54 research outputs found

    High-Level Design Space and Flexibility Exploration for Adaptive, Energy-Efficient WCDMA Channel Estimation Architectures

    Get PDF
    Due to the fast changing wireless communication standards coupled with strict performance constraints, the demand for flexible yet high-performance architectures is increasing. To tackle the flexibility requirement, software-defined radio (SDR) is emerging as an obvious solution, where the underlying hardware implementation is tuned via software layers to the varied standards depending on power-performance and quality requirements leading to adaptable, cognitive radio. In this paper, we conduct a case study for representatives of two complexity classes of WCDMA channel estimation algorithms and explore the effect of flexibility on energy efficiency using different implementation options. Furthermore, we propose new design guidelines for both highly specialized architectures and highly flexible architectures using high-level synthesis, to enable the required performance and flexibility to support multiple applications. Our experiments with various design points show that the resulting architectures meet the performance constraints of WCDMA and a wide range of options are offered for tuning such architectures depending on power/performance/area constraints of SDR

    Microarchitectural techniques to reduce interconnect power in clustered processors

    Get PDF
    Journal ArticleThe paper presents a preliminary evaluation of novel techniques that address a growing problem - power dissipation in on-chip interconnects. Recent studies have shown that around 50% of the dynamic power consumption in modern processors is within on-chip interconnects. The contribution of interconnect power to total chip power is expected to be higher in future communication-bound billion-transistor architectures. In this paper, we propose the design of a heterogeneous interconnect, where some wires are optimized for low latency and others are optimized for low power. We show that a large fraction of on-chip communications are latency insensitive. Effecting these non-critical transfers on low-power long-latency interconnects can result in significant power savings without unduly affecting performance. Two primary techniques are evaluated in this paper: (i) a dynamic critical path predictor that identifies results that are not urgently consumed, and (ii) an address prediction mechanism that requires addresses to be transferred off the critical path for verification purposes. Our results demonstrate that 49% of all interconnect transfers can be effected on power-efficient wires, while incurring a performance penalty of only 2.5%

    Low-cost Guaranteed-Throughput dual-ring communication infrastructure for heterogeneous MPSoCs

    Get PDF
    Connection-oriented Guaranteed-Throughput (GT) mesh-based Networks on Chip (NoCs) have been proposed as a replacement for buses in real-time stream processing systems but are currently rarely used as hardware cost tends to be higher than conventional interconnects. Recently an interconnect with a ring topology was introduced as a low-cost alternative for use in medium scale homogeneous Multiple Processor System on Chip (MPSoC) designs. Cost-effective integration of stream processing accelerators would require an extension of this ring interconnect. We present a dual-ring communication infrastructure for heterogeneous MPSoC designs. Data and credits are transferred between tiles using their separate, oppositely directed, rings. The minimum throughput is determined by analysis of a Cyclo-Static Data Flow (CSDF) model for a system with communication between accelerators and processors. The performance benefits and costs are evaluated by integration of our dual ring and an accelerator in a 16 core MPSoC which is mapped on a Virtex6 FPGA. On this MPSoC a real-time PAL video decoder is executed. A performance gain of a factor 3.6 was obtained at an increase in hardware cost of only 8.5%

    Microarchitectural wire management for performance and power in partitioned architectures

    Get PDF
    Journal ArticleFuture high-performance billion-transistor processors are likely to employ partitioned architectures to achieve high clock speeds, high parallelism, low design complexity, and low power. In such architectures, inter-partition communication over global wires has a significant impact on overall processor performance and power consumption. VLSI techniques allow a variety of wire implementations, but these wire properties have previously never been exposed to the microarchitecture. This paper advocates global wire management at the microarchitecture level and proposes a heterogeneous interconnect that is comprised of wires with varying latency, bandwidth, and energy characteristics. We propose and evaluate microarchitectural techniques that can exploit such a heterogeneous interconnect to improve performance and reduce energy consumption. These techniques include a novel cache pipeline design, the identification of narrow bit-width operands, the classification of non-critical data, and the detection of interconnect load imbalance. For a dynamically scheduled partitioned architecture, our results demonstrate that the proposed innovations result in up to 11% reductions in overall processor ED2, compared to a baseline processor that employs a homogeneous interconnect

    Power efficient resource scaling in partitioned architectures through dynamic heterogeneity

    Get PDF
    Journal ArticleThe ever increasing demand for high clock speeds and the desire to exploit abundant transistor budgets have resulted in alarming increases in processor power dissipation. Partitioned (or clustered) architectures have been proposed in recent years to address scalability concerns in future billion-transistor microprocessors. Our analysis shows that increasing processor resources in a clustered architecture results in a linear increase in power consumption, while providing diminishing improvements in single-thread performance. To preserve high performance to power ratios, we claim that the power consumption of additional resources should be in proportion to the performance improvements they yield. Hence, in this paper, we propose the implementation of heterogeneous clusters that have varying delay and power characteristics. A cluster's performance and power characteristic is tuned by scaling its frequency and novel policies dynamically assign frequencies to clusters, while attempting to either meet a fixed power budget or minimize a metric such as Energy×Delay2 (ED2). By increasing resources in a power-efficient manner, we observe a 11% improvement in ED2 and a 22.4% average reduction in peak temperature, when compared to a processor with homogeneous units. Our proposed processor model also provides strategies to handle thermal emergencies that have a relatively low impact on performance

    An Energy Efficient Register File Architecture for VLIW Streaming Processors on FPGAs

    Get PDF
    The design of a register file with large scalability, high bandwidth, and energy efficiency is the major issue in the execution of streaming Very Long Instruction Word (VLIW) processors on Field Programmable Gate Arrays (FPGA's). This problem arises due to the fact that accessing multi-ported register files that can use optimized on-chip memory resources as well as enabling the maximum sharing of register operands are difficult provided that FPGA's on-chip memory resources only support up to two ports. To handle this issue, an Inverted Distributed Register File (IDRF) architecture is proposed in this article. This new IDRF is compared with the existing Central Register File (CRF) and the Distributed Register File (DRF) architectures on parameters such as kernel performance, circuit area, access delay, dynamic power, and energy. Experimental results show that IDRF matches the kernel performance with the CRF architecture but 10.4% improvement in kernel performance as compared to DRF architecture. Similar experimental results related to the circuit area, dynamic power, and energy are discussed in this article
    • …
    corecore