

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 03, 2019

A verified prover based on ordered resolution

Schlichtkrull, Anders; Blanchette, Jasmin Christian; Traytel, Dmitriy

Published in:
Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs

Link to article, DOI:
10.1145/3293880.3294100

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Schlichtkrull, A., Blanchette, J. C., & Traytel, D. (2019). A verified prover based on ordered resolution. In A.
Mahboubi, & M. O. Myreen (Eds.), Proceedings of the 8th ACM SIGPLAN International Conference on Certified
Programs and Proofs (pp. 152-165). Association for Computing Machinery.
https://doi.org/10.1145/3293880.3294100

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/196530011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3293880.3294100
http://orbit.dtu.dk/en/publications/a-verified-prover-based-on-ordered-resolution(c53de700-3866-45db-8ae8-191a4a511a02).html

A Verified Prover Based on Ordered Resolution
Anders Schlichtkrull

DTU Compute
Technical University of Denmark

Kongens Lyngby, Denmark
andschl@dtu.dk

Jasmin Christian Blanchette
Department of Computer Science
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

j.c.blanchette@vu.nl

Dmitriy Traytel
Department of Computer Science

ETH Zürich
Zürich, Switzerland
traytel@inf.ethz.ch

Abstract
The superposition calculus, which underlies first-order the-
orem provers such as E, SPASS, and Vampire, combines or-
dered resolution and equality reasoning. As a step towards
verifying modern provers, we specify, using Isabelle/HOL,
a purely functional first-order ordered resolution prover
and establish its soundness and refutational completeness.
Methodologically, we apply stepwise refinement to obtain,
from an abstract nondeterministic specification, a verified de-
terministic program, written in a subset of Isabelle/HOL from
which we extract purely functional Standard ML code that
constitutes a semidecision procedure for first-order logic.

CCS Concepts • Theory of computation → Logic and
verification; Automated reasoning;

Keywords automatic theorem provers, proof assistants,
first-order logic, stepwise refinement
ACM Reference Format:
Anders Schlichtkrull, Jasmin Christian Blanchette, and Dmitriy
Traytel. 2019. A Verified Prover Based on Ordered Resolution. In
Proceedings of the 8th ACM SIGPLAN International Conference on
Certified Programs and Proofs (CPP ’19), January 14–15, 2019, Cascais,
Portugal. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3293880.3294100

1 Introduction
Automatic theorem provers based on superposition, such as
E [42], SPASS [53], and Vampire [21], are often employed
as backends in proof assistants and program verification
tools [7, 20, 32]. Superposition is a highly successful calculus
for first-order logic with equality, which generalizes both
ordered resolution [2] and ordered completion [1].
Resolution operates on sets of clauses. A clause is an n-

ary disjunction of literals L1 ∨ · · · ∨ Ln whose variables are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP ’19, January 14–15, 2019, Cascais, Portugal
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6222-1/19/01. . . $15.00
https://doi.org/10.1145/3293880.3294100

interpreted universally. Each literal is either an atom A or
its negation ¬A. An atom is a symbol applied to a tuple of
terms—e.g., prime(n). The empty clause is denoted by ⊥.

Resolution works by refutation: Conceptually, the calculus
proves a conjecture ∀x̄ .C from a set of axiomsD by deriving
⊥ from D ∪ {∃x̄ .¬C}, indicating its unsatisfiability. As an
optimization, it uses a redundancy criterion to discard tau-
tologies, subsumed clauses, and other unnecessary clauses;
for example, p(x) ∨ q(x) and p(5) are both subsumed by p(x).
Compared with plain resolution, ordered resolution relies on
an order on the atoms to further prune the search space.
Modern superposition provers are highly optimized pro-

grams that rely on sophisticated calculi, with a rich metathe-
ory. In this paper, we propose to verify, using Isabelle/HOL
[30], a purely functional prover based on ordered resolution.
Although our primary interest is in metatheory per se, there
are of course applications for verified provers [50].
The verification relies on stepwise refinement [55]. Four

layers are connected by three refinement steps.
Our starting point, layer 1 (Section 3), is an abstract Prolog-

style nondeterministic resolution prover in a highly general
form, as presented by Bachmair and Ganzinger [2] and as
formalized in our earlier work [39, 40]. It operates on pos-
sibly infinite sets of clauses. Its soundness and refutational
completeness are inherited by the other layers.

Layer 2 (Section 4) operates on finite multisets of clauses
and introduces a priority queue to ensure that inferences
are performed in a fair manner, guaranteeing completeness:
Given a valid conjecture, the prover will eventually derive ⊥.

Layer 3 (Section 5) is a deterministic program that works
on finite lists, committing to a strategy for assigning priori-
ties to clauses. However, it is not fully executable: It abstracts
over operations on atoms and employs logical specifications
instead of executable functions for auxiliary notions.
Finally, layer 4 (Section 6) is a fully executable program.

It provides a concrete datatype for atoms and executable
definitions for all auxiliary notions, including unifiers, clause
subsumption, and the order on atoms.
From layer 4, we can extract Standard ML code by in-

voking Isabelle’s code generator [11]. The resulting prover
constitutes a proof of concept: It uses an efficient calculus
(layer 1) and a reasonable strategy to ensure fairness (layers
2 and 3), but depends on inefficient list-based data structures.
Further refinement steps will be required to obtain a prover
that is competitive with the state of the art.

https://doi.org/10.1145/3293880.3294100
https://doi.org/10.1145/3293880.3294100
https://doi.org/10.1145/3293880.3294100

CPP ’19, January 14–15, 2019, Cascais, Portugal A. Schlichtkrull, J. C. Blanchette, and D. Traytel

The refinement steps connect vastly different levels of
abstraction. The most abstract level is occupied by an infini-
tary logical calculus and the semantics of first-order logic.
Soundness and completeness relate these two notions. At
the functional programming level, soundness amounts to
a safety property: Whenever the program terminates nor-
mally, its outcome is correct, whether it is a proof or a finite
saturation witnessing unprovability. Correspondingly, refu-
tational completeness is a liveness property: If the conjecture
is valid, the program will always terminate normally. We
find that, far from being academic exercises, Bachmair and
Ganzinger’s framework [2] and its formalization [39, 40]
adequately capture the metatheory of actual provers.

To our knowledge, our program is the first verified prover
for first-order logic implementing an optimized calculus. It
is also the first example of the application of refinement in a
first-order context. This methodology has been used to verify
SAT solvers [6, 29], which decide the satisfiability of proposi-
tional formulas, but first-order logic is semidecidable—sound
and complete provers are guaranteed to terminate only for
unsatisfiable (i.e., provable) clause sets. This complicates the
transfer of completeness results across refinement layers.

The present work is part of the IsaFoL (Isabelle Formaliza-
tion of Logic) project,1 which aims at developing a library of
results about logic and automated reasoning [3]. The Isabelle
files are available in the Archive of Formal Proofs [38, 39] and
in the IsaFoL repository. 2 The parts specific to the functional
prover refinement amount to about 4000 lines of source text.
A convenient way to study the files is to open them in Isa-
belle/jEdit [54], as explained in the repository’s readme file.
The files were created using Isabelle version 2018, but the
repositories will be updated to follow Isabelle’s evolution.

2 Atoms and Substitutions
The first three refinement layers are based on an abstract
library of first-order atoms and substitutions. In the fourth
and final layer, the abstract framework is instantiated with
concrete datatypes and functions.
We start from IsaFoL’s library of clausal logic [6], which

is parameterized by a type ′a of logical atoms. Literals L
are defined as an inductive datatype: ′a literal = Pos ′a |

Neg ′a. The type of clauses C,D,E is introduced as the alias
′a clause = ′a literal multiset, where multiset is the type
constructor of finitemultisets. Thus, the clause¬A∨B, where
A and B are arbitrary atoms, is represented by the multiset
{Neg A, Pos B}, and the empty clause ⊥ is represented by
the empty multiset ∅. The complement operation is defined
as −NegA = PosA and −PosA = NegA for any atom A.
In automated reasoning, it is customary to view clauses

as multisets of literals rather than as sets. One reason is that

1https://bitbucket.org/isafol/isafol/wiki/Home
2https://bitbucket.org/isafol/isafol/src/master/Functional_Ordered_
Resolution_Prover/

multisets behave more naturally under substitution. For ex-
ample, applying {y 7→ x} to the two-literal clause p(x)∨p(y)
results in p(x) ∨ p(x), which preserves the clause’s structure.
The truth value of ground (i.e., variable-free) atoms is

given by a Herbrand interpretation: a set I , of type ′a set, of all
true ground atoms. The “models” predicate |= is defined as
I |= A ⇐⇒ A ∈ I . This definition is lifted to literals, clauses,
and sets of clauses in the usual way. A set of clauses D is
satisfiable if there exists an interpretation I such that I |= D.

Resolution depends on a notion of substitution and of most
general unifier (MGU). These auxiliary concepts are provided
by a third-party library, IsaFoR (Isabelle Formalization of
Rewriting) [51]. To reduce our dependency on external li-
braries, we hide them behind abstract locales parameterized
by a type of atoms ′a and a type of substitutions ′s .

