1,181 research outputs found

    Face recognition in 2D and 2.5D using ridgelets and photometric stereo

    Get PDF
    A new technique for face recognition - Ridgefaces - is presented. The method combines the well-known Fisherface method with the ridgelet transform and high-speed Photometric Stereo (PS). The paper first derives ridgelet projections for 2D/2.5D face images before the Fisherface approach is used to reduce the dimensionality and increase the spread of the resulting feature vectors. The ridgelet transform is attractive because it is efficient at extracting highly discriminating low-frequency directional features. Best recognition is obtained when Ridgefaces is performed on surface normals acquired from PS, although good results are also found using standard 2D images and PS-derived albedo maps. © 2012 Elsevier Ltd. All rights reserved

    Détection de bateaux dans les images de radar à ouverture synthétique

    Get PDF
    Le but principal de cette thèse est de développer des algorithmes efficaces et de concevoir un système pour la détection de bateaux dans les images Radar à Ouverture Synthetique (ROS.) Dans notre cas, la détection de bateaux implique en premier lieu la détection de cibles de points dans les images ROS. Ensuite, la détection d'un bateau proprement dit dépend des propriétés physiques du bateau lui-même, tel que sa taille, sa forme, sa structure, son orientation relative a la direction de regard du radar et les conditions générales de l'état de la mer. Notre stratégie est de détecter toutes les cibles de bateaux possibles dans les images de ROS, et ensuite de chercher autour de chaque candidat des évidences telle que les sillons. Les objectifs de notre recherche sont (1) d'améliorer 1'estimation des paramètres dans Ie modèle de distribution-K et de déterminer les conditions dans lesquelles un modèle alternatif (Ie Gamma, par exemple) devrait être utilise plutôt; (2) d'explorer Ie modèle PNN (Probabilistic Neural Network) comme une alternative aux modèles paramétriques actuellement utilises; (3) de concevoir un modèle de regroupement flou (FC : Fuzzy Clustering) capable de détecter les petites et grandes cibles de bateaux dans les images a un seul canal ou les images a multi-canaux; (4) de combiner la détection de sillons avec la détection de cibles de bateaux; (5) de concevoir un modèle de détection qui peut être utilisé aussi pour la détection des cibles de bateaux en zones costières.Abstract: The main purpose of this thesis is to develop efficient algorithms and design a system for ship detection from Synthetic Aperture Radar (SAR) imagery. Ship detection usually involves through detection of point targets on a radar clutter background.The detection of a ship depends on the physical properties of the ship itself, such as size, shape, and structure; its orientation relative to the radar look-direction; and the general condition of the sea state. Our strategy is to detect all possible ship targets in SAR images, and then search around each candidate for the wake as further evidence.The objectives of our research are (1) to improve estimation of the parameters in the K-distribution model and to determine the conditions in which an alternative model (Gamma, for example) should be used instead; (2) to explore a PNN (Probabilistic Neural Networks) model as an alternative to the commonly used parameteric models; (3) to design a FC (Fuzzy Clustering) model capable of detecting both small and large ship targets from single-channel images or multi-channel images; (4) to combine wake detection with ship target detection; (5) to design a detection model that can also be used to detect ship targets in coastal areas. We have developed algorithms for each of these objectives and integrated them into a system comprising six models.The system has been tested on a number of SAR images (SEASAT, ERS and RADARSAT-1, for example) and its performance has been assessed

    Asymptotic Hyperfunctions, Tempered Hyperfunctions, and Asymptotic Expansions

    Get PDF
    We introduce new subclasses of Fourier hyperfunctions of mixed type, satisfying polynomial growth conditions at infinity, and develop their sheaf and duality theory. We use Fourier transformation and duality to examine relations of these 'asymptotic' and 'tempered' hyperfunctions to known classes of test functions and distributions, especially the Gelfand-Shilov-Spaces. Further it is shown that the asymptotic hyperfunctions, which decay faster than any negative power, are precisely the class that allow asymptotic expansions at infinity. These asymptotic expansions are carried over to the higher-dimensional case by applying the Radon transformation for hyperfunctions.Comment: 31 pages, 1 figure, typos corrected, references adde

    Analysis of Polarimetric Synthetic Aperture Radar and Passive Visible Light Polarimetric Imaging Data Fusion for Remote Sensing Applications

    Get PDF
    The recent launch of spaceborne (TerraSAR-X, RADARSAT-2, ALOS-PALSAR, RISAT) and airborne (SIRC, AIRSAR, UAVSAR, PISAR) polarimetric radar sensors, with capability of imaging through day and night in almost all weather conditions, has made polarimetric synthetic aperture radar (PolSAR) image interpretation and analysis an active area of research. PolSAR image classification is sensitive to object orientation and scattering properties. In recent years, significant work has been done in many areas including agriculture, forestry, oceanography, geology, terrain analysis. Visible light passive polarimetric imaging has also emerged as a powerful tool in remote sensing for enhanced information extraction. The intensity image provides information on materials in the scene while polarization measurements capture surface features, roughness, and shading, often uncorrelated with the intensity image. Advantages of visible light polarimetric imaging include high dynamic range of polarimetric signatures and being comparatively straightforward to build and calibrate. This research is about characterization and analysis of the basic scattering mechanisms for information fusion between PolSAR and passive visible light polarimetric imaging. Relationships between these two modes of imaging are established using laboratory measurements and image simulations using the Digital Image and Remote Sensing Image Generation (DIRSIG) tool. A novel low cost laboratory based S-band (2.4GHz) PolSAR instrument is developed that is capable of capturing 4 channel fully polarimetric SAR image data. Simple radar targets are formed and system calibration is performed in terms of radar cross-section. Experimental measurements are done using combination of the PolSAR instrument with visible light polarimetric imager for scenes capturing basic scattering mechanisms for phenomenology studies. The three major scattering mechanisms studied in this research include single, double and multiple bounce. Single bounce occurs from flat surfaces like lakes, rivers, bare soil, and oceans. Double bounce can be observed from two adjacent surfaces where one horizontal flat surface is near a vertical surface such as buildings and other vertical structures. Randomly oriented scatters in homogeneous media produce a multiple bounce scattering effect which occurs in forest canopies and vegetated areas. Relationships between Pauli color components from PolSAR and Degree of Linear Polarization (DOLP) from passive visible light polarimetric imaging are established using real measurements. Results show higher values of the red channel in Pauli color image (|HH-VV|) correspond to high DOLP from double bounce effect. A novel information fusion technique is applied to combine information from the two modes. In this research, it is demonstrated that the Degree of Linear Polarization (DOLP) from passive visible light polarimetric imaging can be used for separation of the classes in terms of scattering mechanisms from the PolSAR data. The separation of these three classes in terms of the scattering mechanisms has its application in the area of land cover classification and anomaly detection. The fusion of information from these particular two modes of imaging, i.e. PolSAR and passive visible light polarimetric imaging, is a largely unexplored area in remote sensing and the main challenge in this research is to identify areas and scenarios where information fusion between the two modes is advantageous for separation of the classes in terms of scattering mechanisms relative to separation achieved with only PolSAR
    • …
    corecore