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Abstract

Future high-performance billion-transistor processors 
are likely to employ partitioned architectures to achieve 
high clock speeds, high parallelism, low design complex­
ity, and low power. In such architectures, inter-partition 
communication over global wires has a significant impact 
on overall processor performance and power consumption. 
VLSI techniques allow a variety o f wire implementations, 
but these wire properties have previously never been ex­
posed to the microarchitecture. This paper advocates global 
wire management at the microarchitecture level and pro­
poses a heterogeneous interconnect that is comprised o f  
wires with varying latency, bandwidth, and energy charac­
teristics. We propose and evaluate microarchitectural tech­
niques that can exploit such a heterogeneous interconnect 
to improve performance and reduce energy consumption. 
These techniques include a novel cache pipeline design, the 
identification o f narrow bit-width operands, the classifica­
tion o f non-critical data, and the detection o f interconnect 
load imbalance. For a dynamically scheduled partitioned 
architecture, our results demonstrate that the proposed in­
novations result in up to 11% reductions in overall proces­
sor E D 2, compared to a baseline processor that employs a 
homogeneous interconnect.

1. Introduction

One of the biggest challenges for computer architects is 
the design of billion-transistor architectures that yield high 
parallelism, high clock speeds, low design complexity, and 
low power. There appears to be a consensus among several 
research groups [1, 7, 10, 15, 18, 21, 25, 27, 28, 29, 30,
35, 36, 39, 42] that a partitioned architecture is the best 
approach to achieving these design goals.

Partitioned architectures consist of many small and fast 
computational units connected by a communication fabric. 
A computational unit is commonly referred to as a cluster

*This work was supported in part by NSF grant CCF-0430063.

and is typically comprised of a limited number of ALUs, lo­
cal register storage, and a buffer for instruction issue. Since 
a cluster has limited resources and functionality, it enables 
fast clocks, low power, and low design effort. Abundant 
transistor budgets allow the incorporation of many clus­
ters on a chip. The instructions of a single program are 
distributed across the clusters, thereby enabling high par­
allelism. Since it is impossible to localize all dependent 
instructions to a single cluster, data is frequently commu­
nicated between clusters over the inter-cluster communica­
tion fabric. Depending on the workloads, different flavors of 
partitioned architectures can exploit instruction-level, data- 
level, and thread-level parallelism (1LP, DLP, and TLP).

As we move to smaller process technologies, logic de­
lays scale down with transistor widths, while wire de­
lays do not scale down at the same rate. To alleviate 
the high performance penalty of long wire delays at fu­
ture technologies, most research efforts have concentrated 
on reducing the number of communications through intel­
ligent instruction and data assignment to clusters. Such 
an assignment can be accomplished either at compile-time 
[21, 27, 30, 35, 36, 39, 42] or at run-time [1, 7, 10, 15, 18], 
However, in spite of our best efforts, global communication 
is here to stay. For a dynamically scheduled 4-cluster sys­
tem (described in Sections 4 and 5), performance degrades 
by 12% when the inter-cluster latency is doubled. The pa­
pers listed above also report similar slowdowns for high- 
latency interconnects. Thus, irrespective of the implemen­
tation, partitioned architectures experience a large number 
of global data transfers and performance can be severely de­
graded if the interconnects are not optimized for low delay.

Since global communications happen on long wires with 
high capacitances, they are responsible for a significant 
fraction of on-chip power dissipation. Interconnect power 
is a major problem not only in today’s industrial designs, 
but also in high-performance research prototypes. A recent 
evaluation by Wang et al. [44] demonstrates that the infer­
tile network accounts for 36% of the total energy dissipated 
in the Raw processor [42], A recent report by Magen et 
al. [32] also attributes 50% of total chip power in an Intel 
processor to interconnects. We are clearly moving to an era
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where movement of data on a chip can have greater impact 
on performance and energy than computations involving the 
data. In other words, future microprocessors are becoming 
increasingly communication-bound.

VLSI techniques enable a variety of different wire im­
plementations. For example, by tuning the wire width and 
spacing, we can design wires with varying latency and 
bandwidth properties. Similarly, by tuning repeater size and 
spacing, we can design wires with varying latency and en­
ergy properties. Further, as interconnect technology devel­
ops, transmission lines may become feasible, enabling very 
low latency for very low-bandwidth communication. Data 
transfers on the on-chip network also have different require­
ments -  some transfers benefit from a low latency network, 
others benefit from a high bandwidth network, and yet oth­
ers are latency insensitive. To take advantage of VLSI tech­
niques and to better match interconnect design to commu­
nication requirements, we propose a heterogeneous inter­
connect, where every link consists of wires that are opti­
mized for either latency, energy, or bandwidth. We propose 
novel mechanisms that can take advantage of these inter­
connect choices to improve performance and reduce energy 
consumption.

To exploit a low-latency, low-bandwidth interconnect, 
we design a cache pipeline that employs a subset of the 
address bits to prefetch data out of cache banks. We also 
take advantage of the fact that a number of data transfers 
involve narrow bit-width operands that can benefit from a 
low-bandwidth interconnect. Further, we can see improved 
performance by diverting bursts of interconnect traffic to 
high-bandwidth high-latency interconnects. These high- 
bandwidth interconnects can also be designed to be energy- 
efficient, enabling significant energy savings in addition to 
performance improvements.

The paper is organized as follows. Section 2 reviews 
techniques that enable different wire implementations. Sec­
tion 3 outlines the design of a heterogeneous interconnect. 
Section 4 describes the proposed innovations to exploit dif­
ferent on-chip wires and they are evaluated in Section 5. 
Finally, Section 6 discusses related work and we conclude 
in Section 7.

