

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 29, 2019

Formalization of Logic in the Isabelle Proof Assistant

Schlichtkrull, Anders

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Schlichtkrull, A. (2018). Formalization of Logic in the Isabelle Proof Assistant. DTU Compute. DTU Compute
PHD-2018, Vol.. 493

http://orbit.dtu.dk/en/publications/formalization-of-logic-in-the-isabelle-proof-assistant(cdbce4d8-65ac-4b06-bd71-ce058ff127ba).html

PhD thesis

Formalization of Logic in the Isabelle
Proof Assistant

Anders Schlichtkrull

Technical University of Denmark

September 14, 2018

PHD-2018-493

Abstract

Isabelle is a proof assistant, i.e. a computer program that helps its user to define concepts in
mathematics and computer science as well as to prove properties about them. This process is
called formalization. Proof assistants aid their users by ensuring that proofs are constructed
correctly and by conducting parts of the proofs automatically.

A logical calculus is a set of rules and axioms that can be applied to construct theorems of the
calculus. Logical calculi are employed in e.g. tools for formal verification of computer programs.
Two important properties of logical calculi are soundness and completeness, since they state,
respectively, that all theorems of a given calculus are valid, and that all valid statements are
theorems of the calculus. Validity is defined by a semantics, which gives meaning to formulas.

This thesis describes formalizations in Isabelle of several logics as well as tools built upon
these. Specifically this thesis explains and discusses the following contributions of my PhD
project:

• A formalization of the resolution calculus for first-order logic, Herbrand’s theorem and the
soundness and completeness of the calculus.

• A formalization of the ordered resolution calculus for first-order logic, an abstract prover
based on it and the prover’s soundness and completeness.

• A verified automatic theorem prover for first-order logic. The prover is a refinement of the
above formalization of an abstract prover. This explicitly shows that the abstract notion
of a prover can describe concrete computer programs.

• The Natural Deduction Assistant (NaDeA), which is a tool for teaching first-order logic
that allows users to build proofs in natural deduction. The tool is based on a formalization
of natural deduction and its soundness and completeness.

• A verified proof assistant for first-order logic with equality. It is based on an axiomatic
system and constitutes a tool for teaching logic and proof assistants.

• A formalization of the propositional fragment of a paraconsistent infinite-valued higher-
order logic. Theorems about the necessity of having infinitely many truth values are proved
and formalized.

Proof assistants are built to reject proofs that contain gaps or mistakes. Therefore, the for-
malized results are highly trustworthy. The tools based on formalized calculi consequently have
an increased trustworthiness. The above formalizations revealed flaws and mistakes in the lit-
erature. In addition to the formalizations and tools themselves, my PhD project contributes
solutions that repair these flaws and mistakes.

2

Resumé

Titel: Formalisering af logik i Isabelle-bevisassistenten

Isabelle er en bevisassistent, dvs. et computerprogram, som kan hjælpe sin bruger med at
definere koncepter fra matematik og computer science så vel som med at bevise deres egenskaber.
Denne proces kaldes formalisering. Bevisassistenter hjælper deres brugere ved at sikre at beviser
bliver konstrueret korrekt og ved at lave dele af beviserne automatisk.

En logisk kalkule er en mængde regler og aksiomer, som kan anvendes til at konstruere kal-
kulens sætninger. Logiske kalkuler bruges f.eks. i værktøjer til formel verifikation af computer-
programmer. To af kalkulers vigtige egenskaber er korrekthed og fuldstændighed, da de formulerer
henholdsvis, at alle sætninger i en given kalkule er gyldige, og at alle gyldige udsagn er sætninger
i kalkulen. Gyldighed er defineret af en semantik, som tilskriver formler mening.

Denne afhandling beskriver formaliseringer i Isabelle af adskillige logikker så vel som værktøjer
der bygger på dem. Specifikt forklarer og diskuterer denne afhandling de følgende bidrag fra mit
ph.d.-projekt:

• En formalisering af resolutionskalkulen for førsteordenslogik, Herbrands sætning og kalku-
lens korrekthed og fuldstændighed.

• En formalisering af den ordnede resolutionskalkule for førsteordenslogik, en abstrakt bevis-
fører baseret på den og bevisførerens korrekthed og fuldstændighed.

• En verificeret automatisk bevisfører for førsteordenslogik. Bevisføreren er en forfinelse af
den ovenstående formalisering af en abstrakt bevisfører. Dette viser eksplicit, at den ab-
strakte forståelse af en bevisfører rigtignok kan beskrive et konkret computerprogram.

