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Abstract

The ever increasing demand for high clock speeds and 

the desire to exploit abundant transistor budgets have re

sulted in alarming increases in processor power dissipa

tion. Partitioned (or clustered) architectures have been pro

posed in recent years to address scalability concerns in fu

ture billion-transistor microprocessors. Our analysis shows 

that increasing processor resources in a clustered archi

tecture results in a linear increase in power consumption, 

while providing diminishing improvements in single-thread 

performance. To preserve high performance to power ra

tios, we claim that the power consumption of additional 

resources should be in proportion to the performance im

provements they yield. Hence, in this paper, we propose the 

implementation of heterogeneous clusters that have varying 

delay and power characteristics. A cluster’s performance 

and power characteristic is tuned by scaling its frequency 

and novel policies dynamically assign frequencies to clus

ters, while attempting to either meet a fixed power budget or 

minimize a metric such as Energy x Delay2 (E D 2). By in

creasing resources in a power-efficient manner, we observe 

a 11% improvement in E D 2 and a 22.4% average reduc

tion in peak temperature, when compared to a processor 

with homogeneous units. Our proposed processor model 

also provides strategies to handle thermal emergencies that 

have a relatively low impact on performance.

Keywords: partitioned (clustered) architectures, 

Energy x Delay2, temperature, dynamic frequency 

scaling.

1 Introduction

Recent technology trends have led to abundant transis

tor budgets, high clock speeds, and high power densities 

in modem microprocessors. Simultaneously, latencies of 

on-chip and off-chip storage structures (caches, memories) 

have increased relative to logic delays. If architects make 

no attempt to hide these long latencies, clock speed im

*This work was supported in part by NSF grant CCF-0430063.

provements do not translate into significant performance 

improvements. Long latencies can be tolerated effectively 

via a number of strategies, such as out-of-order execution 

with a large in-flight instruction window, data prefetching, 

etc. However, the quest for instruction-level parallelism 

(ILP) often succumbs to the law of diminishing returns. 

Once the low-hanging fruit has been picked, transistors al

located for ILP yield marginal improvements, but expend 

significant energy. This paper investigates if abundant tran

sistor budgets can be exploited without causing inordinate 

increases in power density.

Partitioned architectures [2, 6, 7, 12, 20] have been pro

posed in recent years to allow processor resources to scale 

up without impacting clock speed or design complexity. 

A partitioned architecture employs small processing cores 

(also referred to as clusters) with an interconnect fabric, 

and distributes instructions of a single application across 

the processing cores. The small size of each core enables 

low design complexity and fast clock speeds, and indepen

dent dependence chains executing on separate clusters en

able high parallelism. Of course, most applications can

not be decomposed into perfectly independent dependence 

chains. This results in significant amounts of data being 

communicated between clusters.

Even though a partitioned architecture is more scalable 

than a monolithic architecture, the addition of more re

sources will eventually yield marginal improvements in ILP 

(if at all). On the other hand, the addition of resources in

evitably leads to a linear increase in power consumption. 

Figure 1 shows the improvement in instructions per cycle 

(IPC) achieved by adding more clusters. It also shows the 

power overhead incurred by adding more clusters (the sim

ulated processor model and the workload are described in 

detail in Section 4). Improvement in IPC is not commen

surate with the increase in processor power, and aggres

sive designs with numerous resources can have very poor 

Energy x Delay and Energy x Delay2 (ED 2) character

istics. In this paper, we argue that if additional resources are 

likely to yield marginal IPC improvements, they must also 

incur marginal power overheads. To achieve this goal, we 

propose the design of heterogeneous clusters, where differ-
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IPC and Power Scaling

Number of Clusters

Figure 1. IPC and Power as number of clusters 
increases, normalized to the 1-cluster system

ent clusters are optimized for either performance or power. 

Such an approach can entail significant design complex

ity in a conventional monolithic superscalar architecture. 

For example, accommodating different register implemen

tations within a single register file can pose circuit timing 

issues and pipeline scheduling difficulties in a monolithic 

superscalar. A partitioned architecture, on the other hand, 

is modular enough that the properties of one cluster do not 

influence the design of another cluster.

Further, we advocate dynamic heterogeneity - frequency 

scaling allows a cluster to dynamically serve as either a 

high-performance or low-power cluster. We propose a dy

namic adaptation policy that takes advantage of program 

metrics that estimate the performance potential of addi

tional resources and selects a cluster configuration with 

minimum E D 2. We observe E D 2 improvements of 11%, 

compared to a system comprised of homogeneous clusters. 

If the processor must meet a fixed power budget, we observe 

that a heterogeneous configuration is often able to maximize 

performance while meeting this power budget. By allowing 

a cluster to alternate between high and low-power mode, op

erating temperature on a chip is reduced, leading to lower 

leakage power dissipation and fewer thermal emergencies. 

Heterogeneous clusters also present the option of handling 

a thermal emergency in a manner that minimally impacts 

performance.

In summary, this paper presents low-complexity novel 

proposals (heterogeneous clusters and dynamic resource al

location) and detailed evaluations that demonstrate signifi

cant E D 2 and temperature benefits. These innovations are 

especially important when single-threaded workloads exe

cute on aggressive microprocessor designs that yield dimin

ishing IPC improvements. The paper is organized as fol

lows. Section 2 reviews our base architecture model. Sec

tion 3 discusses the design of heterogeneous clusters and 

our novel dynamic adaptation policy. Section 4 evaluates 

the impact of our proposed techniques on E D 2 and tem

perature. Finally, Section 5 discusses related work and we 

conclude in Section 6.