2. Wire Implementations with Varying Char­
acteristics

The delay of a wire is a function of the RC time constant 
(R is resistance and C is capacitance). The resistance per 
unit length of the wire can be expressed by the following 
equation [25]:

T hickness  and w idth  represent the geometrical dimen­
sions of the wire cross-section, barrier represents the thin 
barrier layer around the wire to prevent copper from dif­
fusing into surrounding oxide, and p is the material resis­
tivity. The capacitance per unit length can be modeled by 
four parallel-plate capacitors for each side of the wire and a 
constant for fringing capacitance [25]:
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The potentially different relative dielectrics for the verti­
cal and horizontal capacitors are represented by eilori~ and 
evert, K  accounts for Miller-effect coupling capacitances, 
spacing represents the gap between adjacent wires on the 
same metal layer, and layer spacing represents the gap be­
tween adjacent metal layers. We now examine the tech­
niques that enable wires with varying properties.
Wire Width and Spacing

As can be seen from Equation (1), increasing the width 
of the wire can significantly decrease resistivity, while also 
resulting in a modest increase in capacitance per unit length 
(Equation (2)). Similarly, increasing the spacing between 
adjacent wires results in a drop in ( .  By allocating 
more metal area per wire and increasing the wire width 
and spacing, the overall effect is that the product of I 
and ( decreases, resulting in lower wire delays. The 
primary difference between wires in the different types of 
metal layers in modern processors is the wire width and 
spacing (in addition to the thickness). Ho et a l, [25] re­
port that a 10mm unbuffered wire at 180nm technology has 
delays of 57 F04s, 23 F04s, and 6 F04s on local, semi- 
global, and global wires. Thus, wire width and spacing are 
powerful parameters that can vary the latency by at least 
a factor of 10. However, wide wires are more suited for 
low-bandwidth traffic such as for clock and power distri­
bution. If global communication involves the transfer of 
64-bit data between clusters, employing 64 wide wires can 
have enormous area overheads. For a given metal area, the 
wider the wire, the fewer the number of wires that can be ac­
commodated (see Figure 1). Hence, optimizing a wire for 
low delay by designing wide wires has a negative impact on 
bandwidth.
Repeater Size and Spacing

The resistance and capacitance of a wire are both lin­
ear functions of the wire length. Hence, the delay of a 
wire, that depends on the product of wire resistance and 
capacitance, is a quadratic function of wire length. A sim­
ple technique to overcome this quadratic dependence is to 
break the wire into multiple smaller segments and connect 
them with repeaters [5], As a result, wire delay becomes a
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Figure 1. Examples of different wire implementations. Energy optimized wires have fewer and smaller re­
peaters, while bandwidth optimized wires have narrow widths and spacing.

linear function of wire length and depends on the number 
of segments, the wire delay across each segment, and the 
logic delay across each repeater. Overall wire delay can be 
minimized by selecting optimal repeater sizes and spacing 
between repeaters [5] and this technique is commonly em­
ployed in modern-day processors. However, these repeaters 
have high overheads associated with them. Contacts have 
to be cut from the metal layer to the silicon substrate ev­
ery time a logic element is introduced in the middle of a 
wire. The contacts and the transistors not only impose area 
overheads and routing constraints, but also impose high ca­
pacitive loads on the wires. Banerjee et al. [8, 9] report that 
sub-lOOnm designs will have over a million repeaters and 
that optimally sized repeaters are approximately 450 times 
the minimum sized inverter at that technology point.

Energy in the interconnect can be reduced by employing 
repeaters that are smaller than the optimally-sized repeaters 
and by increasing the spacing between successive repeaters 
(see Figure 1). This increases overall wire delay. Recently, 
Baneijee et al. [8] developed a methodology to estimate re­
peater size and spacing that minimizes power consumption 
for a fixed wire delay. They show that at 50nm technol­
ogy, it is possible to design a repeater configuration such 
that the wire has twice the delay and 1 / 5 th the energy of a 
wire that is delay-optimal. Thus, repeater size and spacing 
are parameters that can dramatically influence interconnect 
power and performance.

Transmission Lines

In future technologies, other promising wire implemen­
tations may become feasible, such as transmission lines [16, 
19]. In a transmission line, the wire delay is determined by 
the time taken to detect a voltage ripple on the wire. This 
delay is determined by the LC. time constant and the veloc­
ity of the ripple, which is a function of the speed of light 
in the dielectric surrounding the interconnect. A transmis­
sion line, therefore, enables very low wire latencies. For 
a wire to operate as a transmission line, it must have very 
high width, thickness, horizontal and vertical spacing, and 
signal frequency. There are other implementation issues as 
well, such as the design of signal modulation and sensing

circuits, reference planes above and below the metal layer, 
and shielding power and ground lines adjacent to each trans­
mission line [12].

Because of the large area requirements and other asso­
ciated costs, transmission lines have been sparsely used in 
modern processors, usually as single wires for clock distri­
bution [33, 45, 46], They have also been shown to work 
in other test CMOS chips [16, 20]. As we move to higher 
clock frequencies and increasing metal layers, transmission 
line implementations may become more practical and cost- 
effective. However, owing to the high area requirements 
per wire, transmission lines are likely to be feasible only 
for veiy low bandwidth communication. Thus, a transmis­
sion line represents another interesting wire implementation 
that trades off bandwidth for extremely low latencies.

3. Heterogeneous Interconnects

From the above discussion, it is clear that a large num­
ber of different wire implementations are possible, either by 
varying properties such as wire width/spacing and repeater 
size/spacing, or by employing transmission lines. Typically, 
inter-cluster global interconnects are designed to minimize 
delay for the transfer of 64-bit data and the associated tags 
(typically fewer than eight bits). Wire widths are chosen 
such that 72 wires can be accommodated in the available 
metal area and repeaters are sized and spaced to optimize 
delay. We refer to these wires as B-Wires. In addition to 
this base 72-bit interconnect, there are at least three other 
interesting wire implementations that the architecture can 
benefit from:

• P-Wires: Wires that are power-optimal. The wires 
have longer delays as they employ small repeater sizes 
and wide repeater spacing.

