
Microarchitectural Techniques to Reduce Interconnect Power in Clustered
Processors

Karthik Ramani*, Naveen Muralimanohar*, Rajeev Balasubramonian *
* Department of Electrical and Computer Engineering

School of Computing
University of Utah

Abstract

The paper presents a preliminary evaluation of
novel techniques that address a growing problem -
power dissipation in on-chip interconnects. Recent
studies have shown that around 50% of the dynamic
power consumption in modern processors is within on-
chip interconnects. The contribution o f interconnect
power to total chip power is expected to be higher
in future communication-bound billion-transistor ar­
chitectures. In this paper, we propose the design of
a heterogeneous interconnect, where some wires are
optimized for low latency and others are optimized
for low power. We show that a large fraction o f on-
chip communications are latency insensitive. Effecting
these non-critical transfers on low-power long-latency
interconnects can result in significant power savings
without unduly affecting performance. Two primary
techniques are evaluated in this paper: (i) a dynamic
critical path predictor that identifies results that are
not urgently consumed, and (ii) an address prediction
mechanism that requires addresses to be transferred
off the critical path for verification purposes. Our re­
sults demonstrate that 49% o f all interconnect trans­
fers can be effected on power-efficient wires, while in­
curring a performance penalty o f only 2.5%.

1. Introduction

The shrinking of process technologies has enabled
huge transistor budgets on a single chip. To exploit
these transistors for high performance processing, nu­
merous partitioned architectures have been proposed
[9, 15, 17, 18, 19, 20]. A partitioned architecture em­
ploys small processing cores (also referred to as clus­

ters) with an interconnect fabric and distributes in­
structions of a single application across the processing
cores. By implementing small cores, fast clock speeds
and low design complexity can be achieved. Since
a single application is distributed across the clusters,
partitioned architectures inevitably entail frequent data
transfers across the chip. Thus, future processors are
likely to be extremely communication-bound, from the
point of view of performance and power.

Studies [1, 14, 19] have shown that wire delays do
not scale down at the same rate as logic delays. As a
result, the delay to send a signal across the diameter
of a chip will soon be of the order of 30 cycles. These
long wire delays serve as a serious performance limiter
at future technology generations. Further, it has been
shown that on-chip interconnects account for roughly
50% of the total power dissipation in modern proces­
sors [16]. Thus, the design of the interconnect fabric
has a strong influence on processor performance and
power.

This paper examines performance and power trade­
offs in the design of the inter-cluster communication
network. Most evaluations on partitioned or clustered
architectures have focused on instruction distribution
algorithms that minimize communication and load im­
balance. However, power optimizations of the inter­
connect at the microarchitectural level have received
little attention. We propose and evaluate microarchi-
tectural techniques that can exploit a heterogeneous
network with varying performance and power charac­
teristics.

A performance-centric approach attempts to opti­
mize wires to minimize delay. This entails the use
of optimally spaced repeaters, large drivers, and wide
wires, all of which increase power dissipation in the in­

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276284321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

terconnect. By optimizing wires for power efficiency,
performance is compromised. For example, by elimi­
nating repeaters, wire delay becomes a quadratic func­
tion of wire length. To alleviate power consumption
bottlenecks in future processor generations, we pro­
pose the design of a heterogeneous network, where
half the wires are optimized for delay and the other
half for power. We demonstrate that data transfers
on the interconnect fabric have varying delay require­
ments. Many transfers are not on the program criti­
cal path and can tolerate longer communication delays.
By effecting these transfers on the power-efficient net­
work, significant reductions in power are observed
with minimal impact on performance. We identify two
major sources of non-critical transfers - (i) values that
are not urgently sourced by consuming instructions,
and (ii) values that are being transferred to verify ad­
dress predictions.

The rest of the paper is organized as follows. Sec­
tion 2 describes the communication-bound processor
that serves as the evaluation framework. We propose
techniques that can exploit a heterogeneous intercon­
nect in Section 3 and evaluate them in Section 4. Sec­
tion 5 discusses related work and we conclude in Sec­
tion 6.