2 The Base Clustered Processor

A variety of architectures have been proposed to exploit 

large transistor budgets on a chip [2, 6, 7, 8, 12, 18, 20, 

28, 29, 33, 35, 39], Most proposals partition the archi

tecture into multiple execution units and allocate instruc

tions across these clusters, either statically or dynamically. 

For our evaluations in this study, we employ a dynami

cally scheduled clustered architecture. This model has been 

shown to work well for many classes of applications with 

little or no compiler support.

2.1 The Centralized Front End

As shown in Figure 2, 11151111011011 fetch, decode, and 

dispatch (register rename) are centralized in our processor 

model. During register rename, instructions are assigned 

to one of four clusters. The instruction steering heuristic 

is based on Canal et al.'s ARMBS algorithm [13] and at

tempts to minimize load imbalance and inter-cluster com

munication. For every instruction, we assign weights to 

each cluster to determine the cluster that is most likely to 

minimize communication and issue-related stalls. Weights 

are assigned to a cluster if it produces input operands for 

the instruction. Additional weights are assigned if that pro

ducer has been on the critical path in the past [44], A cluster 

also receives weights depending on the number of free is

sue queue entries within the cluster. When dispatching load 

instructions, more weights are assigned to clusters that are 

closest to the data cache. Each instruction is assigned to the 

cluster that has the highest weight according to the above 

calculations. If that cluster has no free register and issue 

queue resources, the instruction is assigned to a neighbor

ing cluster with available resources.

2.2 The Execution Units

Our clustered architecture employs small computation 

units (clusters) that can be easily replicated on the die. Each 

cluster consists of a small issue queue, physical register file, 

and a limited number of functional units with a single cycle 

bypass network among them. The clock speed and design 

complexity benefits stem from the small sizes of structures 

within each cluster. Dependence chains can execute quickly 

if they only access values within a cluster. If an instruction 

sources an operand that resides in a remote register file, the 

register rename stage inserts a “copy instruction” [13] in 

the producing cluster so that the value is moved to the con

sumer's register file as soon as it is produced. These regis

ter value communications happen over longer global wires 

and can take up a few cycles. Aggarwal and Franklin [2] 

show that a crossbar interconnect performs the best when
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Figure 2. A partitioned architecture model with 4 
clusters and a centralized frontend.

connecting a small number of clusters (up to four), while 

a hierarchical interconnect performs better for a large num

ber of clusters. Even though future aggressive systems are 

likely to employ many clusters, we expect that the clusters 

will be partitioned among multiple threads. Only a subset of 

programs show significant IPC benefits by employing more 

than four clusters and even this improvement may not war

rant taking resources away from other threads. In the com

mon case, we expect that most single-threaded programs 

will execute on four clusters and we therefore restrict our

selves to systems with fewer than four clusters that employ 

a crossbar interconnect.

Earlier studies have shown that the performance im

provement from a distributed cache may not warrant the 

implementation complexity [5, 25, 38], We implement a 

centralized cache and load/store queue (LSQ) that are also 

accessible through the crossbar router (Figure 2). Load and 

store instructions are assigned to clusters, where effective 

address computation happens. The effective addresses are 

sent to the centralized LSQ and cache. The LSQ checks for 

memory dependences before issuing a load and returning 

the word back to the requesting cluster.

3 Heterogeneous Clusters

Partitioned or clustered architectures have favorable 

scalability properties. As transistor budgets increase, we 

can increase the number of clusters while only impact

ing the complexity of the dispatch stage. A higher num

ber of clusters enables larger in-flight instruction windows, 

thereby potentially boosting ILP. However, as is true with 

most ILP techniques, this strategy quickly yields marginal 

returns. As Figure 1 showed us, the IPC jump in moving 

from one to two clusters is 31%, but the jump in mov

ing from three to four clusters is only 8%. Additional re

sources either remain under-utilized or are busy executing 

instructions along mis-predicted paths. Unfortunately, the 

power overhead of each additional cluster is roughly con

stant. Moreover, disproportionate utilization rates of dif

ferent processor structures lead to localized hotspots that 

severely degrade chip reliability and trigger thermal emer

gencies.

3.1 High-Performance (HPC ) and Low-Power 

Clusters (LPC)

In order to better match the IPC and power curves, 

we propose adding resources in a power-efficient manner. 

Each resource can toggle between high-performance and 

low-power mode, thereby also improving thermal proper

ties. We employ two different classes of clusters. The first 

class of clusters, named the high-performance and high- 

power clusters (HPCs), are designed to deliver high per

formance while consuming significant power. The second 

class of clusters, the low-power and low-performance clus

ters (LPCs), are frequency scaled versions of the HPCs. 

They operate at a frequency that is lower than that of the 

HPCs by a factor of four. In some cases (thermal emergen

cies or high inter-cluster communication), we even com

pletely turn a cluster off by gating its supply voltage. An 

important attribute of partitioned architectures is low design 

complexity because each cluster can be created by replicat

ing a single cluster’s design. By incorporating heterogene

ity, we are not compromising this advantage. Each clus

ter has an identical design and heterogeneity is provided 

through frequency scaling.