• Natural Deduction Assistant (NaDeA), som er et værktøj til at undervise i førsteordenslogik,
der gør det muligt for sine brugere at bygge beviser i naturlig deduktion. Værktøjet er
baseret på en formalisering af naturlig deduktion og dens korrekthed og fuldstændighed.

• En verificeret bevisassistent for førsteordenslogik med lighed. Den er baseret på et aksioma-
tisk system og udgør et værktøj til at undervise i logik og bevisassistenter.

• En formalisering af det udsagnslogiske fragment af en parakonsistent højereordenslogik
med uendeligt mange sandhedsværdier. Sætninger om nødvendigheden af at have uendeligt
mange sandhedsværdier bevises og formaliseres.

Bevisassistenter bygges til at afvise beviser, som indeholder huller eller fejl. Derfor er de for-
maliserede resultater meget pålidelige. Værktøjerne baseret på formaliserede kalkuler har derfor
øget pålidelighed. De ovenstående formaliseringer viste mangler og fejl i litteraturen. Ud over for-
maliseringerne og værktøjerne i sig selv bidrager mit ph.d.-projekt med løsninger, som reparerer
disse mangler og fejl.

3

Preface

The 3 years of PhD studies started 15.09.2015 and ended 14.09.2018. My PhD studies took
place at the Department of Applied Mathematics and Computer Science (DTU Compute) of the
Technical University of Denmark (DTU) under DTU Compute’s PhD school, and were funded
by DTU Compute. My main supervisor was Jørgen Villadsen (DTU Compute), and my co-
supervisors were Jasmin Christian Blanchette (VU Amsterdam) and Thomas Bolander (DTU
Compute).

Acknowledgements

First of all, I would like to thank my three supervisors Jørgen Villadsen, Jasmin Christian
Blanchette and Thomas Bolander. Thank you for all the collaboration, help and inspiration, and
for teaching me how to be a researcher. I could not have wished for better supervisors. I would
also like to thank Christoph Weidenbach for generously hosting me at the Max Planck Institute
for Informatics in Saarbrücken. The four months I spent in his group were a fun experience
and I thank all the friends I made at the Max Planck Institute and the rest of the Saarland
University Campus Saarbrücken. I would like to thank Christian Sternagel for inviting me to
Innsbruck University and hosting me there. Working with you and René (Thiemann) on the
interfaces between our projects IsaFoL and IsaFoR was a lot of fun. I was very honored to receive
the Springer Travel Award at the International Conference on Interactive Theorem Proving (ITP
2016) and the Woody Bledsoe Student Travel Award at the International Joint Conference on
Automated Reasoning (IJCAR 2018). I would like to thank Otto Mønsteds Fond for supporting
my participation in the Federated Logic Conference (FLoC 2018). I would like to thank my co-
authors Jasmin Christian Blanchette, Kasper Fabæch Brandt, Andreas Halkjær From, Alexander
Birch Jensen, John Bruntse Larsen, Dmitriy Traytel, Jørgen Villadsen and Uwe Waldman for
all our respective collaborations. I would like to thank all my colleagues at the Section for
Algorithms, Logic and Graphs as well as my colleagues at the rest of DTU Compute. I would
like to thank my friends and family of course!

4

Contents

Introduction 6

1 Formalization of the Resolution Calculus for First-Order Logic 16

2 Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 48

3 A Verified Automatic Prover Based on Ordered Resolution 73

4 NaDeA: A Natural Deduction Assistant with a Formalization in Isabelle 103

5 Programming and Verifying a Declarative First-Order Prover in Isabelle/HOL 124

6 Formalized Meta-Theory of a Paraconsistent Logic 153

Thesis Appendix: Changes to Published Papers 167

5

Introduction

This introduction first motivates formalizing logic in the Isabelle proof assistant. It then gives
a quick summary of the following chapters and their relations. Thereafter follow more thorough
accounts of the chapters. Hereafter is an account of some new developments that build on the
chapters, but which are not included in this thesis. Lastly the introduction gives discussions and
perspectives on the results of the thesis.

Preliminaries and Motivation

Computer programs are central to many of the technological advances of modern day society.
However, enormous amounts of resources are spent fighting problems caused by defects and bugs
in computer programs. A way to solve this problem is to apply tools that prove correctness of
software and thus avoid defects and bugs in the first place. Such tools can be built on a base of
logic. In order to ensure that this base is solid, it should be studied thoroughly.