2. The Base Clustered Processor

Most proposals for billion-transistor processors em­
ploy a partitioned architecture [9, 15, 17, 18, 19, 20].
The allocation of instructions to computational units
can be performed either statically [9, 12, 15, 17, 18,
23] or dynamically [5, 19, 20]. All of these designs
experience a large number of data transfers across the
chip. For the purpose of this study, we focus on one
example implementation of a partitioned architecture
- a dynamically scheduled general-purpose clustered
processor. The solutions proposed in this paper are ap­
plicable to other architectures as well and are likely to
be equally effective.

The clustered processor that serves as an evaluation
platform in this study has been shown to work well for
many classes of applications with little or no compiler
enhancements [2, 5, 8, 11, 12, 26]. In this processor
(shown in Figure 1), the front-end is centralized. Dur­
ing register renaming, instructions are assigned to one
of 16 clusters. Each cluster has a small issue queue,
physical register file, and a limited number of func-

Figure 1. The 16-cluster system with four sets of
four clusters each and a centralized LSQ and data
cache. A crossbar interconnect is used for com­
munication within a set of clusters and a ring con­
nects the four crossbar routers.

tional units with a single cycle bypass network among
them. If an instruction’s source operands are in a dif­
ferent cluster, copy instructions are inserted in the pro­
ducing clusters and the values are copied into physical
registers in the consuming cluster. To minimize com­
munication cost and load imbalance, we implement in­
struction steering heuristics that represent the state-of-
the-art. These heuristics incorporate information on
dependence chains, critical operands, load, physical
location, etc., and have been extensively covered in
other papers [5, 11, 24].

The load/store queue (LSQ) and L1 data cache are
centralized structures. Effective addresses for loads
and stores are computed in one of the clusters and
then sent to the centralized LSQ. The LSQ checks for
memory dependences before issuing loads to the data
cache and returning data back to the requesting clus­
ter. While distributed LSQ and cache implementations
have been proposed [13, 26], we employ a centralized
LSQ and cache because a distributed implementation
entails significant complexity and offers only modest
performance improvements [4, 13].

Aggarwal and Franklin [3] point out that a crossbar
has better performance when connecting a small num­
ber of clusters, while a ring interconnect performs bet­
ter when the number of clusters is increased. To take
advantage of both characteristics, they propose a hier­
archical interconnect (Figure 1), where a crossbar con­
nects four clusters and a ring connects multiple sets of
four clusters. This allows low-latency communication
between nearby clusters. Each link on the interconnect
has a throughput of two transfers per cycle to deal with

2

the high traffic that is inevitable in such a partitioned
architecture.

3. Proposed Techniques

3.1 Motivation

A major bottleneck limiting the performance of any
partitioned architecture is the communication of data
between producer and consumer instructions in differ­
ent processing units. An ideal design would employ a
high speed wire that consumed as little power as pos­
sible. Magen et al. [16] show that 90% of the dy­
namic power consumed in the interconnect is in 10%
of the wires. The global wires in the partitioned archi­
tecture, such as the crossbar and inter-crossbar wires
that connect the different clusters are likely to be ma­
jor contributors to interconnect power. Data commun-
ciation on the interconnect can be categorised as fol­
lows: register values, store data, load data, and ef­
fective addresses for loads and stores. Register value
transfers account for 54% of all inter-cluster commu­
nication, while the transfer of data for store instruc­
tions accounts for around 5%, data produced by load
instructions accounts for 15%, and the transfer of ef­
fective addresses accounts for 24% of all communica­
tion. In the subsequent subsections, we show that a
number of transfers in each of these categories is la­
tency insensitive.