We allow each cluster’s clock to be independently con

trolled, resulting in at least four distinct clock domains. The 

clocks may or may not originate from the same source. Ei

ther way, the interface between clock domains does not im

pose a significant performance or power overhead [40, 42], 

This interface is implemented at the crossbar router. Each 

link operates at the frequency of the cluster it is connected 

to. The buffers in the router can be read and written at edges 

belonging to different clocks. Stall cycles are introduced if 

the clock edge that wrote the result is not separated from 

the clock edge that attempts to read the result by a mini

mum synchronization delay. Stalls usually happen only if 

the buffer is nearly empty or nearly full. If the clocks origi

nate from a single source and are integral multiples of each 

other (as is the case in our simulations), these synchroniza

tion delays are rare. If the processor is forced to employ 

multiple clock sources due to clock distribution problems, 

these synchronization delays are introduced in the base pro

cessor as well. Even though one of the links may be drain

ing a buffer only once every four (fast) cycles, the buffer 

size is bounded. Each instruction in a cluster can gener

ate no more than three input data communications and the 

number of instructions in a cluster is bounded by its window 

size.

Dynamic frequency scaling (DFS) is a well-established 

low-overhead technique that is commonly employed in 

modern-day microprocessors [17, 21]. Most implementa

tions allow the processor to continue executing instructions 

even as the clock speed is being altered. In our case, we only 

toggle between two frequencies (5 GHz and 1.25 GHz) and 

a change happens once every few million instructions, on 

average. This amounts to a negligible overhead even if we
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assume that the processor is stalled for as many as thousand 

cycles during a frequency change. Note that some stalls are 

introduced because in-flight packets must be routed before 

the frequency change can happen. Not doing this could re

sult in register tags arriving at the wrong time, thereby lead

ing to scheduling problems. Further, if a cluster is being 

turned off, architectural registers in that cluster will have to 

be copied elsewhere. We will assume that turning a clus

ter on and off with power-gating [1] can also happen within 

the assumed thousand cycle overhead. In tandem with fre

quency scaling, voltages can be scaled down as well, al

lowing significant power savings. However, voltage scaling 

has higher overheads and we will restrict ourselves to the 

more complexity-effective approach of dynamic frequency 

scaling for all of our results. With DFS, each cluster can in

dependently switch from being an HPC to an LPC, or vice 

versa. Next, we will describe how various metrics are con

sidered in determining the frequency for each cluster.

3.2 Dynam ic Adaptation Mechanism

Before devising a resource allocation mechanism that 

balances performance benefits and power overheads, we 

must define the metric we are attempting to optimize. 

Energy x Delay2 or E D 2 is commonly acknowledged to 

be the most reliable metric while describing both perfor

mance and power [9, 31]. Not only does it reflect marketing 

goals (performance is slightly more important than energy), 

it also has favorable theoretical properties. The E D 2 equa

tion can be expressed as follows (a is activity factor, C is 

capacitance, /  is frequency, and V is voltage):

E D 2 =  Power I ) ’ a C fV 2D 3

If we assume a linear relationship between the speed and 

voltage of a circuit, we see that the E D 2 term is an invariant 

when voltage and frequency scaling is applied to the pro

cessor. Put differently, (E D 2) 3 or (PD 3) 3 is a measure 

of performance for different processors that are all voltage - 

and-frequency scaled so as to consume an equal amount of 

power. For example, if V is reduced to 0.9V, then /  is re

duced to 0.9/ and D  is increased to D/0.9, resulting in the 

cancellation of the constant factors. A different metric, such 

as ED , may not be robust under such optimizations. With 

the ED  metric, any processor (A) operating well above the 

threshold voltage can be shown to be “better” than any other 

processor (B) if it (A) is sufficiently voltage and frequency 

scaled. Similarly, E D 2 is not susceptible to frequency scal

ing tricks - E D 2 is minimized when the processor operates 

at its peak frequency. For all these reasons, our algorithm at

tempts to optimize the E D 2 metric. The linear relationship 

between circuit speed and voltage does not always hold in 

practice. Therefore, our results also present IPC and power 

values, allowing the interested reader to compute other rel

evant metrics.

Since each cluster can operate as an HPC, an LPC, or 

be completely turned off, the processor can be configured

in many interesting ways. Figure 3 shows the E D 2 value 

for each benchmark program under various fixed configu

rations. For example, the bars denoted by “3/” refer to a 

processor model where three clusters operate at peak fre

quency while one cluster is turned off, and the bars denoted 

by “3fls” refer to a processor model with three clusters at 

peak frequency (fast) and one cluster at 1/4th the peak fre

quency (slow). For brevity, many of the configurations that 

yield uninteresting E D 2 values are left out. It is clear that 

a single statically chosen design point benefits only a sub

set of the applications while adversely affecting the perfor

mance/power characteristics of other applications. For ex

ample, the processor model with two fast clusters (2f) deliv

ers low E D 2 while executing benchmarks such as gcc and 

twolf, but degrades performance significantly for galgel.