• W-Wires: Wires that are bandwidth-optimal. The wires 
have minimum width and spacing and have longer de­
lays.

• L-Wires: Wires that are latency-optimal. These wires 
operate as transmission lines or employ very wide
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width and spacing and have low bandwidth (poten­
tially, a network with fewer than 20 bits).

To limit the range of possibilities, P-Wires and W-Wires can 
be combined to form a single wire implementation with 
minimum width and spacing and with small repeater sizes 
and wide repeater spacing. Such wires have poor delay 
characteristics, but allow low power and high bandwidth 
(referred to as PW-Wires).

These options can be incorporated into the inter-cluster 
global interconnect in a variety of ways. In this evaluation, 
we limit ourselves to the following topology. Every link on 
the network offers the same degree of heterogeneity. For ex­
ample, every link may consist of 72 B-Wires, 144 PW-Wires, 
and 18 L-Wires. Thus, for any data transfer, the microar­
chitecture can dynamically choose to effect the transfer on 
either B-Wires, PW-Wires, or L-Wires. Such an implemen­
tation choice may entail additional complexity within the 
send buffers. To reduce this complexity, one can design a 
topology where some links consist entirely of PW-Wires, 
while others consist entirely of B-Wires. Such a topology 
has lower design complexity, but affords less flexibility to 
the microarchitecture. In this paper, we adopt the former 
implementation since we are evaluating the potential of a 
heterogeneous interconnect. We argue that the additional 
logic to route data to one of three possible interconnects 
only requires one-to-three demultiplexers and compared to 
a base processor that already has multiple interconnects, the 
overhead is likely to be negligible. We assume a model 
where in any cycle, data can be dynamically assigned to 
one of the available wire implementations based on the pro­
gram’s needs. The mechanisms that enable this dynamic 
decision-making are discussed in the next section.

Different wire implementations may or may not be ac­
commodated on a single metal layer. There are no techno­
logical barriers to having wires with different width/spacing 
or repeater size/spacing on a single metal layer. However, 
aspect ratio guidelines necessitate that wire width can not be 
reduced beyond a certain limit. If the width and spacing for 
W-Wires or PW-Wires is lower than this limit, they may have 
to be implemented on a lower metal layer that has smaller 
thickness. Further, current implementations of transmission 
lines are rather cumbersome and entail huge overheads. Un­
less these implementations become more cost-effective, the 
use of transmission lines will involve additional metal lay­
ers. The International Technology Roadmap for Semicon­
ductors [3] projects that the number of metal layers will in­
crease in future generations. Evaluations of this nature help 
identify the most promising ways to exploit such a resource.

4. Exploiting Heterogeneous Interconnects

In this section, we describe the partitioned architecture 
model that serves as an evaluation platform for this study

and the proposed innovations that can take advantage of a 
heterogeneous interconnect.
The Baseline Partitioned Architecture

Instruction assignment to clusters in a partitioned archi­
tecture may happen at compile-time [11, 21, 27, 30, 35,
36, 39], or at run-time [1, 7, 10, 15, 18], There are ad­
vantages to either approach -  static techniques entail lower 
hardware overheads and have access to more information 
on program dataflow, while dynamic techniques are more 
reactive to events such as branch mispredicts, cache misses, 
network congestion, etc. Our evaluations employ a dynami­
cally scheduled partitioned architecture. We expect that our 
proposals can be applied even to statically scheduled archi­
tectures.

Our partitioned architecture model dispatches a large 
window of in-flight instructions from a single-threaded 
application. We adopt a centralized cache implementa­
tion because earlier studies have shown that a central­
ized cache offers nearly as much performance as a dis­
tributed cache while enabling low implementation complex­
ity [6, 23, 38]. The assignment of instructions to clus­
ters happens through a state-of-the-art dynamic instruction 
steering heuristic [7, 15, 43] that takes the following infor­
mation into account: data dependences, cluster load im­
balance, criticality of operands, and proximity to the data 
cache. While dispatching an instruction, the steering algo­
rithm assigns weights to each cluster to determine the clus­
ter that is most likely to minimize communication and issue- 
related stalls. Weights are assigned to a cluster if it produces 
input operands for the instruction and if it has many empty 
issue queue entries. Additional weights are assigned to a 
cluster if it is the producer of the input operand that is pre­
dicted to be on the critical path for the instruction’s execu­
tion. For loads, more weights are assigned to clusters that 
are closest to the data cache. The steering algorithm assigns 
the instruction to the cluster that has the most weights. If 
that cluster has no free register and issue queue resources, 
the instruction is assigned to the nearest cluster with avail­
able resources.

Results produced within a cluster are bypassed to con­
sumers in that cluster in the same cycle, while communi­
cating the result to consumers in other clusters takes ad­
ditional cycles. In order to effect the transfer of data be­
tween clusters, the instruction decode and rename stage in­
serts a “copy instruction” [15] in the producing cluster that 
places the value on the inter-cluster network as soon as the 
value is made available. Each cluster has a scheduler for the 
inter-cluster network that is similar in organization to the 
issue queue and that has an issue bandwidth that matches 
the maximum number of transfers possible on each link of 
the network. Similar to the instruction wake-up process in 
conventional dynamic superscalars, the register tags for the 
operand are sent on the network ahead of the data so that the
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F igure  2. (a) A partitioned architecture model with 
4 clusters and a heterogeneous interconnect com­
prised of B-, L-, and PW -W ires. (b) A 16-cluster 
system with a hierarchical interconnect. Sets of 
four clusters are connected with a crossbar and 
the crossbars are connected in a ring topology.

dependent instruction can be woken up and can consume the 
value as soon as it arrives.

