
M i c r o a r c h i t e c t u r a l W i r e M a n a g e m e n t f o r P e r f o r m a n c e a n d P o w e r in

P a r t i t i o n e d A r c h i t e c t u r e s *

Rajeev Balasubram onian, Naveen M uralim anohar, Karthik Ram ani, Venkatanand Venkatachalapathy
U niversity o f Utah

Abstract

Future high-performance billion-transistor processors
are likely to employ partitioned architectures to achieve
high clock speeds, high parallelism, low design complex­
ity, and low power. In such architectures, inter-partition
communication over global wires has a significant impact
on overall processor performance and power consumption.
VLSI techniques allow a variety o f wire implementations,
but these wire properties have previously never been ex­
posed to the microarchitecture. This paper advocates global
wire management at the microarchitecture level and pro­
poses a heterogeneous interconnect that is comprised o f
wires with varying latency, bandwidth, and energy charac­
teristics. We propose and evaluate microarchitectural tech­
niques that can exploit such a heterogeneous interconnect
to improve performance and reduce energy consumption.
These techniques include a novel cache pipeline design, the
identification o f narrow bit-width operands, the classifica­
tion o f non-critical data, and the detection o f interconnect
load imbalance. For a dynamically scheduled partitioned
architecture, our results demonstrate that the proposed in­
novations result in up to 11% reductions in overall proces­
sor E D 2, compared to a baseline processor that employs a
homogeneous interconnect.

1. Introduction

One of the biggest challenges for computer architects is
the design of billion-transistor architectures that yield high
parallelism, high clock speeds, low design complexity, and
low power. There appears to be a consensus among several
research groups [1, 7, 10, 15, 18, 21, 25, 27, 28, 29, 30,
35, 36, 39, 42] that a partitioned architecture is the best
approach to achieving these design goals.

Partitioned architectures consist of many small and fast
computational units connected by a communication fabric.
A computational unit is commonly referred to as a cluster

*This work was supported in part by NSF grant CCF-0430063.

and is typically comprised of a limited number of ALUs, lo­
cal register storage, and a buffer for instruction issue. Since
a cluster has limited resources and functionality, it enables
fast clocks, low power, and low design effort. Abundant
transistor budgets allow the incorporation of many clus­
ters on a chip. The instructions of a single program are
distributed across the clusters, thereby enabling high par­
allelism. Since it is impossible to localize all dependent
instructions to a single cluster, data is frequently commu­
nicated between clusters over the inter-cluster communica­
tion fabric. Depending on the workloads, different flavors of
partitioned architectures can exploit instruction-level, data-
level, and thread-level parallelism (1LP, DLP, and TLP).

As we move to smaller process technologies, logic de­
lays scale down with transistor widths, while wire de­
lays do not scale down at the same rate. To alleviate
the high performance penalty of long wire delays at fu­
ture technologies, most research efforts have concentrated
on reducing the number of communications through intel­
ligent instruction and data assignment to clusters. Such
an assignment can be accomplished either at compile-time
[21, 27, 30, 35, 36, 39, 42] or at run-time [1, 7, 10, 15, 18],
However, in spite of our best efforts, global communication
is here to stay. For a dynamically scheduled 4-cluster sys­
tem (described in Sections 4 and 5), performance degrades
by 12% when the inter-cluster latency is doubled. The pa­
pers listed above also report similar slowdowns for high-
latency interconnects. Thus, irrespective of the implemen­
tation, partitioned architectures experience a large number
of global data transfers and performance can be severely de­
graded if the interconnects are not optimized for low delay.

Since global communications happen on long wires with
high capacitances, they are responsible for a significant
fraction of on-chip power dissipation. Interconnect power
is a major problem not only in today’s industrial designs,
but also in high-performance research prototypes. A recent
evaluation by Wang et al. [44] demonstrates that the infer­
tile network accounts for 36% of the total energy dissipated
in the Raw processor [42], A recent report by Magen et
al. [32] also attributes 50% of total chip power in an Intel
processor to interconnects. We are clearly moving to an era

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276284087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

where movement of data on a chip can have greater impact
on performance and energy than computations involving the
data. In other words, future microprocessors are becoming
increasingly communication-bound.

VLSI techniques enable a variety of different wire im­
plementations. For example, by tuning the wire width and
spacing, we can design wires with varying latency and
bandwidth properties. Similarly, by tuning repeater size and
spacing, we can design wires with varying latency and en­
ergy properties. Further, as interconnect technology devel­
ops, transmission lines may become feasible, enabling very
low latency for very low-bandwidth communication. Data
transfers on the on-chip network also have different require­
ments - some transfers benefit from a low latency network,
others benefit from a high bandwidth network, and yet oth­
ers are latency insensitive. To take advantage of VLSI tech­
niques and to better match interconnect design to commu­
nication requirements, we propose a heterogeneous inter­
connect, where every link consists of wires that are opti­
mized for either latency, energy, or bandwidth. We propose
novel mechanisms that can take advantage of these inter­
connect choices to improve performance and reduce energy
consumption.

To exploit a low-latency, low-bandwidth interconnect,
we design a cache pipeline that employs a subset of the
address bits to prefetch data out of cache banks. We also
take advantage of the fact that a number of data transfers
involve narrow bit-width operands that can benefit from a
low-bandwidth interconnect. Further, we can see improved
performance by diverting bursts of interconnect traffic to
high-bandwidth high-latency interconnects. These high-
bandwidth interconnects can also be designed to be energy-
efficient, enabling significant energy savings in addition to
performance improvements.

The paper is organized as follows. Section 2 reviews
techniques that enable different wire implementations. Sec­
tion 3 outlines the design of a heterogeneous interconnect.
Section 4 describes the proposed innovations to exploit dif­
ferent on-chip wires and they are evaluated in Section 5.
Finally, Section 6 discusses related work and we conclude
in Section 7.

2. Wire Implementations with Varying Char­
acteristics

The delay of a wire is a function of the RC time constant
(R is resistance and C is capacitance). The resistance per
unit length of the wire can be expressed by the following
equation [25]:

T hickness and w idth represent the geometrical dimen­
sions of the wire cross-section, barrier represents the thin
barrier layer around the wire to prevent copper from dif­
fusing into surrounding oxide, and p is the material resis­
tivity. The capacitance per unit length can be modeled by
four parallel-plate capacitors for each side of the wire and a
constant for fringing capacitance [25]:

r , _ __ ,or^ , th ickn ess |
 ̂ i'-irt — €floriz : h 2.€Vprt

s p a c i n g

+ f r i n g e { e hol t rri ' l)

width
I ayer spacing

(2)

T> n n p
(th ickness — barrier)(width- 2 barrier)

(1)

The potentially different relative dielectrics for the verti­
cal and horizontal capacitors are represented by eilori~ and
evert, K accounts for Miller-effect coupling capacitances,
spacing represents the gap between adjacent wires on the
same metal layer, and layer spacing represents the gap be­
tween adjacent metal layers. We now examine the tech­
niques that enable wires with varying properties.
Wire Width and Spacing