3.2 Power-Performance Trade-Offs in Intercon­
nect Design

The premise behind the paper is that there exists a
trade-off between performance and power consump­
tion in the design of on-chip interconnects. An inter­
connect that is optimized for low power is likely to
have longer delays and this has a debilitating effect on
program performance (quantified in Section 4). There­
fore, we propose the design of a heterogeneous in­
terconnect where half of the wires are optimized for
low delay and the other half are optimized for low
power. As part of a preliminary evaluation, our fo­
cus has been the identification of latency insensitive
interconnect transfers and a quantification of the per­
formance impact of effecting them on low power, long
latency wires. A detailed characterization of the power
and performance of different interconnect implemen­
tations remains future work. Here, we qualitatively

discuss one of the techniques that can be employed to
reduce interconnect power, although at a performance
cost.

Banerjee [7] developed a methodology to calculate
the repeater size and interconnect length that mini­
mizes the total interconnect power dissipation for any
given delay penalty. The premise behind their ap­
proach is also based on the fact that not all global
interconnects are on the critical path and hence, a
delay penalty can be tolerated on these non-critical
power efficient interconnects. As process technolo­
gies scale beyond 130nm, leakage power contributes
significantly to the interconnect power and hence their
technique provides greater power savings. For a de­
lay penalty of 20%, the optimal interconnect saves
50% and 70% power in 100 and 50 nm technologies.
Clearly, with technology scaling, leakage power dissi­
pation becomes the dominating component of the total
power dissipation and the use of small repeaters can
help lower the total interconnect power.

3.3 Identifying Critical Register Operands

To identify latency insensitive communications, the
first group of data transfers that we target are register
values that get bypassed to consuming instructions as
soon as they are generated by producing instructions.

Bypass of Register Values

In general, each instruction executed by a processor
requires one or more input register operands for its ex­
ecution. The instructions producing the operands wake
up the consumer as soon as they generate the operand
values. A consumer instruction cannot issue until all
of the input operands have arrived. The operand that
is produced last is more critical and needs to arrive
at the consumer as early as possible, while the other
operands can arrive as late as the last operand. In some
cases, even if all the operands are ready, the instruction
can wait in the issue queue if there is heavy contention
for the functional units. A table that can classify data
based on their arrival time and usage can be used to
send them either through a fast critical network or a
slow non-critical network.

We begin with a high-level description of how crit-
icality information is gathered. Each instruction in the
issue queue keeps track of the time difference between
the arrival of an input operand and its actual execution.

3

If the time difference is significant, the transfer of the
input operand is considered latency insensitive. When
the instruction completes, along with the completion
signal to the reorder buffer (ROB), a couple of bits are
transmitted, indicating the criticality nature of each in­
put operand. The ROB is augmented to keep track of
a few PC bits for the producer of each input operand.
These bits are used to index into a Criticality Predictor
that is a simple array of saturating counters, similar to
a branch predictor. When an instruction is dispatched
to a cluster, its criticality prediction is also sent to the
cluster. When the instruction completes, its result is
transferred to consumers on the low latency or low
power network depending on the criticality prediction.
Thus, some non-trivial hardware overhead has been in­
troduced in the centralized front-end. This overhead
may be acceptable in an architecture where the power
consumed by on-chip communications far outweighs
the power consumed in the criticality predictor, re­
name, and ROB stages. This implementation serves
as an example design point to evaluate the number of
non-critical transfers. Other simpler implementations
of criticality predictors are possible - for example, in­
structions following low-confidence branches. As fu­
ture work, we plan to evaluate the behavior of other
criticality predictors.

Transfer of Ready Register Operands

The above discussion targets register values that
have to be urgently bypassed to dependent instruc­
tions as soon as they are produced. There exists an­
other class of register input operands that are already
ready when an instruction is dispatched by the front-
end. Since it might take many cycles for the instruc­
tion to be dispatched to a cluster and for it to begin
execution, the transfer of its ready register operands
to the consuming cluster is often latency insensitive.
We observed that all such transfers can be effected on
the slow power-efficient network with a minimal im­
pact on performance. Such an implementation is es­
pecially favorable as it does not entail additional hard­
ware overhead for prediction mechanisms.