Benchmark Distance

between

branch

mispredicts

L2

miss

rate

LID

miss

rate

Nearly

optimal

E D 2
models

Base

Case

IPC

m
eon 57 0.14 0.72 3 f 1.47

crafty 72 0.7 1.68 2 f ,3 f 1.12

bzip2 53 2.5 3.5 2 f 0.82

gap 65 11.77 0.67 2 f 0.90

gcc 103 2.25 3.38 2 f 0.75

gzip 129 0.21 6.56 2 f 0.73

parser 80 4.35 3.83 2 f 0.78

twolf 60 0.31 7.28 2 f 0.77

ammp 289 0.79 6.63 4 f 1.74

apsi 360 34.8 2.77 4 f 1.85

vortex 183 3.521 1.44 4 f 1.78

wupwise 170 20.61 2.22 4 f 1.92

galgel 356 1.24 7.19 3fi 4 f 2.63

mesa 204 5.73 0.63 3 f 4 f 2.35

vpr 161 11.74 5.67 2 f  3 f 0.51

mgrid 18430 12.29 6.62 4 f,4 s 1.43

fma3d 544 22.28 6.48 4s 1.45

equake 506 16.44 17.02 4s 0.6

lucas 1628292 16.67 20.52 4s 0.5

swim 33895 13.76 20.19 4s 1.29

art 97 7.8 41.39 3 fls 0.79

applu 55 23.03 9.76 3 /  4 f 1.04

mcf 57 43.25 37.61 4s, Jf3s 0.17

Table 1. Average distance between branch mis

predicts, L2 and L1D cache miss rates, configura

tions that yield ED2 within 5% of the optimal ED2, 

and raw IPC for baseline model with 4 HPCs.

Table 1 shows the average L I data and L2 cache miss 

rates, average distance between branch mispredicts, and the 

configurations that yield E D 2 within 5% of the lowest E D 2 

observed among all the statically fixed configurations (re

ferred to as the optimal E D 2 for each benchmark). From 

this data, we take note of the following trends, (i) Programs 

(lucas, equake, etc.) with high data cache miss rates (>  8% 

L ID  miss rate and >  12% L2 miss rate) benefit from using 

more clusters. More clusters imply more registers and issue 

queue entries, which in turn imply large in-flight windows 

that increase the chances of finding useful work while wait-
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E D A2  m e t r i c  f o r  d i f f e r e n t  C o n f i g u r a t i o n s

B e n c h m a r k

Figure 3. ED2 metric for different static configurations normalized to baseline system with 4 HPCs.

ing for cache misses. There is usually not enough work to 

keep the processor busy for the entire duration of a cache 

miss, which implies that the execution units can execute 

at low frequencies and still complete their work before the 

cache miss returns, (ii) Programs (gcc, bzip2, etc.) with 

high branch misprediction rates (average distance between 

mispredicts being less than 100 instructions) benefit very 

little from large in-flight windows as most instructions in 

the window are likely to be on mispredicted paths. Exe

cuting instructions at a low frequency can severely degrade 

performance because it increases the time taken to detect a 

branch misprediction.

Clearly, branch mispredictions and cache misses are the 

biggest bottlenecks to performance and simply observing 

these metrics guides us in detecting the most “efficient” pro

cessor configuration. Based on the observations above, we 

identify the following relationships:

•  Low cache miss rates and high branch misprediction 

rates: Both factors suggest using small in-flight win

dows with high frequencies. Minimum E D 2 was ob

served for configurations that employed only two clus

ters at peak frequency (2f).

•  Low cache miss rates and low branch misprediction 

rates: Both factors indicate that the program has high 

ILP and could be severely degraded if we either re

duced window size or frequency. The base case orga

nization with four clusters operating at peak frequency 

(4f) yielded minimum E D 2.

•  High cache miss rates and low branch misprediction 

rates: Both factors suggest the use of large windows 

and the first factor suggests the use of frequency-scaled 

clusters. A configuration such as 1/3s or 4s often yields 

the lowest E D 2 (4s was selected for our simulations).

•  High cache miss rates and high branch misprediction 

rates: The two factors make conflicting suggestions

for window size and frequency. Empirically, we ob

served that the performance penalty of low frequency 

and small window size was too high and the lowest 

E D 2 was observed for configurations that struck a bal

ance, such as 3fls.

A small subset of processor configurations are sufficient 

to deliver optimal E D 2 values for most of the benchmarks. 

Of the many different configurations, our dynamic algo

rithm employs the following four configurations: 4s, 2f 4f, 

3fls. The reduction in the number of configuration choices 

available to the dynamic algorithm helps reduce its com

plexity. Only for four of the 23 benchmarks (eon, vpr, ap- 

plu, mcf) does our heuristic select a configuration with E D 2 

not within 5% of the optimal E D 2.

Many recent studies [4,6,19,22, 23,26, 37,45] have ex

amined algorithms for dynamic processor adaptation. Some 

of these algorithms make decisions at subroutine bound

aries, some make decisions at specific events (cache misses, 

full buffers, etc.), while some make decisions at periodic in

tervals. We found that for our experiments, interval-based 

techniques entailed little complexity and reacted appropri

ately to phase changes. An interval is defined as the time 

taken to commit one million instructions (we also evalu

ate other interval sizes). At the end of every interval, hard

ware counters that track LI and L2 cache miss rates and the 

number of branch mispredictions are examined. Depending 

on whether these counters exceed certain thresholds, one of 

the four configurations described above is selected and em

ployed for the next interval. Since these counters directly 

indicate the optimal configuration, there is no need for an 

exploration process that profiles many candidate configura

tions and selects one. Since there is no exploration process, 

there is also no need to detect when the program moves to a 

new phase with radically different behavior.