As can be seen from Equation (1), increasing the width
of the wire can significantly decrease resistivity, while also
resulting in a modest increase in capacitance per unit length
(Equation (2)). Similarly, increasing the spacing between
adjacent wires results in a drop in (. By allocating
more metal area per wire and increasing the wire width
and spacing, the overall effect is that the product of I
and (decreases, resulting in lower wire delays. The
primary difference between wires in the different types of
metal layers in modern processors is the wire width and
spacing (in addition to the thickness). Ho et a l, [25] re­
port that a 10mm unbuffered wire at 180nm technology has
delays of 57 F04s, 23 F04s, and 6 F04s on local, semi-
global, and global wires. Thus, wire width and spacing are
powerful parameters that can vary the latency by at least
a factor of 10. However, wide wires are more suited for
low-bandwidth traffic such as for clock and power distri­
bution. If global communication involves the transfer of
64-bit data between clusters, employing 64 wide wires can
have enormous area overheads. For a given metal area, the
wider the wire, the fewer the number of wires that can be ac­
commodated (see Figure 1). Hence, optimizing a wire for
low delay by designing wide wires has a negative impact on
bandwidth.
Repeater Size and Spacing

The resistance and capacitance of a wire are both lin­
ear functions of the wire length. Hence, the delay of a
wire, that depends on the product of wire resistance and
capacitance, is a quadratic function of wire length. A sim­
ple technique to overcome this quadratic dependence is to
break the wire into multiple smaller segments and connect
them with repeaters [5], As a result, wire delay becomes a

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

Delay Optimized

A A A A A A A A

Bandwidth Optimized

A A A A A A A A

Power Optimized Power and Bandwidth Optimized

Figure 1. Examples of different wire implementations. Energy optimized wires have fewer and smaller re­
peaters, while bandwidth optimized wires have narrow widths and spacing.

linear function of wire length and depends on the number
of segments, the wire delay across each segment, and the
logic delay across each repeater. Overall wire delay can be
minimized by selecting optimal repeater sizes and spacing
between repeaters [5] and this technique is commonly em­
ployed in modern-day processors. However, these repeaters
have high overheads associated with them. Contacts have
to be cut from the metal layer to the silicon substrate ev­
ery time a logic element is introduced in the middle of a
wire. The contacts and the transistors not only impose area
overheads and routing constraints, but also impose high ca­
pacitive loads on the wires. Banerjee et al. [8, 9] report that
sub-lOOnm designs will have over a million repeaters and
that optimally sized repeaters are approximately 450 times
the minimum sized inverter at that technology point.

Energy in the interconnect can be reduced by employing
repeaters that are smaller than the optimally-sized repeaters
and by increasing the spacing between successive repeaters
(see Figure 1). This increases overall wire delay. Recently,
Baneijee et al. [8] developed a methodology to estimate re­
peater size and spacing that minimizes power consumption
for a fixed wire delay. They show that at 50nm technol­
ogy, it is possible to design a repeater configuration such
that the wire has twice the delay and 1 / 5 th the energy of a
wire that is delay-optimal. Thus, repeater size and spacing
are parameters that can dramatically influence interconnect
power and performance.

Transmission Lines

In future technologies, other promising wire implemen­
tations may become feasible, such as transmission lines [16,
19]. In a transmission line, the wire delay is determined by
the time taken to detect a voltage ripple on the wire. This
delay is determined by the LC. time constant and the veloc­
ity of the ripple, which is a function of the speed of light
in the dielectric surrounding the interconnect. A transmis­
sion line, therefore, enables very low wire latencies. For
a wire to operate as a transmission line, it must have very
high width, thickness, horizontal and vertical spacing, and
signal frequency. There are other implementation issues as
well, such as the design of signal modulation and sensing

circuits, reference planes above and below the metal layer,
and shielding power and ground lines adjacent to each trans­
mission line [12].

Because of the large area requirements and other asso­
ciated costs, transmission lines have been sparsely used in
modern processors, usually as single wires for clock distri­
bution [33, 45, 46], They have also been shown to work
in other test CMOS chips [16, 20]. As we move to higher
clock frequencies and increasing metal layers, transmission
line implementations may become more practical and cost-
effective. However, owing to the high area requirements
per wire, transmission lines are likely to be feasible only
for veiy low bandwidth communication. Thus, a transmis­
sion line represents another interesting wire implementation
that trades off bandwidth for extremely low latencies.

3. Heterogeneous Interconnects

From the above discussion, it is clear that a large num­
ber of different wire implementations are possible, either by
varying properties such as wire width/spacing and repeater
size/spacing, or by employing transmission lines. Typically,
inter-cluster global interconnects are designed to minimize
delay for the transfer of 64-bit data and the associated tags
(typically fewer than eight bits). Wire widths are chosen
such that 72 wires can be accommodated in the available
metal area and repeaters are sized and spaced to optimize
delay. We refer to these wires as B-Wires. In addition to
this base 72-bit interconnect, there are at least three other
interesting wire implementations that the architecture can
benefit from:

• P-Wires: Wires that are power-optimal. The wires
have longer delays as they employ small repeater sizes
and wide repeater spacing.

• W-Wires: Wires that are bandwidth-optimal. The wires
have minimum width and spacing and have longer de­
lays.

• L-Wires: Wires that are latency-optimal. These wires
operate as transmission lines or employ very wide

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

width and spacing and have low bandwidth (poten­
tially, a network with fewer than 20 bits).

To limit the range of possibilities, P-Wires and W-Wires can
be combined to form a single wire implementation with
minimum width and spacing and with small repeater sizes
and wide repeater spacing. Such wires have poor delay
characteristics, but allow low power and high bandwidth
(referred to as PW-Wires).

These options can be incorporated into the inter-cluster
global interconnect in a variety of ways. In this evaluation,
we limit ourselves to the following topology. Every link on
the network offers the same degree of heterogeneity. For ex­
ample, every link may consist of 72 B-Wires, 144 PW-Wires,
and 18 L-Wires. Thus, for any data transfer, the microar­
chitecture can dynamically choose to effect the transfer on
either B-Wires, PW-Wires, or L-Wires. Such an implemen­
tation choice may entail additional complexity within the
send buffers. To reduce this complexity, one can design a
topology where some links consist entirely of PW-Wires,
while others consist entirely of B-Wires. Such a topology
has lower design complexity, but affords less flexibility to
the microarchitecture. In this paper, we adopt the former
implementation since we are evaluating the potential of a
heterogeneous interconnect. We argue that the additional
logic to route data to one of three possible interconnects
only requires one-to-three demultiplexers and compared to
a base processor that already has multiple interconnects, the
overhead is likely to be negligible. We assume a model
where in any cycle, data can be dynamically assigned to
one of the available wire implementations based on the pro­
gram’s needs. The mechanisms that enable this dynamic
decision-making are discussed in the next section.