For most of our experiments, we assume a processor 
model that has four clusters. These four clusters and the 
centralized data cache are connected through a crossbar net­
work, as shown in Figure 2 (a). All links contain a uni­
directional interconnect in each direction. The processor 
model in Figure 2 (a) adopts a heterogeneous interconnect 
where every link in the network is comprised of B-Wires, 
PW-Wires, and L-Wires. Note that every data transfer has 
the option to use any one of these sets of wires. Our eval­
uations show the effects of using interconnects that employ 
different combinations of these sets of wires. For all proces­
sor organizations, the bandwidth requirements to the cache 
are much higher than bandwidth requirements to the clus­
ters since more than one third of all instructions are loads or 
stores. Hence, the links going in and out of the cache are as­
sumed to have twice as much area and twice as many wires 
as the links going in and out of a cluster. If multiple trans­
fers compete for a link in a cycle, one transfer is effected 
in that cycle, while the others are buffered. We assume un­
bounded buffers at each node of the network. An earlier 
study [37] has shown that these buffers typically require a 
modest number of entries. We also examine aggressive pro­
cessor models with 16 clusters. For a 16-cluster system, we 
adopt a hierarchical topology similar to the one proposed by 
Aggarwal and Franklin [2], As shown in Figure 2 (b), a set 
of four clusters is connected through a crossbar, allowing 
low-latency communication to neighboring clusters. The 
crossbars are connected with a ring topology. Similar to the 
4-cluster system, every link in the network is comprised of

Accelerating Cache Access
First, we examine how low-latency low-bandwidth L- 

Wires can be exploited to improve performance. L-Wires 
are designed by either employing veiy large wire widths and 
spacing or by implementing transmission lines. Because of 
the area overhead, for the sake of this discussion, we assume 
that 18 L-Wires occupy the same metal area as 72 B-Wires.

Consider the behavior of the cache pipeline in the base­
line processor. When a cluster executes a load instruc­
tion, it computes the effective address and communicates 
it to the centralized load/store queue (LSQ) and cache. The 
load/store queue waits until it receives addresses of stores 
prior to the load in program order, guarantees that there is 
no memory dependence, and then initiates the cache access. 
The cost of communication to the cache influences load la­
tency in two ways -  (i) it delays the arrival of load addresses 
at the LSQ, (ii) it delays the arrival of store addresses at 
the LSQ, thereby delaying the resolution of memory depen­
dences.

To accelerate cache access, we propose the following 
novel technique. A subset of the address bits are trans­
mitted on low-latency L-Wires to prefetch data out of the 
LI cache and hide the high communication cost of trans­
mitting the entire address. After the cluster computes the 
effective address, the least significant (LS) bits of the ad­
dress are transmitted on the low-latency L-Wires, while the 
most significant (MS) bits are transmitted on B-Wires. The 
same happens for store addresses. Thus, the LSQ quickly 
receives the LS bits for loads and stores, while the MS bits 
take much longer. The early arrival of the partial addresses 
allows the following optimizations.

The LSQ can effect a partial comparison of load and 
store addresses with the available LS bits. If the LS bits 
of the load do not match the LS bits of any earlier store, 
the load is guaranteed to not have any memory dependence 
conflicts and it can begin cache access. If the LS bits of 
the load match the LS bits of an earlier store, it has to wait 
for the MS bits to arrive before determining if there is a 
true dependence. A large number of false dependences can 
also increase contention for the LSQ ports. Fortunately, we 
found that false dependences were encountered for fewer 
than 9% of all loads when employing eight LS bits for the 
partial address comparison.

To effect an LI data cache access, the least significant 
bits of the effective address are used to index into the data 
and tag RAM arrays and read out a relevant set of cache 
blocks. The most significant bits of the effective address 
are used to index into the TLB and the resulting translation 
is then compared with the tags to select the appropriate data 
block and forward it to the cluster. Since the accesses to the 
cache RAM arrays do not require the most significant bits, 
the accesses can be initiated as soon as the least significant

wires w ith  different properties.
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bits of the address arrive on L-Wires (provided the L-Wires 
transmit enough bits to determine the set index).

Similarly, a few bits of the virtual page number can be 
included in the transfer on the L-Wires. This allows TLB 
access to proceed in parallel with RAM array look-up. The 
modifications to enable indexing with partial address in­
formation are more significant for a CAM structure than 
a RAM structure. Hence, a highly-associative TLB de­
sign may be more amenable to this modified pipeline than a 
fully-associative one. When the rest of the effective address 
arrives, tag comparison selects the correct translation from 
a small subset of candidate translations.

Thus, the transfer of partial address bits on L-Wires en­
ables data to be prefetched out of LI cache and TLB banks 
and hide the RAM access latency, which is the biggest com­
ponent in cache access time. If the cache RAM access has 
completed by the time the entire address arrives, only an ad­
ditional cycle is spent to detect the correct TLB translation 
and effect the tag comparison before returning data to the 
cluster. This overlap of effective address transfer with cache 
RAM and TLB access can result in a reduction in effective 
load latency if the latency difference between L-Wires and 
B-Wires is significant.

It must be noted that the proposed pipeline works well 
and yields speedups even if the processor implements some 
form of memory dependence speculation. The partial ad­
dress can proceed straight to the LI cache and prefetch data 
out of cache banks without going through partial address 
comparisons in the LSQ if it is predicted to not have mem­
ory dependences. To allow cache and TLB index bits to fit 
in a narrow low-bandwidth interconnect, it might be neces­
sary to make the cache and TLB highly set-associative. For 
example, 18 L-Wires can accommodate 6 bits of tag to iden­
tify the instruction in the LSQ, 8 index bits for the LI data 
cache, and 4 index bits for the TLB. For the assumed cache 
and TLB sizes, this corresponds to an associativity of 4 and 
8 for the cache and TLB, respectively. If the associativity is 
reduced, we may need a few more L-Wires.