We start by defining a locale substitution_ops that declares
application (·), identity (id), and composition (◦):
locale substitution_ops =
fixes id :: ′s and ◦ :: ′s ⇒ ′s ⇒ ′s and · :: ′a ⇒ ′s ⇒ ′a

Within the locale’s scope, we introduce a number of derived
concepts. Ground atoms are defined as those atoms that
are left unchanged by substitutions: is_ground A ⇐⇒ ∀σ.
A = A · σ . A ground substitution is a substitution whose
application always results in ground atoms. Nonstrict and
strict generalization are defined as

generalizes A B ⇐⇒ ∃σ. A · σ = B
strictly_generalizes A B ⇐⇒ generalizes A B

∧ ¬ generalizes B A

The operators on atoms are lifted to literals, clauses, and sets
of clauses. The grounding of a clause is defined as

grounding_of C = {C · σ | is_ground σ }

The operator is lifted to sets of clauses in the obvious way.
Clause subsumption is defined as

subsumes C D ⇐⇒ ∃σ. C · σ ⊆ D

with strictly_subsumes as its strict counterpart.
The next locale, substitution, characterizes the operations

defined by substitution_ops. A separate locale is necessary
because we cannot interleave assumptions and definitions
in a single locale. In addition, substitution fixes a function
for renaming clauses apart (so that they do not share any
variables) and a function that, given a list of atoms, constructs
an atom with these as subterms:

locale substitution = substitution_ops +
fixes

renamings_apart :: ′a clause list ⇒ ′s list and
atm_of_atms :: ′a list ⇒ ′a

assumes
A · id = A
A · (σ ◦ τ) = (A · σ) · τ
(∀A. A · σ = A · τ) =■⇒ σ = τ
is_ground (C ·σ) =■⇒ ∃τ . is_ground τ ∧ C ·τ = C ·σ

https://bitbucket.org/isafol/isafol/wiki/Home
https://bitbucket.org/isafol/isafol/src/master/Functional_Ordered_Resolution_Prover/
https://bitbucket.org/isafol/isafol/src/master/Functional_Ordered_Resolution_Prover/

A Verified Prover Based on Ordered Resolution CPP ’19, January 14–15, 2019, Cascais, Portugal

wf strictly_generalizes
|renamings_apart Cs | = |Cs |
ρ ∈ renamings_apart Cs =■⇒ is_renaming ρ
var_disjoint (Cs · renamings_apart Cs)
atm_of_atms As · σ = atm_of_atms Bs ⇐⇒
map (λA. A · σ) As = Bs

The above definition is presented to give a flavor of our
development. We refer to the Isabelle files for the exact
definitions. Inside the locale, we prove further properties
of the substitution_ops operations. Notably, we prove well-
foundedness of the strictly_subsumes predicate based on the
well-foundedness of strictly_generalizes, which is stated as
an assumption. The atm_of_atms operation is used to en-
code a clause as a single atom in this well-foundedness proof.

Finally, a third locale, mgu, extends substitution by fixing
a function mgu :: ′a set set ⇒ ′s option that computes an
MGU σ given a set of unification constraints.

3 Bachmair and Ganzinger’s Prover
Our earlier formalization [39, 40] of a nondeterministic or-
dered resolution prover presented by Bachmair and Ganz-
inger [2] forms layer 1 of our refinement. In this paper, we
restrict our focus to binary resolution, which can be imple-
mented efficiently and forms the basis of modern provers.

The ordered resolution calculus is parameterized by a total
order > (“larger than”) on ground atoms. For first-order logic,
the order > is extended to an order ≻ on nonground atoms
so that B ≻ A if and only if for all ground substitutions σ ,
we have B ·σ > A ·σ . The calculus consists of the single rule

C ∨A1 ∨ · · · ∨Ak ¬A ∨ D

(C ∨ D) · σ

where σ is the (canonical) MGU that solves the unification
problem A1

?
= · · ·

?
= Ak

?
= A. In addition, each Ai · σ must

be strictly ≻-maximal with respect to the atoms in C · σ
(meaning that Ai is not ⪯ any atom in C · σ), and A · σ is
≻-maximal with respect to the atoms in D · σ . To achieve
completeness, the rule must be adapted slightly to rename
apart the variables occurring in different premises.
A set of clauses D is saturated if any conclusion from

premises in D is already in D. The ordered resolution calcu-
lus is refutationally complete, meaning that any unsatisfiable
saturated set of clauses necessarily contains ⊥.

Resolution provers start with a finite set of initial clauses—
the input problem—and successively add conclusions from
premises in the set. If the inference rule is applied in a fair
fashion, the set reaches saturation at the limit; if the set is
unsatisfiable, this means ⊥ is eventually derived.

Crucially, not only do efficient provers add clauses to their
working set, they also remove clauses that are deemed re-
dundant. This requires a refined notion of saturation. We
call a set of clauses D saturated up to redundancy, writ-
ten saturated_upto D, if any inference from nonredundant
clauses in D yields a redundant conclusion.

Bachmair and Ganzinger’s nondeterministic first-order
prover, called RP, captures the “dynamic” aspects of satura-
tion. RP is defined as an inductive predicate { on states,
which are triples S = (N ,P ,O) of new clauses N , processed
clauses P , and old clauses O. Initially, N is the input prob-
lem, and P ∪O is empty. Clauses can be removed if they are
tautological or subsumed or after subsumption resolution
has been applied.When all clauses inN have been processed
(either removed entirely or moved to P), a clause C from P
can be chosen for inference computation: C is then moved
from P to O, and all its conclusions with premises from the
other old clauses form the new N. Formally:
inductive { :: ′a state ⇒ ′a state ⇒ bool where
Neg A ∈ C ∧ Pos A ∈ C =■⇒
(N ∪ {C},P ,O) {1 (N ,P ,O)

| D ∈ P ∪O ∧ subsumes D C =■⇒
(N ∪ {C},P ,O) {2 (N ,P ,O)

| D ∈ N ∧ strictly_subsumes D C =■⇒
(N ,P ∪ {C},O) {3 (N ,P ,O)

| D ∈ N ∧ strictly_subsumes D C =■⇒
(N ,P ,O ∪ {C}) {4 (N ,P ,O)

| D ∈ P ∪O ∧ reduces D C L =■⇒
(N ∪ {C ⊎ {L}},P ,O) {5 (N ∪ {C},P ,O)

| D ∈ N ∧ reduces D C L =■⇒
(N ,P ∪ {C ⊎ {L}},O) {6 (N ,P ∪ {C},O)

| D ∈ N ∧ reduces D C L =■⇒
(N ,P ,O ∪ {C ⊎ {L}}) {7 (N ,P ∪ {C},O)

| (N ∪ {C},P ,O) {8 (N ,P ∪ {C},O)

| (∅,P ∪ {C},O) {9
(concl_of ‘ infers_between O C,P ,O ∪ {C})

Subscripts on{ identify the rules. The notation f ‘X stands
for the image of X under f , infers_between O C calculates
all the ordered resolution inferences whose premises are
a subset of O ∪ {C} that contains C , and reduces D C L is
defined as ∃D ′L′σ. D = D ′⊎{L′} ∧ −L = L′ ·σ ∧ D ′ ·σ ⊆ C .

The following derivation shows that RP can diverge even
on unsatisfiable clause sets:

({¬p(a, a), p(x ,x), ¬p(f(x),y) ∨ p(x ,y)}, ∅, ∅)
{+8 (∅, {¬p(a, a), p(x ,x), ¬p(f(x),y) ∨ p(x ,y)}, ∅)
{9 (∅, {¬p(a, a), p(x ,x)}, {¬p(f(x),y) ∨ p(x ,y)})
{9 ({p(x , f(x))}, {¬p(a, a)}, {¬p(f(x),y) ∨ p(x ,y), p(x ,x)})
{8 (∅, {¬p(a, a), p(x , f(x))}, {¬p(f(x),y) ∨ p(x ,y), p(x ,x)})
{9 ({p(x , f(f(x)))}, {¬p(a, a)},

{¬p(f(x),y) ∨ p(x ,y), p(x ,x), p(x , f(x))})
{8 · · ·

We can leave¬p(a, a) inP forever and always generate more
clauses of the form p(x , fi (x)), for increasing values of i . This
emphasizes the importance of a fair strategy for selecting
clauses to move from P to O using rule 9.
Formally, a derivation is a possibly infinite sequence of

states S0 { S1 { S2 { · · · . In Isabelle, this is expressed
by the codatatype of lazy lists:

CPP ’19, January 14–15, 2019, Cascais, Portugal A. Schlichtkrull, J. C. Blanchette, and D. Traytel

codatatype ′a llist = LNil | LCons ′a (′a llist)

Lazy list operation names are prefixed by an L or l to dis-
tinguish them from the corresponding operations on finite
lists. For example, lhd xs yields xs’s head (if xs , LNil), and
lnth xs i yields the (i + 1)st element of xs (if i < |xs |).
We capture the mathematical notation S0 { S1 { · · ·

formally as chain ({) Ss , where Ss is a lazy list of states
and chain is a coinductive predicate:

coinductive chain :: (′a⇒ ′a⇒ bool) ⇒ ′a llist ⇒ bool
where

chain R (LCons x LNil)
| chain R xs ∧ R x (lhd xs) =■⇒ chain R (LCons x xs)

Coinduction is used to allow infinite chains. The base case
is needed to allow finite chains. Chains cannot be empty.

Another important notion is that of the limit of a sequence
Xs of sets. It is defined as the set of elements that aremembers
of all positions of Xs except for an at most finite prefix:
definition Liminf :: ′a set llist ⇒ ′a set where
Liminf Xs =

⋃
i< |Xs |

⋂
j :i≤j< |Xs | lnth Xs j

Liminf and other operators working on clause sets are lifted
pointwise to states. For example, the limit of a sequence of
states is defined as Liminf Ss = (Liminf Ns, Liminf Ps,
Liminf Os), whereNs, Ps, andOs are the projections of the
N , P , and O components of Ss .

The soundness theorem states that if RP derives ⊥ (i.e., ∅)
from a set of clauses, that set must be unsatisfiable:

theorem RP_sound:
∅ ∈ clss_of (Liminf Ss) =■⇒
¬ satisfiable (grounding_of (lhd Ss))

In the above, clss_of (N ,P ,O) = N ∪ P ∪O.
A stronger, finer-grained notion of soundness relates mod-

els before and after a transition:
theorem RP_model:
S { S ′ =■⇒
(I |= grounding_of S ′ ⇐⇒ I |= grounding_of S)

The canonical way of expressing the unsatisfiability of a set
or multiset of first-order clauses with respect to Herbrand
interpretations is as the unsatisfiability of its grounding.

Completeness of the prover can only be guaranteed when
its rules are executed in a fair order, such that clauses do not
get stuck forever in N or P. Accordingly, fairness is defined
as Liminf Ns = Liminf Ps = ∅. The completeness theorem
states that the limit of a fair derivation Ss is saturated:
theorem RP_saturated_if _fair :
fair Ss =■⇒ saturated_upto (Liminf (grounding_of Ss))

In particular, if the initial problem is unsatisfiable, ⊥ must
appear in theO component of the limit of any fair derivation:

corollary RP_complete_if _fair :
fair Ss ∧ ¬ satisfiable (grounding_of (lhd Ss)) =■⇒
∅ ∈ O_of (Liminf Ss)

4 Ensuring Fairness
The second refinement layer is the prover RPw, which en-
sures fairness by assigning a weight to every clause and by
organizing the set of processed clauses—the P state com-
ponent—as a priority queue, where lighter clauses are cho-
sen first. By assigning somewhat heavier weights to newer
clauses, we can guarantee that all derivations are fair.
Another necessary ingredient for fairness is that deriva-

tions must be complete. For example, the incomplete deriva-
tion consisting of the single state ({C}, ∅, ∅) is not fair. This
requirement is expressed formally as full_chain ({w) Ss .
For the rest of this section, we fix a full chain Ss such that
P_of (lhd Ss) = O_of (lhd Ss) = ∅.
Because each RPw rule corresponds to an RP rule, it is

straightforward to lift the soundness and completeness re-
sults from RP to RPw. The main difficulty is to show that the
priority queue ensures fairness of full derivations, which is
needed to obtain an unconditional completeness theorem
for RPw, without the assumption fair Ss .

