960 research outputs found

    Land Surface Verification Toolkit (LVT) - A Generalized Framework for Land Surface Model Evaluation

    Get PDF
    Model evaluation and verification are key in improving the usage and applicability of simulation models for real-world applications. In this article, the development and capabilities of a formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT) is described. LVT is designed to provide an integrated environment for systematic land model evaluation and facilitates a range of verification approaches and analysis capabilities. LVT operates across multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures, spatial similarity metrics and scale decomposition techniques that provide novel ways for performing diagnostic model evaluations. Though LVT was originally designed to support the land surface modeling and data assimilation framework known as the Land Information System (LIS), it also supports hydrological data products from other, non-LIS environments. In addition, the analysis of diagnostics from various computational subsystems of LIS including data assimilation, optimization and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-to-end environment for enabling the concepts of model data fusion for hydrological applications. The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts and aid the definition and refinement of formal evaluation procedures for the land surface modeling community

    Assimilation of SMAP products for improving streamflow simulations over tropical climate region — is spatial information more important than temporal information?

    Get PDF
    Streamflow is one of the key variables in the hydrological cycle. Simulation and forecasting of streamflow are challenging tasks for hydrologists, especially in sparsely gauged areas. Coarse spatial resolution remote sensing soil moisture products (equal to or larger than 9 km) are often assimilated into hydrological models to improve streamflow simulation in large catchments. This study uses the Ensemble Kalman Filter (EnKF) technique to assimilate SMAP soil moisture products at the coarse spatial resolution of 9 km (SMAP 9 km), and downscaled SMAP soil moisture product at the higher spatial resolution of 1 km (SMAP 1 km), into the Soil and Water Assessment Tool (SWAT) to investigate the usefulness of different spatial and temporal resolutions of remotely sensed soil moisture products in streamflow simulation and forecasting. The experiment was set up for eight catchments across the tropical climate of Vietnam, with varying catchment areas from 267 to 6430 km2 during the period 2017–2019. We comprehensively evaluated the EnKF-based SWAT model in simulating streamflow at low, average, and high flow. Our results indicated that high-spatial resolution of downscaled SMAP 1 km is more beneficial in the data assimilation framework in aiding the accuracy of streamflow simulation, as compared to that of SMAP 9 km, especially for the small catchments. Our analysis on the impact of observation resolution also indicates that the improvement in the streamflow simulation with data assimilation is more significant at catchments where downscaled SMAP 1 km has fewer missing observations. This study is helpful for adding more understanding of performances of soil moisture data assimilation based hydrological modelling over the tropical climate region, and exhibits the potential use of remote sensing data assimilation in hydrology

    Ensemble Streamflow Forecasting Using an Energy Balance Snowmelt Model Coupled to a Distributed Hydrologic Model with Assimilation of Snow and Streamflow Observations

    Get PDF
    In many river basins across the world, snowmelt is an important source of streamflow. However, detailed snowmelt modeling is hampered by limited input data and uncertainty arising from inadequate model structure and parametrization. Data assimilation that updates model states based on observations, reduces uncertainty and improves streamflow forecasts. In this study, we evaluated the Utah Energy Balance (UEB) snowmelt model coupled to the Sacramento Soil Moisture Accounting (SAC‐SMA) and rutpix7 stream routing models, integrated within the Research Distributed Hydrologic Model (RDHM) framework for streamflow forecasting. We implemented an ensemble Kalman filter for assimilation of snow water equivalent (SWE) observations in UEB and a particle filter for assimilation of streamflow to update the SAC‐SMA and rutpix7 states. Using leave one out validation, it was shown that the modeled SWE at a location where observations were excluded from data assimilation was improved through assimilation of data from other stations, suggesting that assimilation of sparse observations of SWE has the potential to improve the distributed modeling of SWE over watershed grid cells. In addition, the spatially distributed snow data assimilation improved streamflow forecasts and the forecast volume error was reduced. On the other hand, the assimilation of streamflow observations did not provide additional forecast improvement over that achieved by the SWE assimilation for seasonal forecast volume likely due to there being little information content in streamflow at the forecast date prior to its rising during the melt period and this application of particle filter being better suited for shorter timescales

    L-band Microwave Remote Sensing and Land Data Assimilation Improve the Representation of Prestorm Soil Moisture Conditions for Hydrologic Forecasting