Logic is the study of reasoning. Of particular interest is the reasoning performed every day by
mathematicians and computer scientists. Mathematicians prove properties about mathematical
objects such as numbers, vectors, permutations and groups. Computer scientists prove properties
about objects such as programs, algorithms, protocols and compilers. To prove something means
to argue rigorously that it is true. A proved property is called a theorem. Examples of famous
theorems are the Pythagorean theorem and the correctness of the quicksort sorting algorithm.
The reasoning of mathematicians and computer scientists can be captured using symbolic logic
which fixes a formal language and defines a logical calculus. A logical calculus consists of a set
of axioms, i.e. theorems of the language that are considered self-evident, and a set of rules that
defines when a theorem follows from a set of other theorems. Alternatively, or additionally, a
semantics of the language is defined which assigns meaning to the statements and deems a subset
of them valid. For an introductory textbook on the topic, I recommend the one by Ben-Ari [3].

This thesis concerns two applications of symbolic logic:

1. Firstly, symbolic logic allows reasoning about reasoning. It allows the use of mathematical
reasoning to study different languages, sets of axioms, sets of rules and semantics as well
as their relations.

2. Secondly, symbolic logic enables computers to do mathematical reasoning, since symbolic
languages, calculi and semantics can be implemented as data and programs in programming
languages. In particular, researchers in computational logic study how logical calculi can
be implemented as programs called theorem provers. Interactive theorem provers, or proof
assistants, involve user interaction to find proofs, while automatic theorem provers are fully
automatic. See figure 1.

6

Computational Logic

Interactive Theorem Prover / Proof Assistant
Coq
HOL4
HOL Light
Isabelle
Lean

Automatic Theorem Prover
CVC4
E
SPASS
Vampire
Z3

Figure 1: Computational logic can be partitioned into interactive theorem provers and automatic
theorem provers. This figure shows a number of popular systems in both categories.

In this thesis, the second application is applied to the first! In this thesis I use higher-order logic, as
implemented in the computer program Isabelle [27], to study the language, calculus and semantics
of other logics. Of particular interest are the questions of soundness and completeness. For a
calculus and a semantics, soundness states that any theorem of the calculus is valid according
to the semantics. Completeness states, conversely, that any valid formula is a theorem. I also
implement a number of tools and provers based on the formalized calculi.

Isabelle is a proof assistant, i.e. a computer program that helps its user to define concepts
in mathematics and computer science as well as to prove properties about them. The process
of defining concepts and proving properties in a proof assistant is called formalization. Isabelle
can do this in many ways, including by ensuring correctness of all proofs written in the system
and by helping to do parts of the proofs automatically. Isabelle attains this by implementing
logical calculi. In this thesis I use Isabelle/HOL, which implements a higher-order logic. If we
can convince ourselves that we trust the calculus and its implementation, then we must also
trust the proofs that they accept. This is the foremost motivation for formalization – we obtain
results that we can trust.

Another motivation is that of proving computer programs correct, as mentioned in the be-
ginning of this section. This is also Paulson’s motivation in his perspective [29] on computational
logic. Programs can be modeled as expressions in Isabelle/HOL’s language. Isabelle/HOL con-
tains a code generator that can translate a subset of its language to a number of programming
languages. This means that one can write programs as expressions in Isabelle/HOL’s logical lan-
guage, prove properties about them and then generate code from them, thus obtaining verified
software. The thesis uses this approach to verify an automatic theorem prover and a proof as-
sistant for first-order logic. Another technique to obtain trusted software is that of certification
where a (perhaps unverified) program in addition to giving a result also returns a certificate
which contains a proof of the correctness of the result. The certificate can then be checked by a
(perhaps verified) trusted program.