Definition. The weight of a clause C , which defines its pri-
ority in the queue, may depend both on the clause itself and
on when it was generated. To reflect this, the RPw prover
represents clauses by a pair (C, i), where i is the timestamp.
The larger the timestamp, the newer the clause. A state is
now a quadruple S = (N ,P ,O, t), where the first three
components are finite multisets and t is the timestamp to
assign to the next generation of clauses. Formally, we have
the following type abbreviations:

type_synonym ′a wclause = ′a clause × nat
type_synonym ′a wstate =

′a wclause multiset × ′a wclause multiset
× ′a wclause multiset × nat

We extend the FO_resolution_prover locale, in which RP
is defined, with a weight function that, for any given clause,
is strictly monotone with respect to the timestamp, so that
older copies of a clause are preferred to newer ones:

locale weighted_FO_resolution_prover =
FO_resolution_prover +

fixes weight :: ′a wclause ⇒ nat
assumes i < j =■⇒ weight (C, i) < weight (C, j)

The weight function is otherwise arbitrary. This gives nearly
unlimited freedom when selecting clauses, which is possibly
the most crucial heuristic in modern provers [43]. For exam-
ple, breadth-first search corresponds to the instance where
weight (C, i) is defined as i .

The RPw prover uses ′a wclause for clauses. It is defined
inductively as follows:

inductive {w :: ′a wstate ⇒ ′a wstate ⇒ bool where
Neg A ∈ C ∧ Pos A ∈ C =■⇒
(N ⊎ {(C, i)},P ,O, t) {w1 (N ,P ,O, t)

| D ∈ fst ‘ (P ⊎O) ∧ subsumes D C =■⇒
(N + {(C, i)},P ,O, t) {w2 (N ,P ,O, t)

A Verified Prover Based on Ordered Resolution CPP ’19, January 14–15, 2019, Cascais, Portugal

| D ∈ fst ‘N ∧ C ∈ fst ‘P ∧ strictly_subsumes D C =■⇒
(N ,P ,O, t) {w3 (N , {(E,k) ∈ P . E , C},O, t)

| D ∈ fst ‘ N ∧ strictly_subsumes D C =■⇒
(N ,P ,O ⊎ {(C, i)}, t) {w4 (N ,P ,O, t)

| D ∈ fst ‘ (P ⊎O) ∧ reduces D C L =■⇒
(N ⊎{(C⊎{L}, i)},P ,O, t) {w5 (N ⊎{(C, i)},P ,O, t)

| D ∈ fst ‘ N ∧ reduces D C L
∧ (∀j . (C ⊎ {L}, j) ∈ P =■⇒ j ≤ i) =■⇒

(N ,P⊎{(C⊎{L}, i)},O, t) {w6 (N ,P⊎{(C, i)},O, t)
| D ∈ fst ‘ N ∧ reduces D C L =■⇒
(N ,P ,O⊎{(C⊎{L}, i)}, t) {w7 (N ,P⊎{(C, i)},O, t)

| (N ⊎ {(C, i)},P ,O, t) {w8 (N ,P ⊎ {(C, i)},O, t)
| (∀(D, j) ∈ P . weight (C, i) ≤ weight (D, j)) ∧
N = mset_set ((λD. (D, t)) ‘concl_of ‘ infers_between
(set_mset (fst ‘ O)) C) =■⇒

(∅,P ⊎ {(C, i)},O, t) {w9
(N , {(D, j) ∈ P . D , C},O ⊎ {(C, i)}, t + 1)

where fst is the function that returns the first component of
a pair, mset_set converts a set to the multiset with exactly
one copy of each element in the set, and set_mset converts
a multiset to the set of elements in the multiset.
The most important differences with RP are in the last

transition rule. This rule, which computes inferences, as-
signs timestamp t to each newly computed clause D and
increments t . Moreover, since we want P to work as a prior-
ity queue, RPw chooses a clause C with the smallest weight.

Another difference is that RPw uses finite multisets for rep-
resenting N , P , and O. They offer a compromise between
sets in layer 1 and lists in layer 3. Finite multisets also help
eliminate some unfair derivations. Finiteness guarantees that
each clause in N gets the opportunity to move to P (and
further to O). Moreover, whereas the set-based RP allows
idle transitions, such as (N ∪{C},P ,O) { (N ,P∪{C},O)

for C ∈ N ∩ P , the use of multisets and ⊎ precludes such
transitions in RPw.
Timestamps are preserved when clauses are moved be-

tween N , P , and O. They are also preserved by reduction
steps (rules 5 to 7). This works because reduction can only
take place finitely many times—a k-literal clause can be
reduced at most k times. Therefore, there is no risk of diver-
gence due to an infinite chain of reductions.
Timestamps introduce a new danger. It may be the case

that a clause C is in the limit if we project away the times-
tamps, but that no single timestamped clause (C, i) belongs
to the limit because the timestamps keep changing, as in the
infinite sequence {(C, 0)}, {(C, 1)}, {(C, 2)}, This could
in principle arise due to subsumption, leading to derivations
such as the following:

(_, _ ⊎ {(C, 0)}, _) {w (_, _ ⊎ {(C, 0), (C, 1)}, _) {w

(_, _ ⊎ {(C, 1)}, _) {+w (_, _ ⊎ {(C, 1), (C, 2)}, _) {w

(_, _ ⊎ {(C, 2)}, _) {+w · · ·

To prevent this, the RPw rules are formulated so that when-
ever they remove the earliest copy of any clauseC ∈ P , they

also remove all its copies from P . This property is captured
by the following lemma:

lemma preserve_min_P :
S {w S ′ ∧ (C, i) ∈ P_of S ∧ C ∈ fst ‘ P_of S ′

∧ (∀k . (C,k) ∈ P_of S =■⇒ k ≥ i) =■⇒
(C, i) ∈ P_of S ′

This completes our review of RPw. As an intermediate step
towards a more concrete prover, we restrict the weight func-
tion to be a linear equation that considers both timestamps
and clause sizes:

locale weighted_FO_resolution_prover_with_size_
timestamp_factors =

FO_resolution_prover +
fixes size_factor :: nat and timestamp_factor :: nat
assumes timestamp_factor > 0

begin
fun weight :: ′a wclause ⇒ nat where
weight (C, i) = size_factor ∗ |C | + timestamp_factor ∗ i

end
where |C | =

∑
A :A∈C ∨¬A∈C |A|. It is easy to prove that this

definition of weight is strictly monotone and hence that this
locale is a sublocale of weighted_FO_resolution_prover. This
gives us a correspondingly specialized version of RPw that
will form the basis of further refinement steps.

The idea of organizingP as a priority queue is well known
in the automated reasoning community. Bachmair and Ganz-
inger [2, p. 44] mention it in a footnote, but they require the
weight to be monotone not only in the timestamp but also in
the clause size, claiming that this is necessary to ensure fair-
ness. Our proof reveals that clause size is irrelevant, even in
the presence of reductions. This demonstrates how working
out the details and making all assumptions explicit using a
proof assistant can help clarify fine theoretical points.

Refinement Proofs. To lift the soundness and complete-
ness results about RP to RPw, we must first show that any
possible behavior of RPw on states of typewstate is a possible
behavior of RP on the corresponding values of type state:

lemma weighted_RP_imp_RP :
S {w S ′ =■⇒ state_of S { state_of S ′

The proof is by induction on the rules of RPw, with one diffi-
cult case. Inference computation (rule 9) converts a set to a
finite multiset using mset_set, which is undefined for infi-
nite sets. Thus, we must show only a finite set of inferences
may be performed from a finite clause set:

lemma finite_ord_FO_resolution_inferences_between:
finite D =■⇒ finite (infers_between D C)

A binary resolution inference takes two premises, of the
form CAA = C ∨ A1 ∨ · · · ∨ Ak and DA = ¬A ∨ D, and
produces a conclusion E = (C ∨ D) · σ . It can be represented
compactly by a tuple of the form (CAA,DA,AA,A,E), where
AA = A1 ∨ · · · ∨ Ak . We must show that the set of such

CPP ’19, January 14–15, 2019, Cascais, Portugal A. Schlichtkrull, J. C. Blanchette, and D. Traytel

tuples produced by infers_between is finite, assuming D is
finite. First, observe that the last component E of a tuple is
determined by the other four. Hence it suffices to consider
quadruples (CAA,DA,AA,A). Let DC = D ∪ {C}, and let n
be the length of the longest clause in DC . Moreover, letA =⋃

D∈DC atms_of D and AA = {B | set_mset B ⊆ A ∧

|B | ≤ n}. Then all inferences between D and C belong to
DC ×DC ×AA ×A, a cartesian product of finite sets.