Different wire implementations may or may not be ac­
commodated on a single metal layer. There are no techno­
logical barriers to having wires with different width/spacing
or repeater size/spacing on a single metal layer. However,
aspect ratio guidelines necessitate that wire width can not be
reduced beyond a certain limit. If the width and spacing for
W-Wires or PW-Wires is lower than this limit, they may have
to be implemented on a lower metal layer that has smaller
thickness. Further, current implementations of transmission
lines are rather cumbersome and entail huge overheads. Un­
less these implementations become more cost-effective, the
use of transmission lines will involve additional metal lay­
ers. The International Technology Roadmap for Semicon­
ductors [3] projects that the number of metal layers will in­
crease in future generations. Evaluations of this nature help
identify the most promising ways to exploit such a resource.

4. Exploiting Heterogeneous Interconnects

In this section, we describe the partitioned architecture
model that serves as an evaluation platform for this study

and the proposed innovations that can take advantage of a
heterogeneous interconnect.
The Baseline Partitioned Architecture

Instruction assignment to clusters in a partitioned archi­
tecture may happen at compile-time [11, 21, 27, 30, 35,
36, 39], or at run-time [1, 7, 10, 15, 18], There are ad­
vantages to either approach - static techniques entail lower
hardware overheads and have access to more information
on program dataflow, while dynamic techniques are more
reactive to events such as branch mispredicts, cache misses,
network congestion, etc. Our evaluations employ a dynami­
cally scheduled partitioned architecture. We expect that our
proposals can be applied even to statically scheduled archi­
tectures.

Our partitioned architecture model dispatches a large
window of in-flight instructions from a single-threaded
application. We adopt a centralized cache implementa­
tion because earlier studies have shown that a central­
ized cache offers nearly as much performance as a dis­
tributed cache while enabling low implementation complex­
ity [6, 23, 38]. The assignment of instructions to clus­
ters happens through a state-of-the-art dynamic instruction
steering heuristic [7, 15, 43] that takes the following infor­
mation into account: data dependences, cluster load im­
balance, criticality of operands, and proximity to the data
cache. While dispatching an instruction, the steering algo­
rithm assigns weights to each cluster to determine the clus­
ter that is most likely to minimize communication and issue-
related stalls. Weights are assigned to a cluster if it produces
input operands for the instruction and if it has many empty
issue queue entries. Additional weights are assigned to a
cluster if it is the producer of the input operand that is pre­
dicted to be on the critical path for the instruction’s execu­
tion. For loads, more weights are assigned to clusters that
are closest to the data cache. The steering algorithm assigns
the instruction to the cluster that has the most weights. If
that cluster has no free register and issue queue resources,
the instruction is assigned to the nearest cluster with avail­
able resources.

Results produced within a cluster are bypassed to con­
sumers in that cluster in the same cycle, while communi­
cating the result to consumers in other clusters takes ad­
ditional cycles. In order to effect the transfer of data be­
tween clusters, the instruction decode and rename stage in­
serts a “copy instruction” [15] in the producing cluster that
places the value on the inter-cluster network as soon as the
value is made available. Each cluster has a scheduler for the
inter-cluster network that is similar in organization to the
issue queue and that has an issue bandwidth that matches
the maximum number of transfers possible on each link of
the network. Similar to the instruction wake-up process in
conventional dynamic superscalars, the register tags for the
operand are sent on the network ahead of the data so that the

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

Crossba^

Rinc

B-Wire
L-Wire
PW-Wire

(a) 4-cluster system with (b) 16-cluster system with
heterogeneous wires hierarchical interconnect

F igure 2. (a) A partitioned architecture model with
4 clusters and a heterogeneous interconnect com­
prised of B-, L-, and PW -W ires. (b) A 16-cluster
system with a hierarchical interconnect. Sets of
four clusters are connected with a crossbar and
the crossbars are connected in a ring topology.

dependent instruction can be woken up and can consume the
value as soon as it arrives.

For most of our experiments, we assume a processor
model that has four clusters. These four clusters and the
centralized data cache are connected through a crossbar net­
work, as shown in Figure 2 (a). All links contain a uni­
directional interconnect in each direction. The processor
model in Figure 2 (a) adopts a heterogeneous interconnect
where every link in the network is comprised of B-Wires,
PW-Wires, and L-Wires. Note that every data transfer has
the option to use any one of these sets of wires. Our eval­
uations show the effects of using interconnects that employ
different combinations of these sets of wires. For all proces­
sor organizations, the bandwidth requirements to the cache
are much higher than bandwidth requirements to the clus­
ters since more than one third of all instructions are loads or
stores. Hence, the links going in and out of the cache are as­
sumed to have twice as much area and twice as many wires
as the links going in and out of a cluster. If multiple trans­
fers compete for a link in a cycle, one transfer is effected
in that cycle, while the others are buffered. We assume un­
bounded buffers at each node of the network. An earlier
study [37] has shown that these buffers typically require a
modest number of entries. We also examine aggressive pro­
cessor models with 16 clusters. For a 16-cluster system, we
adopt a hierarchical topology similar to the one proposed by
Aggarwal and Franklin [2], As shown in Figure 2 (b), a set
of four clusters is connected through a crossbar, allowing
low-latency communication to neighboring clusters. The
crossbars are connected with a ring topology. Similar to the
4-cluster system, every link in the network is comprised of

Accelerating Cache Access
First, we examine how low-latency low-bandwidth L-

Wires can be exploited to improve performance. L-Wires
are designed by either employing veiy large wire widths and
spacing or by implementing transmission lines. Because of
the area overhead, for the sake of this discussion, we assume
that 18 L-Wires occupy the same metal area as 72 B-Wires.

Consider the behavior of the cache pipeline in the base­
line processor. When a cluster executes a load instruc­
tion, it computes the effective address and communicates
it to the centralized load/store queue (LSQ) and cache. The
load/store queue waits until it receives addresses of stores
prior to the load in program order, guarantees that there is
no memory dependence, and then initiates the cache access.
The cost of communication to the cache influences load la­
tency in two ways - (i) it delays the arrival of load addresses
at the LSQ, (ii) it delays the arrival of store addresses at
the LSQ, thereby delaying the resolution of memory depen­
dences.

To accelerate cache access, we propose the following
novel technique. A subset of the address bits are trans­
mitted on low-latency L-Wires to prefetch data out of the
LI cache and hide the high communication cost of trans­
mitting the entire address. After the cluster computes the
effective address, the least significant (LS) bits of the ad­
dress are transmitted on the low-latency L-Wires, while the
most significant (MS) bits are transmitted on B-Wires. The
same happens for store addresses. Thus, the LSQ quickly
receives the LS bits for loads and stores, while the MS bits
take much longer. The early arrival of the partial addresses
allows the following optimizations.

The LSQ can effect a partial comparison of load and
store addresses with the available LS bits. If the LS bits
of the load do not match the LS bits of any earlier store,
the load is guaranteed to not have any memory dependence
conflicts and it can begin cache access. If the LS bits of
the load match the LS bits of an earlier store, it has to wait
for the MS bits to arrive before determining if there is a
true dependence. A large number of false dependences can
also increase contention for the LSQ ports. Fortunately, we
found that false dependences were encountered for fewer
than 9% of all loads when employing eight LS bits for the
partial address comparison.