Narrow Bit-Width Operands
An interconnect composed of L-Wires can also be em­

ployed for results that can be encoded by a few bits. 18 
L-Wires can accommodate eight bits of register tag and ten 
bits of data. We employ the simplest form of data com­
paction here -  integer results between 0 and 1023 are eligi­
ble for transfer on L-Wires. The hardware required to detect 
narrow bit-width data can be easily implemented -  the Pow­
erPC 603 [22] has hardware to detect the number of leading 
zeros that is then used to determine the latency for integer 
multiply. A special case in the transfer of narrow bit-width 
data is the communication of a branch mispredict back to 
the front-end. This only involves the branch ID that can 
be easily accommodated on L-Wires, thereby reducing the 
branch mispredict penalty.

Other forms of data compaction might also be possible, 
but is not explored here. For example, Yang et al, [47] iden­
tify that the eight most frequent values in SPEC95-Int pro­
grams account for roughly 50% of all data cache accesses 
and can be easily encoded by a few bits.

In order to schedule a wake-up operation at the consum­
ing cluster, the register tags are sent before the data itself. 
For a narrow bit-width operand, the tags have to be sent on 
L-Wires. Hence, the pipeline requires advance knowledge 
of whether the result can be expressed in 10 bits. For our 
evaluations, we make the optimistic assumption that this in­
formation is available early in the pipeline. A realistic im­
plementation would require inspection of the instruction's 
input operands or a simple predictor. We confirmed that 
a predictor with 8K 2-bit saturating counters, that predicts 
the occurrence of a narrow bit-width result when the 2-bit 
counter value is three, is able to identify 95% of all narrow 
bit-width results. With such a high-confidence predictor, 
only 2% of all results predicted to be narrow have bit widths 
greater than 10.
Exploiting PW-Wires

Next, we examine how PW-Wires can be employed to 
not only reduce contention in other wires, but also reduce 
energy consumption. Our objective here is to identify those 
data transfers that can tolerate the higher latency of these 
wires or to identify situations when the cost of contention on 
B-Wires offsets its wire latency advantage. If a data transfer 
has the choice of using either B-Wires or PW-Wires, the fol­
lowing three criteria dictate when a transfer can be effected 
on the high bandwidth, low energy, high latency PW-Wires:

• If the input operands are already ready in a remote reg­
ister file at the time an instruction is dispatched, the 
operands are transferred to the instruction's cluster on 
PW-Wires. The rationale here is that there is usually a 
long gap between instruction dispatch and issue and 
the long communication latency for the ready input 
operand can be tolerated.

• Store data is assigned to PW-Wires. This can slow the 
program down only if the store is holding up the com­
mit process or if there is a waiting dependent load. 
Both are fairly rare cases and we noticed a minimal 
performance impact from adopting this policy.

• We keep track of the amount of traffic injected into ei­
ther interconnect in the past N cycles (N=5 in our- sim­
ulations). If the difference between the traffic in each 
interconnect exceeds a certain pre-specified threshold 
(10 in our simulations), subsequent data transfers are 
steered to the less congested interconnect.

Thus, by steering non-critical data towards the high- 
bandwidth energy-efficient interconnect, we are likely to 
see little performance degradation and by steering data 
away from the congested interconnect, we can potentially
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!!etch queue size 64 Branch predictor comb, o f bimodal and 2-level
Bimodal predictor size 16K Level 1 predictor 16K entries, history 12

Level 2 predictor 16K entries BTB size 16K sets, 2-way
Branch mispredict penalty at least 12 cycles !!etch width 8 (across up to 2 basic blocks)

Issue queue size 15 per cluster (int and fp, each) Register fi le size 32 per cluster (int and fp, each)
Integer ALUs/mult-div 1/1 per cluster !!P ALUs/mult-div 1/1 per cluster

L I l-cache 32KB 2-way Memory latency 300 cycles for the fi rst block
L I D-cache 32KB 4-way set-associative. L2 unifi ed cache SMB 8-way, 30 cycles

6 cycles, 4-way word-interleaved 1 and D TLB 128 entries, 8KB page size

Table 1. Simplescalar simulator parameters.

Wire Implementation Relative delay Crossbar latency Ring hop latency Relative leakage Relative dynamic
W-Wires 1.0 1.00 1.00

PW-Wires 1.2 3 cycles 6 cycles 0.30 0.30
B-Wires 0.8 2 cycles 4 cycles 0.55 0.58
L-Wires 0.3 1 cycle 2 cycles 0.79 0.84

Table 2. Wire delay and relative energy parameters for each RC-based wire.

see performance improvements. Most importantly, we can 
observe large savings in interconnect energy.

5. Results

5.1. Methodology

Our simulator is based on Simplescalar-3.0 [14] for the 
Alpha AXP ISA. Separate issue queues and physical regis­
ter files for integer and floating-point streams are modeled 
for each cluster. Contention on the interconnects and for 
memory hierarchy resources (ports, banks, buffers, etc.) are 
modeled in detail. We assume that each cluster has 32 reg­
isters (int and fp, each), 15 issue queue entries (int and fp, 
each), and one functional unit of each kind. While we use 
a large ROB size of 480, in-flight instruction windows are 
typically much smaller as dispatch gets stalled as soon as 
the processor runs out of physical registers or issue queue 
entries. Our evaluations show results for processor models 
with four and sixteen clusters. Important simulation param­
eters are listed in Table I.

We use 23 of the 26 SPEC-2k programs with reference 
inputs as a benchmark set 1. Each program was simulated 
for 100 million instructions over simulation windows iden­
tified by the Simpoint toolkit [40]. Detailed simulation was 
carried out for one million instructions to warm up various 
processor structures before taking measurements.

5.2. Latency and Energy Estim ates

It can be shown that the delay of a wire with optimal 
repeater placement is directly proportional to \/~RC [8, 24,

1Sixtm ck , Facerec, and Perlbmk were not compatible with our simula­
tion infrastructure.