Synopsis of the Following Chapters

The chapters of this thesis are related by all being within the topics of formalizing logics and
basing software tools on such formalizations. Chapters 1, 2 and 3 are on the topic of first-
order resolution. Chapter 1 formalizes an unordered resolution calculus and a completeness proof
based on the technique of semantic trees which was introduced by Robinson [33]. Chapter 2
formalizes an abstract ordered resolution prover and a completeness proof based on Bachmair
and Ganzinger’s technique for model generation [1]. Chapters 2 and 3 are strongly related, since

7

the concrete prover built in chapter 3 is based directly on the abstract prover in chapter 2 by
providing a strategy to obtain fairness and by providing executable definitions for the needed
operations on atoms, literals and clauses. All three chapters on resolution rely on the IsaFoR
library [19] to e.g. obtain most general unifiers. Chapters 4 and 5 are on the topic of tools
for teaching logic. Chapter 4 is on the Natural Deduction Assistant (NaDeA), which is a web
application for teaching natural deduction that is based on a formalization of natural deduction.
Chapter 5 is on a verified proof assistant for first-order logic based on an axiomatic system. On
top of this proof assistant is implemented a tableau prover which is used as a subcomponent of
the NaDeA web application. Chapter 6 formalizes the propositional fragment of a paraconsistent
infinite-valued higher-order logic and its meta-theory.

Some of the chapters are based on previously published papers. The appendix of the thesis
describes what has been changed from the published papers.

Chapter 1: Formalization of the Resolution Calculus for First-Order
Logic
Chapter 1 describes how I formalized the resolution calculus for first-order logic in Isabelle. The
chapter was published as a paper by me [34] in a special issue of “Journal of Automated Rea-
soning” on “Milestones in Interactive Theorem Proving”. The audience of the journal includes
researchers in both automatic and interactive theorem proving, and therefore I do not assume
the reader is an expert on both of these two subjects at the same time. The resolution calculus is
important because superposition, an extension to first-order logic with equality, is implemented
in many of today’s most efficient automatic theorem provers. The formalization includes for-
malized proofs of Herbrand’s theorem, soundness and completeness. The formalization is, to the
best of my knowledge, the first formalization of first-order resolution, its soundness and its com-
pleteness. Most of the formalization is based on the books by Ben-Ari [3] and Chang and Lee
[13], however, both books have flawed proofs of a lemma used to prove completeness which is
called the lifting lemma. For the proof of that lemma, I therefore followed the book by Leitsch
[23]. In the completeness proof, the assumption is that the considered formula is unsatisfied by
all interpretations with the Herbrand terms as their universe. The chapter formalizes that, in
the assumption, the Herbrand terms can be replaced by any countably infinite universe. The
formalization also elaborates on parts of the theory that were glossed over in the paper proofs
– for instance the step from satisfiability by a path in a semantic tree to satisfiability by an
interpretation. The chapter contains a thorough overview of formalizations of proof systems for
first-order logic.

Chapter 2: Formalizing Bachmair and Ganzinger’s Ordered Resolution
Prover
Chapter 2 describes a formalization of the ordered resolution prover by Bachmair and Ganzinger
[1]. The chapter is the technical report, extending the paper by Blanchette, Traytel, Waldmann
and myself [37] which was published in the Proceedings of the 9th International Joint Confer-
ence on Automated Reasoning, IJCAR 2018. Ordered resolution is a restriction of resolution
which enriches the resolution rule with a number of side-conditions that are not meant to ensure
soundness, but instead to rule out certain inferences based on an order on terms. The overall idea
is that proof search becomes more efficient when there are fewer inferences to choose between.
Furthermore, the chapter shows the step from proof calculus to prover. The prover has a notion
of redundancy deletion, i.e. in order to prevent the clause database from growing too large, the
prover is allowed to delete clauses, but only in a way that does not compromise completeness.

8

The technique used to prove completeness is called the model generation technique. The formal-
ization in the chapter is, to the best of my knowledge, the first formalization of the soundness
and completeness of ordered resolution. The majority of Bachmair and Ganzinger’s theory was
easy to formalize – in particular the theory on ground resolution. Formalizing the section on
first-order logic, however, we found challenging. We had to change a number of definitions in
order to make the lemmas hold. In particular, the prover presented in the chapter turned out to
be incomplete, but fortunately this was not difficult to repair. Aside from these and a number
of other problems and unclarities, Bachmair and Ganzinger’s prover withstood the challenge of
formalization.

Chapter 3: A Verified Automatic Prover Based on Ordered Resolution
Chapter 3 describes a verified automatic prover based on ordered resolution. The chapter is a
draft paper written by Blanchette, Traytel and myself [36]. It was written for a broad audience in-
terested in the principles of programming languages, and thus does not assume expert knowledge
on its topics of automatic and interactive theorem proving. It specifically shows how the abstract
prover from chapter 2 can be refined to a verified prover in the Standard ML programming
language. The verification is by refinement with the following four refinement layers:

• Layer 1 is the formalization of Bachmair and Ganzinger’s prover from chapter 2. Clauses
are represented by multisets of literals.

