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Abstract: Streamflow is one of the key variables in the hydrological cycle. Simulation and forecasting
of streamflow are challenging tasks for hydrologists, especially in sparsely gauged areas. Coarse
spatial resolution remote sensing soil moisture products (equal to or larger than 9 km) are often
assimilated into hydrological models to improve streamflow simulation in large catchments. This
study uses the Ensemble Kalman Filter (EnKF) technique to assimilate SMAP soil moisture products
at the coarse spatial resolution of 9 km (SMAP 9 km), and downscaled SMAP soil moisture product
at the higher spatial resolution of 1 km (SMAP 1 km), into the Soil and Water Assessment Tool
(SWAT) to investigate the usefulness of different spatial and temporal resolutions of remotely sensed
soil moisture products in streamflow simulation and forecasting. The experiment was set up for
eight catchments across the tropical climate of Vietnam, with varying catchment areas from 267 to
6430 km2 during the period 2017–2019. We comprehensively evaluated the EnKF-based SWAT model
in simulating streamflow at low, average, and high flow. Our results indicated that high-spatial
resolution of downscaled SMAP 1 km is more beneficial in the data assimilation framework in
aiding the accuracy of streamflow simulation, as compared to that of SMAP 9 km, especially for
the small catchments. Our analysis on the impact of observation resolution also indicates that the
improvement in the streamflow simulation with data assimilation is more significant at catchments
where downscaled SMAP 1 km has fewer missing observations. This study is helpful for adding
more understanding of performances of soil moisture data assimilation based hydrological modelling
over the tropical climate region, and exhibits the potential use of remote sensing data assimilation
in hydrology.

Keywords: soil moisture; Vietnam; SWAT; Ensemble Kalman Filter; small catchments

1. Introduction

In recent years, soil moisture (SM) has been increasingly investigated in hydrological
research as it has a strong influence on the interaction between different components within
the hydrological cycle [1–3]. The SM content is a key variable that controls most of the land
surface hydrological processes and thus is considered one of the most important parameters
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in land surface hydrology models [4]. The increased need for satellite-based soil moisture
information has led to the launch of many satellite missions to provide more accurate SM
estimates at the global scale [5,6] that could be used to substitute in-situ SM observations
that only cover a very limited portion of the land surface [7]. These SM products include
ASCAT (Advanced SCATterometer) [8], SMOS (Soil Moisture and Ocean Salinity) [9],
AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System
onboard the Aqua satellite) [10], AMSR-2 (Advanced Microwave Scanning Radiometer 2
onboard the Global Change Observation Mission—Water satellite) [11] and SMAP (Soil
Moisture Active Passive) [12]. All of these SM data products are freely accessible, providing
an opportunity to integrate SM information into hydrological models across the globe.

Owing to the release of the above-mentioned data products, assimilation of soil mois-
ture (SM) in hydrological simulations has received much attention within the past decade.
Specifically, of 150 studies conducted during the period of 2001–2021 on soil moisture
assimilation in hydrology modelling, nearly ninety percent have been published since 2012
(see Supplementary Figure S1). A number of studies have assessed remotely-sensed SM
assimilation in various hydrological applications, including flood prediction [13,14], water
balance estimation [15], and streamflow forecast [16,17], along with agricultural monitoring
and forecasting [18,19]. These studies have established a new frontier in hydrological
research to take advantage of SM estimates from space to inform hydrological modeling.

However, satellite-based SM products also have several limitations, including shallow
penetration depth (typically shallower than or equal to 5 cm) and relatively coarse spatial
resolutions (larger than or equal to 9 km) [12]. Therefore, the SM observed from space
may often improve the top-soil layer estimation, unless carefully integrated into a soil
moisture or hydrologic model through direct insertion or data assimilation. Although
several studies [20] have shown that coarse spatial resolutions of remote sensing soil
moisture could be useful in improving streamflow simulations, many studies have pointed
out the limitations of low spatial resolutions of soil moisture in data assimilation, especially
in small catchments [21] or in flash flood forecasting [22].

To overcome the low spatial resolution of satellite-based SM products, several studies
have proposed different downscaled algorithms to obtain a finer soil moisture dataset in
space. These algorithms can be classified into three primary types, including (i) methods
based on a satellite data combination of high and low resolution satellite data using
active sensors [23,24], and visible, infrared and thermal sensors [25–28]; (ii) methods
based on the relationship between SM and other geophysical variables that exist at a finer
spatial resolution [29,30]; (iii) methods based on mathematical modelling (e.g., land surface
modelling) to simulate coarse resolution remotely sensed SM to a fine resolution model to
update SM outputs [31,32].

On the other hand, compared to native resolution satellite-based products, downscaled
satellite-based SM products are prone to having shorter data records, complicating typical
data assimilation methodologies. For instance, with the first downscaling method men-
tioned above, a widely-used algorithm is a thermal inertia principle-based algorithm [33].
This algorithm utilizes the universal relationship between land surface temperature (LST),
vegetation index, soil wetness, and evapotranspiration to quantify SM as a function of LST
and normalized different vegetation index (NDVI). However, the LST dataset, which is
often retrieved from earth observations, often has large spatial and temporal gaps, resulting
from atmospheric conditions (e.g., cloud and cloud shadows) [34]. Consequently, these
LST’s gaps will cause gaps in space and time for downscaled SM product and result in
an absence of temporal time series during the data assimilation process. Although ef-
forts exist to fill the gaps from LST before the downscaling step [33,35], the challenge of
supplementing temporally-downscaled SM data for assimilation still remains.

Investigation of the trade-offs between temporal and spatial resolution of remotely
sensed SM products for constraining hydrologic models is an area of research that requires
more attention. In a study of two catchments in Central Italy, Azimi et al., 2020 [36]
examined the benefit of having more frequent SM observations (temporal timescale) in
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streamflow simulation. The authors concluded that reduced temporal sampling from
a remotely sensed soil moisture product could significantly reduce model performance,
indicating that temporal resolution likely plays a more important role than spatial resolution
in constraining the model. On the other hand, a study using SMAP soil moisture data
assimilation in a community-based hydrologic model indicates that downscaled SMAP 1
km would improve the accuracy of streamflow simulation (normal streamflow conditions),
rather than the model using coarse resolution SMAP 9 km data [13].

In addition, the impact of the number, size, and nature of the hydrologic catchment
requires further investigation—few studies have addressed the potential impacts of catch-
ment characteristics on SM-based DA schemes. A majority of studies have examined the
DA schemes in a focused area, and typically over relatively few catchments (e.g., <4),
making it difficult to make conclusive statements on the utility of such DA approaches (see
Table 1 and Supplementary Figure S2). Several studies that have included large samples
of catchments concluded that a hydrological model with a SM-based DA framework may
not significantly improve streamflow simulations, compared to the hydrological model
without the DA [37,38].

Model complexity, and heterogeneous land surface characterization and meteorologi-
cal forcing, can result in varying levels of uncertainty and model accuracy, issues not easily
corrected through data assimilation. In fact, DA-driven hydrologic models often exhibit
mixed results across climatic conditions. This is an active area of research, and more studies
are encouraged. Currently, most studies focus on temperate regions (see Table 1). In the
tropical climate, streamflow is often of great variation, due to the impacts of large-scale
phenomena such as ENSO on the seasonal and year-to-year variation in soil moisture,
which results from the high variability in rainfall [39]. Any technique such as DA that
could enhance hydrological model performances in the tropical climate region is essential,
but such studies have rarely been investigated [40], owing to the difficulty of accessing
streamflow records over these regions [41].

Here, we build off of these previous studies and attempt to demonstrate the utility of
satellite-based soil moisture for streamflow simulation, as well as assessing the impacts
of temporal and spatial resolution on the model accuracy. We carefully investigate the
application of two remotely sensed SM products (SMAP 9 km and downscaled SMAP
1 km) to examine whether spatial–temporal resolution has a substantial impact on the
performance of the hydrological model to simulate streamflow through a data assimilation
(DA) framework. We carried out the experiment over eight catchments across Vietnam—a
tropical country that is under-represented in the literature. The hydrological Soil and
Water Assessment Tool (SWAT) model [42] is selected as it performs well in numerous
studies in the studied region [43–47], and there are several studies that have successfully
implemented the DA framework in the SWAT model [36,48]. We selected the Ensemble
Kalman Filter (EnKF) [49] as the DA algorithm due to its popularity in many hydrological
assimilation works [31,38,50].

Section 2 presents eight catchments together with the selected datasets while Section 3
provides a brief description of the hydrological SWAT model and data assimilation scheme
that were used to conduct this study. Section 4 provides a comprehensive assessment of the
findings, focusing on the discrepancies of model performance under different DA schemes.
Section 5 concluded the study findings.
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Table 1. Summary of selected studies on remote sensing soil moisture data assimilation in hydrologic models. These studies were investigated in terms of climate
region, number of studied catchments, used remotely sensed (RS) soil moisture (SM) datasets, data assimilation (DA) technique with hydrologic models. More
details on recent studies (2015-present) can be found in Supplementary Material Figure S2.

References Climate Region Catchments/RS SM Datasets DA(*)/Hydrological Models (**) Main Findings

Jadidoleslam et al., 2021 [37] Cold 131/SMAP, SMOS EnKF, EnKFV/HLM
DA driven models reduce the peak error and could be useful for the

application of satellite soil moisture for operational real-time
streamflow forecasting.

Abbaszadeh et al., 2020 [13] Temperate 4/SMAP EPFM/WRF-Hydro Assimilation of SM could improve streamflow simulation during flooding
from hurricane Harvey in 2017, with a promising result from SM at 1 km.

Baguis et al., 2017 [51] Temperate 1/ASCAT EnKF/SCHEME The DA algorithm could be a diagnostic tool to detect weakness in a model
and to improve its performance.

Patil and Ramsankaran, 2018 [14] Temperate 2/SMOS, ASCAT EnKF/SWAT
A coupling Soil Moisture Analytical Relationship with EnKF could

successfully update the sub-surface SM and streamflow
components simulation.

Laiolo et al., 2016 [20] Temperate 1/EUMET-SAT H-SAF, SMOS Nudging/Continuum
Streamflow prediction for a small basin using a distributed hydrological

model could be improved with the assimilation of soil moisture estimated
from coarse spatial resolution remotely sensed products.

Behera et al., 2019 [15] Tropical 1/AMSR-E Kalman Filter/VIC DA driven models could improve soil moisture in root zone and water
balance estimation.