3.4 Communications for Cache Access

Cache Access in the Base Case

The earlier subsection describes the identification

of register values that are not urgently consumed by
other instructions. Register values represent a subset
of the traffic observed on the inter-cluster network. All
loads and stores compute their effective addresses in
the clusters and forward them to the centralized LSQ.
A load in the LSQ waits until its memory dependences
are resolved before accessing the L1 data cache and
forwarding the result back to the requesting cluster.
For store instructions, the data to be stored in the cache
is computed in one of the clusters and forwarded to the
centralized LSQ. The LSQ forwards this data to any
dependent loads and eventually writes it to the data
cache when the store commits. Thus, in addition to
the transfer of 64-bit register values, the inter-cluster
network is also responsible for the transfer of load ef­
fective addresses, store effective addresses, load data,
and store data.

Non-Critical Load Data

The data produced by a load instruction may be crit­
ical or not, depending on how quickly the consuming
instructions issue. The criticality predictor described
in the previous subsection can identify load instruc­
tions that produce critical data. Thus, it is possible to
employ the techniques described earlier to send load
data on either the critical or non-critical network. In
order to not further complicate the design of the criti-
cality predictor, for the purposes of this study, we as­
sume that all load data is sent to the requesting cluster
via the fast critical network.

Non-Critical Store Data

Store data, on the other hand, is often non-critical.
The late arrival of store data at the LSQ may delay exe­
cution in the following ways: (i) dependent loads have
to wait longer, (ii) the commit process may be stalled if
the store is at the head of the reorder buffer. As our re­
sults in the next section show, both of these events are
infrequent and store data can be indiscriminately sent
on a slower, power-efficient network. In our bench­
mark set, about 5% of all interconnect traffic can be
attributed to store data, providing ample opportunity
for power savings.

Non-Critical Load and Store Effective Addresses

Load and store effective address transfers are usu­
ally on the critical path - store addresses are urgently
required to resolve memory dependences and load ad-

4

Fetch queue size
Branch predictor

Bimodal predictor size
Level 1 predictor
Level 2 predictor

BTB size
Branch mispredict penalty

Fetch width
Dispatch and commit width

Issue queue size
Register fi le size

Re-order Buffer size
Integer ALUs/mult-div

FP ALUs/mult-div
L1 I-cache
L1 D-cache

L2 unifi ed cache
I and D TLB

Memory latency

comb. of bimodal and 2-level
2048

1024 entries, history 10
4096 entries

2048 sets, 2-way
at least 12 cycles

8 (across up to 2 basic blocks)
16

15 per cluster (int and fp, each)
3 0 per cluster (int and fp, each)

480
1/1 (in each cluster)
1/1 (in each cluster)

32KB 2-way
32KB 2-way set-associative,

6 cycles, 4-way word-interleaved
2MB 8-way, 25 cycles

128 entries, 8KB page size
160 cycles for the fi rst chunk

64

Table 1. Simplescalar simulator parameters.

dresses are required to initiate cache access. For many
programs, accurate address prediction and memory de­
pendence speculation can accelerate cache access [4].
For loads, at the time of instruction dispatch, the ef­
fective address and memory dependences can be pre­
dicted. This allows the cache access to be initiated
without waiting for the clusters to produce load and
store effective addresses. As soon as the cache is ac­
cessed, data is returned to the cluster that houses the
load instruction. When the cluster computes the effec­
tive address, it is sent to the centralized LSQ to ver­
ify that the address prediction was correct. The effec­
tive address and memory dependence predictors can be
tuned to only make high-confidence predictions, caus­
ing the mispredict rate to be much lower than 1% for
most programs [4]. With such an implementation, the
transfer of the effective address from the cluster to the
centralized LSQ is no longer on the critical path - de­
laying the verification of address predictions does not
significantly degrade the instruction execution rate.