Soundness and Completeness Proofs. Using the refine-
ment lemma weighted_RP_imp_RP , it is easy to lift the RP_
model theorem (Section 3) to RPw:
theorem weighted_RP_model:
S {w S ′ =■⇒
(I |= grounding_of S ′ ⇐⇒ I |= grounding_of S)

Completeness is considerably more difficult. We first show
that the use of timestamps ensures that all full RPw deriva-
tions are fair. In principle, a full derivation could be unfair by
virtue of being finite and ending in a state such asN or P is
nonempty. However, this is impossible because a transition
of rule 8 or 9 could then be taken from the last state, con-
tradicting the hypothesis that the derivation is full. Hence,
finite full derivations are necessarily fair:

lemma fair_if _finite:
lfinite Ss =■⇒ fair (lmap state_of Ss)

There are two ways in which an infinite derivation Ss
in RPw could be unfair: A clause could get stuck forever
in N , or in P . We show that the N case is impossible by
defining a measure on states that decreases with respect to
the lexicographic extension of > on nat to pairs:
abbreviation RP_basic_measure :: ′a wstate ⇒ nat2

where
RP_basic_measure (N ,P ,O, t) ≡(
sum ((λ(C, _). |C | + 1) ‘ (N ⊎ P ⊎O)), |N |

)
The first component of the pair is the total size of all the
clauses in the state, plus 1 for each clause to ensure that
empty clauses are also counted. The second component is
the number of clauses inN . It is easy to see why the measure
is decreasing. Rule 9, inference computation, is not applica-
ble due to our assumption that a clause remains stuck in N .
Rule 8, which moves a clause from N to P , decreases the
measure’s second component while leaving the first compo-
nent unchanged. The other rules decrease the first compo-
nent since they remove clauses or literals. Formally:

lemma weighted_RP_basic_measure_decreasing_N :
S {w S ′ ∧ (C, _) ∈ N_of S =■⇒
(RP_basic_measure S ′, RP_basic_measure S)
∈ RP_basic_rel

whereRP_basic_rel = natLess <lex> natLess and natLess =
{(m,n) | m < n}.
What if a clause C is stuck in P? Lemma preserve_min_P

states that in any step, either all copies of C are removed
or the one with the lowest timestamp is kept. Hence, C’s

timestamp will either remain stable or decrease over time.
Since > is well founded on natural numbers, eventually a
fixed i will be reached and will belong to the limit:

lemma persistent_wclause_in_P_if _persistent_clause:
C ∈ Liminf (lmap P_of (lmap state_of Ss)) =■⇒
∃i . (C, i) ∈ Liminf (lmap (set_mset ◦ P_of) Ss)

Again, we define ameasure, but it must also decrease when
inferences are computed and new clauses appear in N . (In
this case, RP_basic_measure may increase.) Our new mea-
sure is parameterized by a predicate p that can be used to
filter out undesirable clauses:

abbreviation RP_filtered_measure ::
(′a wclause ⇒ bool) ⇒ ′a wstate ⇒ nat3 where

RP_filtered_measure p (N ,P ,O, t) ≡(
sum ((λ(C, _). |C | + 1) ‘ {Di ∈ N ⊎ P ⊎O | p Di}),
|{Di ∈N | p Di}| , |{Di ∈ P | p Di}|

)
Notice that the case RP_filtered_measure (λ_. True) essen-
tially amounts to RP_basic_measure. In the formalization,
we use RP_filtered_measure (λ_. True) to avoid duplication.

Suppose the clause C that is stuck in P has weight w in
the limit, and suppose that a clause D is moved from P to
O by rule 9. That clause’s weight must be at mostw ; other-
wise, it would not have been preferred to C . Thus, infinite
derivations necessarily consist of segments each consisting
of finitely many applications of rules other than rule 9 fol-
lowed by an application of rule 9: ({∗

w1–8 ◦ {w9)
ω . Since

each application of rule 9 increases the t component of the
state, eventually we reach a state in which t > w . As a
consequence of strict monotonicity of weight, any clauses
generated by inference computation from that point on will
have weights aboveC’s, and ifC remains stuck, then so must
these clauses. Thus, we can ignore these clauses altogether,
by using λ(C, i). i ≤ w as the filter p. We adapt the corre-
sponding relation to consider the extra argument:

abbreviation RP_filtered_rel :: (nat3)2 set where
RP_filtered_rel ≡
natLess <lex> natLess <lex> natLess

The measure RP_filtered_measure (λ(_, i). i ≤ w) de-
creases for steps occurring between inference computations
and for all steps once we have reached a state where t > w
(at which point all inference computations are blocked byC).
To obtain a measure that also decreases on inference com-
putation, we add a componentw + 1 − t to the measure. We
also add a component RP_basic_measure S to ensure that
the measure decreases when a clause (C, i) such that i > w
is simplified. This yields the combined measure

abbreviation RP_combined_measure ::
nat ⇒ ′a wstate ⇒ nat × nat3 × nat3 where

RP_combined_measure w S ≡

(w + 1 − t_of S ,
RP_filtered_measure (λ(_, i). i ≤ w) S ,
RP_basic_measure S)

A Verified Prover Based on Ordered Resolution CPP ’19, January 14–15, 2019, Cascais, Portugal

This measure is indeed decreasing with respect to a left-
to-right lexicographic order:

lemma weighted_RP_basic_measure_decreasing_P :
S {w S ′ ∧ Ci ∈ P_of S =■⇒
(RP_combined_measure (weight Ci) S ′,
RP_combined_measure (weight Ci) S)
∈ natLess <lex> RP_filtered_rel <lex> RP_basic_rel

By combining the two lemmas weighted_RP_basic_measure_
decreasing_N and weighted_RP_basic_measure_decreasing_P,
we can prove all derivations starting with P = O = ∅ fair:

theorem weighted_RP_fair : fair (lmap state_of Ss)
Since all derivations are fair and RPw derivations corre-

spond to RP derivations, it is trivial to lift RP’s saturation
and completeness theorems:

corollary weighted_RP_saturated:
saturated_upto (Liminf (lmap grounding_of Ss))

corollary weighted_RP_complete:
¬ satisfiable (grounding_of (lhd Ss)) =■⇒
∅ ∈ O_of (Liminf (lmap state_of Ss))

5 Eliminating Nondeterminism
The third refinement layer defines a functional program RPd
that embodies a specific rule application strategy, thereby
eliminating RPw’s nondeterminism. Clauses are represented
by lists, and multisets of clauses by lists of lists.

Definition. Our prover corresponds roughly to the follow-
ing pseudocode:

function RPd (N ,P ,O, t) is
repeat forever
if ⊥ ∈ P ⊎O then
return P ⊎O

else if N = P = ∅ then
return O

else if N = ∅ then
let C be a minimal-weight clause in P ;
N := conclusions of all inferences from O ⊎ {C}

involving C , with timestamp t ;
move C from P to O;
t := t + 1

else
remove an arbitrary clause C from N ;
reduce C using P ⊎O;
if C = ⊥ then
return {⊥}

else if C is neither a tautology nor subsumed by
a clause in P ⊎O then

reduce P using C;
reduce O using C , moving any reduced
clauses from O to P ;

remove all clauses from P and O that are
strictly subsumed by C;

add C to P

The function should be invoked withN as the input problem,
P = O = ∅, and an arbitrary timestamp t (e.g., 0). The loop
is loosely modeled after Vampire’s proof procedure [52].
In Isabelle, the list-based representations compel us to

introduce the following type abbreviations:
type_synonym ′a lclause = ′a literal list
type_synonym ′a dclause = ′a lclause × nat
type_synonym ′a dstate =

′a dclause list × ′a dclause list × ′a dclause list × nat
The prover is defined inside a locale that inheritsweighted_

FO_resolution_prover_with_size_timestamp_factors. The core
function, RPd_step, performs a single iteration of the main
loop. Here is the definition, excluding auxiliary functions:

fun RPd_step :: ′a dstate ⇒ ′a dstate where
RPd_step (N ,P ,O, t) =
if ∃Ci ∈ P @ O. fst Ci = [] then

([], [], remdups P @ O, t + |remdups P |)

else case N of
[] ⇒

(case P of
[] ⇒ (N ,P ,O, t)

| P0 # P ′ ⇒

let
(C, i) = select_min_weight_clause P0 P ′;
N = map (λD. (D, t)) (remdups
(resolve_rename C C @ concat (map

(resolve_rename_both_ways C ◦fst) O)));
P = filter (λ(D, j). mset D , msetC) P ;
O = (C, i) # O;
t = t + 1

in
(N ,P ,O, t))

| (C, i) # N ⇒

let C = reduce (map fst (P @ O)) [] C in
if C = [] then
([], [], [([], i)], t + 1)

else if is_tautology C
∨ subsume (map fst (P @ O)) C then

(N ,P ,O, t)
else let
P = reduce_all C P ;
(back_to_P ,O) = reduce_all2 C O;
P = back_to_P @ P ;
O = filter ((¬) ◦ strictly_subsume C ◦ fst) O;
P = filter ((¬) ◦ strictly_subsume C ◦ fst) P ;
P = (C, i) # P

in
(N ,P ,O, t)

The # operator abbreviates the Cons constructor, and @ is
the append operator.

The existential quantifier above is unproblematic because
it ranges over a finite set, but some of the auxiliary functions
use infinite quantification. Notably, subsumption of a clause

CPP ’19, January 14–15, 2019, Cascais, Portugal A. Schlichtkrull, J. C. Blanchette, and D. Traytel

D by another clause C is defined as ∃σ. C · σ ⊆ D (Sec-
tion 2), where σ ranges over substitutions. Nonexecutable
constructs are acceptable if we know that we can replace
them by equivalent executable constructs further down the
refinement chain; for example, an implementation of sub-
sumption can compute a witness σ using matching, instead
of blindly enumerating all possible substitutions.

The main program is a tail-recursive function that repeat-
edly calls RPd_step until a final state ([], [],O, t) is reached,
at which point it returns the setO stripped of its timestamps:

partial_function (option)
RPd :: ′a dstate ⇒ ′a lclause list option

where
RPd S = if is_final S then Some (map fst (O_of S))

else RPd (RPd_step S)
Since the recursion may diverge, we cannot introduce the
function using the fun command [22]. Instead, we use par-
tial_function (option) [23], which puts the computation in
an option monad. The function’s result is of the form Some R
if the recursion terminates and None otherwise.

Refinement Proofs. Using refinement, we connect theRPd_
step function to the RPw predicate. RPd_step has a coarser
granularity than RPw: A single invocation on a nonfinal
state S can amount to a chain of RPw transitions. This is
captured by the following (weak-)refinement property:

lemma nonfinal_deterministic_RP_step:
¬ is_final S =■⇒
wstate_of S {+w wstate_of (RPd_step S)

wherewstate_of convertsRPd states toRPw states. The entire
proof, including key lemmas, is about 1300 lines long. It
follows the case distinctions present in RPd_step’s definition:

case ∃Ci ∈ P @ O. fst Ci = []:
By induction on |remdups P | (where remdups removes
duplicates), there must exist a derivation of the form

wstate_of (N ,P ,O, t)
{∗

w2 wstate_of ([],P ,O, t)
{w9 wstate_of (N ′, P ′, (C, i) # O, t + 1)
{∗

w wstate_of ([], [],O′, t + |remdups P ′ |)

for P ′ = filter (λ(D, j). mset D , mset C) P , O′ =

remdups P ′ @ O, and suitable N ′ and (C, i) ∈ P . The
last step is justified by the induction hypothesis.

case N = P = []:
Contradiction with the assumption that (N ,P ,O, t) is
a nonfinal state.

case N = []:
It suffices to show that the transition

wstate_of ([],P ,O, t)
{w9 wstate_of (N ′, P ′, (C, i) # O, t + 1)

is possible, where (C, i) ∈ P is a minimal-weight clause,
N ′ = map (λD. (D, t)) (remdups (resolve_rename C C