Azimi et al., 2020 [36] Temperate 2/SMAP, SACAT, CATSAR-SWI EnKF/SWAT
Both active and passive-based SM driven simulation generally improved

streamflow simulation. The impact of frequency of soil moisture observation
on data assimilation performances in small catchments was discussed.

Lü et al., 2016 [52] Arid 2/ASCAT EnKF/HBV
A combined surface soil moisture and snow depth data assimilation into a

hydrological model was proposed to improve streamflow estimation in cold
and warm season headwater watersheds.

Yang et al., 2021 [31] Temperate 3/ESA CCI, SMAP EnKF/DDRM Assimilation of soil moisture products in high spatial gridded modelling could
increase DA performances in terms of simulating profile soil moisture.

De Santis et al., 2021 [38] Cold, Temperate 775/ESA CCI EnKF/MISDc-2L

An assessment of large-scale DA experiments in hydrological model
streamflow simulation was carried out over Europe. This study also

considered impacts of vegetation density, topographical complexity and basin
area on the DA performances.

Loizu et al., 2018 [53] Temperate 2/ASCAT EnKF/MISDc, TOPLATS

This study examined the impacts of three different re-scaling techniques on
SM data assimilation for two hydrological models. A careful evaluation for
observation error and re-scaling technique is recommended for successful

implementation of a data assimilation framework.

Note: (*) Acronyms for data assimilation techniques: ‘EnKF’ Ensemble Kalman Filter, ‘EnKFV’ EnKF include time-varying error variances, ‘EPFM’ Evolutionary Particle Filter with
Markov Chain Monte Carlo. (**) Acronyms for hydrologic models: ‘HLM’ Hillslope Link Model, ‘WRF-Hydro’ Weather Research and Forecasting Hydrological model, ’SCHEME’
SCHEldt-MEuse, from the names of the two major rivers of Belgium, ‘SWAT’ Soil and Water Assessment Tool, ‘VIC’ Variable Infiltration Capacity, ’HBV’ Hydrologiska Byråns
Vattenbalansavdelning, ‘DDRM’ Digital Elevation Model (DEM) based distributed rainfall-runoff model, ‘MISDc-2L’ Modello Idrologico Semi-Distribuito in continuo-2 layers, ’TOPLATS’
TOPMODEL-Based Land Surface-Atmosphere Transfer Scheme.
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2. Materials and Methods
2.1. Catchment Sites and Its Streamflow Observations

We collected daily 2013–2019 streamflow time series from eight hydrological stations
across Vietnam with their characteristics presented in Table 2. The in-situ streamflow
datasets have been used to calibrate the hydrological models for each catchment, and eval-
uate the performance of hydrological simulations with and without DA. These catchments
were selected based on several study objectives. Firstly, they have a variety of catchment
sizes so that we could examine the impacts of the spatial resolution of SMAP products on
the data assimilation algorithm. Secondly, they are in contrasting climate conditions and
geographic coordinates. Therefore, they have different runoff regimes and soil moisture
patterns (Figure 1), which are useful for drawing a general conclusion on our experiment.
Lastly, all catchments have passed homogeneity time series testing, and have natural runoff
conditions due to the lack of manmade structures (i.e., weirs, dams, etc.). These conditions
enable us to isolate the impact of the DA methods by removing potential changes in stream-
flow dynamics due to human activities. Details on testing of homogeneity time series and
checking of natural catchment conditions can be found in Do et al., 2022 [54].
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Figure 1. Locations of eight catchments (red circle represents catchment centroid) in Vietnam, and 
their monthly averaged runoff (black bar), monthly averaged soil moisture estimated from SMAP 9 
Figure 1. Locations of eight catchments (red circle represents catchment centroid) in Vietnam, and
their monthly averaged runoff (black bar), monthly averaged soil moisture estimated from SMAP
9 km (SM9, blue line), and monthly averaged soil moisture estimated from SMAP 1 km (SM1, red
line). The runoff values were calculated based on the period of 2013–2019, while soil moisture values
(volume soil moisture) were calculated based on the period of 2017–2019. A rescaling has been
applied for the runoff time series to compare its variation across catchments. The circle size indicates
relative size of the catchment. The Roman numerals indicate contrasting climate regions where the
studied catchments located in. These regions are defined following [55].
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Table 2. Description of hydrological stations used in this study. Average runoff characteristics in each
catchment (min, median, mean, max) are based on time series 2013–2019. NDVI is the average NDVI
value for each catchment during 2017–2019 extracted from MODIS MOD13Q1 250 m product. SM9
and SM1 stand for the percentage of available SMAP 9 km and downscaled SMAP 1 km during the
data assimilation period (2017–2019), respectively.

Full
Name

Short
Name

Long. Lat. Area Min Median Mean Max NDVI SM9 SM1

(Degree) (Degree) (km2) (mm/d) (mm/d) (mm/d) (mm/d) (-) (%) (%)

Giavong gvo 106.93 16.93 267 0.09 0.91 2.49 136.56 0.801 42.37 9.68
Anhoa aho 108.90 14.57 383 0.36 1.87 7.54 254.91 0.628 31.78 10.41
Banyen bye 103.03 21.27 638 0.21 0.65 1.51 33.04 0.740 42.56 21.46
Songluy slu 108.34 11.19 964 0.04 0.51 2.02 42.30 0.808 41.74 5.84

Chu chu 106.60 21.37 2090 0.02 0.25 1.79 99.22 0.736 31.78 12.24
Giangson gso 108.19 12.51 3100 0.18 1.28 1.95 28.71 0.753 31.78 11.6

Nghiakhanh nkh 105.41 19.22 4024 0.32 1.16 2.39 92.11 0.770 31.78 14.52
Xala xla 103.92 20.94 6430 0.13 0.89 1.64 24.72 0.686 34.16 16.62

2.2. Climatic Datasets

The climatic datasets forced into the hydrological model in this study are daily precip-
itation from GPM IMERG and daily maximum and minimum air temperature from NCEP
CFSR V2. A detailed description of these datasets is given below.

2.2.1. GPM IMERG Precipitation

The half-hour 0.1 degree GPM IMERG Final run V6 (hereafter IMERG) [56] was down-
loaded from NASA Goddard Earth Science Data and Information Services Center (GES
DISC, https://disc.gsfc.nasa.gov/, accessed on 28 January 2022). Daily precipitation totals
were calculated by summing 24-h periods beginning at 19:00 UTC the day prior to the day of
the record to match with the local daily rainfall collection time frame. Satellite precipitation
has been shown to favorably compare with rain gages in various locations [57–59].

2.2.2. NCEP CFSR V2 Air Temperature

The 6-hour CFSR V2 for maximum and minimum air temperature [60] was down-
loaded from the National Center for Atmospheric Research (NCAR, https://rda.ucar.edu/,
accessed on 28 January 2022) Data Archive. Depending on the parameters, the available
resolution varies from 0.3 degrees to 2.5 degrees. In this study, we selected the finest
resolution of 0.3 degrees. We obtained the maximum and minimum air temperature every
6 h, and selected the maximum and minimum among these four periods per day to estimate
the daily maximum and minimum air temperature, respectively.

2.3. Remotely Sensed Soil Moisture Datasets

We obtained two soil moisture (SM) products originating from Soil Moisture Active
Passive (SMAP). These products have exhibited their potential use in water resources and
hydrology in the studied region [61,62], and are the data assimilation variables (i.e., state vari-
ables) which serve as the observed soil moisture to assimilate into the hydrological model.

2.3.1. Soil Moisture Active Passive

The 9 km SMAP Level- 3 (hereafter SM9) was obtained from the National Snow and Ice
Data Center (NSIDC DAAC, http://nsidc.org/data/smap, accessed on 28 January 2022).
The SMAP provides, at approximately 06:00 and 18:00 local time (LT), soil moisture data in
descending and ascending orbits, respectively. In this study, to match with daily simulation
time in the study region, the SMAP ascending overpass time (18:00 LT) is selected as the
observed soil moisture for a day. The accuracy for the SMAP data is designed with µRMSE
of 0.04 m3/m3 [5].

https://disc.gsfc.nasa.gov/
https://rda.ucar.edu/
http://nsidc.org/data/smap
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2.3.2. Downscaled Soil Moisture Active Passive

Based on the assumption that daily soil moisture was negatively associated with the
change in daily temperature under varying vegetation conditions, Fang et al., 2018 [63];
Fang et al., 2020 [27] proposed a linear regression model to estimate the daily soil moisture
condition with known daily temperature and vegetation index. Using this linear regression
model, we can create a finer spatial resolution for SM from high spatial resolutions of land
surface temperature (reflecting the change in daily temperature) and of NDVI (reflecting
the vegetation conditions). In this way, very high spatial soil moisture from SMAP—
downscaled SMAP—has increased from 9-km to 1-km resolution (hereafter SM1). This SM1
product has been validated in CONUS [27], Australia [64], and at a global scale [33]. In
this study, we obtained SM1 from the global scale product [33], and extracted the 18:00 LT,
similar to the SM9.

3. Methodology
3.1. Principle of the Hydrological SWAT Model in Streamflow Simulation

The Soil and Water Assessment Tool (SWAT) is a physically based, semi-distributed
hydrologic model that simulates various hydrologic variables at time steps (i.e., daily,
monthly, and yearly) at catchment scale. The Hydrologic Response Unit (HRU) is the basic
spatial unit of the SWAT model. Runoff generation is estimated at the HRU level, and is
then routed to sub-basins and, subsequently, to the entire basin [65]. In the SWAT model,
runoff generation is the sum of three components—surface runoff (Qsur f ), lateral flow
(Qlat) and groundwater (Qgw). The mathematical expression of these three components is
described in the following.

The surface runoff process is a function of daily rainfall (Rday, unit in mm) and the
retention parameter (S, unit in mm) based on the empirical formula using Soil Conservation
Service (SCS) Curve Number (CN) method (SCS, 1972).

Qsur f =

(
Rday − 0.2·S

)2

Rday + 0.8·S (1)

The retention parameter S is calculated as follows.

S = Smax

(
1− SW

SW + exp(w1 − w2·SW)

)
(2)

where Smax is the maximum value the retention parameter can obtain from any given day
(mm). SW is the total soil moisture (in mm) of the entire profile excluding the amount of
water held at the wilting point. w1 and w2 are shape coefficients.