Our algorithm is based on the premise that behavior in 

the last interval will repeat in the next interval. In the worst 

case, a program may exhibit dramatically different behavior

104



in every successive interval. This can be easily detected as 

it would result in configuration changes in every interval. 

The operating system can then choose to increase the inter

val length or shut off the dynamic adaptation mechanism. 

It must be noted that our adaptation algorithm simply se

lects the configuration that is likely to yield minimum E D 2 

with little regard to the actual performance loss. If signifi

cant performance losses cannot be tolerated, the adaptation 

algorithm will have to be altered and this is discussed in a 

later section.

Once an appropriate configuration has been chosen, say 

3fls, the following questions arise: (i) which cluster is as

signed the low frequency, and (ii) what instructions are as

signed to the slow cluster? The answer to the first ques

tion lies in the thermal properties of the processor and is 

discussed in the next sub-section. To address the second 

question, we attempted a number of steering mechanisms 

that take instruction criticality into account. We modeled 

per-instruction and branch-confidence based criticality pre

dictors to identify instructions that are off the critical path 

and dispatch them to slow clusters. However, these steer

ing policies inevitably increased the degree of inter-cluster 

communication, often resulting in contention cycles for 

other data transfers that were on the program critical path. 

Load balance was also affected as critical and non-critical 

instructions are rarely in the same ratio as the fast and slow 

clusters (3:1 in the case of 3/7s'). In spite of our best efforts, 

even complex alterations to the steering policy resulted in 

minor IPC improvements (if at all) over the base steering 

policy that only attempts to balance communication and 

load. We will only consider the base steering policy for the 

rest of the paper, which implies that some critical instruc

tions may be executed on the slower clusters.

3.3 Thermal Emergencies

If each cluster operates at peak frequency, the register 

files in each cluster often emerge as the hottest spots on the 

chip. By allowing each cluster to occasionally operate at a 

lower frequency (or be turned off), the operating tempera

ture at each register file is greatly reduced. If a configuration 

such as 3fls is chosen, a round-robin policy selects the clus

ter that is frequency-scaled every million cycles. There are 

two advantages to a lower operating temperature: (i) The 

number of thermal emergencies are reduced. On a thermal 

emergency, the processor must take steps to reduce power 

dissipation at the hot-spot, often leading to a performance 

penalty, (ii) The leakage power dissipation on a chip is an 

exponential function of the operating temperature. Even if 

thermal emergencies are not triggered, by reducing operat

ing temperature, we can significantly reduce leakage power.

It is noteworthy that heterogeneous clusters provide in

teresting options in the event of a thermal emergency. If 

all four clusters are operating at peak frequency and a ther

mal emergency is triggered, a different configuration that 

yields a slightly higher E D 2 can be invoked. Since this

configuration periodically shuts each cluster off or lowers 

its frequency, it can mitigate the thermal emergency without 

imposing a significant penalty in performance or E D 2. In 

Section 4, we show that such a thermal emergency strategy 

performs better than approaches for traditional superscalars, 

such as global frequency scaling.

3.4 Achieving M ax im um  Performance for a Fixed 

Power Budget

In some microprocessor domains, designers are most 

concerned with maximizing performance while staying 

within a fixed maximum power budget. Heterogeneous 

clusters allow low-overhead run-time flexibility that allows 

a processor to meet power budgets for each program. At the 

start of program execution, all four clusters operate at peak 

frequency. At the end of every million cycle interval, hard

ware counters that track average power dissipation or activ

ity are examined. If the average power dissipation is greater 

than the power budget, some of the clusters will have to 

be either slowed down or turned off. Likewise, if the aver

age power dissipation is well below the power budget, clus

ters can be either activated or have their frequency scaled 

up. The correlation between cache miss rates, branch mis

predict rates, and optimal E D 2 configurations guides our 

adaptation policy again. For programs with frequent branch 

mispredicts that exceed the power budget, we choose to turn 

clusters off in steps until the power dissipation drops to ac

ceptable levels. For all other programs, we choose to scale 

down the frequencies of clusters in steps until the power 

constraint is met.

Our mechanism, by using branch mispredict rates, tries 

to seek out configurations that are likely to have competitive 

E D 2 and meets the power constraint through low-overhead 

techniques that scale down frequency or turn a cluster off. 

Note that {ED2) 3 or (P D 3) 3 is a measure of performance 

for different processors that are all voltage-and-frequency 

scaled so as to consume an equal amount of power. By 

employing configurations that have near-optimal E D 2, the 

adaptation mechanism achieves near-optimal performance 

at the fixed power budget and does so without employing 

the high overhead technique of voltage scaling.