25, 34], When the width of a wire is increased by a factor 
A’, resistance decreases by a factor A’, while capacitance 
increases slightly. We start by assuming that W-Wires have 
the minimum allowed width and spacing for the selected 
metal layer. We then design a PW-Wire by reducing the size 
and number of repeaters. According to the methodology 
proposed by Banerjee and Mehrotra [8], roughly 70% of 
interconnect energy can be saved at 45nm technology while 
incurring a 20% delay penalty. We design B-Wires such that 
each wire has twice as much metal area as a PW-Wire and 
its delay is lower by a factor of 1.5. We were able to meet 
the delay constraint by keeping the width the same as a W- 
Wire and only increasing wire spacing. This strategy also 
helps us reduce the power consumed in B-Wires. Finally, 
L-Wires were designed by increasing the width and spacing 
of W-Wires by a factor of 8. Based on the analysis of Baner­
jee et al. [8, 34], we compute that at 45nm technology, 
R h =  0.125Rw , C h =  0.SCW. giving us the result that 
Delayr, =  O.'SDelayw =  0.25D elaypw -  If we instead 
implement L-Wires as transmission lines, the improvement 
in wire delay will be much more. Chang et a l. [16] report 
that at I80nm technology, a transmission line is faster than 
an RC-based repeated wire of the same width by a factor 
of 4/3. This gap may widen at future technologies. For 
the purposes of our evaluation, we restrict ourselves to RC- 
based models, but point out that performance and energy 
improvements can be higher if transmission lines become a 
cost-effective option.

We assume that communication with neighbors through 
the crossbar takes three cycles for PW-Wires. Based on the 
relative latency estimates above, B-Wires and L-Wires are
1.5 times and 4 times faster than PW-Wires, correspond­
ing to inter-cluster communication latencies of two cycles 
and one cycle, respectively. When examining a 16-cluster
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Figure 3. IPCs for the baseline 4-cluster partitioned architecture employing one layer of B-W ires  and for a 
partitioned architecture employing one layer of B-W ires  and one layer of L-W ires. The L-W ires  transmit narrow 
bit-width data, branch mispredict signals, and LS bits of load/store addresses.

system with a hierarchical interconnect, the latency for a 
hop on the ring interconnect for PW-Wires, B-Wires, and L- 
Wires are assumed to be 6,4, and 2 cycles. The various wire 
parameters are summarized in Table 2. We assume that all 
transfers are fully pipelined.

Our energy estimates for 45nm are derived from the anal­
ysis described by Baneijee et al. [8, 34], Relative dynamic 
and leakage energy values are listed in Table 2. Different 
wire width and spacing cause energy differences in W-, B-, 
and L- Wires, while smaller and fewer repeaters cause a 70% 
energy decrease between W-Wires and PW-Wires. Chang 
et al. [16] report a factor of three reduction in energy con­
sumption by employing transmission line technology. Thus, 
low-bandwidth transfers effected on L-Wires can not only 
improve performance, but also reduce energy consumption. 
For our evaluations, we restrict ourselves to RC-based L- 
Wires.

Our analysis does not model the power consumed within 
the schedulers for the inter-cluster network. Heterogeneity 
will likely result in negligible power overhead in the sched­
ulers while comparing networks with equal issue band­
width.

S.3. Behavior of L-Wires

We first examine how L-Wires enable the optimizations 
described in Section 4. Figure 3 shows IPCs for SPEC2k 
programs for two 4-cluster systems. The first is our baseline 
organization that has only one interconnect layer comprised 
entirely of B-Wires. Each link to a cluster can transfer 72 
bits of data and tag in each direction, while the link to the

data cache can transfer 144 bits in each direction. In the sec­
ond 4-cluster system shown in Figure 3, the baseline inter­
connect is augmented with another metal layer that is com­
prised entirely of L-Wires. Each link to a cluster can transfer 
18 bits of data and tag in each direction and the link to the 
cache can transfer 36 bits in each direction. The L-Wires are 
employed to send the LS bits of a load or store effective ad­
dress, for the transfer of narrow bit-width data, and for the 
transfer of branch mispredict signals. We see that overall 
performance improves by only 4.2%, while comparing the 
arithmetic mean (AM) of IPCs2. We observed that the novel 
cache pipeline, the transfer of narrow bit-width operands, 
and the transfer of branch mispredict signals, contributed 
equally to the performance improvement. In this particular 
processor model, the transfer on L-Wires can save at most a 
single cycle, yielding a modest performance improvement. 
Considering that the proposed pipeline entails non-trivial 
complexity to determine operand bit-widths and compare 
multiple tags at the LSQ, we believe that the performance 
improvement is likely not worth the design effort. However, 
as listed below, there may be other scenarios where L-Wires 
can yield significant benefits.

If future technology points are more wire constrained, 
the latency gap between B-Wires and L-Wires widens. If 
we assume latencies that are twice as much as those listed 
in Table 2, the performance improvement by adding an in­
terconnect layer comprised of L-Wires is 7.1%. As transis­
tor budgets increase, high-performance processors may em-

2 The AM  of IPCs represents a workload where every program executes 
for an equal number o f cycles [26].

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE



Model
Description 
of each link

Relative
Metal
Area

IPC
Relative

interconnect
dyn-energy

Relative
interconnect
Ikg-energy

Relative 
Processor 

Energy (10%)

Relative
E D '2
(10%)

Relative
E D '2
(20%)

ATodel — T 144 B-Wires 1.0 0.95 100 100 100 100 1(X)
AT odel — TT 288 PW-Wires 1.0 0.92 52 112 97 103.4 100.2

AT odel — TTT 144 PW-Wires. 36 L-Wires 1.5 0.96 61 90 97 95.0 92.1
ATodel — T\ 288 B-Wires 2.0 0.98 99 194 103 96.6 99.2
M o d el — V 144 B-Wires. 288 PW-Wires 2.0 0.97 83 204 102 97.8 99.6

ATodel — V  T 288 PW-Wires. 36 L-Wires 2.0 0.97 61 141 99 94.4 93.0
AT odel — V TT 144 B-Wires. 36 L-Wires 2.0 0.99 105 130 101 93.3 94.5

AT odel — V  TTT 432 B-Wires 3.0 0.99 99 289 106 97.2 102.4
AT odel — TX 288 B-Wires. 36 L-Wires 3.0 1.01 105 222 104 92.0 95.5
AT odel -  X 144 B-Wires. 288 PW-Wires. 