The shape coefficients (w1 and w2) are calculated as follows:

w1 = ln
[

FC
1− S3·S−1

max
− FC

]
+ w2·FC (3)

w2 =

(
ln
[

FC
1−S3·S−1

max
− FC

]
− ln

[
SAT

1−2.54·S−1
max
− SAT

])
(SAT − FC)

(4)

where FC is field capacity, SAT is the amount of water when the soil profile is completely
saturated (mm), and 2.54 is the retention parameter at the CN = 99. S3 (mm) and Smax (mm)
are retention parameters, calculated given CN1 (dry condition) and CN3 (normal condition)
as follows.

S = 25.4·
(

1000
CN

− 10
)

(5)

where Smax = 25.4·
(

1000
CN1
− 10

)
, and S3 = 25.4·

(
1000
CN3
− 10

)
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The CN1 and CN3 are calculated given CN2 value (given as SWAT model input)
as follows:

CN1 = CN2 −
20·(100− CN2)

(100− CN2 + exp[2.533− 0.0636·(100− CN2)])
(6)

CN3 = CN2· exp[0.00673·(100− CN2)] (7)

After the surface runoff is formed, the rest of water infiltrates the land to generate soil
water inflow. Lateral flow (Qlat, unit in mm) in each soil layer is given as follows:

Qlat = 0.024·
(2·SWly.excess·Ksat.ly·slp

ϕd·Lhill

)
(8)

where Ksat.ly is saturated hydraulic conductivity (mm/h) at layer i (i = 1, 2, 3), slp is the
steepness of a slope (m/m), ϕd is the drainable porosity of the soil layer (mm/mm), and
Lhill is the hillslope length (m). In addition, SWly.excess is the amount of soil water that
exceeds field capacity at layer i (i = 1, 2, 3), is given as follows.

SWly, excess = SWly − FCly i f SWly > FCly

SWly,excess = 0 i f SWly ≤ FCly
(9)

where SWly and FCly are the water content of the soil layer i (i = 1, 2, 3), on a given day
(mm) and at field capacity (mm).

The SWly, if it exists, also generates deep percolation (Qperc, ly, unit in mm) (from one
layer to the underlying layer) as follows:

Qperc,ly = SWly,excess

(
1− exp

−∆t·Ksat,ly

SATly − FCly

)
(10)

where t is the time step (hour). The soil water at the third layer percolates to vadose
zones and groundwater (shallow aquifer layer). We focus on assimilating the soil moisture
dynamic but do not consider the ‘revap’ process—water may move from shallow aquifers
to overlaying unsaturated zones.

3.2. Setup the Hydrological SWAT Model

To set up the SWAT model across various catchment size basins, we (i) defined the
same threshold to create a river network (i.e., 30 km2) when using the DEM to delineate
watersheds; (ii) set up a similar slope band setup (0-, 5-, 10-, 30-, and 50-degree).

For the climatic data inputs, using Thiessen polygon areal weighted average method [66],
we calculated the mean areal precipitation for each sub-basin from gridded IMERG precipi-
tation and the mean areal air temperature (i.e., maximum and minimum) for each sub-basin
from gridded CFSR V2. Therefore, the precipitation and air temperature points as input for
the SWAT models are equal to the total of the sub-basins.

To create HRU units, DEM, land use, and soil data are required. The 90-m void-filled
digital elevation model (DEM) has been obtained from the hydrological data and maps based
on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS, hydrosheds.org) [67,68].
The HydroSHEDS DEM has provided a reliable watershed delineation for the given studied
basins with the difference between the catchment area generated from HydroSHEDS DEM
and metadata being within ±15%. The 500-m land use land cover presented in this study
is obtained from Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) [69] from
the Land Processes Distributed Active Archive Center (LP DAAC, https://lpdaac.usgs.
gov/products/mcd12q1v006/, accessed on 28 January 2022). The MODIS Land cover
provides 17 different land cover types annually from 2001 to 2019. This study obtained
2016 land cover as representing the land use in the given studied areas. Furthermore,
this study reclassified the original 17 land cover types to 10 land cover types to match

https://lpdaac.usgs.gov/products/mcd12q1v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
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with the SWAT format. This study used 1-km Harmonized World Soil Database (HWSD)
version 1.2 maintained by the Food Agriculture Organization (FAO, http://www.fao.org,
accessed on 28 January 2022) [70,71]. To prepare soil inputs for SWAT, we reclassified the
HWSD’s soil mapping unit (SMU) to the FAO soil symbol, assigned soil properties for
each soil layer using the HWSD database, and used soil water characteristics equations
from Saxton and Rawls (2006) to create a proper user soil format for SWAT. Normally, two
soil layers’ profiles are created (i.e., 0–300 mm, 300–1000 mm). However, SMAP can only
measure soil moisture at the depth of 0–50 mm. Therefore, to have a realistic assimilation
process, we re-classified the soil profile of SWAT from two layers to three layers (0–50 mm,
50–300 mm, and 300–1000 m) [16]. All described spatial processing (watershed delineation
and HRU creation) have been conducted in QGIS v2.6.1 and QSWAT v1.7 [72]. Summarized
descriptions of previously described datasets in Section 2 and DEM, soil, land use datasets
for setup SWAT model are given in Table 3. The detailed climatic conditions, catchment
attributes and model setup information (sub-basins and HRUs) are provided in the Table A1.

Table 3. Description of data used for SWAT and data assimilation framework in this study.

Attributes Data Type Description Period(s)/Resolution Sources

Climatic
data

Precipitation IMERG Final Run V6 2011–2019/0.10◦ [56]
Max-, min- air temperature CFSR vs2 2011–2019/0.25◦ [60]

Catchment
attributes

Land use land cover MCD12Q1 2016/500 m [69]
Soil HWSD -/1 km [70]

Digital Elevation Model HydroSHEDS -/90 m (3 s) [67]

Data assimilation
variable

Soil moisture SMAP 2015–2019/9-km [12]
Soil moisture Downscaled SMAP 2015–2019/1-km [33]

Ground data Streamflow Eight hydrological
stations 2013–2019 VMHA *

* VMHA Vietnam Meteorological and Hydrological Administration.

With respect to the parameterization of the SWAT model, we selected the warm-up,
calibration and validation periods as 2011–2012, 2013–2016, and 2017–2019, respectively.
Thirteen different parameters (see Table A2), which impact surface runoff, evaporation, soil
moisture, and channel routing in the SWAT model, have been chosen for the parameteriza-
tion. The parameters’ turning process was undertaken with the SUFI-2 algorithm that is
built in to the SWAT-CUP software [73]. In the end, we optimized the best suitable parame-
ters for each catchment for daily streamflow simulation. The SWAT driven simulation at
this step is considered as a deterministic SWAT model.

3.3. Data Assimilation—Ensemble Kalman Filter (EnKF)
3.3.1. Bias Correction of Observed SM and Ensembles Generation

The EnKF is a sequential data assimilation technique that is best applied using un-
biased observations. To limit error covariance of the modeled and observed states in the
EnKF, systematic errors between satellite SM retrievals and model states must be corrected
before assimilation. It is assumed that long-term statistics of model states are consistent
with those of in-situ SM [74], thus the model simulated states are normally used to correct
biases in the satellite SM retrievals. We first estimated observed SM (from SM9 and SM1)
for the topsoil layer (0–50 mm) for each HRU by calculating average satellite-observed SM
at each sub-basin using the areal weighted average method [66]. The systematic differences
between modeled (i.e., open loop) and remote sensing of soil moisture were then corrected
using a mean-variance approach [16]. From the mean-variance matching, both model
simulated SM and observed SM were estimated on monthly timescale and HRU spatial
scale. The bias corrected SM was then used for the next analysis.

We generated 100 ensembles using the Latin Hypercube sampling technique [16]
and defined ranges of error variances used for generating ensemble of model forcing,
soil field capacity and observed soil moisture states (see Table A3). Since we employed

http://www.fao.org
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this EnKF data assimilation framework in multiple catchments with different climatic
conditions, as well as with two different SM products, we assessed the error variances for
each perturbed variable.

3.3.2. EnKF Algorithm

The EnKF is a Monte Carlo approximation (i.e., ensemble) of the standard Kalman
Filter for use in a non-linear model. It uses an ensemble of modelled states in a Bayesian-
based auto-recursive analysis framework to optimally merge model estimates with state
observations (i.e., SM). The EnKF was operated in two steps as follows.

Step 1—Uncertainties from the ensemble of modeled forecasts and ensemble
of observations.

During the soil water routing progress at any time step, at each HRU, the ensemble of
model state (i.e., soil moisture) forecast is given as below.

xi−
k+1 = M

(
xi+

k , Ui
k

)
+ wk+1 (11)

where M is a non-linear model, which is the hydrological SWAT model in this study. The
superscript i represents a matrix of state ensembles with the forecast state (sign ‘-’), and
analyzed state (sign ‘+’). The subscript k represents the time step. Ui

k is an ensemble of
the model forcing. In this case, U is perturbed precipitation. wk+1 is Gaussian white noise
representing the error due to uncertainties of forcing and model structure. Further, the
ensemble of observations using the ensemble of states is calculated as follows.

ẑi
k+1 = Hkxi−

k+1 + vk+1 (12)

where ẑ is the model predicted observation ensemble at time k + 1. H is the observation
operation to match the model states with the observations. Here, H is the areal weighted
average soil moisture at HRU. v is the observation error, with separation of model errors
and assumption of normally distributed with covariance ∑z

k+1 .
Step 2—Data assimilation progress.
The model forecasts are updated towards observations using Kalman Gain matrix

(K)’s weights as,
xi+

k+1 = xi−
k+1 + K

(
zi

k+1 − ẑi
k+1

)
(13)

where xi−
k+1, xi+

k+1 represent an ensemble of model forecasts and of state after assimilation,
respectively. zi

k+1 is an observation ensemble generated using the observation covariance
matrix ∑z

k+1 .
The best linear unbiased estimation of xi+

k+1 when the Kalma gain is calculated as,

K =
XZ

∑
k+1

[
∑ZZ

k+1 +∑Z
k+1

]−1
(14)

where ∑ZZ
k+1 is the covariance of the model predicted observation ensemble obtained from

Hkxi−
k+1. ∑XZ

k+1 is the cross variance of the model forecast and observation prediction. After
that, we resample the analyzed model state back into original layers at each HRU. The
update retention parameters and soil moisture routing prior to the next step (t + 1) are
calculated as the Equations (2) and (9), respectively.