3.5 Summary

Thus, we observe that there are two primary sources
of delay-insensitive transfers in a communication-
bound processor. (i) Data that is not immediately con­
sumed by dependent instructions: Of these, register
results produced by instructions, including loads, can
be identified as non-critical by our criticality predictor.
Store data is always considered non-critical. Input reg­
ister operands that have already been generated when
the consumer instruction is dispatched, are also always
considered non-critical. (ii) Data transfers that verify
predictions: If load and store effective addresses are
accurately predicted at the centralized LSQ, the trans­
fer of these addresses from the clusters to the LSQ hap­
pens only for verification purposes and does not lie on
the critical path for any instruction’s execution.

Section 4 identifies the performance impact of send­
ing delay-insensitive transfers on a power-efficient and
slower network.

4. Results

4.1 Methodology

Our simulator is based on Simplescalar-3.0 [10] for
the Alpha AXP ISA. Separate issue queues and phys­
ical register files are modeled for each cluster. Con-

tention on the interconnects and for memory hierarchy
resources (ports, banks, buffers, etc.) are modeled in
detail. To model a wire-delay-constrained processor,
each of the 16 clusters is assumed to have 30 physi­
cal registers (int and fp, each), 15 issue queue entries
(int and fp, each), and one functional unit of each kind.
While we do not model a trace cache, we fetch instruc­
tions from up to two basic blocks in a cycle. Important
simulation parameters are listed in Table 1.

The latencies on the interconnects would depend
greatly on the technology, processor layout, and avail­
able metal area. The estimation of some of these
parameters is beyond the scope of this study. For
the base case, we make the following reasonable as­
sumptions: it takes a cycle to send data to the cross­
bar router, a cycle to receive data from the crossbar
router, and four cycles to send data between cross­
bar routers. Thus, the two most distant clusters on
the chip are separated by 10 cycles. Considering that
Agarwal et al. [1] project 30-cycle worst-case on-chip
latencies at 0.035//. technology, we expect this choice
of latencies to be representative of wire-limited future
microprocessors1 . We assume that each communica­
tion link is fully pipelined, allowing the initiation of
a new transfer every cycle. Our results also show the
effect of a network that has communication latencies
that are a factor of two higher. By modeling such
a communication-bound processor, we clearly isolate

1It must be noted that the L2 would account for a large fraction
of chip area.

5

the performance differences between the different sim­
ulated cases. Similar result trends were also observed
when assuming latencies that were lower by a factor of
two. As Agarwal et al. predict [1], IPCs observed are
low due to a very high clock rate and presence of wire
delay penalties.

We use 21 of the 26 SPEC-2k programs as a bench­
mark set 2. The programs were fast-forwarded for two
billion instructions, simulated in detail for a million
instructions to warm up various structures, and then
measured over the next 100 million instructions. The
reference input set was used for all programs.

To understand the inherent advantages of the criti-
cality predictor, the simulations were performed with­
out any address prediction. This is because address
prediction adds to the benefits of the existing method­
ology and the combined results would not reflect the
use of the criticality predictor clearly. At the end of the
section, potential benefits of the criticality predictor
with address prediction are discussed. For all simula­
tions, three different interconnect configurations have
been used. In the base (high-performance) case, the
interconnects between the clusters are optimized for
speed and allow two transfers every cycle. To model a
processor that has interconnects optimized for power,
we simulate a model (low-power) like the base case,
but with wire latencies twice as much as those in the
high-performance case. The difference in the average
IPC between these two cases was found to be 21%,
underlining the impropriety of an approach that fo­
cuses solely on low power. The criticality-based case
assumes a heterogeneous interconnect with a combi­
nation of both the power optimized and the perfor­
mance optimized wires. In every cycle,we can start
one transfer each on the performance-optimized link
and on the power-optimized link. The latency of the
performance-optimized link is like that of the high-
performance case, while the latency of the power-
optimized link is like that of the low-power case. In
the criticality-based case, all store data goes through
the power optimized wires while all load data utilizes
the fast wires. The ready operands, operands which
are available for the consuming instruction at the time
of dispatch, are all sent through the power optimized
wires. The criticality predictor is used to choose be-

2Sixtrack, Facerec, and Perlbmk were not compatible with our
simulation infrastructure, while Ammp and M cf were too memory-
bound to be affected by processor optimizations.