• Layer 2 enriches the prover using a priority queue in the clause database to ensure fairness.
Clauses are paired with their timestamps stating when they were generated.

• Layer 3 is a deterministic prover with a specific strategy of when to perform inference and
delete redundant clauses. Clauses are represented as finite lists and are again paired with
timestamps.

• Layer 4 is an executable prover and so it replaces all the notions that were specified in the
above layers with executable functions. From this layer, code is generated in the Standard
ML programming language.

The verified prover is, to the best of my knowledge, the first verified sound and complete prover
based on an optimized calculus and is thus interesting in itself. Additionally, the prover is inter-
esting because it shows the viability of refining from the abstract theory of resolution down to
a concrete prover. Therefore it also shows that the theory set up by Bachmair and Ganzinger
indeed describes real provers.

Chapter 4: NaDeA: A Natural Deduction Assistant with a Formalization
in Isabelle
Chapter 4 describes NaDeA which is a tool for teaching logic – specifically the natural deduction
system. The chapter was published as a paper by Jensen, Villadsen and myself [48] in a special
issue of the “IfCoLog Journal of Logics and their Applications” on “Tools for Teaching Logic”.
The paper is written for a broad audience with knowledge on logic, but not necessarily expertise
on interactive theorem proving. The tool is motivated by what we consider three key ideals for
a natural deduction assistant:

• It should be easy to use.

• It should make all the details of proofs clear and explicit.

9

• It should be based on a formalization that can be proved at least sound, but preferably
also complete.

One of the reasons for teaching logic to computer science students is that it has applications
in software verification. By verifying the soundness of the natural deduction system we practice
what we preach. The tool is a web application written in TypeScript in which students can
perform proofs in natural deduction. The chosen natural deduction system and the formalization
is inspired by the work of Berghofer [6] but has a different syntax for first-order logic, a different
set of rules, differently defined auxiliary notions and consequently a different soundness proof.

Chapter 5: Programming and Verifying a Declarative First-Order Prover
in Isabelle/HOL
Chapter 5 describes a verified declarative first-order prover. The chapter was published as a
paper by Jensen, Larsen, Villadsen and myself [20] in a special issue of “AI Communications”
on “Automated Reasoning”. Since it is written for the artificial intelligence community, we do
not assume expert knowledge on its topics of automatic and interactive theorem proving. The
prover is built on the LCF-principle in which only a small, trusted kernel can build theorems by
exposing a number of functions that return theorems. The only way to make new functions that
return theorems is to let them do function calls into the kernel. Therefore, any tool built in this
way is at least as sound as the kernel. The specific prover we build is a Standard ML (SML)
translation of John Harrison’s declarative proof assistant for first-order logic from his “Handbook
of Practical Logic and Automated Reasoning” [17]. We turn it into a verified prover by first
writing a new kernel as definitions in Isabelle/HOL, then proving that it is sound and finally
exporting the kernel to SML. Then, we replace the kernel of an SML translation of Harrison’s
prover with our verified kernel. The prover can be run inside the Isabelle/ML environment and
thus both the prover and its verification can run in Isabelle.

Chapter 6: Formalized Meta-Theory of a Paraconsistent Logic
Chapter 6 presents the formalization by Villadsen and me of the propositional fragment of a
paraconsistent infinite-valued higher-order logic by Villadsen [42, 43, 44, 45] and more recently
Jensen and Villadsen [21]. The chapter is a draft paper written by me [35]. That the logic is
paraconsistent means that it does not have the classical property that everything follows from a
contradiction. In this specific logic, this is achieved by having more than the two classical truth
values. Non-classical logics also deserve to be formalized, and this is the motivation for this work,
as well as for exploring what the infinitely many truth values mean for the notion of validity. The
chapter combines results from papers by Villadsen and myself [49, 50] with new results. Both
the results and their formalization have been developed as part of my PhD project. One result
is that it is only necessary to consider a finite subset of the infinitely many interpretations in
order to find out whether a formula in the logic is valid. Another result is that, if we make a
restricted version of the logic with only finitely many truth values, then we get another logic.
This is proved by demonstrating a formula that is valid in the finite-valued logic, but not the
infinite-valued logic.