Figure 2 presents the flowchart of this study with detailed steps for each of the
simulation scenarios: the open-loop model (hereafter OL); the assimilation of SM9 into
the SWAT model with the EnKF technique (hereafter EnKF-SM9); and the assimilation
of SM1 into the SWAT model with the EnKF technique (hereafter EnKF-SM1). The DA
evaluation is in the period of 2017–2019 because this is the same as the validation period of
the deterministic SWAT model.
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Figure 2. Flow chart of this study. EnKF-SM9 and EnKF-SM1 stand for streamflow simulations using
the SWAT model with the state variable of SM9 and EnKF technique, and streamflow simulations
using the SWAT model with the state variable of downscaled SM1 and EnKF technique, respectively.

3.4. Streamflow Performance Metrics

The modified Kling–Gupta efficiency (KGE, [75]) was used to evaluate streamflow
simulations, with its formula as follows.

KGE = 1−
√
(r− 1)2 + (β− 1)2 + (γ− 1)2 (15)

In which:

r is the Pearson correlation coefficient, reflecting the error in shape and timing between
observed and simulated streamflow.
β is the bias term, evaluating the bias between observed and simulated streamflow.
γ is the ratio between coefficients of variation in observed and simulated streamflow,
assessing the flow variability error with bias consideration.

We also calculated the benefit of the DA by using the Efficiency Index (E f f ) [76],
expressed as

E f f = 1− ∑n
k=1(Qda,k −Qobs,k)

2

∑n
k=1(Qol,k −Qobs,k)

2 (16)

where n represents the total time steps. Qda,k, Qol,k, and Qobs,k denote the simulated stream-
flow with data assimilation, simulated streamflow without data assimilation (open loop),
and observed streamflow at time step k, respectively. E f f > 0 denotes an improvement in
streamflow simulation after implementing the DA scheme and vice versa for E f f ≤ 0.

To focus on different aspects of flow time series, we transformed the flow time series
before calculating KGE or E f f , as follows [77].

- Normal streamflow time series (hereafter Qnor), to have more weights on high flow.
- Square root streamflow time series (hereafter Qsqr), to have more weights on average flow.
- Inverse streamflow time series (hereafter Qinv), to have more weights on low flow.

It is noted that with inverse streamflow transformation, to avoid zero flow, we added
1/100 of mean observed flow before the transformation.

4. Results and Discussion
4.1. Characteristics of Soil Moisture SMAP Products

During the period of 2017–2019, apart from July, the average available data for SM9
across the studied catchments is approximately 35% in each month (Figure 3). In July, a
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significant reduction in coverage of SM9 (below 25%) was observed. This is likely due to a
large gap in July 2019 (see Figure A1) because SMAP satellite was in a safe mode and did
not provide the observed soil moisture information [78]. The averaged coverage of SM1
was only one third of that of SM9 (approximately 11.5% in each month) and was 5% in
July. The reason for SM1′s low coverage in July is similar to that of SM9 as the SM1 is the
downscaled product of SM9 and therefore inherits the gap from SM9.
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Figure 3. Radar chart of average soil moisture available data (in percent) over 8 catchments in each
month for SMAP 9 km (SM9) and SMAP 1 km (SM1) during 2017–2019.

The relationship between estimated SM value from SM9 and SM1 presented in Figure 4.
Two small catchments—gvo and aho (<500 km2, Figure 4a,b)—exhibited weak correlation
between the two SM datasets as compared to the larger catchments. In these small catch-
ments, the SM1 product seems to estimate higher SM value as higher density points are
observed at the lower part of 1-1 line.
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Figure 4. Comparison between soil moisture volume metric estimated at sub-basins over eight
catchments (a) gvo, (b) aho, (c) bye, (d) slu, (e) chu, (f) gso, (g) nkh, and (h) xla using SM9 and SM1.
The points colors indicate points density, with more red meaning higher points density. The values in
the bottom right indicate correlation values between the two soil moisture datasets. n is the total pair
days which both SM9 and SM1 have values at a sub-basin.

Figure 5 illustrates the proficiency of two SM products for reflecting a dry-down
event in a medium-sized bye catchment. We used precipitation and SM to examine the
drying of soil over time with respect to a rainfall event. After the rainfall event on 4 April
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2018 (average 8.5 mm for the entire catchment), the catchment received less rainfall in
subsequent days, and almost no rainfall after April 8. During the same period, we noted
that both SM products exhibited similar dry down patterns. It is possible that SMAP
observed the near-surface soil moisture conditions as they transitioned from saturated to
dry conditions. Inter-comparison between these two SM products highlights the additional
spatial patterns in soil moisture provided by each product. The SM1 dataset provides
detailed variation in SM in space as compared to the SM9 dataset, demonstrated by its high
standard deviation values (Figure 5c). However, we also see the coverage of SM1 was not
complete for the entire catchment. This is because of the limited coverage of this product
due to its dependence on LST data, which is influenced by cloud cover.
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Figure 5. Spatial variation in a dry-down event in bye catchment from April 4, 2018, to April 9, 2018,
with soil moisture SMAP 9 km (SM9, (a1,a2,a3)), soil moisture SMAP 1 km (SM1, (b1,b2,b3)), and
(c) time series of dry-down event at the same period from GPM IMERG (black bar) and SM9 (blue)
and SM1 (red). The error bars indicate standard deviation of SM variation in the catchment.
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4.2. Performances of Deterministic Hydrological SWAT Model in Simulating Streamflow

The statistical metrics for the SWAT model are presented in Table 4, and optimized pa-
rameter sets of the SWAT model for each basin are provided in Supplementary Table S1. The
model performances for high flow (Qnor) and average flow (Qsqr) were satisfactory, with
median KGE values of calibration/validation of 0.617/0.607 for high flow and 0.702/0.695
for average flow (Table 4). The SWAT streamflow simulations are robust across the catch-
ments (all KGE values were greater than 0.5), except for aho and slu catchments. It is
likely that the rainfall patterns in these basins could be affected by topography [43,79].
The streamflow simulation for low flow (Qinv) was relatively poor, with a median KGE
of −0.263 and −0.086 for the calibration and validation periods, respectively. This poor
performance for low flow has also been observed in previous studies [38].

Table 4. Statistical metrics for calibration and validation period with deterministic SWAT model.
KGEnor, KGEsqr, and KGEinv indicate performances with Qnor (more weight on high flow), Qsqr

(more weight on average flow), and Qinv (more weight on low flow), respectively.

Station
Name

Calibration (2013–16) Validation (2017–19)

KGE_nor KGE_sqr KGE_inv KGE_nor KGE_sqr KGE_inv

gvo 0.623 0.703 0.413 0.670 0.686 0.674
aho 0.486 0.613 −0.984 0.417 0.462 −0.382
bye 0.786 0.864 0.176 0.575 0.796 0.259
slu 0.334 0.598 0.419 0.303 0.410 −0.089
chu 0.611 0.312 −2.708 0.694 0.470 −1.774
gso 0.757 0.718 −2.727 0.639 0.704 −0.977
nkh 0.542 0.700 −0.701 0.513 0.788 −0.082
xla 0.698 0.786 0.479 0.681 0.750 0.650

median 0.617 0.702 −0.263 0.607 0.695 −0.086

4.3. Temporal Variation for Open Loop, EnKF-SM9, and EnKF-SM1

Generally, soil moisture profiles across sub-basins in each catchment are mostly sim-
ilar. For an illustrated purpose, we present here profiles of a sub-basin at xla river basin
(>6000 km2) in terms of precipitation, estimated SM from the open loop, EnKF-SM9, and
EnKF-SM1 models for topsoil layer (0–50 mm), during the year of 2019 (Figure 6). It is
interesting that variation in topsoil SM does not exhibit strong correlation with variation in
precipitation. This observation is different from another study in the tropical regions [16].
The relationship between topsoil SM and precipitation is even weaker when we examine it
at smaller catchments (data not shown). Looking at details for typical 10-day periods in
January 2019 (box A) and September 2019 (box B), we found the impacts of the DA frame-
work on the SM simulations. Specifically, the SM simulations with the DA had drier down
or more fluctuation as compared to simulations without DA, according to the variation
in observed SM from SM9 and SM1. With respect to temporal simulated streamflow, the
OL-based SWAT model produced results quite similar to the simulated time series from
the deterministic SWAT model (Figure 7a). On the other hand, the simulated streamflow
from EnKF-SM9-SWAT and EnKF-SM1-SWAT are slightly better, with higher KGEsqr values
(Figure 7a). When we examined the error density between the observed and simulated
streamflow from different simulation scenarios, the error density from EnKF-SM1-SWAT
had the peak closest to the zero-error vertical line (Figure 7b).
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Figure 6. Profile of a sub-basin of xla river basin during the year of 2019 for temporal variation in (a) areal
precipitation; (b) soil moisture at the topsoil layer (0–5 mm) of OL, EnKF-SM9 model and observed SM9;
(c) soil moisture at the topsoil layer (0–50 mm) of OL, EnKF-SM1 model and observed SM1; (d) zoom of
the last ten days in January 2019 (box A); (e) zoom of the last ten days in September 2019 (box B).
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Figure 7. (a) Streamflow hydrograph comparison, and (b) error density between observed and
simulated streamflow from different hydrological SWAT simulation scenarios during the year of 2019
at xla river basin. The black dash line in (b) is the zero error vertical line. The inlet panel in (b) zooms
in the peak error density from different simulation scenarios.

4.4. Statistical Performances for Data Assimilation with SM9 and SM1

Figure 8 represents boxplots of streamflow simulations from the OL, EnKF-SM9,
EnKF-SM1 models in two cases- all catchments (n = 8) and catchments >500 km2 (n = 6).
The defined error values for each basin for EnKF-SM9 and EnKF-SM1 are provided in
Supplementary Tables S2 and S3, respectively. Overall, in the high flow assessment met-
ric (Figure 8a), the EnKF-SM1 model was slightly better than the OL model at either
consideration of all catchments or catchments greater than 500 km2. Meanwhile, the EnKF-
SM9 model was only better than the OL model in the case of catchments greater than
500 km2. We interpret this result as evidence that the high-spatial SM1 is robust in all
types of catchments, while the SM9 is too-coarse for small watersheds. Furthermore, the
assessment of average flow provided the same conclusion (Figure 8b). This finding is
similar to Abbaszadeh et al., 2020 [13], as it implies the importance of spatial resolution
over temporal resolution, but is in contrast to the work of Azimi et al., 2020 [36].