4 Results
4.1 Methodology

Our simulator is based on SimpleScalar-3.0 [11] for the 

Alpha ISA. The cycle accurate simulator has been extended 

with a power model based on Wattch [10] to compute power 

for the entire processor, including clusters, interconnect, 

caches, and the centralized front-end. Leakage power for 

the caches and the register files follows a methodology sim

ilar to HotLeakage [46]. HotLeakage extends the Butts- 

Sohi leakage power model based on the BSIM3 [34] data 

and calculates leakage currents dynamically from tempera

ture and voltage changes due to operating conditions. For
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Fetch queue size 64 Fetch width 8 (across up to 2 basic blocks)

Branch predictor comb, of bimodal and 2-level Bimodal predictor size 16K

Level 1 predictor 16K entries, history 12 Level 2 predictor 16K entries

BTB size 16K sets, 2-way Branch mispredict penalty at least 12 cycles

Tssue queue size 30 per cluster (int and fp, each) Register file size 64 per cluster (int and fp, each)

Integer ALUs/rault-div 1/1 per cluster FP ALUs/mult-div 1/1 per cluster

LI I-cache 32KB 2-way Memory latency 300 cycles for the first block

LI D-cache 32KB 4-way set-associative. L2 unified cache 8MB 8-way, 30 cycles

6 cycles, 4-way word-interleaved I and D TLB 128 entries, 8KB page size

Frequency 5 GHz Initial Temperature 70 C

Convection resistance 0.8 K/W Heatsink thickness 6.9 mm

Maximum temperature 85 C Vdd 1.1 V

Load/Store queue 240 entries

Table 2. Simulator parameters.

all other functional units, leakage power is calculated based 

on the formula derived by curve fitting with ITRS data [3],

Separate integer and floating point issue queues and reg

ister files are modeled for each cluster. Each of the clusters 

is assumed to have 64 registers (Int and FP, each), 30 issue 

queue entries (Int and FP, each) and one functional unit of 

each kind. Contention on the interconnects and for memory 

hierarchy resources (ports, banks, buffers, etc.) are modeled 

in detail. Inter-cluster communication through the crossbar 

incurs a two cycle delay (in addition to contention cycles) 

when all links are operating at peak frequency. This de

lay grows to five cycles if one of the clusters is operating 

as an LPC and to eight cycles if both clusters are operat

ing as LPCs. For all processor models in this study, when 

frequency scaling is applied to clusters, the processor front- 

end continues to execute at peak frequency.

We use the Hotspot-2.0 [43] model to extend our Wattch- 

based simulator for sensing temperature of various units 

at 100K cycle intervals. This model exploits the duality 

between heat and electricity to model the temperature of 

the processor at a functional unit granularity. The average 

power of each of the units over recent cycles is supplied to 

the model to calculate the current temperature of the func

tional units from a known initial temperature. Heat removal 

is done via airflow by convection using an equivalent ther

mal resistance of 0.8K/W and an ambient temperature of 40 

C is assumed. The floorplan layout of the processor models 

the four clusters along with the front end and follows the 

procedure indicated in [43], At the beginning of the simula

tion, we assume that the processor has been operating for a 

long time, dissipating nominal dynamic and leakage power 

at an operating temperature of 70 C.

All important simulation parameters are shown in Table

2. For the 4-cluster system operating at peak frequency, our 

power models show an average processor power dissipation 

of 113W at 90nm technology, with each cluster accounting 

for approximately 17W, and leakage power accounting for 

20W over the entire processor.

We use 23 of the 26 SPEC-2k programs with reference 

inputs as a benchmark set (the remaining three benchmark 

programs were not compatible with our simulator). Each

program was simulated for 100 million instructions over 

simulation windows identified by the SimPoint toolset [41], 

The raw IPCs for each program for the base case are listed 

in Table 1.

4.2 E D 2 Analysis

We begin by showing E D 2 improvements that can be 

achieved by employing the dynamic adaptation mechanism 

that tunes processor resources to suit application needs. The 

base case is a high performance model that employs four 

HPCs. The dynamic processor model examines L I and 

L2 cache miss and branch misprediction counters in ev

ery interval to select the configuration for the next inter

val. Section 3.2 has already discussed the strong correlation 

between these metrics and the I?D 2-optimal configuration. 

For our experiments, we assume an interval size of one mil

lion instructions. The thresholds for L I and L2 cache miss 

rates is 8% and 12%, respectively, while the threshold for 

the branch misprediction counter is 1 in every 100 com

mitted instructions. Figure 4a shows the IPC degradation 

and the power savings obtained with the dynamic model as 

compared to the base processor model. Overall, we observe 

a power saving of 15% and a performance degradation of 

only 2%. In certain cases, as in gap, employing two clusters 

provides a slight performance improvement (less than 2%) 

that can be attributed to a reduction in inter-cluster commu

nication and contention cycles. Most programs (17 of the 

23 benchmarks) encountered fewer than five configuration 

transitions over the course of the execution of the program. 

The other programs contain many different program phases 

during their execution as a result of which the cache miss 

rates and the branch misprediction rates vary significantly. 

For example, art incurs as many as 91 phase transitions over 

the execution of the program. These frequent transistions 

cause the E D 2 to be slightly sub-optimal, but the overall 

E D 2 is much lower than that for the base case for most of 

these programs. As pointed out in Section 3.2, applu is one 

of the programs that is not handled by our heuristic and it 

yields an E D 2 value that is higher than that of the base case. 

Overall, the E D 2 values achieved by the dynamic mecha

nism are very similar to that of the optimal configurations 

shown for each benchmark in Figure 3.
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a. IPC loss and power savings for dynamic model 

compared to baseline model with 4 HPCs.

IPC, Pow er and Energy-Delay C haracteristics of different 
Configurations

2 Cluster 3 Cluster 1f3s Ideal Dynamic2f2s 3f1s 
Configurations

b. IPC, Power and E D 2 for different configurations, each 

normalized with respect to the baseline processor model 

with 4 HPCs.