36 L-Wires
3.0 1.00 82 233 103 92.7 95.1

Table 3. Heterogeneous interconnect energy and performance for 4-cluster systems. All values (except IPC) 
are normalized with respect to hfodel. -  T. ED '2 is computed by multiplying total processor energy by square 
of executed cycles. 10% and 20% refer to the contribution of interconnect energy to total processor energy in
Af odel — T.

ploy as many as 16 clusters. Such an aggressive architecture 
can not only improve thread-level parallelism (TLP), but it 
can also improve single-thread performance for high-ILP 
programs. For our base processor model with a single in­
terconnect layer comprised of B-Wires, the improvement in 
single-thread IPC by moving from 4 to 16 clusters for the 23 
SPEC-2k programs is 17%. Again, the single-thread perfor­
mance improvement in moving from 4 to 16 clusters likely 
does not warrant the complexity increase. However, if pro­
cessors are going to employ many computational units for 
TLP extraction, the complexity entailed in allowing a sin­
gle thread to span across 16 clusters may be tolerable. For 
such a wire-delay-constrained 16-cluster system, the perfor­
mance improvement by adding a metal layer with L-Wires is 
7.4%. As our subsequent tables shall show, there are other 
processor and interconnect models where the addition of 
an L-Wire interconnect layer can improve performance by 
more than 10%. It is possible that the novel cache pipeline 
may yield higher benefits for ISAs with fewer registers that 
may have more loads and stores. Only 14% of all register 
traffic on the inter-cluster network are comprised of inte­
gers between 0 and 1023. More complex encoding schemes 
might be required to take additional benefit of L-Wires. It is 
also possible that there are other mechanisms to exploit low- 
latency low-bandwidth wires that may be more complexity- 
effective. For example, such wires can be employed to fetch 
critical words from the L2 or L3.

S.4. Heterogeneous Interconnect Choices

The above evaluation shows performance improvements 
by the addition of a metal layer comprised entirely of L- 
Wires. This helps gauge the potential of L-Wires to reduce 
the cost of long wire latencies, but is not a fair compari­

son because of the difference in the number of metal layers. 
In this subsection, we try to evaluate the best use of avail­
able metal area. We start by evaluating processor models 
that only have enough metal area per link to each cluster 
to accommodate either 144 B-Wires, or 288 PW-Wires, or 
36 L-Wires (the link to the data cache has twice this metal 
area). Our base processor ( M odel — T) that effects one 
transfer in and out of each cluster on B-Wires is an example 
of such a processor model. We then examine processors that 
have twice and thrice as much metal area, allowing more 
interesting combinations of heterogeneous wires. Table 3 
summarizes the performance and energy characteristics of 
interesting heterogeneous interconnect organizations for a 
system with four clusters. All values in Table 3 except IPC 
are normalized with respect to the values for M odel — T. 
E D 2 is computed by taking the product of total processor 
energy and the square of the number of cycles to execute 
100M instructions. Total processor energy assumes that in­
terconnect energy accounts for 10% of total chip energy in 
M odel — I and that leakage and dynamic energy are in the 
ratio 3:7 for M odel — T. Table 3 also shows E D 2 when as­
suming that interconnect energy accounts for 20% of total 
chip energy.

We first examine processor models that employ as much 
metal area as M odel — T. The only alternative interconnect 
choice that makes sense is one that employs 288 PW-Wires 
for each link to a cluster (M odel — TT). We also evalu­
ate a heterogeneous interconnect that consumes 1.5 times 
as much metal area as M odel — T by employing 144 PW- 
Wires and 36 L- Wires to each cluster (M odel — TTT). From 
Table 3, we observe that only employing slower PW-Wires 
(M odel — TT) degrades IPC and increases E D 2, in spite 
of the increased bandwidth. M odel — TTT with PW-Wires 
and L-Wires allows a combination of high performance and
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Model
Description 
o f each link IPC

Relative 
Processor 

Energy (20%)

Relative
E
(20%)

M  odel — T 144 B-Wires 1.11 100 100
M  odel — TT 288 PW-Wires 1.05 94 105.3

M  odel — TT T 144 PW-Wires, 36 L-Wires 1.11 94 93.6
A T odel — T\ 288 B-Wires 1.18 105 93.1
M o d e l — V 144 B-Wires. 288 PW-Wires 1.15 104 96.5

M odel — V T 288 PW-Wires. 36 L-Wires 1.13 97 93.2
M o d el — V TT 144 B-Wires, 36 L-Wires 1.19 102 88.7

M o d el — VTTT 432 B-Wires 1.19 111 96.2
M  odel — TX 288 B-Wires. 36 L-Wires 1.22 107 88.7
M  odel — X 144 B-Wires. 288 PW-Wires. 

36 L-Wires
1.19 106 91.9

Table 4. Heterogeneous interconnect energy and performance for 16-cluster systems where interconnect en­
ergy contributes 20% of total processor energy in M o d e l-  J. All values (except IPC) are normalized with respect
to Model — T.

low energy. Most transfers happen on PW-Wires, resulting 
in 30% savings in interconnect energy dissipation, while L- 
Wires enable the optimizations described in Section 4 and 
boost performance back up to that with the baseline inter­
connect (M odel — I). Thus, in terms of overall processor 
E D 2, the heterogeneous interconnect allows a 5% improve­
ment, although at an area cost.