On the other hand, low flow assessment (Figure 8c) revealed that the EnKF-SM9
model had a higher median KGE score than the OL-model, either at all catchments or
at catchments >500 km2. This may be because the OL model considers forecast error by
perturbing rainfall forcing only, while the EnKF-SM9 model considers both forecast error
and model error by perturbing rainfall forcing and soil moisture. The soil water content
changes are more sensitive with changes in low flow in dry conditions than high flow in
wet conditions or average flow.
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Figure 8. Performance metrics in streamflow simulation in (a) normal-, (b) square root-, and
(c) inverse-time series for open loop (OL)-, EnKF-SM9-, and EnKF-SM1-based SWAT model during
the period 2017–2019. With respect to all catchments, total simulated catchments are 8. With respect
to catchments having an area greater than 500 km2, total simulated catchments are 6.

4.5. Assessment of Factors Impact on DA Performances

We examined the relationship between the Efficiency index (E f f ) with the available
SM for two DA models, EnKF-SM9 and EnKF-SM1 (Figure 9). From all flow types (high,
average, and low flow), the EnKF-SM1 models exhibited higher Eff scores than the EnKF-
SM9 models. When we excluded small catchments (<500 km2), higher Eff scores were
observed for EnKF-SM models. Since SM1 has a shorter data record, our results suggest
that spatial information plays a more important role than temporal information. We also
found that the SM1 available day has a significant positive correlation with E f f scores,
while this relationship for available SM9 is not significant (see Figure A2), suggesting a
potential approach for improving the high-spatial SM-based DA model that increases its
temporal information.

The relationships between the E f f and normalized different vegetation index (NDVI)
for average flow, high flow, and low flow are given in Figure 10a–c. Catchments with dense
vegetation (higher NDVI values) seem to have lower E f f scores, reflecting the limitations
of satellite-based SM to accurately capture soil water content at these dense vegetated
catchments. This result is consistent with that of Azimi et al., 2020 [36]. However, our results
provide new insight. When we compared the two SM-based models, the EnKF-SM1 seems to
have less dependence with NDVI, demonstrated by its E f f not being significantly reduced
when NDVI values were high, as compared to the departure of E f f of the EnKF-SM9 model.
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(a–c) and catchments > 500 km2 (d–f). Points above zero-dash line indicate an improvement in
streamflow simulation after implementing the data assimilation framework as compared with the
OL-based model simulation.
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5. Conclusions and Further Study

As satellite-based remote sensing technology continues to advance, operational appli-
cations of satellite-based soil moisture products are becoming more routine. These valuable
earth observations are proving to be a significant addition to several water resource man-
agement applications. However, there remain many unanswered questions regarding the
most effective approach for integrating these data, as well as how temporal resolution,
spatial resolution, and data record length affect their utility. The primary goal of this study
was to address some of these questions and examine the trade-offs between optimal spatial
vs optimal temporal resolution for two remotely sensed soil moisture (SM) products in a
hydrologic data assimilation framework. Two remotely sensed SM datasets—downscaled
SMAP 1 km (SM1) and SMAP 9 km (SM9)—were assimilated in the hydrological model (Soil
and Water Assessment Tool, SWAT) using the Ensemble Kalman Filter (EnKF) algorithm.
The effect of basin size was assessed by comparing simulated streamflow performance in
eight catchments ranging in size from 267 km2 to 6430 km2 across tropical Vietnam.
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Model fidelity was influenced by both temporal and spatial resolution, however, the
DA-based models were slightly better than the open-loop models in three aspects of flow
assessment with KGE metrics (low, average, and high flow). In addition, the EnKF-SM1
model was more pronounced, especially for small catchments. This indicates that the im-
provement in the streamflow simulation due to assimilated soil moisture is more significant
in catchments where downscaled SMAP 1 km has fewer missing observations. We also
found that the vegetation effects on soil moisture are less significant in the EnKF-SM1
models compared to EnKF-SM9 models, further demonstrating the reduced uncertainty in
streamflow from applying the finer spatial resolution soil moisture product. To this end,
this study demonstrates the potential benefits of higher spatial resolution remotely sensed
SM for improving hydrologic applications.

Overall, the results of this study provide useful information for developers of satellite-
based SM product for improving their soil moisture retrieval algorithms at a global scale,
especially in tropical regions. In addition, we conclude that optimal strategies for the
integration of satellite-based soil moisture in hydrologic models must carefully consider
basin size, climate, land cover, and, perhaps most importantly, the spatial and temporal
resolution of the satellite-based products.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14071607/s1. Figure S1. Publications (peer-reviewed articles) per
year related to topic of soil moisture data assimilation in hydrological model. Figure S2. The most
currently studies on soil moisture data assimilation in hydrology using remotely sensed soil moisture
as observed soil moisture in updating the model state variable. Table S1. Description of optimized
SWAT model parameters for each basin. Table S2. Description of best guess error defined values
for EnKF-SM9 model for each basin. Table S3. Description of best guess error defined values for
EnKF-SM1 model for each basin.
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Appendix A

Table A1. Characteristics of climatic conditions and catchment attributes in eight studied catchments. The precipitation and potential evapotranspiration in each
catchment are estimated from the calibrated SWAT model for the entire area of that catchment.

Types Data Description
Spatial

Resolution
gvo aho bye slu chu gso nkh xla

Benhai River Trakhuc River Namnua River Luy River LucNam River Krong Ana River Hieu River Ma River

Area (km2) 267 383 638 964 2090 3100 4024 6430
Dry Season/Wet Season I–VIII/IX–XII I–VIII/IX–XII XI–IV/V–X XI–IV/V–X XI–IV/V–X XII–IV/V–XI XII–V/VI–XI XI–IV/V–X

Precipitation
(unit in mm) IMERG Final v6 ~10 km 1911 2165 1644 1577 1807 1798 1755 1629

Potential Evapotranspiration
(unit in mm)

Hargreaves method with
data from CFSR vs2 ~25 km 1024 849 1051 788 1258 1223 1018 1402

Digital Elevation (DEM)
(unit in m)

HydroSHEDs 90 m
Min: 10 Min: 19 Min: 470 Min: 25 Min: 7 Min: 407 Min: 33 Min: 282

Max: 1213 Max: 1008 Max: 1736 Max: 1747 Max: 1003 Max: 2407 Max: 2416 Max: 2164
Mean: 215 Mean: 366 Mean: 945 Mean: 451 Mean: 248 Mean: 658 Mean: 396 Mean: 958

Land use * MODIS12Q1 500 m

FRSE (50.36) FRSE (67.10) FRSE (32.07) FRSE (46.15) SHRB (70.67) CRGR (41.10) SHRB (45.94) SHRB (75.97)
SHRB (47.18) SHRB (31.31) SHRB (63.75) CRGR (18.02) FRSE (27.84) SHRB (30.04) FRSE (42.85) FRSE (18.44)

SHRB (16.97) FRSE (26.51)
FRSD (11.5)

Soil ** HWSD 1 km
Ao (100) Ao (98.67) Ao (100) Ao (77.26) Ao (92.95) Fr (39.62) Ao (98.85) Ao (100)

Lc (18.64) Af (5.58) Af (30.21)
Ao (30.09)

Sub-basins,
HRUs

10% soil, 10% land use,
10% slope

5 sub-basins 9 sub-basins 9 sub-basins 17 sub-basins 35 sub-basins 59 sub-basins 91 sub-basins 125 sub-basins
24 HRUs 50 HRUs 60 HRUs 116 HRUs 186 HRUs 314 HRUs 590 HRUs 579 HRUs

Note: * Full name for land use- ‘FRSE’ Evergreen forests, ’FRSD’ Deciduous forests, ’SHRB’ shrubland, ‘CRGR’ cropland. Only major land use (>5% of total catchment area) or the first
four major land use are listed. Values in blanket are percentage value over total catchment area. ** Full name for soil data- ‘Ao’ Orthic Acrisols, ’Af’ Ferric Acrisols, ‘Fr’ Rhodic Ferralsols,
‘Lc’ Chromic Luvisol. Only major soil (>5% of total catchment area) or the first four major soil are listed. Values in blanket are percentage value over total catchment area.
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Table A2. Name, description, range and control processes of SWAT parameters. “r_”, “v_”, and “a_”
refer to modify the default value by making a relative change to the default value, replacing the
default value by the specific value and adding a specific value, respectively.

Parameter Name Units Description Default Range Process

R_CN2.mgt none SCS runoff curve number HRU specific −0.25, +0.25 Surface Runoff
V_SURLAG.bsn none Surface runoff lag time 4 0.05, +24 Surface Runoff
R_HRU_SLP.hru m/m Average slope steepness 0.217 −0.25, +0.25 Surface Runoff

V_GW_REVAP.gw none Groundwater “revap” coefficient 0.02 0.02, +2 Evapotranspiration
V_ESCO.hru none Soil evaporation compensation factor 0.95 0, +1 Evapotranspiration

V_CH_N2.rte none Manning’s “n” value for the
main channel 0.014 0, +0.3 Channel

V_CH_K2.rte mm/hour Effective hydraulic conductivity in main
channel alluvium 0 0, +500 Channel

R_SOL_AWC(..).sol mm H2O/
mm soil Available water capacity of the soil layer 0.1112 −0.25, +0.25 Soil

R_SOL_K(..).sol mm/hour Saturated hydraulic conductivity 7.113 −0.25, +0.25 Soil
V_ALPHA_BF.gw days Base flow alpha factor 0.048 0, +1 Groundwater
V_GW_DELAY.gw days Groundwater delay 31 0, +500 Groundwater

V_GWQMN.gw mm H2O Threshold depth of water in the shallow
aquifer required for return flow to occur 1000 0, +5000 Groundwater

V_RCHRG_DP.gw None Deep aquifer percolation fraction 0.05 0, +1 Groundwater

Table A3. Name, description and the range of perturbation defined errors of the EnKF data assimila-
tion framework.