IPC Analysis

Figure 2. Graph showing performance of the
criticality-based approach, compared to the
high-performance and low-power cases.

tween the fast and the slow interconnect for bypassed
register values.

4.2 Effects on Performance

To understand the performance of the criticality pre­
dictor, we refer to Figures 2 and 3. In Figure 2, the
grey bars depict IPC for the low-power case, the black
bars depict the improvements in IPC obtained by mov­
ing to the criticality-based case, and the white bars
show the difference in IPC between the criticality-
based and high-performance cases. The graph clearly
shows that increasing the delay for every single trans­
fer has a much larger impact on performance than in­
creasing the delay for selected transfers based on crit-
icality. Figure 3 shows the IPC gap between the high-
performance and criticality-based cases and the corre­
sponding percentage of transfers that get sent on the
low-power interconnect. Note that these models as­
sume no address prediction techniques, requiring that
all effective addresses be sent on the low-latency inter­
connect.

The difference in the average IPC between the high-
performance and low-power cases is 21%. For the
criticality-based case, the criticality predictor is em­
ployed only for bypassed register transfers. The per­
centage of bypassed register transfers that get sent on
the low-power network is roughly 29%. In addition,
all store data and ready register operands get sent on
the low-power network. From Figure 3, We see that
about 36.5% of all transfers can happen on the low-

6

Different types of interconnect transfer

!

100%

S Total Critical
□ Effective addresses predicted
□ Store data
E] Ready Regs
Byp Regs

Figure 3. Plot showing the percentage of all
transfers that happen on the low-power inter­
connect (not including predicted effective ad­
dresses) and the corresponding performance
loss.

power network. The overall loss in IPC is only 2.5%,
showing that we have identified a very favorable subset
of transfers that are relatively latency insensitive.

In eon and vortex, performance increases slightly
compared to the base case - the ability of the
criticality-based interconnect to accomodate more
data reduces contention in the links. Gap is the only
program where the unpredictable nature of the code re­
sults in a 11% IPC loss because of inaccuracies in the
criticality predictor.

This study highlights the importance of consider­
ing the design of wires with different levels of perfor­
mance and power in different parts of the processor.
Figure 2 shows us that ready register transfers tend not
to be on the critical path and hence can use the slower
and power optimized wires. It also tells us that the
design of bypasses requires careful performance and
power considerations. The use of a criticality predic­
tor helps us steer data to preserve performance while
reducing power.

Studies [4] have shown that around 52% of effective
addresses have high confidence predictions. Trans­
ferring high confidence address predictions on the
criticality-based interconnect can potentially achieve
greater power savings. Figure 4 depicts the different
kinds of transfers that happen on the interconnect as a
fraction of the total transfers. We see that high confi­
dence predictions that go through the criticality-based

Figure 4. Graph showing different kinds of
non-critical transfers as a fraction of total
transfers

links account for 12.5% of the total transfers. This is
in addition to the already existing non-critical register
and store data transfers. Overall, we have 49% of the
traffic (including address prediction values) through
the power optimized links.

In future communication-bound processors, we ex­
pect more than 50% of chip power to be consumed
within the interconnects. Assuming that our approach
targets roughly 80% of on-chip interconnects and that
the low-power wires consume half as much power as
the high-power wires, overall chip power should re­
duce by about 10% with our optimizations.

5. Related Work

Tune et al. [24] and Srinivasan et al. [22] developed
several techniques for dynamically predicting the criti­
cality of instructions. Seng et al. [21] used the QOLD
heuristic suggested by Tune to find critical instruc­
tions and redirect them to different units optimized for
power and performance. The QOLD heuristic predicts
an instruction to be critical if it reaches the top of the
issue queue, i.e. the instruction has been waiting for a
long time for its operands. They used slow low power
units for executing the non-critical instructions to limit
the performance impact. A recent study by Balasubra­
monian et al. [6] evaluates the design of heterogeneous
cache banks and the use of criticality to assign instruc­
tions and data to each bank.