To effect an LI data cache access, the least significant
bits of the effective address are used to index into the data
and tag RAM arrays and read out a relevant set of cache
blocks. The most significant bits of the effective address
are used to index into the TLB and the resulting translation
is then compared with the tags to select the appropriate data
block and forward it to the cluster. Since the accesses to the
cache RAM arrays do not require the most significant bits,
the accesses can be initiated as soon as the least significant

wires w ith different properties.

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

bits of the address arrive on L-Wires (provided the L-Wires
transmit enough bits to determine the set index).

Similarly, a few bits of the virtual page number can be
included in the transfer on the L-Wires. This allows TLB
access to proceed in parallel with RAM array look-up. The
modifications to enable indexing with partial address in­
formation are more significant for a CAM structure than
a RAM structure. Hence, a highly-associative TLB de­
sign may be more amenable to this modified pipeline than a
fully-associative one. When the rest of the effective address
arrives, tag comparison selects the correct translation from
a small subset of candidate translations.

Thus, the transfer of partial address bits on L-Wires en­
ables data to be prefetched out of LI cache and TLB banks
and hide the RAM access latency, which is the biggest com­
ponent in cache access time. If the cache RAM access has
completed by the time the entire address arrives, only an ad­
ditional cycle is spent to detect the correct TLB translation
and effect the tag comparison before returning data to the
cluster. This overlap of effective address transfer with cache
RAM and TLB access can result in a reduction in effective
load latency if the latency difference between L-Wires and
B-Wires is significant.

It must be noted that the proposed pipeline works well
and yields speedups even if the processor implements some
form of memory dependence speculation. The partial ad­
dress can proceed straight to the LI cache and prefetch data
out of cache banks without going through partial address
comparisons in the LSQ if it is predicted to not have mem­
ory dependences. To allow cache and TLB index bits to fit
in a narrow low-bandwidth interconnect, it might be neces­
sary to make the cache and TLB highly set-associative. For
example, 18 L-Wires can accommodate 6 bits of tag to iden­
tify the instruction in the LSQ, 8 index bits for the LI data
cache, and 4 index bits for the TLB. For the assumed cache
and TLB sizes, this corresponds to an associativity of 4 and
8 for the cache and TLB, respectively. If the associativity is
reduced, we may need a few more L-Wires.

Narrow Bit-Width Operands
An interconnect composed of L-Wires can also be em­

ployed for results that can be encoded by a few bits. 18
L-Wires can accommodate eight bits of register tag and ten
bits of data. We employ the simplest form of data com­
paction here - integer results between 0 and 1023 are eligi­
ble for transfer on L-Wires. The hardware required to detect
narrow bit-width data can be easily implemented - the Pow­
erPC 603 [22] has hardware to detect the number of leading
zeros that is then used to determine the latency for integer
multiply. A special case in the transfer of narrow bit-width
data is the communication of a branch mispredict back to
the front-end. This only involves the branch ID that can
be easily accommodated on L-Wires, thereby reducing the
branch mispredict penalty.

Other forms of data compaction might also be possible,
but is not explored here. For example, Yang et al, [47] iden­
tify that the eight most frequent values in SPEC95-Int pro­
grams account for roughly 50% of all data cache accesses
and can be easily encoded by a few bits.

In order to schedule a wake-up operation at the consum­
ing cluster, the register tags are sent before the data itself.
For a narrow bit-width operand, the tags have to be sent on
L-Wires. Hence, the pipeline requires advance knowledge
of whether the result can be expressed in 10 bits. For our
evaluations, we make the optimistic assumption that this in­
formation is available early in the pipeline. A realistic im­
plementation would require inspection of the instruction's
input operands or a simple predictor. We confirmed that
a predictor with 8K 2-bit saturating counters, that predicts
the occurrence of a narrow bit-width result when the 2-bit
counter value is three, is able to identify 95% of all narrow
bit-width results. With such a high-confidence predictor,
only 2% of all results predicted to be narrow have bit widths
greater than 10.
Exploiting PW-Wires

Next, we examine how PW-Wires can be employed to
not only reduce contention in other wires, but also reduce
energy consumption. Our objective here is to identify those
data transfers that can tolerate the higher latency of these
wires or to identify situations when the cost of contention on
B-Wires offsets its wire latency advantage. If a data transfer
has the choice of using either B-Wires or PW-Wires, the fol­
lowing three criteria dictate when a transfer can be effected
on the high bandwidth, low energy, high latency PW-Wires:

• If the input operands are already ready in a remote reg­
ister file at the time an instruction is dispatched, the
operands are transferred to the instruction's cluster on
PW-Wires. The rationale here is that there is usually a
long gap between instruction dispatch and issue and
the long communication latency for the ready input
operand can be tolerated.

• Store data is assigned to PW-Wires. This can slow the
program down only if the store is holding up the com­
mit process or if there is a waiting dependent load.
Both are fairly rare cases and we noticed a minimal
performance impact from adopting this policy.

• We keep track of the amount of traffic injected into ei­
ther interconnect in the past N cycles (N=5 in our- sim­
ulations). If the difference between the traffic in each
interconnect exceeds a certain pre-specified threshold
(10 in our simulations), subsequent data transfers are
steered to the less congested interconnect.

Thus, by steering non-critical data towards the high-
bandwidth energy-efficient interconnect, we are likely to
see little performance degradation and by steering data
away from the congested interconnect, we can potentially

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

!!etch queue size 64 Branch predictor comb, o f bimodal and 2-level
Bimodal predictor size 16K Level 1 predictor 16K entries, history 12

Level 2 predictor 16K entries BTB size 16K sets, 2-way
Branch mispredict penalty at least 12 cycles !!etch width 8 (across up to 2 basic blocks)

Issue queue size 15 per cluster (int and fp, each) Register fi le size 32 per cluster (int and fp, each)
Integer ALUs/mult-div 1/1 per cluster !!P ALUs/mult-div 1/1 per cluster

L I l-cache 32KB 2-way Memory latency 300 cycles for the fi rst block
L I D-cache 32KB 4-way set-associative. L2 unifi ed cache SMB 8-way, 30 cycles

6 cycles, 4-way word-interleaved 1 and D TLB 128 entries, 8KB page size

Table 1. Simplescalar simulator parameters.

Wire Implementation Relative delay Crossbar latency Ring hop latency Relative leakage Relative dynamic
W-Wires 1.0 1.00 1.00

PW-Wires 1.2 3 cycles 6 cycles 0.30 0.30
B-Wires 0.8 2 cycles 4 cycles 0.55 0.58
L-Wires 0.3 1 cycle 2 cycles 0.79 0.84

Table 2. Wire delay and relative energy parameters for each RC-based wire.

see performance improvements. Most importantly, we can
observe large savings in interconnect energy.