Perturbation Variables Description Range

Observed soil moisture Observed soil moisture coefficient 50–200
Precipitation Precipitation error coefficient 0.1–1.0

Field capacity for soil layer 1 Field capacity for soil layer 1 coefficient 0.1-0.3
Field capacity for soil layer 2 Field capacity for soil layer 2 coefficient 0.05–0.2
Field capacity for soil layer 3 Field capacity for soil layer 3 coefficient 0.01–0.1

Soil moisture layer 1 Soil moisture error standard deviation for layer 1 0.01–0.1
Soil moisture layer 2 Soil moisture error standard deviation for layer 2 0.01–0.1
Soil moisture layer 3 Soil moisture error standard deviation for layer 3 0.01–0.1

Curve number Curve number error standard 1–5
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Figure A1. Available soil moisture (grey rectangular) for SMAP 9 km (SM9) and downscaled SMAP 
1 km (SM1) at each catchment during 2017–2019. The y-axis label is written as hydrological station 
Figure A1. Available soil moisture (grey rectangular) for SMAP 9 km (SM9) and downscaled SMAP
1 km (SM1) at each catchment during 2017–2019. The y-axis label is written as hydrological station
name and soil moisture products. An available soil moisture day is counted as at least 30% of basin
area has soil moisture pixels.



Remote Sens. 2022, 14, 1607 22 of 25

Remote Sens. 2022, 14, x FOR PEER REVIEW 23 of 26 
 

 

name and soil moisture products. An available soil moisture day is counted as at least 30% of basin 
area has soil moisture pixels. 

 
Figure A2. Relationship between the efficiency index and available soil moisture with the 𝑄  
time series. 

References 
1. Ahmad, S.; Kalra, A.; Stephen, H. Estimating soil moisture using remote sensing data: A machine learning approach. Adv. Water 

Resour. 2010, 33, 69–80. https://doi.org/10.1016/j.advwatres.2009.10.008. 
2. Western, A.W.; Grayson, R.B.; Blöschl, G. Scaling of Soil Moisture: A Hydrologic Perspective. Annu. Rev. Earth Planet. Sci. 2002, 

30, 149–180. https://doi.org/10.1146/annurev.earth.30.091201.140434. 
3. Grayson, R.B.; Western, A.W.; Chiew, F.H.S.; Bloschl, G. Preferred states in spatial soil moisture patterns: Local and nonlocal 

controls. Water Resour. Res. 1997, 33, 2897–2908. https://doi.org/10.1029/97wr02174. 
4. Sheikh, V.; Visser, S.; Stroosnijder, L. A simple model to predict soil moisture: Bridging Event and Continuous Hydrological 

(BEACH) modelling. Environ. Model. Softw. 2009, 24, 542–556. https://doi.org/10.1016/j.envsoft.2008.10.005. 
5. Kim, H.; Parinussa, R.; Konings, A.G.; Wagner, W.; Cosh, M.H.; Lakshmi, V.; Zohaib, M.; Choi, M. Global-scale assessment and 

combination of smap with ascat (active) and amsr2 (passive) soil moisture products. Remote Sens. Environ. 2018, 204, 260–275. 
6. Kim, S.; Zhang, R.; Pham, H.; Sharma, A. A Review of Satellite-Derived Soil Moisture and Its Usage for Flood Estimation. Remote 

Sens. Earth Syst. Sci. 2019, 2, 225–246. https://doi.org/10.1007/s41976-019-00025-7. 
7. Dorigo, W.; Himmelbauer, I.; Aberer, D.; Schremmer, L.; Petrakovic, I.; Zappa, L.; Preimesberger, W.; Xaver, A.; Annor, F.; Ardö, 

J.; et al. The International Soil Moisture Network: Serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. 2021, 
25, 5749–5804. https://doi.org/10.5194/hess-25-5749-2021. 

8. Bartalis, Z.; Wagner, W.; Naeimi, V.; Hasenauer, S.; Scipal, K.; Bonekamp, H.; Figa, J.; Anderson, C. Initial soil moisture retrievals 
from the METOP-A Advanced Scatterometer (ASCAT). Geophys. Res. Lett. 2007, 34, 34. https://doi.org/10.1029/2007gl031088. 

9. Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture 
and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. https://doi.org/10.1109/36.942551. 

10. Kawanishi, T.; Sezai, T.; Ito, Y.; Imaoka, K.; Takeshima, T.; Ishido, Y.; Shibata, A.; Miura, M.; Inahata, H.; Spencer, R. The ad-
vanced microwave scanning radiometer for the earth observing system (AMSR-E), NASDA’s contribution to the EOS for global 
energy and water cycle studies. IEEE Trans. Geosci. Remote Sens. 2003, 41, 184–194. https://doi.org/10.1109/tgrs.2002.808331. 

11. Imaoka, K.; Kachi, M.; Fujii, H.; Murakami, H.; Hori, M.; Ono, A.; Igarashi, T.; Nakagawa, K.; Oki, T.; Honda, Y.; et al. Global 
Change Observation Mission (GCOM) for Monitoring Carbon, Water Cycles, and Climate Change. Proc. IEEE 2010, 98, 717–734. 

12. Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; 
Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. 
https://doi.org/10.1109/JPROC.2010.2043918. 

13. Abbaszadeh, P.; Gavahi, K.; Moradkhani, H. Multivariate remotely sensed and in-situ data assimilation for enhancing commu-
nity WRF-Hydro model forecasting. Adv. Water Resour. 2020, 145, 103721. https://doi.org/10.1016/j.advwatres.2020.103721. 

14. Patil, A.; Ramsankaran, R. Improved streamflow simulations by coupling soil moisture analytical relationship in EnKF based 
hydrological data assimilation framework. Adv. Water Resour. 2018, 121, 173–188. https://doi.org/10.1016/j.advwa-
tres.2018.08.010. 

15. Behera, S.S.; Nikam, B.R.; Babel, M.S.; Garg, V.; Aggarwal, S.P. The Assimilation of Remote Sensing-Derived Soil Moisture Data 
into a Hydrological Model for the Mahanadi Basin, India. J. Indian Soc. Remote Sens. 2019, 47, 1357–1374. 
https://doi.org/10.1007/s12524-019-00954-2. 

16. Patil, A.; Ramsankaran, R. Improving streamflow simulations and forecasting performance of SWAT model by assimilating 
remotely sensed soil moisture observations. J. Hydrol. 2017, 555, 683–696. https://doi.org/10.1016/j.jhydrol.2017.10.058. 

Figure A2. Relationship between the efficiency index and available soil moisture with the Qnor

time series.

References
1. Ahmad, S.; Kalra, A.; Stephen, H. Estimating soil moisture using remote sensing data: A machine learning approach. Adv. Water

Resour. 2010, 33, 69–80. [CrossRef]
2. Western, A.W.; Grayson, R.B.; Blöschl, G. Scaling of Soil Moisture: A Hydrologic Perspective. Annu. Rev. Earth Planet. Sci. 2002,

30, 149–180. [CrossRef]
3. Grayson, R.B.; Western, A.W.; Chiew, F.H.S.; Bloschl, G. Preferred states in spatial soil moisture patterns: Local and nonlocal

controls. Water Resour. Res. 1997, 33, 2897–2908. [CrossRef]
4. Sheikh, V.; Visser, S.; Stroosnijder, L. A simple model to predict soil moisture: Bridging Event and Continuous Hydrological

(BEACH) modelling. Environ. Model. Softw. 2009, 24, 542–556. [CrossRef]
5. Kim, H.; Parinussa, R.; Konings, A.G.; Wagner, W.; Cosh, M.H.; Lakshmi, V.; Zohaib, M.; Choi, M. Global-scale assessment and

combination of smap with ascat (active) and amsr2 (passive) soil moisture products. Remote Sens. Environ. 2018, 204, 260–275.
6. Kim, S.; Zhang, R.; Pham, H.; Sharma, A. A Review of Satellite-Derived Soil Moisture and Its Usage for Flood Estimation. Remote

Sens. Earth Syst. Sci. 2019, 2, 225–246. [CrossRef]
7. Dorigo, W.; Himmelbauer, I.; Aberer, D.; Schremmer, L.; Petrakovic, I.; Zappa, L.; Preimesberger, W.; Xaver, A.; Annor, F.; Ardö, J.; et al.

The International Soil Moisture Network: Serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. 2021, 25,
5749–5804. [CrossRef]

8. Bartalis, Z.; Wagner, W.; Naeimi, V.; Hasenauer, S.; Scipal, K.; Bonekamp, H.; Figa, J.; Anderson, C. Initial soil moisture retrievals
from the METOP-A Advanced Scatterometer (ASCAT). Geophys. Res. Lett. 2007, 34, 34. [CrossRef]

9. Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture
and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [CrossRef]

10. Kawanishi, T.; Sezai, T.; Ito, Y.; Imaoka, K.; Takeshima, T.; Ishido, Y.; Shibata, A.; Miura, M.; Inahata, H.; Spencer, R. The advanced
microwave scanning radiometer for the earth observing system (AMSR-E), NASDA’s contribution to the EOS for global energy
and water cycle studies. IEEE Trans. Geosci. Remote Sens. 2003, 41, 184–194. [CrossRef]

11. Imaoka, K.; Kachi, M.; Fujii, H.; Murakami, H.; Hori, M.; Ono, A.; Igarashi, T.; Nakagawa, K.; Oki, T.; Honda, Y.; et al. Global
Change Observation Mission (GCOM) for Monitoring Carbon, Water Cycles, and Climate Change. Proc. IEEE 2010, 98, 717–734.

12. Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.;
Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [CrossRef]

13. Abbaszadeh, P.; Gavahi, K.; Moradkhani, H. Multivariate remotely sensed and in-situ data assimilation for enhancing community
WRF-Hydro model forecasting. Adv. Water Resour. 2020, 145, 103721. [CrossRef]

14. Patil, A.; Ramsankaran, R. Improved streamflow simulations by coupling soil moisture analytical relationship in EnKF based
hydrological data assimilation framework. Adv. Water Resour. 2018, 121, 173–188. [CrossRef]

15. Behera, S.S.; Nikam, B.R.; Babel, M.S.; Garg, V.; Aggarwal, S.P. The Assimilation of Remote Sensing-Derived Soil Moisture Data
into a Hydrological Model for the Mahanadi Basin, India. J. Indian Soc. Remote Sens. 2019, 47, 1357–1374. [CrossRef]

16. Patil, A.; Ramsankaran, R. Improving streamflow simulations and forecasting performance of SWAT model by assimilating
remotely sensed soil moisture observations. J. Hydrol. 2017, 555, 683–696. [CrossRef]

17. Sazib, N.; Bolten, J.; Mladenova, I. Exploring Spatiotemporal Relations between Soil Moisture, Precipitation, and Streamflow for a
Large Set of Watersheds Using Google Earth Engine. Water 2020, 12, 1371. [CrossRef]

18. Bolten, J.D.; Crow, W.; Zhan, X.; Jackson, T.J.; Reynolds, C.A. Evaluating the Utility of Remotely Sensed Soil Moisture Retrievals
for Operational Agricultural Drought Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 57–66. [CrossRef]

http://doi.org/10.1016/j.advwatres.2009.10.008
http://doi.org/10.1146/annurev.earth.30.091201.140434
http://doi.org/10.1029/97wr02174
http://doi.org/10.1016/j.envsoft.2008.10.005
http://doi.org/10.1007/s41976-019-00025-7
http://doi.org/10.5194/hess-25-5749-2021
http://doi.org/10.1029/2007gl031088
http://doi.org/10.1109/36.942551
http://doi.org/10.1109/tgrs.2002.808331
http://doi.org/10.1109/JPROC.2010.2043918
http://doi.org/10.1016/j.advwatres.2020.103721
http://doi.org/10.1016/j.advwatres.2018.08.010
http://doi.org/10.1007/s12524-019-00954-2
http://doi.org/10.1016/j.jhydrol.2017.10.058
http://doi.org/10.3390/w12051371
http://doi.org/10.1109/jstars.2009.2037163


Remote Sens. 2022, 14, 1607 23 of 25

19. Mladenova, I.E.; Bolten, J.D.; Crow, W.T.; Sazib, N.; Cosh, M.H.; Tucker, C.J.; Reynolds, C. Evaluating the Operational Application
of SMAP for Global Agricultural Drought Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3387–3397.
[CrossRef]

20. Laiolo, P.; Gabellani, S.; Campo, L.; Silvestro, F.; Delogu, F.; Rudari, R.; Pulvirenti, L.; Boni, G.; Fascetti, F.; Pierdicca, N.; et al.
Impact of different satellite soil moisture products on the predictions of a continuous distributed hydrological model. Int. J. Appl.
Earth Obs. Geoinf. 2016, 48, 131–145. [CrossRef]

21. Matgen, P.; Fenicia, F.; Heitz, S.; Plaza, D.; de Keyser, R.; Pauwels, V.R.; Wagner, W.; Savenije, H. Can ASCAT-derived soil wetness
indices reduce predictive uncertainty in well-gauged areas? A comparison with in situ observed soil moisture in an assimilation
application. Adv. Water Resour. 2012, 44, 49–65. [CrossRef]

22. Han, X.; Li, X.; Franssen, H.J.H.; Vereecken, H.; Montzka, C. Spatial horizontal correlation characteristics in the land data
assimilation of soil moisture. Hydrol. Earth Syst. Sci. 2012, 16, 1349–1363. [CrossRef]

23. Narayan, U.; Lakshmi, V. Characterizing subpixel variability of low resolution radiometer derived soil moisture using high
resolution radar data. Water Resour. Res. 2008, 44. [CrossRef]

24. Narayan, U.; Lakshmi, V.; Jackson, T. High-resolution change estimation of soil moisture using L-band radiometer and Radar
observations made during the SMEX02 experiments. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1545–1554. [CrossRef]

25. Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T.J.; Cosh, M.; Basara, J. Passive microwave soil moisture downscaling using
vegetation index and skin surface temperature. Vadose Zone J. 2013, 12, vzj2013.05.0089. [CrossRef]

26. Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T.J. Downscaling of SMAP Soil Moisture Using Land Surface Temperature and
Vegetation Data. Vadose Zone J. 2018, 17, 170198. [CrossRef]

27. Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T.J.; Liu, P.-W. Evaluation and validation of a high spatial resolution satellite soil
moisture product over the Continental United States. J. Hydrol. 2020, 588, 125043. [CrossRef]

28. Fang, B.; Lakshmi, V.; Jackson, T.J.; Bindlish, R.; Colliander, A. Passive/active microwave soil moisture change disaggregation
using SMAPVEX12 data. J. Hydrol. 2019, 574, 1085–1098. [CrossRef]

29. Busch, F.A.; Niemann, J.D.; Coleman, M. Evaluation of an empirical orthogonal function-based method to downscale soil moisture
patterns based on topographical attributes. Hydrol. Process. 2011, 26, 2696–2709. [CrossRef]

30. Ranney, K.J.; Niemann, J.D.; Lehman, B.M.; Green, T.R.; Jones, A.S. A method to downscale soil moisture to fine resolutions using
topographic, vegetation, and soil data. Adv. Water Resour. 2015, 76, 81–96. [CrossRef]

31. Yang, H.; Xiong, L.; Liu, D.; Cheng, L.; Chen, J. High spatial resolution simulation of profile soil moisture by assimilating
multi-source remote-sensed information into a distributed hydrological model. J. Hydrol. 2021, 597, 126311. [CrossRef]

32. Bai, J.; Cui, Q.; Zhang, W.; Meng, L. An Approach for Downscaling SMAP Soil Moisture by Combining Sentinel-1 SAR and
MODIS Data. Remote Sens. 2019, 11, 2736. [CrossRef]

33. Fang, B.; Lakshmi, V.; Cosh, M.; Liu, P.; Bindlish, R.; Jackson, T.J. A global 1-km downscaled SMAP soil moisture product based
on thermal inertia theory. Vadose Zone J. 2022, e20182. [CrossRef]

34. Li, X.; Zhou, Y.; Asrar, G.R.; Zhu, Z. Creating a seamless 1 km resolution daily land surface temperature dataset for urban and
surrounding areas in the conterminous United States. Remote Sens. Environ. 2018, 206, 84–97. [CrossRef]

35. Pham, H.; Kim, S.; Marshall, L.; Johnson, F. Using 3D robust smoothing to fill land surface temperature gaps at the continental
scale. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101879. [CrossRef]

36. Azimi, S.; Dariane, A.B.; Modanesi, S.; Bauer-Marschallinger, B.; Bindlish, R.; Wagner, W.; Massari, C. Assimilation of Sentinel 1
and SMAP—Based satellite soil moisture retrievals into SWAT hydrological model: The impact of satellite revisit time and
product spatial resolution on flood simulations in small basins. J. Hydrol. 2020, 581, 124367. [CrossRef]

37. Jadidoleslam, N.; Mantilla, R.; Krajewski, W.F. Data Assimilation of Satellite-Based Soil Moisture into a Distributed Hydrological
Model for Streamflow Predictions. Hydrology 2021, 8, 52. [CrossRef]

38. De Santis, D.; Biondi, D.; Crow, W.T.; Camici, S.; Modanesi, S.; Brocca, L.; Massari, C. Assimilation of Satellite Soil Moisture
Products for River Flow Prediction: An Extensive Experiment in Over 700 Catchments Throughout Europe. Water Resour. Res.
2021, 57, e2021WR029643. [CrossRef]

39. Kumagai, T.; Yoshifuji, N.; Tanaka, N.; Suzuki, M.; Kume, T. Comparison of soil moisture dynamics between a tropical rain forest
and a tropical seasonal forest in Southeast Asia: Impact of seasonal and year-to-year variations in rainfall. Water Resour. Res.
2009, 45. [CrossRef]

40. Fleischmann, A.S.; Al Bitar, A.; Oliveira, A.M.; Siqueira, V.A.; Colossi, B.R.; de Paiva, R.C.D.; Kerr, Y.; Ruhoff, A.; Fan, F.M.; Pontes,
P.R.M.; et al. Synergistic Calibration of a Hydrological Model Using Discharge and Remotely Sensed Soil Moisture in the Paraná
River Basin. Remote Sens. 2021, 13, 3256. [CrossRef]

41. Do, H.X.; Gudmundsson, L.; Leonard, M.; Westra, S. The Global Streamflow Indices and Metadata Archive (GSIM)—Part 1: The
production of a daily streamflow archive and metadata. Earth Syst. Sci. Data 2018, 10, 765–785. [CrossRef]

42. Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part i: Model
development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [CrossRef]

43. Le, M.-H.; Lakshmi, V.; Bolten, J.; Du Bui, D. Adequacy of Satellite-derived Precipitation Estimate for Hydrological Modeling in
Vietnam Basins. J. Hydrol. 2020, 586, 124820. [CrossRef]

44. Vu, M.T.; Raghavan, S.V.; Liong, S.-Y. Use of Regional Climate Models for Proxy Data over Transboundary Regions. J. Hydrol. Eng.
2016, 21, 05016010. [CrossRef]

http://doi.org/10.1109/jstars.2019.2923555
http://doi.org/10.1016/j.jag.2015.06.002
http://doi.org/10.1016/j.advwatres.2012.03.022
http://doi.org/10.5194/hess-16-1349-2012
http://doi.org/10.1029/2006wr005817
http://doi.org/10.1109/tgrs.2006.871199
http://doi.org/10.2136/vzj2013.05.0089
http://doi.org/10.2136/vzj2017.11.0198
http://doi.org/10.1016/j.jhydrol.2020.125043
http://doi.org/10.1016/j.jhydrol.2019.04.082
http://doi.org/10.1002/hyp.8363
http://doi.org/10.1016/j.advwatres.2014.12.003
http://doi.org/10.1016/j.jhydrol.2021.126311
http://doi.org/10.3390/rs11232736
http://doi.org/10.1002/vzj2.20182
http://doi.org/10.1016/j.rse.2017.12.010
http://doi.org/10.1016/j.jag.2019.05.012
http://doi.org/10.1016/j.jhydrol.2019.124367
http://doi.org/10.3390/hydrology8010052
http://doi.org/10.1029/2021wr029643
http://doi.org/10.1029/2008wr007307
http://doi.org/10.3390/rs13163256
http://doi.org/10.5194/essd-10-765-2018
http://doi.org/10.1111/j.1752-1688.1998.tb05961.x
http://doi.org/10.1016/j.jhydrol.2020.124820
http://doi.org/10.1061/(asce)he.1943-5584.0001342


Remote Sens. 2022, 14, 1607 24 of 25

45. Ha, L.T.; Bastiaanssen, W.G.M.; Van Griensven, A.; Van Dijk, A.I.J.M.; Senay, G.B. Calibration of Spatially Distributed Hydrological
Processes and Model Parameters in SWAT Using Remote Sensing Data and an Auto-Calibration Procedure: A Case Study in a
Vietnamese River Basin. Water 2018, 10, 212. [CrossRef]