Magen [16] show that around 50% of a proces­

7

sor’s dynamic power is dissipated in the interconnect
alone. They characterize interconnect power in a cur­
rent microprocessor designed for power efficiency and
propose power aware routing algorithms to minimize
power in the interconnect. They show that tuning in­
terconnects for power optimizations could yield good
results.

Several microarchitectural power simulators have
been proposed to date. Recently, Wang et al. [25] pro­
posed an interconnection power-performance simula­
tor to study on-chip interconnects in future processors.

6. Conclusions

The power consumed by on-chip interconnects is al­
ready a major contributor to total chip power [16]. Fu­
ture billion transistor architectures are likely to expend
significantly more power transferring values between
the different computational units. Various techniques,
such as fewer repeaters, low-capacitance drivers, low
voltage swings, etc., can be employed to reduce the
power within the interconnects, but at the cost of
longer wire delays.

Our results show that a large fraction of on-chip
communications are latency tolerant. This makes the
case for a heterogeneous interconnect, where some of
the wires are optimized for high speed and the others
for low power. Assuming such a heterogeneous inter­
connect is possible, we evaluate its potential to limit
performance degradation, while effecting a majority of
transfers on the power-efficient network. Our results
show that latency tolerant non-critical transfers can be
classified as follows: (i) register values that are not ur­
gently read by consuming instructions (accounting for
32.3% of all interconnect transfers), (ii) store data that
is often not forwarded to subsequent loads (account­
ing for 4.1% of all transfers), (iii) predicted load and
store effective addresses that are being transferred only
for verification purposes (12.8% of all transfers). As
a result, roughly 49% of all inter-cluster communica­
tions can be off-loaded to power-efficient wires while
incurring a performance loss of only 2.5%. If the inter­
connect is entirely composed of power-efficient long-
latency wires, the performance degradation is as high
as 21%. Thus, a heterogeneous interconnect allows
us to strike a better balance between overall processor
performance and power.

This paper serves as a preliminary evaluation of the

potential of a heterogeneous interconnect. A more de­
tailed analysis of the power-performance trade-offs in
interconnect design will help us better quantify the
performance and power effect of such an approach.
The techniques proposed here can be further extended
to apply to other processor structures, such as the
ALUs, register files, issue queues, etc.

References

[1] V. Agarwal,M. Hrishikesh, S. Keckler, andD. Burger.
Clock Rate versus IPC: The End of the Road for
Conventional Microarchitectures. In Proceedings o f
ISCA-27, pages 248-259, June 2000.

[2] A. Aggarwal and M. Franklin. An Empirical Study
of the Scalability Aspects of Instruction Distribution
Algorithms for Clustered Processors. In Proceedings
ofISPASS, 2001.

[3] A. Aggarwal and M. Franklin. Hierarchical Inter­
connects for On-Chip Clustering. In Proceedings of
IPDPS, April 2002.

[4] R. Balasubramonian. Cluster Prefetch: Tolerating
On-Chip Wire Delays in Clustered Microarchitec­
tures. In Proceedings o f ICS-18, June 2004.

[5] R. Balasubramonian, S. Dwarkadas, and D. Al-
bonesi. Dynamically Managing the Communication-
Parallelism Trade-Off in Future Clustered Processors.
In Proceedings o f ISCA-30, pages 275-286, June
2003.

[6] R. Balasubramonian, V. Srinivasan, and
S. Dwarkadas. Hot-and-Cold: Using Criticality
in the Design of Energy-Efficient Caches. In
Workshop on Power-Aware Computer Systems, in
conjunction with MICRO-36, December 2003.