5. Results

5.1. Methodology

Our simulator is based on Simplescalar-3.0 [14] for the
Alpha AXP ISA. Separate issue queues and physical regis­
ter files for integer and floating-point streams are modeled
for each cluster. Contention on the interconnects and for
memory hierarchy resources (ports, banks, buffers, etc.) are
modeled in detail. We assume that each cluster has 32 reg­
isters (int and fp, each), 15 issue queue entries (int and fp,
each), and one functional unit of each kind. While we use
a large ROB size of 480, in-flight instruction windows are
typically much smaller as dispatch gets stalled as soon as
the processor runs out of physical registers or issue queue
entries. Our evaluations show results for processor models
with four and sixteen clusters. Important simulation param­
eters are listed in Table I.

We use 23 of the 26 SPEC-2k programs with reference
inputs as a benchmark set 1. Each program was simulated
for 100 million instructions over simulation windows iden­
tified by the Simpoint toolkit [40]. Detailed simulation was
carried out for one million instructions to warm up various
processor structures before taking measurements.

5.2. Latency and Energy Estim ates

It can be shown that the delay of a wire with optimal
repeater placement is directly proportional to \/~RC [8, 24,

1Sixtm ck , Facerec, and Perlbmk were not compatible with our simula­
tion infrastructure.

25, 34], When the width of a wire is increased by a factor
A’, resistance decreases by a factor A’, while capacitance
increases slightly. We start by assuming that W-Wires have
the minimum allowed width and spacing for the selected
metal layer. We then design a PW-Wire by reducing the size
and number of repeaters. According to the methodology
proposed by Banerjee and Mehrotra [8], roughly 70% of
interconnect energy can be saved at 45nm technology while
incurring a 20% delay penalty. We design B-Wires such that
each wire has twice as much metal area as a PW-Wire and
its delay is lower by a factor of 1.5. We were able to meet
the delay constraint by keeping the width the same as a W-
Wire and only increasing wire spacing. This strategy also
helps us reduce the power consumed in B-Wires. Finally,
L-Wires were designed by increasing the width and spacing
of W-Wires by a factor of 8. Based on the analysis of Baner­
jee et al. [8, 34], we compute that at 45nm technology,
R h = 0.125Rw , C h = 0.SCW. giving us the result that
Delayr, = O.'SDelayw = 0.25D elaypw - If we instead
implement L-Wires as transmission lines, the improvement
in wire delay will be much more. Chang et a l. [16] report
that at I80nm technology, a transmission line is faster than
an RC-based repeated wire of the same width by a factor
of 4/3. This gap may widen at future technologies. For
the purposes of our evaluation, we restrict ourselves to RC-
based models, but point out that performance and energy
improvements can be higher if transmission lines become a
cost-effective option.

We assume that communication with neighbors through
the crossbar takes three cycles for PW-Wires. Based on the
relative latency estimates above, B-Wires and L-Wires are
1.5 times and 4 times faster than PW-Wires, correspond­
ing to inter-cluster communication latencies of two cycles
and one cycle, respectively. When examining a 16-cluster

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

Figure 3. IPCs for the baseline 4-cluster partitioned architecture employing one layer of B-W ires and for a
partitioned architecture employing one layer of B-W ires and one layer of L-W ires. The L-W ires transmit narrow
bit-width data, branch mispredict signals, and LS bits of load/store addresses.

system with a hierarchical interconnect, the latency for a
hop on the ring interconnect for PW-Wires, B-Wires, and L-
Wires are assumed to be 6,4, and 2 cycles. The various wire
parameters are summarized in Table 2. We assume that all
transfers are fully pipelined.

Our energy estimates for 45nm are derived from the anal­
ysis described by Baneijee et al. [8, 34], Relative dynamic
and leakage energy values are listed in Table 2. Different
wire width and spacing cause energy differences in W-, B-,
and L- Wires, while smaller and fewer repeaters cause a 70%
energy decrease between W-Wires and PW-Wires. Chang
et al. [16] report a factor of three reduction in energy con­
sumption by employing transmission line technology. Thus,
low-bandwidth transfers effected on L-Wires can not only
improve performance, but also reduce energy consumption.
For our evaluations, we restrict ourselves to RC-based L-
Wires.

Our analysis does not model the power consumed within
the schedulers for the inter-cluster network. Heterogeneity
will likely result in negligible power overhead in the sched­
ulers while comparing networks with equal issue band­
width.

S.3. Behavior of L-Wires

We first examine how L-Wires enable the optimizations
described in Section 4. Figure 3 shows IPCs for SPEC2k
programs for two 4-cluster systems. The first is our baseline
organization that has only one interconnect layer comprised
entirely of B-Wires. Each link to a cluster can transfer 72
bits of data and tag in each direction, while the link to the

data cache can transfer 144 bits in each direction. In the sec­
ond 4-cluster system shown in Figure 3, the baseline inter­
connect is augmented with another metal layer that is com­
prised entirely of L-Wires. Each link to a cluster can transfer
18 bits of data and tag in each direction and the link to the
cache can transfer 36 bits in each direction. The L-Wires are
employed to send the LS bits of a load or store effective ad­
dress, for the transfer of narrow bit-width data, and for the
transfer of branch mispredict signals. We see that overall
performance improves by only 4.2%, while comparing the
arithmetic mean (AM) of IPCs2. We observed that the novel
cache pipeline, the transfer of narrow bit-width operands,
and the transfer of branch mispredict signals, contributed
equally to the performance improvement. In this particular
processor model, the transfer on L-Wires can save at most a
single cycle, yielding a modest performance improvement.
Considering that the proposed pipeline entails non-trivial
complexity to determine operand bit-widths and compare
multiple tags at the LSQ, we believe that the performance
improvement is likely not worth the design effort. However,
as listed below, there may be other scenarios where L-Wires
can yield significant benefits.

If future technology points are more wire constrained,
the latency gap between B-Wires and L-Wires widens. If
we assume latencies that are twice as much as those listed
in Table 2, the performance improvement by adding an in­
terconnect layer comprised of L-Wires is 7.1%. As transis­
tor budgets increase, high-performance processors may em-

2 The AM of IPCs represents a workload where every program executes
for an equal number o f cycles [26].

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

Model
Description
of each link

Relative
Metal
Area

IPC
Relative

interconnect
dyn-energy

Relative
interconnect
Ikg-energy

Relative
Processor

Energy (10%)

Relative
E D '2
(10%)

Relative
E D '2
(20%)

ATodel — T 144 B-Wires 1.0 0.95 100 100 100 100 1(X)
AT odel — TT 288 PW-Wires 1.0 0.92 52 112 97 103.4 100.2

AT odel — TTT 144 PW-Wires. 36 L-Wires 1.5 0.96 61 90 97 95.0 92.1
ATodel — T\ 288 B-Wires 2.0 0.98 99 194 103 96.6 99.2
M o d el — V 144 B-Wires. 288 PW-Wires 2.0 0.97 83 204 102 97.8 99.6

ATodel — V T 288 PW-Wires. 36 L-Wires 2.0 0.97 61 141 99 94.4 93.0
AT odel — V TT 144 B-Wires. 36 L-Wires 2.0 0.99 105 130 101 93.3 94.5

AT odel — V TTT 432 B-Wires 3.0 0.99 99 289 106 97.2 102.4
AT odel — TX 288 B-Wires. 36 L-Wires 3.0 1.01 105 222 104 92.0 95.5
AT odel - X 144 B-Wires. 288 PW-Wires.