Next, we evaluate processor models that have twice as 
much metal area per link as M odel — I. M odel — IV  ac­
commodates 288 B-Wires in each link to a cluster, while 
M odel — V  represents a heterogeneous interconnect that 
employs 144 B-Wires and 288 PW-Wires. In M odel — V , 
data is assigned to PW-Wires according to the criteria dis­
cussed in Section 4. The higher latency of PW-Wires causes 
only a slight performance degradation of 1% compared to 
M o d el—IV . This is partly because our criteria are effective 
at identifying latency insensitive data transfers and partly 
because PW-Wires reduce overall contention by 14%. 36% 
of all data transfers happen on energy-efficient wires, lead­
ing to energy savings when compared with M odel — IV . 
M odel — V I  improves on energy and E D 2 by sending 
all of its traffic on PW-Wires and using L-Wires to offset 
the performance penalty. Finally, M odel — V I I  represents 
the high-performance option in this class, by employing B- 
Wires and L-Wires, yielding a decrease in E D 2 in spite of an 
increase in overall energy consumption. Thus, the intercon­
nects with the best E D 2 employ combinations of different 
wires and not a homogeneous set of wires.

Finally, we evaluate interesting designs that have enough 
area per link to a cluster to accommodate 432 B-Wires 
(M odel — V III ) .  The high-performance option in this 
class (M odel — I X )  employs 288 B-Wires and 36 L-Wires, 
while the low-power option (M odel — X )  accommodates, 
B-, PW-, and L- wires. While there is little performance 
benefit to be derived from having thrice as much metal area

as M odel — I, it is interesting to note that heterogeneous 
interconnects continue to yield the best E D 2 values.

We repeated our evaluation on a 16-cluster system that is 
likely to be more sensitive to interconnect design choices. 
Table 4 summarizes the IPC, processor energy, and E D 2 
values while assuming that interconnect energy accounts 
for 20% of total processor energy. Up to 11% reductions 
in E D 2 can be observed by employing heterogeneous in­
terconnects.

In summary, our results indicate that heterogeneous 
wires have the potential to improve performance and energy 
characteristics, as compared to a baseline approach that em­
ploys homogeneous wires. We see overall processor E D 2 
reductions of up to 8% for 4-cluster systems and 11% for 
16-cluster systems by employing energy-efficient and low- 
latency wires. As previously discussed, the improvements 
can be higher in specific processor models or if transmission 
line technology becomes feasible.

There are clearly some non-trivial costs associated 
with the implementation of a heterogeneous interconnect, 
such as pipeline modifications, demultiplexing in the send 
buffers, logic to identify narrow bit-widths and network 
load imbalance, etc. The above results demonstrate the high 
potential of such an approach, necessitating a more careful 
examination of whether these overheads are tolerable.

6. Related Work

Here, we mention other related work that hasn't already 
been cited in context. Austin and Sohi [4] propose mecha­
nisms to overlap cache indexing with effective address cal­
culation. These mechanisms differ from our proposed cache 
pipeline in the following two major aspects: (i) they serve to 
hide the cost of deep pipelines and arithmetic computations, 
not wire delays, (ii) they employ prediction techniques.
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A recent study by Citron [17] examines entropy within 
data being transmitted on wires and identifies opportunities 
for compression. The author suggests that if most traffic can 
be compressed, the number of wires can scale down, allow­
ing each wire to be fatter. Unlike our proposal, the author 
employs a single interconnect to transfer all data and not a 
hybrid interconnect with different latency/bandwidth/power 
characteristics. A study by Loh [31] exploits narrow 
bitwidths to execute multiple instructions on a single 64-bit 
datapath. Performance improves because the effective issue 
width increases in some cycles. Brooks and Martonosi [13] 
show that in a 64-bit architecture, roughly 50% of all inte­
ger ALU operations in SPEC95-Int have both operands with 
bit-widths less than 16 bits. In their study, this property was 
exploited to reduce power consumption in integer ALUs.

The recent paper by Beckmann and Wood [ 12] on Trans­
mission Line Caches is the only study that exploits low 
latency transmission lines at the microarchitectural level. 
Taylor et al. [41] define the inter-cluster communication 
fabric as a Scalar Operand Network and provide a detailed 
analysis of the properties of such a network and the effect 
of these properties on ILP extraction. Wang et al. [44] ex­
amine power consumed within on-chip interconnects, with 
a focus on the design of router microarchitectures. No prior 
architectural work has examined trade-offs in wire charac­
teristics and the design of microarchitectures to exploit a 
variety of wire implementations. Thus, to the best of our 
knowledge, this is the first proposal of wire management at 
the microarchitectural level.

7. Conclusions and Future Work

The design of the inter-cluster interconnect has a signif­
icant impact on overall processor energy and performance. 
A single wire implementation is unable to simultaneously 
meet the high bandwidth, low-latency, and low-energy re­
quirements of such an interconnect. A heterogeneous inter­
connect that consists of wires with different properties can 
better meet the varying demands of inter-cluster traffic.

The paper makes three key contributions:

• We show that a low-latency low-bandwidth network 
can be effectively used to hide wire latencies and im­
prove performance.

• We show that a high-bandwidth low-energy network 
and an instruction assignment heuristic are effective at 
reducing contention cycles and total processor energy.

• We carry out a comprehensive evaluation of differ­
ent combinations of heterogeneous interconnects and 
show that by selecting the right combination of wires, 
total processor E D 2 can be reduced by up to 11%, 
compared to a baseline processor with homogeneous 
interconnects.

We therefore make a case for microarchitectural wire
management in future communication-bound processors.
As future work, we plan to explore other applications of
heterogeneous interconnects, such as in the transfer of data
between different levels of the memory hierarchy.
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