[7] K. Banerjee and A. Mehrotra. A Power-optimal Re­
peater Insertion Methodology for Global Intercon­
nects in Nanometer Designs. IEEE Transactions
on Electron Devices, 49(11):2001-2007, November
2 0 0 2 .

[8] A. Baniasadi and A. Moshovos. Instruction Dis­
tribution Heuristics for Quad-Cluster, Dynamically-
Scheduled, Superscalar Processors. In Proceedings
o f MICRO-33, pages 337-347, December 2000.

[9] R. Barua, W. Lee, S. Amarasinghe, and A. Agar-
wal. Maps: A Compiler-Managed Memory System
for Raw Machines. In Proceedings o f ISCA-26, May
1999.

[10] D. Burger and T. Austin. The Simplescalar Toolset,
Version 2.0. Technical Report TR-97-1342, Univer­
sity of Wisconsin-Madison, June 1997.

[11] R. Canal, J. M. Parcerisa, and A. Gonzalez. Dynamic
Cluster Assignment Mechanisms. In Proceedings of
HPCA-6, pages 132-142, January 2000.

8

[12] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic.
The Multicluster Architecture: Reducing Cycle Time
through Partitioning. In Proceedings o f MICRO-30,
pages 149-159, December 1997.

[13] E. Gibert, J. Sanchez, and A. Gonzalez. Effective
Instruction Scheduling Techniques for an Interleaved
Cache Clustered VLIW Processor. In Proceedings o f
MICRO-35, pages 123-133, November 2002.

[14] R. Ho, K. Mai, and M. Horowitz. The Future of
Wires. Proceedings o f the IEEE, Vol.89, No.4, April
2 0 0 1 .

[15] U. Kapasi, W. Dally, S. Rixner, J. Owens, and
B. Khailany. The Imagine Stream Processor. In Pro­
ceedings ofICCD, September 2002.

[16] N. Magen, A. Kolodny, U. Weiser, and N. Shamir. In­
terconnect Power Dissipation in a Microprocessor. In
Proceedings ofSystem Level Interconnect Prediction,
February 2004.

[17] R. Nagarajan, K. Sankaralingam, D. Burger, and
S. Keckler. A Design Space Evaluation of Grid Pro­
cessor Architectures. In Proceedings o f MICRO-34,
pages 40-51, December 2001.

[18] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson,
and K.-Y. Chang. The Case for a Single-Chip Mul­
tiprocessor. In Proceedings o f ASPLOS-VII, October
1996.

[19] S. Palacharla, N. Jouppi, and J. Smith. Complexity-
Effective Superscalar Processors. In Proceedings of
ISCA-24, pages 206-218, June 1997.

[20] J. Sanchez and A. Gonzalez. Modulo Scheduling for
a Fully-Distributed Clustered VLIW Architecture. In
Proceedings o f MICRO-33, pages 124-133, Decem­
ber 2 0 0 0 .

[21] J. S. Seng, E. S. Tune,, andD. M. Tullsen. Reducing
Power with Dynamic Critical Path Information. In
Proceedings o f the 34th International Symposium on
Microarchitecture, December 2001.

[22] S. Srinivasan, R. Ju, A. Lebeck, and C. Wilkerson.
Locality vs. Criticality. In Proceedings o f ISCA-28,
pages 132-143, July 2001.

[23] J. Steffan and T. Mowry. The Potential for Us­
ing Thread Level Data-Speculation to Facilitate Au­
tomatic Parallelization. In Proceedings o f HPCA-4,
pages 2-13, February 1998.

[24] E. Tune, D. Liang, D. Tullsen, and B. Calder. Dy­
namic Prediction of Critical Path Instructions. In Pro­
ceedings ofHPCA-7, pages 185-196, January 2001.

[25] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion:
A Power-Performance Simulator for Interconnection
NEtworks. In Proceedings o f the 35th International
Symposium on Microarchitecture, November 2002.

[26] V. Zyuban and P. Kogge. Inherently Lower-Power
High-Performance Superscalar Architectures. IEEE
Transactions on Computers, March 2001.

9