36 L-Wires
3.0 1.00 82 233 103 92.7 95.1

Table 3. Heterogeneous interconnect energy and performance for 4-cluster systems. All values (except IPC)
are normalized with respect to hfodel. - T. ED '2 is computed by multiplying total processor energy by square
of executed cycles. 10% and 20% refer to the contribution of interconnect energy to total processor energy in
Af odel — T.

ploy as many as 16 clusters. Such an aggressive architecture
can not only improve thread-level parallelism (TLP), but it
can also improve single-thread performance for high-ILP
programs. For our base processor model with a single in­
terconnect layer comprised of B-Wires, the improvement in
single-thread IPC by moving from 4 to 16 clusters for the 23
SPEC-2k programs is 17%. Again, the single-thread perfor­
mance improvement in moving from 4 to 16 clusters likely
does not warrant the complexity increase. However, if pro­
cessors are going to employ many computational units for
TLP extraction, the complexity entailed in allowing a sin­
gle thread to span across 16 clusters may be tolerable. For
such a wire-delay-constrained 16-cluster system, the perfor­
mance improvement by adding a metal layer with L-Wires is
7.4%. As our subsequent tables shall show, there are other
processor and interconnect models where the addition of
an L-Wire interconnect layer can improve performance by
more than 10%. It is possible that the novel cache pipeline
may yield higher benefits for ISAs with fewer registers that
may have more loads and stores. Only 14% of all register
traffic on the inter-cluster network are comprised of inte­
gers between 0 and 1023. More complex encoding schemes
might be required to take additional benefit of L-Wires. It is
also possible that there are other mechanisms to exploit low-
latency low-bandwidth wires that may be more complexity-
effective. For example, such wires can be employed to fetch
critical words from the L2 or L3.

S.4. Heterogeneous Interconnect Choices

The above evaluation shows performance improvements
by the addition of a metal layer comprised entirely of L-
Wires. This helps gauge the potential of L-Wires to reduce
the cost of long wire latencies, but is not a fair compari­

son because of the difference in the number of metal layers.
In this subsection, we try to evaluate the best use of avail­
able metal area. We start by evaluating processor models
that only have enough metal area per link to each cluster
to accommodate either 144 B-Wires, or 288 PW-Wires, or
36 L-Wires (the link to the data cache has twice this metal
area). Our base processor (M odel — T) that effects one
transfer in and out of each cluster on B-Wires is an example
of such a processor model. We then examine processors that
have twice and thrice as much metal area, allowing more
interesting combinations of heterogeneous wires. Table 3
summarizes the performance and energy characteristics of
interesting heterogeneous interconnect organizations for a
system with four clusters. All values in Table 3 except IPC
are normalized with respect to the values for M odel — T.
E D 2 is computed by taking the product of total processor
energy and the square of the number of cycles to execute
100M instructions. Total processor energy assumes that in­
terconnect energy accounts for 10% of total chip energy in
M odel — I and that leakage and dynamic energy are in the
ratio 3:7 for M odel — T. Table 3 also shows E D 2 when as­
suming that interconnect energy accounts for 20% of total
chip energy.

We first examine processor models that employ as much
metal area as M odel — T. The only alternative interconnect
choice that makes sense is one that employs 288 PW-Wires
for each link to a cluster (M odel — TT). We also evalu­
ate a heterogeneous interconnect that consumes 1.5 times
as much metal area as M odel — T by employing 144 PW-
Wires and 36 L- Wires to each cluster (M odel — TTT). From
Table 3, we observe that only employing slower PW-Wires
(M odel — TT) degrades IPC and increases E D 2, in spite
of the increased bandwidth. M odel — TTT with PW-Wires
and L-Wires allows a combination of high performance and

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

Model
Description
o f each link IPC

Relative
Processor

Energy (20%)

Relative
E
(20%)

M odel — T 144 B-Wires 1.11 100 100
M odel — TT 288 PW-Wires 1.05 94 105.3

M odel — TT T 144 PW-Wires, 36 L-Wires 1.11 94 93.6
A T odel — T\ 288 B-Wires 1.18 105 93.1
M o d e l — V 144 B-Wires. 288 PW-Wires 1.15 104 96.5

M odel — V T 288 PW-Wires. 36 L-Wires 1.13 97 93.2
M o d el — V TT 144 B-Wires, 36 L-Wires 1.19 102 88.7

M o d el — VTTT 432 B-Wires 1.19 111 96.2
M odel — TX 288 B-Wires. 36 L-Wires 1.22 107 88.7
M odel — X 144 B-Wires. 288 PW-Wires.

36 L-Wires
1.19 106 91.9

Table 4. Heterogeneous interconnect energy and performance for 16-cluster systems where interconnect en­
ergy contributes 20% of total processor energy in M o d e l- J. All values (except IPC) are normalized with respect
to Model — T.

low energy. Most transfers happen on PW-Wires, resulting
in 30% savings in interconnect energy dissipation, while L-
Wires enable the optimizations described in Section 4 and
boost performance back up to that with the baseline inter­
connect (M odel — I). Thus, in terms of overall processor
E D 2, the heterogeneous interconnect allows a 5% improve­
ment, although at an area cost.

Next, we evaluate processor models that have twice as
much metal area per link as M odel — I. M odel — IV ac­
commodates 288 B-Wires in each link to a cluster, while
M odel — V represents a heterogeneous interconnect that
employs 144 B-Wires and 288 PW-Wires. In M odel — V ,
data is assigned to PW-Wires according to the criteria dis­
cussed in Section 4. The higher latency of PW-Wires causes
only a slight performance degradation of 1% compared to
M o d el—IV . This is partly because our criteria are effective
at identifying latency insensitive data transfers and partly
because PW-Wires reduce overall contention by 14%. 36%
of all data transfers happen on energy-efficient wires, lead­
ing to energy savings when compared with M odel — IV .
M odel — V I improves on energy and E D 2 by sending
all of its traffic on PW-Wires and using L-Wires to offset
the performance penalty. Finally, M odel — V I I represents
the high-performance option in this class, by employing B-
Wires and L-Wires, yielding a decrease in E D 2 in spite of an
increase in overall energy consumption. Thus, the intercon­
nects with the best E D 2 employ combinations of different
wires and not a homogeneous set of wires.