    Get PDF
    Recent advances in remote sensing and land data assimilation purport to improve the quality of antecedent soil moisture information available for operational hydrologic forecasting. We objectively validate this claim by calculating the strength of the relationship between storm-scale runoff ratio (i.e., total stream flow divided by total rainfall accumulation in depth units) and pre-storm surface soil moisture estimates from a range of surface soil moisture data products. Results demonstrate that both satellite-based, L-band microwave radiometry and the application of land data assimilation techniques have significantly improved the utility of surface soil moisture data sets for forecasting stream flow response to future rainfall events

    Correcting satellite precipitation data and assimilating satellite-derived soil moisture data to generate ensemble hydrological forecasts within the HBV rainfall-runoff model

    Get PDF
    An implementation of bias correction and data assimilation using the ensemble Kalman filter (EnKF) as a procedure, dynamically coupled with the conceptual rainfall-runoff Hydrologiska ByrÄns Vattenbalansavdelning (HBV) model, was assessed for the hydrological modeling of seasonal hydrographs. The enhanced HBV model generated ensemble hydrographs and an average stream-flow simulation. The proposed approach was developed to examine the possibility of using data (e.g., precipitation and soil moisture) from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility for Support to Operational Hydrology and Water Management (H-SAF), and to explore its usefulness in improving model updating and forecasting. Data from the Sola mountain catchment in southern Poland between 1 January 2008 and 31 July 2014 were used to calibrate the HBV model, while data from 1 August 2014 to 30 April 2015 were used for validation. A bias correction algorithm for a distribution-derived transformation method was developed by exploring generalized exponential (GE) theoretical distributions, along with gamma (GA) and Weibull (WE) distributions for the different data used in this study. When using the ensemble Kalman filter, the stochastically-generated ensemble of the model states generally induced bias in the estimation of non-linear hydrologic processes, thus influencing the accuracy of the Kalman analysis. In order to reduce the bias produced by the assimilation procedure, a post-processing bias correction (BC) procedure was coupled with the ensemble Kalman filter (EnKF), resulting in an ensemble Kalman filter with bias correction (EnKF-BC). The EnKF-BC, dynamically coupled with the HBV model for the assimilation of the satellite soil moisture observations, improved the accuracy of the simulated hydrographs significantly in the summer season, whereas, a positive effect from bias corrected (BC) satellite precipitation, as forcing data, was observed in the winter. Ensemble forecasts generated from the assimilation procedure are shown to be less uncertain. In future studies, the EnKF-BC algorithm proposed in the current study could be applied to a diverse array of practical forecasting problems (e.g., an operational assimilation of snowpack and snow water equivalent in forecasting models

    An Enkf-Based Scheme for Snow Multivariable Data Assimilation at an Alpine Site

    Get PDF
    Abstract The knowledge of snowpack dynamics is of critical importance to several real-time applications especially in mountain basins, such as agricultural production, water resource management, flood prevention, hydropower generation. Since simulations are affected by model biases and forcing data uncertainty, an increasing interest focuses on the assimilation of snow-related observations with the purpose of enhancing predictions on snowpack state. The study aims at investigating the effectiveness of snow multivariable data assimilation (DA) at an Alpine site. The system consists of a snow energy-balance model strengthened by a multivariable DA system. An Ensemble Kalman Filter (EnKF) scheme allows assimilating ground-based and remotely sensed snow observations in order to improve the model simulations. This research aims to investigate and discuss: (1) the limitations and constraints in implementing a multivariate EnKF scheme in the framework of snow modelling, and (2) its performance in consistently updating the snowpack state. The performance of the multivariable DA is shown for the study case of Torgnon station (Aosta Valley, Italy) in the period June 2012 - December 2013. The results of several experiments are discussed with the aim of analyzing system sensitivity to the DA frequency, the ensemble size, and the impact of assimilating different observations

    Integration Frameworks for Merging Satellite Remote Sensing Observations with Hydrological Model Outputs

    Get PDF
    With a growing number of available datasets especially from satellite remote sensing, there is a great opportunity to improve our knowledge of hydrological processes by integrating them with hydrological models. In this regard, data assimilation technique can be used to constrain the dynamic of a model with available observations in order to improve its estimates. In this thesis, a comprehensive data assimilation framework containing multiple stages is proposed and tested over various areas
    • 

    corecore