Other Developments

During my PhD studies I contributed to a number of other developments. Villadsen, From and I
[51] worked on a simple prover for first-order logic with the goal of being easy to understand, easy

10

to verify and easy to modify. Its starting point was the work by Ridge and Margetson [31, 32].
Villadsen, From and I [46] also presented the extension of NaDeA with the ability to be able
to export proofs to Isabelle/HOL. This connects the NaDeA implementation with its formalized
logic, and we can think of the exported proof as a certificate and Isabelle/HOL as the program
that can check these certificates. Furthermore, we presented a formalized completeness result for
NaDeA. In contrast to Berghofer’s formalization of natural deduction, as originally published in
2007, there is no requirement for the considered formula to be closed. In 2018, From also removed
this requirement from Berghofer’s formalization [6]. Villadsen, From and I presented NaDeA and
the Students’ Proof Assistant (SPA) – a new version of the prover from chapter 5 – in papers for
the “Theorem proving components for Educational software (ThEdu)” community at their 2018
workshop in Oxford [38, 47].

Discussions and Perspectives

The formalizations and tools presented are of course contributions in themselves. This means
increased trust in the results that have been formalized and the tools. Furthermore, formalization
requires theorem statements and definitions to be made precise, which is valuable in itself as
it can clear up some of the unclarities that occur in natural language and means that there
are no forgotten corner cases. The formalization allows Isabelle to keep track of exactly where
assumptions and lemmas are used. If an assumption or lemma seems not to be needed, the user
can try to delete it and Isabelle will report where the proof breaks.

A valuable by-product of the formalizations is that they revealed new facets of old results.
Chapters 1 and 2 showed flaws and mistakes in published results and showed how to solve these
problems. But even setting these aside, formalizing the theory revealed how to deal with some
of the details that are glossed over. For example, chapter 1 elaborated on the conversions from
paths in trees to Herbrand interpretations, chapter 2 showed the details of the ordered resolution
calculus’s lifting lemma and both chapters showed explicitly how to incorporate renaming.

Another by-product is that the libraries of Isabelle/HOL grow. Isabelle/HOL includes defi-
nitions and theorems itself, and in addition to these exists the Archive of Formal Proofs (AFP),
which is a library that contains more than 100,000 lemmas [10, 14]. This means that researchers
who want to formalize their favorite results do not have to start from scratch, but can build on
the available definitions and lemmas. The formalizations in this project are part of IsaFoL, which
is a project that unites researchers in the area of formalizing logics. As the developments there
mature, they are moved to the AFP.

Proof assistants benefit from automatic theorem provers by using them to find proofs. For
example, Isabelle/HOL includes the tools Metis [18, 30], Isabelle’s smt command [11] and Sledge-
hammer [8], which are based on automatic theorem provers. These tools are used in the chapters
of this thesis. All three tools follow the idea of having an automatic theorem prover find a proof
which is then reconstructed in Isabelle’s trusted kernel. As demonstrated in chapters 1, 2 and
3, automatic theorem provers can also benefit from proof assistants, in that proof assistants can
be used to study the theoretical properties of automatic theorem provers and their underlying
calculi. This shows that the community around proof assistants, also called interactive theorem
provers (ITPs), and the community around automatic theorem provers (ATPs) benefit from each
other – there is a lot of cooperation across the border seen in figure 1. I see more opportunities
for the research communities around these two topics to work together.

One difference between the two communities is their focus on different logics. The ATP
community has a fondness for first-order logic, while the ITP community has one for higher-
order logics and other type theories. This is also the case in figure 1, where all the ITPs are for

11

higher-order logics or other type theories and the ATPs are for first-order logic – some including
various theories. The split is not clear cut though: ITPs do incorporate first-order provers, and
on the ATP front there are a number of provers for higher-order logic including Leo-II [5], Leo-III
[40] and Satallax [12]. Furthermore, there is work on extending Zipperposition [4] and Vampire
[7] to deal with the higher-order case.

Another difference between the two communities is in their focus. In the ATP community, sys-
tems are compared on performance in the annual CASC [41] and SMT-COMP [2] competitions.
ATPs obtain competitiveness using advanced data structures and complex optimized algorithms
and heuristics. ITPs, on the other hand, typically have architectures which emphasize trust in
their results, e.g. using the LCF-principle in which a small kernel implements a logic in a way
that is optimized for clarity. This shows that the ATP community has focus on efficiency, while
the ITP community has focus on trust.