Finally, we evaluate interesting designs that have enough
area per link to a cluster to accommodate 432 B-Wires
(M odel — V III) . The high-performance option in this
class (M odel — I X) employs 288 B-Wires and 36 L-Wires,
while the low-power option (M odel — X) accommodates,
B-, PW-, and L- wires. While there is little performance
benefit to be derived from having thrice as much metal area

as M odel — I, it is interesting to note that heterogeneous
interconnects continue to yield the best E D 2 values.

We repeated our evaluation on a 16-cluster system that is
likely to be more sensitive to interconnect design choices.
Table 4 summarizes the IPC, processor energy, and E D 2
values while assuming that interconnect energy accounts
for 20% of total processor energy. Up to 11% reductions
in E D 2 can be observed by employing heterogeneous in­
terconnects.

In summary, our results indicate that heterogeneous
wires have the potential to improve performance and energy
characteristics, as compared to a baseline approach that em­
ploys homogeneous wires. We see overall processor E D 2
reductions of up to 8% for 4-cluster systems and 11% for
16-cluster systems by employing energy-efficient and low-
latency wires. As previously discussed, the improvements
can be higher in specific processor models or if transmission
line technology becomes feasible.

There are clearly some non-trivial costs associated
with the implementation of a heterogeneous interconnect,
such as pipeline modifications, demultiplexing in the send
buffers, logic to identify narrow bit-widths and network
load imbalance, etc. The above results demonstrate the high
potential of such an approach, necessitating a more careful
examination of whether these overheads are tolerable.

6. Related Work

Here, we mention other related work that hasn't already
been cited in context. Austin and Sohi [4] propose mecha­
nisms to overlap cache indexing with effective address cal­
culation. These mechanisms differ from our proposed cache
pipeline in the following two major aspects: (i) they serve to
hide the cost of deep pipelines and arithmetic computations,
not wire delays, (ii) they employ prediction techniques.

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

A recent study by Citron [17] examines entropy within
data being transmitted on wires and identifies opportunities
for compression. The author suggests that if most traffic can
be compressed, the number of wires can scale down, allow­
ing each wire to be fatter. Unlike our proposal, the author
employs a single interconnect to transfer all data and not a
hybrid interconnect with different latency/bandwidth/power
characteristics. A study by Loh [31] exploits narrow
bitwidths to execute multiple instructions on a single 64-bit
datapath. Performance improves because the effective issue
width increases in some cycles. Brooks and Martonosi [13]
show that in a 64-bit architecture, roughly 50% of all inte­
ger ALU operations in SPEC95-Int have both operands with
bit-widths less than 16 bits. In their study, this property was
exploited to reduce power consumption in integer ALUs.

The recent paper by Beckmann and Wood [12] on Trans­
mission Line Caches is the only study that exploits low
latency transmission lines at the microarchitectural level.
Taylor et al. [41] define the inter-cluster communication
fabric as a Scalar Operand Network and provide a detailed
analysis of the properties of such a network and the effect
of these properties on ILP extraction. Wang et al. [44] ex­
amine power consumed within on-chip interconnects, with
a focus on the design of router microarchitectures. No prior
architectural work has examined trade-offs in wire charac­
teristics and the design of microarchitectures to exploit a
variety of wire implementations. Thus, to the best of our
knowledge, this is the first proposal of wire management at
the microarchitectural level.

7. Conclusions and Future Work

The design of the inter-cluster interconnect has a signif­
icant impact on overall processor energy and performance.
A single wire implementation is unable to simultaneously
meet the high bandwidth, low-latency, and low-energy re­
quirements of such an interconnect. A heterogeneous inter­
connect that consists of wires with different properties can
better meet the varying demands of inter-cluster traffic.

The paper makes three key contributions:

• We show that a low-latency low-bandwidth network
can be effectively used to hide wire latencies and im­
prove performance.

• We show that a high-bandwidth low-energy network
and an instruction assignment heuristic are effective at
reducing contention cycles and total processor energy.

• We carry out a comprehensive evaluation of differ­
ent combinations of heterogeneous interconnects and
show that by selecting the right combination of wires,
total processor E D 2 can be reduced by up to 11%,
compared to a baseline processor with homogeneous
interconnects.

We therefore make a case for microarchitectural wire
management in future communication-bound processors.
As future work, we plan to explore other applications of
heterogeneous interconnects, such as in the transfer of data
between different levels of the memory hierarchy.

References

[1] A. Aggarwal and M. Franklin. An Empirical Study of the
Scalability Aspects of Instruction Distribution Algorithms
for Clustered Processors. In Proceedings oflSPASS. 2001.

[2] A. Aggarwal and M. Franklin. Hierarchical Interconnects
for On-Chip Clustering. In Proceedings of 1PDPS. April
2 0 0 2 .

[3] S. I. Association. International Technol­
ogy Roadmap for Semiconductors 2001.
url:http://public. itrs.net/Files/2001ITRS/Home.htm.

[4] T. M. Austin and G. Sohi. Zero-Cycle Loads: Microarchi­
tecture Support for Reducing Load Latency. In Proceedings
of MICRO-28, November 1995.

[5] H. Bakoglu. Circuits, Interconnections, and Packaging for
VLSI. Addison-Wesley, 1990.

[6] R. Balasubramonian. Cluster Prefetch: Tolerating On-Chip
Wire Delays in Clustered Microarchitectures. In Proceed­
ings of ICS-18. June 2004.

[7] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Dy­
namically Managing the Communication-Parallelism Trade­
Off in Future Clustered Processors. In Proceedings oflSCA-
30, pages 275-286, June 2003.

[8] K. Banerjee and A. Mehrotra. A Power-optimal Repeater
Insertion Methodology for Global Interconnects in Nanome­
ter Designs. IEEE Transactions on Electron Devices.
49(11):2001-2007, November 2002.

[9] K. Banerjee, A. Mehrotra, A. Sangiovanni-Vincentelli, and
C. Hu. On Thermal Effects in Deep Submicron VLSI Inter­
connects. In Proceedings of the Design Automation Confer­
ence. pages 885-891, 1999.

[10] A. Baniasadi and A. Moshovos. Instruction Distribution
Heuristics for Quad-Cluster, Dynamically-Scheduled, Su­
perscalar Processors. In Proceedings of MICRO-33, pages
337-347, December 2000.

[11] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal. Maps:
A Compiler-Managed Memory System for Raw Machines.
In Proceedings qfISCA-26, May 1999.

[12] B. Beckmann and D. Wood. TLC: Transmission Line
Caches. In Proceedings of MICRO-36, December 2003.

[13] D. Brooks and M. Martonosi. Dynamically Exploiting Nar­
row Width Operands to Improve Processor Power and Per­
formance. In Proceedings of HPCA-5, January 1999.

[14] D. Burger and T. Austin. The Simplescalar Toolset, Ver­
sion 2.0. Technical Report TR-97-1342. University of
Wisconsin-Madison, June 1997.

[15] R. Canal, J. M. Parcerisa, and A. Gonzalez. Dynamic Clus­
ter Assignment Mechanisms. In Proceedings of HPCA-6,
pages 132-142, January 2000.

