54 research outputs found

    Macroscopic network circulation for planar graphs

    Get PDF
    The analysis of networks, aimed at suitably defined functionality, often focuses on partitions into subnetworks that capture desired features. Chief among the relevant concepts is a 2-partition, that underlies the classical Cheeger inequality, and highlights a constriction (bottleneck) that limits accessibility between the respective parts of the network. In a similar spirit, the purpose of the present work is to introduce a new concept of maximal global circulation and to explore 3-partitions that expose this type of macroscopic feature of networks. Herein, graph circulation is motivated by transportation networks and probabilistic flows (Markov chains) on graphs. Our goal is to quantify the large-scale imbalance of network flows and delineate key parts that mediate such global features. While we introduce and propose these notions in a general setting, in this paper, we only work out the case of planar graphs. We explain that a scalar potential can be identified to encapsulate the concept of circulation, quite similarly as in the case of the curl of planar vector fields. Beyond planar graphs, in the general case, the problem to determine global circulation remains at present a combinatorial problem

    On incorrectness of application of the Helmholtz decomposition to microscopic electrodynamics

    Full text link
    The integral expressions served to decompose vector field into irrotational and divergence-free components represent modern version of the Helmholtz decomposition theorem. These expressions are also widely used to decompose the electromagnetic fields. However, an appropriate analysis of application of these expressions to electrodynamics shows that the improper integral arising in the procedure for calculating these components makes such a decomposition impossible.Comment: AMS-LaTeX, 6 page

    Observation of magnetic fragmentation in spin ice

    Get PDF
    Fractionalised excitations that emerge from a many body system have revealed rich physics and concepts, from composite fermions in two-dimensional electron systems, revealed through the fractional quantum Hall effect, to spinons in antiferromagnetic chains and, more recently, fractionalisation of Dirac electrons in graphene and magnetic monopoles in spin ice. Even more surprising is the fragmentation of the degrees of freedom themselves, leading to coexisting and a priori independent ground states. This puzzling phenomenon was recently put forward in the context of spin ice, in which the magnetic moment field can fragment, resulting in a dual ground state consisting of a fluctuating spin liquid, a so-called Coulomb phase, on top of a magnetic monopole crystal. Here we show, by means of neutron scattering measurements, that such fragmentation occurs in the spin ice candidate Nd2_2Zr2_2O7_7. We observe the spectacular coexistence of an antiferromagnetic order induced by the monopole crystallisation and a fluctuating state with ferromagnetic correlations. Experimentally, this fragmentation manifests itself via the superposition of magnetic Bragg peaks, characteristic of the ordered phase, and a pinch point pattern, characteristic of the Coulomb phase. These results highlight the relevance of the fragmentation concept to describe the physics of systems that are simultaneously ordered and fluctuating.Comment: accepted in Nature Physic

    FLUID FLOW MODELLING WITH FREE SURFACE

    Get PDF
    Fluid is a substance that can flow in the form of a liquid or a gas. Based on the movement of the fluid is divided into static and dynamic fluids. This study discusses fluid dynamics, namely modelling fluid flow accompanied by a free surface and an obstacle in the fluid flow. Fluid modelling generally makes some basic assumptions into mathematical equations. The assumptions are incompressible, steady-state and irrotational. The steps to obtain a fluid flow model are using Newton’s second law, the law of conservation of mass, and the law of conservation of momentum to obtain the general Navier-Stokes equation, the designing the Euler free surface equation, the Bernoulli equation, then making a free surface representation and linearizing the wave equation so that it is obtained fluid flow model. The resulting mathematical model is a Laplace equation with boundary conditions in the fluid

    On Meshfree GFDM Solvers for the Incompressible Navier-Stokes Equations

    Full text link
    Meshfree solution schemes for the incompressible Navier--Stokes equations are usually based on algorithms commonly used in finite volume methods, such as projection methods, SIMPLE and PISO algorithms. However, drawbacks of these algorithms that are specific to meshfree methods have often been overlooked. In this paper, we study the drawbacks of conventionally used meshfree Generalized Finite Difference Method~(GFDM) schemes for Lagrangian incompressible Navier-Stokes equations, both operator splitting schemes and monolithic schemes. The major drawback of most of these schemes is inaccurate local approximations to the mass conservation condition. Further, we propose a new modification of a commonly used monolithic scheme that overcomes these problems and shows a better approximation for the velocity divergence condition. We then perform a numerical comparison which shows the new monolithic scheme to be more accurate than existing schemes

    Reference-less complex wavefields characterization with a high-resolution wavefront sensor

    Full text link
    Wavefront sensing is a widely-used non-interferometric, single-shot, and quantitative technique providing the spatial-phase of a beam. The phase is obtained by integrating the measured wavefront gradient. Complex and random wavefields intrinsically contain a high density of singular phase structures (optical vortices) associated with non-conservative gradients making this integration step especially delicate. Here, using a high-resolution wavefront sensor, we demonstrate experimentally a systematic approach for achieving the complete and quantitative reconstruction of complex wavefronts. Based on the Stokes' theorem, we propose an image segmentation algorithm to provide an accurate determination of the charge and location of optical vortices. This technique is expected to benefit to several fields requiring complex media characterization.Comment: 7 page

    Approximation of tensor fields on surfaces of arbitrary topology based on local Monge parametrizations

    Full text link
    We introduce a new method, the Local Monge Parametrizations (LMP) method, to approximate tensor fields on general surfaces given by a collection of local parametrizations, e.g.~as in finite element or NURBS surface representations. Our goal is to use this method to solve numerically tensor-valued partial differential equations (PDE) on surfaces. Previous methods use scalar potentials to numerically describe vector fields on surfaces, at the expense of requiring higher-order derivatives of the approximated fields and limited to simply connected surfaces, or represent tangential tensor fields as tensor fields in 3D subjected to constraints, thus increasing the essential number of degrees of freedom. In contrast, the LMP method uses an optimal number of degrees of freedom to represent a tensor, is general with regards to the topology of the surface, and does not increase the order of the PDEs governing the tensor fields. The main idea is to construct maps between the element parametrizations and a local Monge parametrization around each node. We test the LMP method by approximating in a least-squares sense different vector and tensor fields on simply connected and genus-1 surfaces. Furthermore, we apply the LMP method to two physical models on surfaces, involving a tension-driven flow (vector-valued PDE) and nematic ordering (tensor-valued PDE). The LMP method thus solves the long-standing problem of the interpolation of tensors on general surfaces with an optimal number of degrees of freedom.Comment: 16 pages, 6 figure
    corecore