4 research outputs found

    Formally Verified SAT-Based AI Planning

    Full text link
    We present an executable formally verified SAT encoding of classical AI planning. We use the theorem prover Isabelle/HOL to perform the verification. We experimentally test the verified encoding and show that it can be used for reasonably sized standard planning benchmarks. We also use it as a reference to test a state-of-the-art SAT-based planner, showing that it sometimes falsely claims that problems have no solutions of certain lengths

    Formalizing the Metatheory of Logical Calculi and Automatic Provers in Isabelle/HOL (Invited Talk)

    Get PDF
    International audienceIsaFoL (Isabelle Formalization of Logic) is an undertaking that aims at developing formal theories about logics, proof systems, and automatic provers, using Isabelle/HOL. At the heart of the project is the conviction that proof assistants have become mature enough to actually help researchers in automated reasoning when they develop new calculi and tools. In this paper, I describe and reflect on three verification subprojects to which I contributed: a first-order resolution prover, an imperative SAT solver, and generalized term orders for λ-free higher-order logic

    A verified prover based on ordered resolution

    Get PDF
    International audienceThe superposition calculus, which underlies first-order theorem provers such as E, SPASS, and Vampire, combines ordered resolution and equality reasoning. As a step towards verifying modern provers, we specify, using Isabelle/HOL, a purely functional first-order ordered resolution prover and establish its soundness and refutational completeness. Methodologically, we apply stepwise refinement to obtain, from an abstract nondeterministic specification, a verified de-terministic program, written in a subset of Isabelle/HOL from which we extract purely functional Standard ML code that constitutes a semidecision procedure for first-order logic
    corecore