@ concat (map (resolve_rename_both_ways C ◦ fst)
O))), and P ′ = filter (λ(D, j). mset D , mset C) P .
The main proof obligation is that N ′, converted to
multisets, equals the multiset mset_set ((λD. (D, t)) ‘
concl_of ‘ infers_between (set_mset (fst ‘ O)) C) speci-
fied in rule{w9. The distance between the functional
program and itsmathematical specification is at its great-
est here. The proof is tedious but straightforward.

otherwise:
Let C ′ = reduce (map fst P @ map fst O) [] C . If
C ′ = [], then

wstate_of ((C, i) # N ′,P ,O, t)
{∗

w5 wstate_of (([], i) # N ′,P ,O, t)
{∗

w3 wstate_of (([], i) # N ′, [],O, t)
{∗

w4 wstate_of (([], i) # N ′, [], [], t)
{w8 wstate_of (N ′, [([], i)], [], t)
{∗

w2 wstate_of ([], [([], i)], [], t)
{w9 wstate_of ([], [], [([], i)], t)

Otherwise, if is_tautology C ′ ∨ subsume (map fst (P@
O)) C ′, then

wstate_of ((C, i) # N ,P ,O, t)
{∗

w5 wstate_of ((C ′, i) # N ,P ,O, t)
{w1,2 wstate_of (N ,P ,O, t)

Otherwise:

wstate_of ((C, i) # N ′,P ,O, t)
{∗

w5 wstate_of ((C ′, i) # N ′,P ,O, t)
{∗

w6 wstate_of ((C ′, i) # N ′,P ′,O, t)
{∗

w7 wstate_of ((C ′, i) # N ′, back_to_P @ P ′,O′, t)
{∗

w4 wstate_of ((C ′, i) # N ′, back_to_P @ P ′,O′′, t)
{∗

w3 wstate_of ((C ′, i) # N ′,P ′′,O′′, t)
{w8 wstate_of (N ′, (C ′, i) # P ′′,O′′, t)

for suitable lists P ′, back_to_P , O′, O′′, and P ′′.

Soundness and Completeness Proofs. Let S0 = (N0, [],
[], t0) be an arbitrary initial state. Soundness means that
whenever RPd S0 terminates with some clause set R, then R
is a saturation that satisfies the samemodels asN0. Moreover,
if N0 is unsatisfiable, then R contains ⊥, providing a simple
syntactic check for unsatisfiability. Completeness means that
divergence is possible only ifN0 is satisfiable. For satisfiable
clause setsN0, both termination and divergence are possible.
To lift soundness and completeness results from RPw to

RPd, we first define Ss as a full chain of nontrivial RPd steps
starting from S0. We let Ss = derivation_from S0, with

primcorec derivation_from :: ′a dstate ⇒ ′a dstate llist
where

derivation_from S = LCons S (if is_final S then LNil
else derivation_from (RPd_step S))

Based on Ss , we letwSs = lmap wstate_of Ss and note that
wSs is a full chain of “big” {+w steps. Using a lemma that
will be proved below, we obtain a full chain sswSs of “small”

A Verified Prover Based on Ordered Resolution CPP ’19, January 14–15, 2019, Cascais, Portugal

{w steps. This chain satisfies the conditions postulated on
Ss in Section 4, allowing us to lift the results presented there.
The soundness results are proved in a nameless locale, or

context, that assumes termination of RPd:

fixes R :: ′a lclause list
assumes RPd S0 = Some R

The definition of RPd, using partial_function, gives us an
induction rule restricted to the case where RPd terminates
(i.e., returns a Some value). This rule can be used to prove
that Ss and hencewSs and sswSs are finite sequences.
Soundness takes the form of a pair of theorems that lift

weighted_RP_model and weighted_RP_saturated:

theorem deterministic_RP_model:
I |= grounding_of N0 ⇐⇒ I |= grounding_of R

theorem deterministic_RP_saturated:
saturated_upto (grounding_of R)

In most applications, all that matters is the satisfiability
status of the set N0. It can be retrieved syntactically:

corollary deterministic_RP_refutation:
¬ satisfiable (grounding_of N0) ⇐⇒ ∅ ∈ R

Completeness is proved in a separate context that assumes
nontermination: RPd S0 = None. The strongest result we
prove is that this assumption implies the satisfiability of N0:

theorem deterministic_RP_complete:
satisfiable (grounding_of N0)

The proof is by contradiction:

Assume that ¬ satisfiable (grounded_of N0). Hence, by
weighted_RP_complete we have ∅ ∈ O_of sswSs . It is
easy to show that sswSs’s limit is a subset ofwSs’s limit;
hence ∅ ∈ O_of wSs . This implies the existence of a nat-
ural number k such that ∅ ∈ O_of (lnth wSs k). Hence
∅ ∈ O_of (RPd_stepk S0). However, by an induction on
k , we can show that RPd must terminate after at most k it-
erations, contradicting the assumption that RPd diverges.

A Coinductive Puzzle. A single “big” step of the determin-
istic prover RPd may correspond to many “small” steps of
the weighted prover RPw. To transfer the results from RPw to
RPd, we must expand the big steps. The core of the expansion
is an abstract property of chains and transitive closure:

Let R be a relation and xs a chain of R+ transitions. There
exists a chain of R transitions that embeds xs—i.e., that
contains all elements of xs in the same order and with
only finitely many elements inserted between each pair
of consecutive elements of xs.

On finite chains, this property can be proved by straight-
forward induction. But the completeness proof must also
consider infinite chains. Coinduction and corecursion up-to
techniques are useful for such tasks.

The desired property is stated formally as follows:

lemma chain_tranclp_imp_exists_chain:
chain R+ xs =■⇒
∃ys. chain R ys ∧ xs ⊑ ys ∧ lhd xs = lhd ys

∧ llast xs = llast ys

where the embedding ⊑ of lazy lists is defined coinductively
using ++, which prepends a finite list to a lazy list:

coinductive ⊑ :: ′a llist ⇒ ′a llist ⇒ bool where
lfinite xs =■⇒ LNil ⊑ xs

| xs ⊑ ys =■⇒ LCons x xs ⊑ zs ++ LCons x ys

fun ++ :: ′a list ⇒ ′a llist ⇒ ′a llist where
[] ++ xs = xs

| (z # zs) ++ xs = LCons z (zs ++ xs)

The definition of ⊑ ensures that infinite lazy lists only embed
other infinite lazy lists, but not the finite ones: xs ⊑ ys =■⇒
(lfinite xs ⇐⇒ lfinite ys). The unguarded calls to llast may
seem worrying, but the function is conveniently defined to
always return the same unspecified element for infinite lists.
To prove the lemma above, we instantiate the existential

quantifier by the following corecursively defined witness:

corec wit :: (′a⇒ ′a⇒ bool) ⇒ ′a llist ⇒ ′a llist where
wit R xs = (case xs of

LCons x (LCons y ys) ⇒
LCons x (pick R x y ++ wit R (LCons y ys))

| _ ⇒ xs)

Here pick R x y returns an arbitrary finite list of R-related
states connecting the R+-related x and y. Its definition is
pick R x y = (SOME zs. chain R (llist_of (x # zs @ [y]))),
where llist_of converts finite lists into lazy lists and SOME is
Hilbert’s choice operator. Thus, pick satisfies the character-
istic property R+ x y =■⇒ chain R (llist_of (x # pick R x y @
[y])). The nonexecutability entailed by the use of Hilbert
choice is unproblematic because the wit function is used
only in the proofs and not in the prover’s code.
The definition of wit is not primitively corecursive. Al-

though there is a guarding LCons constructor, the corecur-
sive call occurs under ++, which makes the productivity of
this function nontrivial. This syntactic structure of the defini-
tion is called corecursive up to++. Ultimately,wit is productive
because ++ does not remove any LCons constructors from
its second arguments. A slightly weaker requirement, called
friendliness, is supported by Isabelle’s corec command [5].
For the above definition to be accepted ++must be registered
as a “friend.” This involves a one-line proof.

The four conjuncts in chain_tranclp_imp_exists_chain are
discharged in turn under the assumption chain R+ xs. In
order of increasing difficulty: lhd (wit R xs) = lhd xs follows
by simple rewriting. Next, llast (wit R xs) = llast xs requires
an induction in the case of finite chains xs. For any infinite
chain zs, llast zs is defined as a fixed unspecified ′a value. The
properties xs ⊑ wit R xs and chain R (wit R xs) require a
coinduction on ⊑ and chain, respectively. In keepingwith the

CPP ’19, January 14–15, 2019, Cascais, Portugal A. Schlichtkrull, J. C. Blanchette, and D. Traytel

definition, plain coinduction on ⊑ and chain does not suffice,
and we must use coinduction up to ++ on ⊑ and chain.
The property chain_tranclp_imp_exists_chain easily ex-

tends to full chains.

6 Obtaining Executable Code
Our deterministic prover RPd is already quite close to being
an executable program. The fourth refinement, the prover
RPx, adds the missing ingredients: a concrete representation
of terms and an executable algorithm for clause subsumption.

First-Order Terms. We instantiate our abstract notion of
atom using a particularly comprehensive formalization of
terms developed as part of the IsaFoR library [51]. This
rewriting-independent part of IsaFoR has recently moved to
the Archive of Formal Proofs [47].
IsaFoR terms are defined as the following datatype:
datatype (′f ,′v) term = Var ′v | Fun ′f ((′f ,′v) term list)

To simplify notation, in this paper we fix ′f = ′v = nat
and abbreviate (′f , ′v) term by term. In the formalization,
polymorphic types are used whenever possible. IsaFoR also
defines the standard monadic term substitution · :: term ⇒

(′v ⇒ term) ⇒ term and a unify :: (term × term) list ⇒

lsubst ⇒ lsubst function, where lsubst = (′v × term) list
is the list-based representation of a finite substitution. The
function unify computes theMGU for a list of unification con-
straints that is compatible with a given substitution. IsaFoR
includes a wealth of theorems, including the correctness of
unify and the well-foundedness of strict term generalization,
defined as (∃σ . s · σ = t) ∧ (�σ . t · σ = s).
This infrastructure allows us to conveniently instantiate

our locales substitution_ops, substitution, and mgu. We in-
stantiate the type ′a of atoms with term and the type ′s of
substitutions with ′v ⇒ term and the constants ·, id, ◦, and
atm_of_atms with ·, Var, λσ τ x . σ x · τ , and (arbitrarily)
Fun 0. For the MGU computation, there is a slight type mis-
match: IsaFoR offers a list-based unifier, whereas our locale
requires the type term set set ⇒ (′v ⇒ term) option. It is
easy to translate a finite set of finite sets of terms into a finite
list of pairs of constraints. To be executable, the translation
requires us to sort the terms belonging to set with respect to
an arbitrary (but executable) linear order.
Only the function renamings_apart was not present in

IsaFoR. We supply a definition:
fun renamings_apart :: termclause list⇒(′v⇒ term) list
where

renamings_apart [] = []

| renamings_apart (C # Cs) =
let σs = renamings_apart Cs in
(λv . v +max ({0} ∪ vars_clause_list (Cs · σs))+ 1) # σs

where vars_clause_list :: term clause list ⇒ ′v set returns
the variables contained in a list of clauses. The creation of
fresh variable names relies on ′v = nat.