If we consider the verified ATP in chapter 3, we notice that its definition and soundness proof
are rather involved, while the soundness theorem’s statement itself is simple. The result is a tool
with a high degree of trust despite its relatively complex code. A similar conclusion can be made
concerning the works on verifying SAT solvers [25, 26, 9, 28, 24, 39, 15]. Likewise, if we took the
verified ITP kernel from chapter 5 and changed its data structures and function definitions to
be more complex then it would make the soundness theorem’s statement no more complicated.
In principle, we could go so far as to include a whole ATP in the kernel. The ITP kernel in
chapter 5 is for first-order logic, but the same could be done for higher-order logic, e.g. based on
the work of Harrison [16] and that of Kumar, Arthan, Myreen and Owens [22] on verifying the
HOL Light ITP. What we see is a way to obtain systems with high degrees of both efficiency and
trust. This is of course not the only way to combine the efficiency of an ATP with the trust of an
ITP – the approach of the aforementioned smt command, Metis and Sledgehammer obtains the
same advantages using certification of their results. The approach of these tools is perhaps more
practical, since it has the advantage of not requiring verification of the code that does the search
for a proof. On the other hand, verifying ATP and ITP tools gives us an opportunity to tie the
theory behind our tools together with their implementations and to study their completeness.
The two approaches complement each other and both show the close relationship between ITP
and ATP.

References

[1] L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, pages 19–99. Elsevier
and MIT Press, 2001.

[2] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo Theories Com-
petition. In K. Etessami and S. K. Rajamani, editors, Computer Aided Verification (CAV),
pages 20–23. Springer, 2005.

[3] M. Ben-Ari. Mathematical Logic for Computer Science. Springer, 3rd edition, 2012.

[4] A. Bentkamp, J. C. Blanchette, S. Cruanes, and U. Waldmann. Superposition for lambda-
free higher-order logic. In D. Galmiche, S. Schulz, and R. Sebastiani, editors, International
Joint Conference on Automated Reasoning (IJCAR), pages 28–46. Springer, 2018.

[5] C. Benzmüller, N. Sultana, L. C. Paulson, and F. Theiß. The higher-order prover Leo-II.
Journal of Automated Reasoning, 2015.

12

[6] S. Berghofer. First-order logic according to Fitting. Archive of Formal Proofs, Aug. 2007.
http://isa-afp.org/entries/FOL-Fitting.shtml, Formal proof development.

[7] A. Bhayat and G. Reger. Set of support for higher-order reasoning. In 6th Workshop on
Practical Aspects of Automated Reasoning (PAAR), pages 2–16, 2018. http://ceur-ws.
org/Vol-2162/.

[8] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgehammer with SMT solvers.
Journal of Automated Reasoning, 51(1):109–128, 2013.

[9] J. C. Blanchette, M. Fleury, P. Lammich, and C. Weidenbach. A verified SAT solver frame-
work with learn, forget, restart, and incrementality. Journal of Automated Reasoning, 61(1–
4):333–365, 2018.

[10] J. C. Blanchette, M. Haslbeck, D. Matichuk, and T. Nipkow. Mining the Archive of Formal
Proofs. In M. Kerber, J. Carette, C. Kaliszyk, F. Rabe, and V. Sorge, editors, Conference
on Intelligent Computer Mathematics (CICM), pages 3–17. Springer, 2015.

[11] S. Böhme and T. Weber. Fast LCF-style proof reconstruction for Z3. In M. Kaufmann and
L. C. Paulson, editors, Interactive Theorem Proving (ITP), pages 179–194. Springer, 2010.

[12] C. E. Brown. Satallax: An automatic higher-order prover. In B. Gramlich, D. Miller, and
U. Sattler, editors, International Joint Conference on Automated Reasoning (IJCAR), pages
111–117. Springer, 2012.

[13] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic
Press, Inc., 1st edition, 1973.

[14] M. Eberl, G. Klein, T. Nipkow, L. Paulson, and R. Thiemann. Archive of Formal Proofs –
statistics. https://www.isa-afp.org/statistics.html.

[15] M. Fleury, J. C. Blanchette, and P. Lammich. A verified SAT solver with watched literals
using imperative HOL. In J. Andronick and A. P. Felty, editors, Certified Programs and
Proofs (CPP), pages 158–171. ACM, 2018.

[16] J. Harrison. Towards self-verification of HOL Light. In U. Furbach and N. Shankar, editors,
International Joint Conference on Automated Reasoning (IJCAR), volume 4130 of LNCS,
pages 177–191. Springer, 2006.