[16] R. Chang, N. Talwalkar. C. Yue, and S. Wong. Near Speed-
of-Light Signaling Over On-Chip Electrical Interconnects.
IEEE Journal of Solid-State Circuits, 38(5):834—838, May
2003.

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

http://public

[17] D. Citron. Exploiting Low Entropy to Reduce Wire Delay.
IEEE Computer Architecture Letters, vol.2. January 2004.

[18] J. Collins and D. Tullsen. Clustered Multithreaded Architec­
tures - Pursuing Both IPC and Cycle Time. In Proceedings
o f the / 8th IPDPS. April 2004.

[19] W. Dally and J. Poulton. Digital System Engineering. Cam­
bridge University Press. Cambridge. UK. 1998.

[20] A. Deutsch. Electrical Characteristics of Interconnections
for High-Performance Systems. Proceedings of the IEEE.
86(2):315-355. Feb 1998.

[21] K. Farkas. P. Chow. N. Jouppi. and Z. Vranesic. The Mul­
ticluster Architecture: Reducing Cycle Time through Parti­
tioning. In Proceedings ofMIC.RO-30. pages 149-159. De­
cember 1997.

[22] G. Gerosa and et al. A 2.2 W. 80 MHz Superscalar
RISC Microprocessor. IEEE Journal of Solid-State Circuits.
29(12):1440-1454. December 1994.

[23] E. Gibert. J. Sanchez, and A. Gonzalez. Flexible Compiler-
Managed L0 Buffers for Clustered VLIW Processors. In
Proceedings of MIC.RO-36. December 2003.

[24] R. Ho. J. Gainsley. and R. Drost. Long Wires and Asyn­
chronous Control. In Proceedings of'ASYNC-IO. April 2004.

[25] R. Ho. K. Mai. and M. Horowitz. The Future of Wires. Pro­
ceedings o f the IEEE. Vol.89. No.4. April 2001.

[26] L. John. More on Finding a Single Number to Indicate Over­
all Performance of a Benchmark Suite. ACM Computer Ar­
chitecture News. 32(1). March 2004.

[27] U. Kapasi. W. Dally. S. Rixner. J. Owens, and B. Khailany.
The Imagine Stream Processor. In Proceedings of IC.C.D,
September 2002.

[28] S. Keckler and W. Dally. Processor Coupling: Integrating
Compile Time and Runtime Scheduling for Parallelism. In
Proceedings of ISCA-19. pages 202-213. May 1992.

[29] R. Kessler. The Alpha 21264 Microprocessor. IEEE Micro.
19(2):24—36. March/April 1999.

[30] H.-S. Kim and J. Smith. An Instruction Set and Microar­
chitecture for Instruction Level Distributed Processing. In
Proceedings ofISC.A-29. May 2002.

[31] G. Loh. Exploiting Data-Width Locality to Increase Super­
scalar Execution Bandwidth. In Proceedings o f MIC.RO-35.
November 2002.

[32] N. Magen. A. Kolodny. U. Weiser. and N. Shamir. Intercon­
nect Power Dissipation in a Microprocessor. In Proceedings
of System I^evel Interconnect Prediction. February 2004.

[33] M. Minzuno. K. Anjo. Y. Sume. M. Fukaishi. H. Wak-
abayashi. T. Mogami. T. Horiuchi. and M. Yamashina.
Clock Distribution Networks with On-Chip Transmission
Lines. In Proceedings o f the IEEE International Intercon­
nect Technology Conference, pages 3-5. 2000.

[34] M. L. Mui. K. Banerjee. and A. Mehrotra. A Global In­
terconnect Optimization Scheme for Nanometer Scale VLSI
With Implications for Latency. Bandwidth, and Power Dis­
sipation. IEEE Transactions on Electronic Devices. Vol.51.
No.2. February 2004.

[35] R. Nagarajan. K. Sankaralingam. D. Burger, and S. Keck­
ler. A Design Space Evaluation of Grid Processor Architec­
tures. In Proceedings o f MIC.RO-34, pages 40-51. Decem­
ber 2001.

[36] K. Olukotun. B. Nayfeh. L. Hammond. K. Wilson, and K.-
Y. Chang. The Case for a Single-Chip Multiprocessor. In
Proceedings ofASPLOS-VII, October 1996.

[37] J.-M. Parcerisa. J. Sahuquillo. A. Gonzalez, and J. Duato.
Effi dent Interconnects for Clustered Microarchitectures. In
Proceedings o f PACT, September 2002.

[38] P. Racunas and Y. Patt. Partitioned First-Level Cache Design
for Clustered Microarchitectures. In Proceedings of ICS-17.
June 2003.

[39] J. Sanchez and A. Gonzalez. Modulo Scheduling for a Fully-
Distributed Clustered VLIW Architecture. In Proceedings of
MICRO-33, pages 124-133. December 2000.

[40] T. Sherwood. E. Perelman. G. Hamerly. and B. Calder. Au­
tomatically Characterizing Large Scale Program Behavior.
In Proceedings ofASPLOS-X. October 2002.

[41] M. Taylor. W. Lee. S. Amarasinghe. and A. Agarwal. Scalar
Operand Networks: On-Chip Interconnect for ILP in Parti­
tioned Architectures. In Proceedings ofHPCA-9, February
2003.

[42] M. Taylor. W. Lee. J. Miller. D. Wentzlaff. I. Bratt. B. Green-
wald. H. Hoffmann. P. Johnson. J. Kim. J. Psota. A. Raraf.
N. Shnidman. V. Strumpen. M. Frank. S. Amarasinghe. and
A. Agarwal. Evaluation of the Raw Microprocessor: An
Exposed-Wire-Delay Architecture for ILP and Streams. In
Proceedings ofISCA-31. June 2004.

[43] E. Tune. D. Liang. D. Tullsen. and B. Calder. Dynamic
Prediction of Critical Path Instructions. In Proceedings of
HPCA-7, pages 185-196. January 2001.

[44] H.-S. Wang. L.-S. Peh. and S. Malik. Power-Driven Design
of Router Microarchitectures in On-Chip Networks. In Pro­
ceedings of MICRO-36, December 2003.

[45] J. Wamock. J. Keaty. J. Petrovick. J. Clabes. C. Kircher.
B. Krauter. P. Restle. B. Zone, and C. Anderson. The Cir­
cuit and Physical Design of the POWER4 Microprocessor.
IBM Journal o f Research and Development, 46(1):27—51.
Jan 2002.

[46] T. Xanthopoulos. D. Bailey. A. Gangwar. M. Gowan.
A. Jain, and B. Prewitt. The Design and Analysis of the
Clock Distribution Network for a 1.2GHz Alpha Micropro­
cessor. In Proceedings o f the IEEE International Solid-State
Circuits Conference, pages 402-403. 2001.

[47] J. Yang. Y. Zhang, and R. Gupta. Frequent Value Compres­
sion in Data Caches. In Proceedings of MICRO-33, pages
258-265. December 2000.

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