Finally, the FO_resolution_prover locale requires that the
type of atoms supports two comparison operators: a well-
order > and a comparison ≻ that is stable under substitution
(i.e., B ≻ A =■⇒ B · σ ≻ A · σ). Moreover, > and ≻ must
coincide on ground atoms. We instantiate ≻ with the Knuth–
Bendix order [19] on terms, provided by IsaFoR [46]. This
order is executable, stable under substitution, well founded,
and total on ground terms. The well-order >, which must be
total on all terms, is then defined as an arbitrary extension of
a partial well-founded order ≻ to a well-order, using Hilbert
choice. This makes > nonexecutable, but this is acceptable
since it is ≻, not >, that is used in the prover’s code.

Clause Subsumption. The second hurdle concerns clause
subsumption. Itsmathematical definition, subsumes C D ⇐⇒

∃σ. C · σ ⊆ D, involves an infinite quantification.
The problem of decidingwhether such a substitution exists

is NP-complete [18]. We start with the following naive code.
In contrast to the mathematical definition, which operates
on multisets of literals, our function operates on lists:

fun subsumes_list :: term literal list ⇒
term literal list ⇒ (′v ⇒ term option) ⇒ bool

where
subsumes_list [] Ks σ = True

| subsumes_list (L # Ls) Ks σ =
(∃K ∈ set Ks. is_pos K = is_pos L ∧

case match_term_list [(atm_of L, atm_of K)] σ of
None ⇒ False

| Some ρ ⇒ subsumes_list Ls (remove1 K Ks) ρ)

In the Cons case, we must consider all possible matching
literals for L from Ks compatible with the substitution σ . The
bounded existential quantification that expresses this nonde-
terminism can be executed by iterating over the finite list Ks.
The functions is_pos and atm_of are the discriminator and
selector for literals. The function match_term_list is pro-
vided by IsaFoR. It attempts to extend a given substitution
into Some matcher for a list of matching constraints, given
as term pairs. If the extension is impossible,match_term_list
returns None. This substitution-passing style is typical of
purely functional implementations of matching.

It is easy to prove that the above executable function imple-
ments clause subsumption: subsumes (mset Ls) (mset Ks) =
subsumes_list Ls Ks (λx .None), where mset converts lists
to multisets by forgetting the order of the elements. After the
registration of this equation, Isabelle’s code generator will
rewrite any code that contains the nonexecutable left-hand
side to use the executable right-hand side instead.

Clause subsumption is a hot spot in a resolution prover [41].
Following Tammet [49], we implement a heuristic that of-
ten reduces the number of calls tomatch_term_list, which is
linear in the size of the input terms, by first performing a sim-
pler, imprecise comparison. For example, termswith different
root symbols will never match, and these can be compared in

A Verified Prover Based on Ordered Resolution CPP ’19, January 14–15, 2019, Cascais, Portugal

constant time. Similarly, literals with opposite polarities can-
not match.We sort our (list-represented) clauses with respect
to a literal quasi-order (i.e., a transitive and reflexive relation)
leq_lit such that leq_lit L K only if is_pos L = is_pos K and
match_term_list [(atm_of L, atm_of K)] σ = Some ρ for
some σ and ρ. Any quasi-order satisfying this property can
be used in a refinement of subsumes_list to remove too small
literals (with respect to leq_lit), as highlighted in gray below:

fun subsumes_list′ :: term literal list ⇒
term literal list ⇒ (′v ⇒ term option) ⇒ bool

where
subsumes_list′ [] Ks σ = True

| subsumes_list′ (L # Ls) Ks σ =
let Ks = filter (leq_lit L) Ks in
(∃K ∈ set Ks. is_pos K = is_pos L ∧

case match_term_list [(atm_of L, atm_of K)] σ of
None ⇒ False

| Some ρ ⇒ subsumes_list′ Ls (remove1 K Ks) ρ)
The lemma subsumes_list Ls Ks ρ = subsumes_list′ (sort
leq_lit Ls) Ks ρ allows the code generator to refine the origi-
nal version. In RPx, we let leq_lit be a quasi-order that (1) con-
siders negative literals smaller than positive ones; (2) consid-
ers variables smaller than nonvariables; and (3) sorts atoms
according to a total order on their root symbols.
This refinement is a local optimization: It requires us to

explicitly sort one of the input clauses. A potentially more
efficient refinement would be to ensure that all clauses in the
prover’s state are sorted with respect to leq_lit. Sorting Ls at
each invocation of subsumption could then be avoided, and
filtering Ks could be performed more efficiently. However,
maintaining the invariant would require changes throughout
the prover’s code.

The End Result. Finally, Isabelle can export our prover to
Standard ML, Haskell, OCaml, or Scala. The command

export_code RPx in SMLmodule_name RP
generates an ML module containing the implementation of
our prover in about 1000 lines of code, including dependen-
cies. The generated module exports the function RPx : (term
literal list * nat) list -> bool. The input is theN com-
ponent of an initial state, which consists of pairs of clauses
and arbitrary timestamps (e.g., 0).

Even though in Isabelle we have proved that for any unsat-
isfiable input RPx will terminate and return False, the code
generator guarantees only partial correctness of its output: If
the ML program terminates on the ML input generated from
the Isabelle term t and evaluates to the Boolean result b, the
proposition RPx t = b is provable in Isabelle; by soundness,
b indicates the satisfiability of the input clause set. There
is recent work towards providing stronger guarantees and
reducing the generator’s trusted code base [14].

Empirical Evaluation. To measure the gap with the state
of the art, we compare our prover’s performance with that

of three other provers on a benchmark suite. TPTP (Thou-
sands of Problems for Theorem Provers) [48] is the de facto
standard library for benchmarking automatic provers. We
extended RPx with the trusted TPTP parser from Metis [15].
We benchmarked E 2.1, Vampire 4.2.2, Metis 2.4, and RPx
on 1000 randomly selected equality-free problems from the
TPTP’s FOF (first-order formulas) and CNF (first-order for-
mulas in conjunctive normal form) categories. We converted
all FOF problems to CNF using E’s clausifier. Each prover
was run on each problem for 60 s on an Intel Core i9-7900X
(3.3 GHz 10-Core) with 128GB of RAM.

The results are summarized in the following table, show-
ing for each prover how many unsatisfiable and satisfiable
problems were solved and how many seconds were needed
on average by each prover on the problems that were solved
by all four:

Vampire E Metis RPx

Unsatisfiable 675 635 436 331
Satisfiable 158 135 91 22
Average time (s) 0.032 0.014 0.637 3.126

The detailed results of the evaluation are available online,
together with instructions for reproducing them.3
As expected, RPx is not competitive. A prover’s perfor-

mance comes from its calculus, its heuristics, and its in-
dexing data structures. RPx employs an excellent calculus
but mediocre heuristics and data structures. Better perfor-
mance could be achieved by working on these last two as-
pects. Heuristics are often easy to verify, because their input–
output specifications are permissive, but formalizing opti-
mized data structures can be very laborious [10].
Nevertheless, sometimes the calculus is all that matters.

Benchmark MSC015 from the TPTP library is a particularly
challenging family Φn of first-order problems, each consist-
ing of the following n + 2 clauses:

¬ p(b, . . . , b) p(a, . . . , a)

¬ p(a, b, . . . , b) ∨ p(b, a, . . . , a)
¬ p(x1, a, b, . . . , b) ∨ p(x1, b, a, . . . , a)

...

¬ p(x1, . . . , xn−2, a, b) ∨ p(x1, . . . , xn−2, b, a)
¬ p(x1, . . . , xn−2, xn−1, a) ∨ p(x1, . . . , xn−2, xn−1, b)

A comment in the benchmark warns us that back in 2007,
no prover could solve the Φ23 within an hour. Even in 2018,
only one prover solves Φ22 within 300 s, and four provers
solve Φ20 within 300 s. RPx solves Φ20 in 100 s and Φ22 in
200 s. Presumably, the reason for this success is that RPx
fortuitously chooses an instance of the Knuth–Bendix order
that is well suited to this benchmark.

3http://matryoshka.gforge.inria.fr/pubs/fun_rp_data.tar.gz

http://matryoshka.gforge.inria.fr/pubs/fun_rp_data.tar.gz

CPP ’19, January 14–15, 2019, Cascais, Portugal A. Schlichtkrull, J. C. Blanchette, and D. Traytel

7 Discussion and Related Work
We found Bachmair and Ganzinger’s [2] chapter and its for-
malization [39, 40] suitable as a starting point for a verified
prover. Nonetheless, we faced some difficulties, notably con-
cerning the identification of suitable refinement layers. We
developed layers 2, 3, and 4 largely in parallel, with each of
the authors working on a separate layer. Bringing layer 2
into a state such that it both ensures fairness and could be
refined further by layer 3 required several iterations.

Stepwise refinement helped us achieve separation of con-
cerns: fairness, determinism, and executability were achieved
successively. Another strength of this methodology is that
it allows us to prove results at a high level of abstraction;
for example, fairness is established at layer 2 already and
is inherited by subsequent layers. The main difficulty with
refinement is that some nontrivial machinery is necessary
to lift results from one layer to the next. We believe the gain
in modularity makes this worthwhile.