46. Nguyen, L.B.; Do, V.Q. Accuracy of Integrated Multi-SatelliE Retrievals for GPM Satellite Rainfall Product over North Vietnam.
Pol. J. Environ. Stud. 2021, 30, 5657–5667. [CrossRef]

47. Tan, M.L.; Gassman, P.W.; Yang, X.; Haywood, J. A review of SWAT applications, performance and future needs for simulation of
hydro-climatic extremes. Adv. Water Resour. 2020, 143, 103662. [CrossRef]

48. Liu, Y.; Wang, W.; Liu, Y. Esa cci soil moisture assimilation in swat for improved hydrological simulation in upper huai river
basin. Adv. Meteorol. 2018, 2018, 7301314. [CrossRef]

49. Evensen, G. The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dyn. 2003, 53, 343–367.
[CrossRef]

50. Lü, H.; Crow, W.T.; Zhu, Y.; Yu, Z.; Sun, J. The Impact of Assumed Error Variances on Surface Soil Moisture and Snow Depth
Hydrologic Data Assimilation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5116–5129. [CrossRef]

51. Baguis, P.; Roulin, E. Soil Moisture Data Assimilation in a Hydrological Model: A Case Study in Belgium Using Large-Scale
Satellite Data. Remote Sens. 2017, 9, 820. [CrossRef]

52. Lü, H.; Crow, W.T.; Zhu, Y.; Ouyang, F.; Su, J. Improving Streamflow Prediction Using Remotely-Sensed Soil Moisture and Snow
Depth. Remote Sens. 2016, 8, 503. [CrossRef]

53. Loizu, J.; Massari, C.; Álvarez-Mozos, J.; Tarpanelli, A.; Brocca, L.; Casalí, J. On the assimilation set-up of ASCAT soil moisture
data for improving streamflow catchment simulation. Adv. Water Resour. 2018, 111, 86–104. [CrossRef]

54. Do, H.X.; Le, M.H.; Pham, H.T.; Le, T.H.; Nguyen, B.Q. Identifying hydrologic reference stations to understand changes in water
resources across vietnam—A data-driven approach. Vietnam. J. Earth Sci. 2022, 44, 145–165.

55. Nguyen, D.N.; Nguyen, T.H. Climate and Climate Resources in Vietnam; Agricultural Publishing House: Hanoi, Vietnam, 2004. (In
Vietnamese)

56. Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global
precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [CrossRef]

57. Le, H.M.; Sutton, J.R.P.; Du Bui, D.; Bolten, J.D.; Lakshmi, V. Comparison and Bias Correction of TMPA Precipitation Products
over the Lower Part of Red–Thai Binh River Basin of Vietnam. Remote Sens. 2018, 10, 1582. [CrossRef]

58. Hashemi, H.; Nordin, M.; Lakshmi, V.; Huffman, G.; Knight, R. Bias Correction of Long-Term Satellite Monthly Precipitation
Product (TRMM 3B43) over the Conterminous United States. J. Hydrometeorol. 2017, 18, 2491–2509. [CrossRef]

59. Mondal, A.; Lakshmi, V.; Hashemi, H. Intercomparison of trend analysis of Multisatellite Monthly Precipitation Products and
Gauge Measurements for River Basins of India. J. Hydrol. 2018, 565, 779–790. [CrossRef]

60. Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.; Iredell, M.; et al. The NCEP
Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [CrossRef]

61. Dandridge, C.; Fang, B.; Lakshmi, V. Downscaling of SMAP Soil Moisture in the Lower Mekong River Basin. Water 2019, 12, 56.
[CrossRef]

62. Lakshmi, V.; Fayne, J.; Bolten, J. A comparative study of available water in the major river basins of the world. J. Hydrol. 2018, 567,
510–532. [CrossRef]

63. Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T.J. AMSR2 Soil Moisture Downscaling Using Temperature and Vegetation Data.
Remote Sens. 2018, 10, 1575. [CrossRef]

64. Fang, B.; Kansara, P.; Dandridge, C.; Lakshmi, V. Drought monitoring using high spatial resolution soil moisture data over
Australia in 2015–2019. J. Hydrol. 2021, 594, 125960. [CrossRef]

65. Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas
Water Resources Institute: College Station, TX, USA, 2011.

66. Thiessen, A.H. Precipitation averages for large areas. Mon. Weather. Rev. 1911, 39, 1082–1089.
67. Lehner, B.; Verdin, K.; Jarvis, A. New Global Hydrography Derived from Spaceborne Elevation Data. Eos Trans. Am. Geophys.

Union 2008, 89, 93–94. [CrossRef]
68. Lehner, B. Derivation of Watershed Boundaries for Grdc Gauging Stations based on the Hydrosheds Drainage Network; Grdc Report

Series-Report 41; Federal Institute of Hydrology (BfG): Koblenz, Germany, 2012.
69. Friedl, M.; Sulla-Menashe, D. Mcd12q1 Modis/Terra+Aqua Land Cover Type Yearly l3 Global 500 m Sin Grid v006 [Data Set]; NASA

EOSDIS Land Processes DAAC: Washington, DC, USA, 2019.
70. Nachtergaele, F.; Velthuizen, H.V.; Verelst, L. Harmonized World Soil Database; FAO: Rome, Italy, 2009.
71. Kansara, P.; Lakshmi, V. Estimation of land-cover linkage to trends in hydrological variables of river basins in the Indian

sub-continent using satellite observation and model outputs. J. Hydrol. 2021, 603, 126997. [CrossRef]
72. Dile, Y.T.; Daggupati, P.; George, C.; Srinivasan, R.; Arnold, J. Introducing a new open source GIS user interface for the SWAT

model. Environ. Model. Softw. 2016, 85, 129–138. [CrossRef]
73. Abbaspour, K.C. Swat-cup 2012: SWAT Calibration and Uncertainty Program—A User Manual. 2013. Available online:

https://eng.ucmerced.edu/snsjho/files/San_Joaquin/Model_Work/SWAT_MercedRiver/SWATCUP/Usermanual_Swat_
Cup_2012.pdf (accessed on 28 January 2022).

http://doi.org/10.3390/w10020212
http://doi.org/10.15244/pjoes/137331
http://doi.org/10.1016/j.advwatres.2020.103662
http://doi.org/10.1155/2018/7301314
http://doi.org/10.1007/s10236-003-0036-9
http://doi.org/10.1109/jstars.2015.2487740
http://doi.org/10.3390/rs9080820
http://doi.org/10.3390/rs8060503
http://doi.org/10.1016/j.advwatres.2017.10.034
http://doi.org/10.1175/bams-d-13-00164.1
http://doi.org/10.3390/rs10101582
http://doi.org/10.1175/jhm-d-17-0025.1
http://doi.org/10.1016/j.jhydrol.2018.08.083
http://doi.org/10.1175/jcli-d-12-00823.1
http://doi.org/10.3390/w12010056
http://doi.org/10.1016/j.jhydrol.2018.10.038
http://doi.org/10.3390/rs10101575
http://doi.org/10.1016/j.jhydrol.2021.125960
http://doi.org/10.1029/2008eo100001
http://doi.org/10.1016/j.jhydrol.2021.126997
http://doi.org/10.1016/j.envsoft.2016.08.004
https://eng.ucmerced.edu/snsjho/files/San_Joaquin/Model_Work/SWAT_MercedRiver/SWATCUP/Usermanual_Swat_Cup_2012.pdf
https://eng.ucmerced.edu/snsjho/files/San_Joaquin/Model_Work/SWAT_MercedRiver/SWATCUP/Usermanual_Swat_Cup_2012.pdf


Remote Sens. 2022, 14, 1607 25 of 25

74. Lievens, H.; Tomer, S.; Al Bitar, A.; De Lannoy, G.; Drusch, M.; Dumedah, G.; Franssen, H.-J.H.; Kerr, Y.; Martens, B.; Pan, M.; et al.
SMOS soil moisture assimilation for improved hydrologic simulation in the Murray Darling Basin, Australia. Remote Sens.
Environ. 2015, 168, 146–162. [CrossRef]

75. Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios.
J. Hydrol. 2012, 424–425, 264–277. [CrossRef]

76. Massari, C.; Brocca, L.; Tarpanelli, A.; Moramarco, T. Data Assimilation of Satellite Soil Moisture into Rainfall-Runoff Modelling:
A Complex Recipe? Remote Sens. 2015, 7, 11403–11433. [CrossRef]

77. Santos, L.; Thirel, G.; Perrin, C. Pitfalls in using log-transformed flows within the KGE criterion. Hydrol. Earth Syst. Sci. 2018, 22,
4583–4591. [CrossRef]

78. O’Neill, P.E.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R.; Chaubell, J. Smap Enhanced l3 Radiometer Global Daily 9 Kzm Ease-Grid
Soil Moisture, Version 4; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2020.

79. Trinh-Tuan, L.; Matsumoto, J.; Ngo-Duc, T.; Nodzu, M.I.; Inoue, T. Evaluation of satellite precipitation products over Central
Vietnam. Prog. Earth Planet. Sci. 2019, 6, 54. [CrossRef]

http://doi.org/10.1016/j.rse.2015.06.025
http://doi.org/10.1016/j.jhydrol.2012.01.011
http://doi.org/10.3390/rs70911403
http://doi.org/10.5194/hess-22-4583-2018
http://doi.org/10.1186/s40645-019-0297-7

	Introduction 
	Materials and Methods 
	Catchment Sites and Its Streamflow Observations 
	Climatic Datasets 
	GPM IMERG Precipitation 
	NCEP CFSR V2 Air Temperature 

	Remotely Sensed Soil Moisture Datasets 
	Soil Moisture Active Passive 
	Downscaled Soil Moisture Active Passive 


	Methodology 
	Principle of the Hydrological SWAT Model in Streamflow Simulation 
	Setup the Hydrological SWAT Model 
	Data Assimilation—Ensemble Kalman Filter (EnKF) 
	Bias Correction of Observed SM and Ensembles Generation 
	EnKF Algorithm 

	Streamflow Performance Metrics 

	Results and Discussion 
	Characteristics of Soil Moisture SMAP Products 
	Performances of Deterministic Hydrological SWAT Model in Simulating Streamflow 
	Temporal Variation for Open Loop, EnKF-SM9, and EnKF-SM1 
	Statistical Performances for Data Assimilation with SM9 and SM1 
	Assessment of Factors Impact on DA Performances 

	Conclusions and Further Study 
	Appendix A
	References