Figure 4. Performance and power characteristics.
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Figure 5. Peak operating temperatures reached 

by the base processor model and the dynamically 

adaptive processor model

Figure 4b summarizes performance, power, and E D 2 for 

different configurations, averaged across the benchmark set 

(averages are taken such that every program executes for an 

equal number of cycles [27]) and normalized with respect 

to the base processor model with four fast clusters. None of 

the configurations exceed the performance of the base pro

cessor. Similarly, all of the studied configurations consume 

much lower power than the base case. The model with four 

slow clusters (4s) consumes the least power but also incurs 

a performance penalty of nearly 40%. All static configura

tions have a higher E D 2 than the base case. The bars for the 

ideal processor model show results if the i?Z)2-optimal con

figuration for each benchmark is picked by an oracle from 

a large set of configurations. The dynamic mechanism’s 

behavior is very close to this ideal scenario (ED 2 improve

ment of 11%, compared to 12% for the ideal case).

□ Base case 

■ Dynam ir case

4.3 Temperature Analysis

The dynamic mechanism selects a configuration that is 

likely to optimize E D 2. Even though temperature reduc

tion was not a priority in this mechanism, a configuration 

optimized for E D 2 can also reduce operating temperature, 

compared to the base processor. Figure 5 compares the peak 

temperatures reached by our dynamically adaptive proces

sor model and the base processor model (no thermal emer

gency threshold was set). The graph leaves out programs 

that had the same peak temperature in both cases (note 

that the dynamic mechanism executes nearly half the pro

grams with four HPCs). Overall, across these programs, we 

observe a 22.4% reduction in peak operating temperature. 

For benchmarks that employ four LPC.s, this reduction was 

48%. For bechmarks that employ two HPCs, clusters alter

nate between executing at peak frequency and being shut 

off. By allowing each cluster to periodically cool down, we 

observed an average reduction of 7.5% in peak temperature 

for these programs.

A subset of the benchmarks reach peak temperatures that 

are high enough to trigger thermal emergencies. The peak 

temperature corresponds to the temperature of the hottest 

block on the micro-architectural floorplan. The use of het

erogeneous clusters on a thermal emergency allows the pro

gram to have tolerable performance penalties while lower

ing the operating temperature. For example, the program 

vortex reaches a peak temperature of 93 C. without any ther

mal management in both the base model and the dynamic 

processor model (that employs four HPCs for minimum 

E D 2). While a baseline model would scale the frequency of 

the entire processor, heterogeneity allows us to operate with 

three HPCs and alternate the clusters between executing at 

peak frequency and being switched off. This strategy incurs 

a performance loss of 5.6%, when compared against the 

baseline processor model employing no thermal manage

ment. When the base case employs thermal management by 

scaling the frequency of all four clusters, we observe a per
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Benchmark Configuration with 

best performance 

for power <  80 W

Benchmark Configuration with 

best performance 

for power <  80 W

aramp 3s If applu 2c

art 2f2s bzip2 3s If

crafty 3s If eon 3s If

equake 2f2s fma3d 2f2s

galgel 3s If gap 3s If

gcc 2c gzip 2c

lucas 2J2s mcf 2J2s

mesa 3s If mgrid 2f2s

parser 3s If swim 2f2s

twolf 2c vortex 3s If

vpr 2c wupwise 3s If

apsi 2c

Table 3. Best static configurations for a fixed power budget.

formance degradation of 8.5% (with respect to the base case 

with no thermal management). On an average, for bench

marks that reach thermal emergencies, our proposed pro

cessor model performs 7.5% better than the base processor 

model, when both employ thermal emergency management 

strategies.

4.4 Fixed Power Budget

If a processor is to operate within a fixed power budget, 

we can scale its voltage and frequency until the power con

straint is met. Voltage scaling has its limitations in future 

technologies as overheads increase and acceptable voltage 

margins shrink. If we restrict ourselves to frequency scal

ing or turning off individual clusters, we observe that het

erogeneity often yields the optimal performance for a given 

power budget. Table 3 shows the static configuration that 

delivers the best performance for a fixed power budget of 

80W. Similar results are observed for different power bud

gets. Clearly, a single static configuration is not sufficient 

to deliver the best performance for all benchmarks. Com

pared to a configuration that employs frequency scaling for 

all four clusters (4s), the dynamic algorithm described in 

Section 3.4 provides 23% improved performance.

4.5 Sensitivity Analysis

All through this study, we have assumed that the LPCs 

execute at one-fourth the frequency of the HPCs. Figure 6 
tracks the IPC, power, and ED'2 characteristics for pro

cessor models with varying LPC frequencies, all normal

ized with respect to the base case. In all configurations, a 

dynamic processor configuration provides ED'2 improve

ments, with the highest improvement seen when the fre

quency of the LPC is one-fourth the HPC frequency. As we 

increase the frequency of the LPCs, we obtain performance 

improvements and corresponding increases in power dissi

pation. By tuning the frequency of the LPCs, we can arrive 

at different points in the power-performance curve, while 

still achieving ED'2 benefits. We also found that the use of 

voltage scaling further increases our overall ED'2 improve

ments, but it has not been employed for any of the presented

Frequency of LPC, relative to HPC

Figure 6. Normalized IPC, Power, and ED'2 for the 

dynamic mechanism for different LPC frequencies

results because of the associated non-trivial overheads.