It took us quite some time to design a suitable measure to
prove the fairness of the layer 2 prover RPw. Our solution
amounts to advancing to a state carrying a suitably high
timestamp and filtering out all overly heavy clauses. Initially,
our proof consisted of two steps—advancing and filtering—
each with its own measure. This proof gave us the assurance
that RPw was fair, but we found that combining the measures
is both more succinct and more intelligible.
Our main objective was not to reach qed as quickly as

possible but rather to investigate how to harness a modern
proof assistant to formalize the metatheory of automatic
theorem provers. We found Isabelle suitable for this verifi-
cation task. The Isar proof language allows us to state key
intermediate steps, as in a paper proof. Standard tactics, in-
cluding Isabelle’s simplifier, can be used to discharge proof
obligations. The Sledgehammer tool [32] employs superposi-
tion provers and SMT (satisfiability modulo theories) solvers
to swiftly identify which lemmas can be used to prove a goal;
standard Isabelle tactics are then used to reconstruct the
proof. Isabelle’s support for coinductive methods, including
the coinductive, codatatype, and corec commands, helps
us reason about infinite processes. Locales are a useful ab-
straction for defining the refinement layers. And Isabelle’s
libraries, the Archive of Formal Proofs, and IsaFoR certainly
saved us months of labor.
The Archive also includes a refinement framework [25],

which has been used in a separate effort to connect the imper-
ative code of an efficient SAT solver to an abstract calculus
[6]. The framework is helpful in a variety of situations, in-
cludingwhen the refinement relation between a concrete and
an abstract data representation is not a function. But since
converting a list to a multiset (between our levels 3 and 2) or
a multiset to a set (between levels 2 and 1) is a function, we
did not see a need to employ it. Moreover, the framework is
currently not designed for refining semidecision procedures,

as acknowledged privately by its developer. We conjecture
that its support for separation logic could be useful if we
were to refine the prover further to obtain imperative code.

Thanks to the verification, we can trust to a very high
extent that our ordered resolution prover is sound and com-
plete. To make the prover’s performance competitive with E,
SPASS, and Vampire, we would need to extend the current
work along two axes. First, we should use superposition,
together with its extensive simplification machinery, as the
base calculus. A good starting point would be to apply our
methodology to Peltier’s [33] formalization of superposition.
Given that a large part of a modern superposition prover’s
code consists of heuristics, which are easy to verify, the full
verification of a competitive superposition prover appears to
be a realistic objective for a forthcoming Ph.D. thesis. Second,
the refinement chain should be continued to cover optimized
algorithms and data structures. These could be specified by
refining layer 4 further, along the lines of Fleury et al.’s [10]
refinement of an imperative SAT solver.

In computer science, a metatheory may inspire an imple-
mentation, or vice versa, but the connection is seldom made
explicit. By formalizing the metatheory, the implementation,
and their connection, we can demonstrate not only the imple-
mentation’s correctness but also the metatheory’s adequacy
for describing potential implementations. In particular, we
have now confirmed that Bachmair and Ganzinger [2] ac-
curately describe the abstract principles of an executable
functional prover (with a few exceptions [40]), even though
they provide few details beyond layer 1.

We built the prover on our earlier formalization [39, 40] of
ordered resolution. Related efforts developed using Isabelle/
HOL include Peltier’s [33] formalization of superposition and
Schlichtkrull’s [37] formalization of unordered resolution.
These developments cover only logical calculi; hadwe started
with any of them, the first step would have been to define
an abstract prover in the style of layer 1 and prove basic
properties about it. Another related effort is Hirokawa et al.’s
[13] formalization of ordered completion, which (like ordered
resolution) can be regarded as a special case of superposition.

Formalizing a theorem proving tool using a theorem prov-
ing tool is a thrilling (if self-referential) prospect for many
researchers. An early result is Ridge and Margetson’s [35]
verified first-order prover, based on a sequent calculus for
first-order logic without full first-order terms but only vari-
ables. Kumar et al. [24] formalized the soundness of a proof
assistant for higher-order logic. Jensen et al. [16] verified
the soundness of a kernel for a proof assistant for first-order
logic that includes a tableau prover. There are several verified
SAT solvers [6, 27–29, 31, 44]. SAT being a decidable problem,
termination has been proved for most solvers. First-order
logic, on the other hand, is semidecidable.
A pragmatic approach to combining the efficiency of un-

verified code with the trustworthiness of verified code in-
volves checking certificates produced by reasoning tools—

A Verified Prover Based on Ordered Resolution CPP ’19, January 14–15, 2019, Cascais, Portugal

e.g., proofs produced by SAT solvers [9, 26]. Researchers
from the first-order theorem proving community are now
advocating this approach for their systems [34]. An ad hoc
version of this approach is used in Sledgehammer and HOLy-
Hammer to reconstruct proofs found by external automatic
provers [4, 17].

8 Conclusion
Starting from an abstract description of an ordered resolution
prover [39, 40], we verified, through a refinement chain, a
purely functional prover that uses lists as its main data struc-
ture. The resulting program is interesting in its own right
and could be refined further to obtain an implementation
that is competitive with the state of the art.
Stepwise refinement is a keystone of our methodology,

and we found it adequate. Each refinement step cleanly iso-
lates concerns, yielding intelligible proof obligations. Refine-
ment also helped us identify an unnecessary assumption
in Bachmair and Ganzinger’s [2] chapter and clarify the ar-
gument. Lifting results from one layer to another required
some thought, especially the completeness results, which
correspond to liveness properties.

Having now established a methodology and built basic for-
mal libraries, we expect that verifying other provers, using
Isabelle or other systems, will be substantially easier. Because
it is based on Bachmair and Ganzinger’s framework, our ap-
proach generally applies to all saturation-based provers, with
or without redundancy. This includes resolution, paramodu-
lation, ordered rewriting, superposition, and variants thereof,
covering many of the most successful provers for equational
[8, 12], first-order [21, 42, 53], and higher-order logic [45].

Acknowledgments
Johannes Hölzl gave us some useful advice on how to specify
and reason about possibly nonterminating functions in Isa-
belle/HOL. Alexander Bentkamp, Mathias Fleury, Andreas
Halkjær From, Carsten Fuhs, Peter Lammich, Mark Sum-
merfield, Jørgen Villadsen, and the anonymous reviewers
suggested many textual improvements. Eugene Kotelnikov,
Stephan Schulz, and Geoff Sutcliffe graciously answered our
questions about Vampire, E, and TPTP.
Schlichtkrull has received funding from a Ph.D. scholar-

ship in the Algorithms, Logic and Graphs section of DTU
Compute and from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and in-
novation program (grant agreement No. 700321, LIGHTest).
Blanchette has received funding from the ERC under the
European Union’s Horizon 2020 research and innovation
program (grant agreement No. 713999, Matryoshka). An
earlier version of this paper was included as a chapter of
Schlichtkrull’s Ph.D. thesis [36] with the same authors’ list.

References
[1] Leo Bachmair, Nachum Dershowitz, and David A. Plaisted. 1989.

Completion without Failure. In Rewriting Techniques—resolution of
Equations in Algebraic Structures, Hassan Aït-Kaci and Maurice Nivat
(Eds.). Vol. 2. Academic Press, 1–30.

[2] Leo Bachmair and Harald Ganzinger. 2001. Resolution Theorem
Proving. In Handbook of Automated Reasoning, Alan Robinson and
Andrei Voronkov (Eds.). Vol. I. Elsevier and MIT Press, 19–99.

[3] Jasmin Christian Blanchette. 2019. Formalizing the Metatheory of
Logical Calculi and Automatic Provers in Isabelle/HOL (Invited Paper).
In CPP 2019, Assia Mahboubi and Magnus O. Myreen (Eds.). ACM.

[4] Jasmin Christian Blanchette, Sascha Böhme, Mathias Fleury,
Steffen Juilf Smolka, and Albert Steckermeier. 2016. Semi-intelligible
Isar Proofs from Machine-Generated Proofs. J. Autom. Reasoning 56, 2
(2016), 155–200.

[5] Jasmin Christian Blanchette, Aymeric Bouzy, Andreas Lochbihler,
Andrei Popescu, and Dmitriy Traytel. 2017. Friends with Benefits:
Implementing Corecursion in Foundational Proof Assistants. In ESOP
2017, Hongseok Yang (Ed.). LNCS, Vol. 10201. Springer, 111–140.

[6] Jasmin Christian Blanchette, Mathias Fleury, Peter Lammich, and
Christoph Weidenbach. 2018. A Verified SAT Solver Framework with
Learn, Forget, Restart, and Incrementality. J. Autom. Reasoning 61,
1–4 (2018), 333–365.

[7] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei
Paskevich. 2011. Why3: Shepherd Your Herd of Provers. In Boogie
2011, K. Rustan M. Leino and Michał Moskal (Eds.). 53–64.

[8] Koen Claessen and Nicholas Smallbone. 2018. Efficient Encodings of
First-Order Horn Formulas in Equational Logic. In IJCAR 2018, Didier
Galmiche, Stephan Schulz, and Roberto Sebastiani (Eds.). LNCS,
Vol. 10900. Springer, 388–404.

[9] Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt
Kaufmann, and Peter Schneider-Kamp. 2017. Efficient Certified RAT
Verification. In CADE-26, Leonardo de Moura (Ed.). LNCS, Vol. 10395.
Springer, 220–236.

[10] Mathias Fleury, Jasmin Christian Blanchette, and Peter Lammich.
2018. A Verified SAT Solver with Watched Literals using Imperative
HOL. In CPP 2018, June Andronick and Amy P. Felty (Eds.). ACM,
158–171.

[11] Florian Haftmann and Tobias Nipkow. 2010. Code Generation via
Higher-Order Rewrite Systems. In FLOPS 2010, Matthias Blume,
Naoki Kobayashi, and Germán Vidal (Eds.). LNCS, Vol. 6009. Springer,
103–117.

[12] Thomas Hillenbrand, Arnim Buch, Roland Vogt, and Bernd Löchner.
1997. WALDMEISTER—High-Performance Equational Deduction. J.
Autom. Reasoning 18, 2 (1997), 265–270.

[13] Nao Hirokawa, Aart Middeldorp, Christian Sternagel, and Sarah
Winkler. 2017. Infinite Runs in Abstract Completion. In FSCD 2017,
Dale Miller (Ed.). LIPIcs, Vol. 84. Schloss Dagstuhl—Leibniz-Zentrum
für Informatik, 19:1–19:16.

[14] Lars Hupel and Tobias Nipkow. 2018. A Verified Compiler from
Isabelle/HOL to CakeML. In ESOP 2018, Amal Ahmed (Ed.). LNCS,
Vol. 10801. Springer, 999–1026.

[15] Joe Hurd. 2003. First-Order Proof Tactics in Higher-Order Logic
Theorem Provers. In Design and Application of Strategies/Tactics in
Higher Order Logics (STRATA), Myla Archer, Ben Di Vito, and César
Muñoz (Eds.). 56–68.

[16] Alexander Birch Jensen, John Bruntse Larsen, Anders Schlichtkrull,
and Jørgen Villadsen. 2018. Programming and Verifying a Declarative
First-Order Prover in Isabelle/HOL. AICommun.31, 3 (2018), 281–299.

