sensitive for this case. Hence, further work will be directed towards: ā€¢ The development of On-Line Re-Scheduling based on the available actual runway/taxiway configuration and weather conditions. ā€¢ The Engineering Safety Assessment of some small Italian Airport A-SMGCSs (Model validation with real data). ā€¢ The application of Stochastic Differential Equations systems in order to evaluate the collision risk on the ground inside the Place alone on the Petri Net, in the event of a Short Term Conflict Alert (STCA), by adopting Reich Collision Risk Model. ā€¢ Optimal Air Traffic Control Algorithms Synthesis (Adaptive look-ahead Optimization), by Dynamically Timed Coloured Petri Nets, together with the implementation of Error-Recovery Strategies and Diagnosis Functions
    • ā€¦
    corecore