In Figure 4a, we had seen that the proposed dynamic 

algorithm incurs a maximum performance loss of around 

8% for eon and 7% for applu. In some cases, designers 

may want to impose the constraint that ED'2 be improved 

while limiting performance loss. Tuning the LPC frequency 

(above) is one strategy to limit performance loss. We can 

also tune the algorithm to limit the maximum performance 

loss to a certain value by choosing conservative configura

tions at the cost of relatively higher power dissipation. For 

example, for benchmarks with high branch misprediction 

rates, we can choose to employ three HPCs instead of two 

HPCs. Likewise, for benchmarks that have a high cache 

miss frequency, we can employ LPCs that have frequencies 

that are one-half the HPC frequency. With these new poli

cies, the maximum performance loss for any program was 

2.5% (applu). The overall performance loss was less than 

1%, but the ED'2 saving was only 7%. The above analysis 

demonstrates the robustness of the dynamic mechanism in 

adapting itself to varying performance and power require -

108



ments.

We also examined the sensitivity of our results as a func

tion of interval length (for making configuration decisions). 

If frequency change overheads were ignored, we found that 

E D 2 improvements were approximately constant even if 

the interval size was reduced to 10K instructions. For an 

interval size of IK  instructions, the cache miss and branch 

misprediction measurements are noisy, leading to frequent 

selections of sub-optimal configurations. While a smaller 

interval length may allow us to capture the behavior of 

smaller phases, we found this benefit to be minimal. A large 

interval length helps amortize the overheads of changing the 

frequency of a cluster or turning a cluster off.

5 Related Work

Commercial manufacturers have developed processors 

capable of voltage and frequency scaling [17, 21]. Intel’s 

XScale [17] processor employs this dynamic scaling tech

nique in applications with real-time constraints, thereby im

proving battery life. Frequency and voltage scaling has also 

been employed within specific domains of a processor, such 

as in the MCD processor proposed by Semeraro et al. [40]. 

Interval-based strategies for global frequency scaling for 

real-time and multimedia applications have been proposed 

by Pering et al. [36]. Childers et al. [16] propose trading 

IPC for clock frequency. In their study, high IPC programs 

run at low frequencies and low IPC programs run at high 

frequencies.

The primary goal of our study is efficient utilization of 

transistor budgets, where E D 2 is the metric for efficiency. 

The temperature side-effects of our proposal are similar 

in spirit to the “cluster hopping” proposal of Chaparro et 

al. [ 14], where parts of the back end are shut down to reduce 

peak temperatures. That study does not explore the effect 

of operating clusters at lower frequencies. Chen et al. [15] 

propose a clustered architecture that combines a high-ILP 

low-frequency core with a low-ILP high-frequency core. 

The authors demonstrate that such an approach can better 

match the ILP needs of programs and improve performance. 

Our hypothesis is that identical cores combined with fre

quency scaling have lower design complexity, provide sig

nificant E D 2 improvements, and reduce operating temper

atures. Morad et al. [32] employ an asymmetric chip multi

processor in which different threads of a program are as

signed to cores of varying complexity. Kumar et al. [30] de

sign a chip multi-processor with heterogeneous cores to ex

ecute multi-programmed workloads. Programs are assigned 

to cores of varying complexity based on their ILP require

ments. Ghiasi et al. [24] implement a scheduler that exam

ines the execution characteristics of a program and assigns 

it to a processor that matches its needs. The above stud

ies demonstrate that heterogeneity has favorable energy and 

energy-delay properties when executing independent pro

grams on multi-processor systems.

6 Conclusions

Future billion transistor architectures are capable of high 

performance, but suffer from extremely high power densi

ties. This paper advocates power aware resource scaling in 

an effort to achieve high performance while reducing power 

and operating temperature. The paper makes the following 

key contributions:

• A heterogeneous architecture that leverages the mod

ularity of a partitioned architecture and preserves the 

low design complexity of a partitioned architecture by 

employing frequency scaling to provide heterogeneity

• A dynamic adaptation policy that exploits information 

on cache miss rates and branch prediction accuracy to 

predict an E D 2-optimal configuration

• A mechanism that switches the frequency of a cluster 

at periodic intervals to lower operating temperatures 

and a thermal emergency handling mechanism that im

poses minimal performance penalties

Based on our evaluations, we draw the following major 

quantitative conclusions:

• Heterogeneity, combined with our dynamic adaptation 

policy, reduces E D 2 by 11% (power saving of 15% 

and performance penalty of 2%).

• Benchmark programs that employ four LPCs show an 

average 48% reduction in operating temperature. The 

same number for programs that employ two HPCs is 

7.5%.

• By scaling individual clusters on a thermal emergency, 

our dynamic algorithm performs 7.5% better than the 

base case that scales the operating frequency of all 

clusters on a thermal emergency.

The proposed innovations introduce very little design 

complexity. Our results demonstrate that heterogeneity 

has the potential to improve single-thread performance in 

a power-efficient manner. While this paper focuses on 

single-thread behavior on a clustered architecture, the gen

eral ideas can also apply to multi-threaded workloads on 

chip multi-processors (CMPs). Multiple threads of a sin

gle application that execute on different cores of a CMP 

are analogous to dependence chains executing on clusters. 

For future work, we will explore the potential of intelligent 

thread assignment to cores within an asymmetric CMP. We 

will also examine other techniques to introduce heterogene

ity within clusters or cores, such as the use of simple in

order pipelines.
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