[17] Cezary Kaliszyk and Josef Urban. 2013. PRocH: Proof Reconstruction
for HOL Light. In CADE-24, Maria Paola Bonacina (Ed.). LNCS,
Vol. 7898. Springer, 267–273.

[18] Deepak Kapur and Paliath Narendran. 1986. NP-Completeness of the
Set Unification and Matching Problems. In CADE-8, Jörg H. Siekmann

CPP ’19, January 14–15, 2019, Cascais, Portugal A. Schlichtkrull, J. C. Blanchette, and D. Traytel

(Ed.). LNCS, Vol. 230. Springer, 489–495.
[19] Donald E. Knuth and Peter B. Bendix. 1970. Simple Word Problems in

Universal Algebras. In Computational Problems in Abstract Algebra,
John Leech (Ed.). Pergamon Press, 263–297.

[20] Laura Kovács and Andrei Voronkov. 2009. Finding Loop Invariants for
Programs over Arrays using a Theorem Prover. In SYNASC 2009,
Stephen M. Watt, Viorel Negru, Tetsuo Ida, Tudor Jebelean, Dana
Petcu, and Daniela Zaharie (Eds.). IEEE Computer Society, 10.

[21] Laura Kovács and Andrei Voronkov. 2013. First-Order Theorem
Proving and Vampire. In CAV 2013, Natasha Sharygina and Helmut
Veith (Eds.). LNCS, Vol. 8044. Springer, 1–35.

[22] Alexander Krauss. 2006. Partial Recursive Functions in Higher-Order
Logic. In IJCAR 2006, Ulrich Furbach and Natarajan Shankar (Eds.).
LNCS, Vol. 4130. Springer, 589–603.

[23] Alexander Krauss. 2010. Recursive Definitions of Monadic Functions.
EPTCS 43 (2010), 1–13.

[24] Ramana Kumar, Rob Arthan, Magnus O. Myreen, and Scott Owens.
2016. Self-Formalisation of Higher-Order Logic: Semantics,
Soundness, and a Verified Implementation. J. Autom. Reasoning 56, 3
(2016), 221–259.

[25] Peter Lammich. 2013. Automatic Data Refinement. In ITP 2013,
Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie (Eds.).
LNCS, Vol. 7998. Springer, 84–99.

[26] Peter Lammich. 2017. The GRAT Tool Chain—Efficient (UN)SAT
Certificate Checking with Formal Correctness Guarantees. In SAT
2017, Serge Gaspers and Toby Walsh (Eds.). LNCS, Vol. 10491.
Springer, 457–463.

[27] Stephane Lescuyer. 2011. Formalizing and Implementing a Reflexive
Tactic for Automated Deduction in Coq. Ph.D. Dissertation. Université
Paris-Sud.

[28] Filip Marić. 2008. Formal Verification of Modern SAT Solvers. Archive
of Formal Proofs (2008). Formal Proof Development.
http://isa-afp.org/entries/SATSolverVerification.html.

[29] Filip Marić. 2010. Formal Verification of a Modern SAT Solver by
Shallow Embedding into Isabelle/HOL. Theoret. Comput. Sci. 411, 50
(2010), 4333–4356.

[30] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002.
Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS,
Vol. 2283. Springer.

[31] Duckki Oe, Aaron Stump, Corey Oliver, and Kevin Clancy. 2012.
versat: A Verified Modern SAT Solver. In VMCAI 2012, Viktor
Kuncak and Andrey Rybalchenko (Eds.). LNCS, Vol. 7148. Springer,
363–378.

[32] Lawrence C. Paulson and Jasmin Christian Blanchette. 2012. Three
Years of Experience with Sledgehammer, a Practical Link Between
Automatic and Interactive Theorem Provers. In IWIL-2010, Geoff
Sutcliffe, Stephan Schulz, and Eugenia Ternovska (Eds.). EPiC Series
in Computing, Vol. 2. EasyChair, 1–11.

[33] Nicolas Peltier. 2016. A Variant of the Superposition Calculus.
Archive of Formal Proofs (2016). Formal Proof Development.
http://isa-afp.org/entries/SuperCalc.html.

[34] Giles Reger and Martin Suda. 2017. Checkable Proofs for First-Order
Theorem Proving. In ARCADE 2017, Giles Reger and Dmitriy Traytel
(Eds.). EPiC Series in Computing, Vol. 51. EasyChair, 55–63.

[35] Tom Ridge and James Margetson. 2005. A Mechanically Verified,
Sound and Complete Theorem Prover for First Order Logic. In
TPHOLs 2005, Joe Hurd and Tom Melham (Eds.). LNCS, Vol. 3603.
Springer, 294–309.

[36] Anders Schlichtkrull. 2018. Formalization of Logic in the Isabelle Proof
Assistant. Ph.D. Dissertation. Technical University of Denmark.

[37] Anders Schlichtkrull. 2018. Formalization of the Resolution Calculus
for First-Order Logic. J. Autom. Reasoning 61, 1–4 (2018), 455–484.

[38] Anders Schlichtkrull, Jasmin Christian Blanchette, and Dmitriy
Traytel. 2018. A Verified Functional Implementation of Bachmair and

Ganzinger’s Ordered Resolution Prover. Archive of Formal Proofs
(2018). Formal Proof Development. http:
//isa-afp.org/entries/Functional_Ordered_Resolution_Prover.html.

[39] Anders Schlichtkrull, Jasmin Christian Blanchette, Dmitriy Traytel,
and Uwe Waldmann. 2018. Formalization of Bachmair and
Ganzinger’s Ordered Resolution Prover. Archive of Formal Proofs
(2018). Formal Proof Development.
http://isa-afp.org/entries/Ordered_Resolution_Prover.html.

[40] Anders Schlichtkrull, Jasmin Christian Blanchette, Dmitriy Traytel,
and Uwe Waldmann. 2018. Formalizing Bachmair and Ganzinger’s
Ordered Resolution Prover. In IJCAR 2018, Didier Galmiche, Stephan
Schulz, and Roberto Sebastiani (Eds.). LNCS, Vol. 10900. Springer,
89–107.

[41] Stephan Schulz. 2013. Simple and Efficient Clause Subsumption with
Feature Vector Indexing. In Automated Reasoning and Mathematics—
Essays in Memory of William W. McCune, Maria Paola Bonacina and
Mark E. Stickel (Eds.). LNCS, Vol. 7788. Springer, 45–67.

[42] Stephan Schulz. 2013. System Description: E 1.8. In LPAR-19, Ken
McMillan, Aart Middeldorp, and Andrei Voronkov (Eds.). LNCS,
Vol. 8312. Springer, 735–743.

[43] Stephan Schulz and Martin Möhrmann. 2016. Performance of Clause
Selection Heuristics for Saturation-Based Theorem Proving. In IJCAR
2016, Nicola Olivetti and Ashish Tiwari (Eds.). LNCS, Vol. 9706.
Springer, 330–345.

[44] Natarajan Shankar and Marc Vaucher. 2011. The Mechanical
Verification of a DPLL-Based Satisfiability Solver. Electr. Notes Theor.
Comput. Sci. 269 (2011), 3–17. LSFA 2010.

[45] Alexander Steen and Christoph Benzmüller. 2018. The Higher-Order
Prover Leo-III. In IJCAR 2018, Didier Galmiche, Stephan Schulz, and
Roberto Sebastiani (Eds.). LNCS, Vol. 10900. Springer, 108–116.

[46] Christian Sternagel and René Thiemann. 2013. Formalizing
Knuth-Bendix Orders and Knuth-Bendix Completion. In RTA 2013,
Femke van Raamsdonk (Ed.). LIPIcs, Vol. 21. Schloss
Dagstuhl—Leibniz-Zentrum für Informatik, 287–302.

[47] Christian Sternagel and René Thiemann. 2018. First-Order Terms.
Archive of Formal Proofs (2018). Formal Proof Development.
http://isa-afp.org/entries/First_Order_Terms.html.

[48] Geoff Sutcliffe. 2017. The TPTP Problem Library and Associated
Infrastructure: From CNF to TH0, TPTP v6.4.0. J. Autom. Reasoning
59, 4 (2017), 483–502.

[49] Tanel Tammet. 1998. Towards Efficient Subsumption. In CADE-15,
Claude Kirchner and Hélène Kirchner (Eds.). LNCS, Vol. 1421.
Springer, 427–441.

[50] René Thiemann. 2018. Extending a Verified Simplex Algorithm. In
IWIL-2018, Geoff Sutcliffe, Stephan Schulz, and Eugenia Ternovska
(Eds.).

[51] René Thiemann and Christian Sternagel. 2009. Certification of
Termination Proofs using CeTA. In TPHOLs 2009, Stefan Berghofer,
Tobias Nipkow, Christian Urban, and Makarius Wenzel (Eds.). LNCS,
Vol. 5674. Springer, 452–468.

[52] Andrei Voronkov. 2014. AVATAR: The Architecture for First-Order
Theorem Provers. In CAV 2014, Armin Biere and Roderick Bloem
(Eds.). LNCS, Vol. 8559. Springer, 696–710.

[53] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit
Kumar, Martin Suda, and Patrick Wischnewski. 2009. SPASS Version
3.5. In CADE-22, Renate A. Schmidt (Ed.). LNCS, Vol. 5663. Springer,
140–145.

[54] Makarius Wenzel. 2012. Isabelle/jEdit—a Prover IDE within the PIDE
Framework. In CICM 2012, Johan Jeuring, John A. Campbell, Jacques
Carette, Gabriel Dos Reis, Petr Sojka, Makarius Wenzel, and Volker
Sorge (Eds.). LNCS, Vol. 7362. Springer, 468–471.

[55] Niklaus Wirth. 1971. Program Development by Stepwise Refinement.
Commun. ACM 14, 4 (1971).

http://isa-afp.org/entries/SATSolverVerification.html
http://isa-afp.org/entries/SuperCalc.html
http://isa-afp.org/entries/Functional_Ordered_Resolution_Prover.html
http://isa-afp.org/entries/Functional_Ordered_Resolution_Prover.html
http://isa-afp.org/entries/Ordered_Resolution_Prover.html
http://isa-afp.org/entries/First_Order_Terms.html

	Abstract
	1 Introduction
	2 Atoms and Substitutions
	3 Bachmair and Ganzinger's Prover
	4 Ensuring Fairness
	5 Eliminating Nondeterminism
	6 Obtaining Executable Code
	7 Discussion and Related Work
	8 Conclusion
	Acknowledgments
	References