[17] J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University
Press, 2009.

[18] J. Hurd. First-order proof tactics in higher-order logic theorem provers. In M. Archer, B. D.
Vito, and C. Muñoz, editors, Design and Application of Strategies/Tactics in Higher Order
Logics (STRATA), NASA Technical Reports, pages 56–68, 2003.

[19] IsaFoR developers. An Isabelle/HOL formalization of rewriting for certified termination
analysis. http://cl-informatik.uibk.ac.at/software/ceta/.

[20] A. B. Jensen, J. B. Larsen, A. Schlichtkrull, and J. Villadsen. Programming and verifying
a declarative first-order prover in Isabelle/HOL. AI Communications, 31(3):281–299, 2018.

[21] A. S. Jensen and J. Villadsen. Paraconsistent computational logic. In P. Blackburn, K. F.
Jørgensen, N. Jones, and E. Palmgren, editors, 8th Scandinavian Logic Symposium: Ab-
stracts, pages 59–61. Roskilde University, 2012.

13

http://isa-afp.org/entries/FOL-Fitting.shtml
http://ceur-ws.org/Vol-2162/
http://ceur-ws.org/Vol-2162/
https://www.isa-afp.org/statistics.html
http://cl-informatik.uibk.ac.at/software/ceta/

[22] R. Kumar, R. Arthan, M. O. Myreen, and S. Owens. Self-formalisation of higher-order logic.
Journal of Automated Reasoning, 56(3):221–259, 2016.

[23] A. Leitsch. The Resolution Calculus. Springer, 1997.

[24] S. Lescuyer. Formalizing and Implementing a Reflexive Tactic for Automated Deduction in
Coq. PhD thesis, Université Paris-Sud, 2011.

[25] F. Marić. Formal verification of modern SAT solvers. Archive of Formal Proofs, July 2008.
Formal Proof Development. http://isa-afp.org/entries/SATSolverVerification.
html.

[26] F. Marić. Formal verification of a modern SAT solver by shallow embedding into Isa-
belle/HOL. Theoretical Computer Science, 411(50):4333–4356, 2010.

[27] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic, volume 2283 of LNCS. Springer, 2002.

[28] D. Oe, A. Stump, C. Oliver, and K. Clancy. versat: A verified modern SAT solver. In
V. Kuncak and A. Rybalchenko, editors, Verification, Model Checking, and Abstract Inter-
pretation (VMCAI), volume 7148 of LNCS, pages 363–378. Springer, 2012.

[29] L. C. Paulson. Computational logic: its origins and applications. Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, 474(2210), 2018.

[30] L. C. Paulson and K. W. Susanto. Source-level proof reconstruction for interactive theorem
proving. In K. Schneider and J. Brandt, editors, Theorem Proving in Higher Order Logics
(TPHOLs), pages 232–245. Springer, 2007.

[31] T. Ridge. A mechanically verified, efficient, sound and complete theorem prover for
first order logic. Archive of Formal Proofs, Sept. 2004. http://isa-afp.org/entries/
Verified-Prover.shtml, Formal proof development.

[32] T. Ridge and J. Margetson. A mechanically verified, sound and complete theorem prover
for first order logic. In Theorem Proving in Higher Order Logics (TPHOLs), pages 294–309,
2005.

[33] J. A. Robinson. The generalized resolution principle. Machine Intelligence, 3:77–93, 1968.

[34] A. Schlichtkrull. Formalization of the resolution calculus for first-order logic. Journal of
Automated Reasoning, 61(4):455–484, 2018.

[35] A. Schlichtkrull. Formalized meta-theory of a paraconsistent logic. 2018. Submitted.

[36] A. Schlichtkrull, J. C. Blanchette, and D. Traytel. A verified automatic prover based on
ordered resolution. 2018. Submitted.

[37] A. Schlichtkrull, J. C. Blanchette, D. Traytel, and U. Waldmann. Formalizing Bachmair
and Ganzinger’s ordered resolution prover. In D. Galmiche, S. Schulz, and R. Sebas-
tiani, editors, International Joint Conference on Automated Reasoning (IJCAR), pages 89–
107. Springer, 2018. Extended in technical report: http://matryoshka.gforge.inria.fr/
pubs/rp_report.pdf.

[38] A. Schlichtkrull, J. Villadsen, and A. H. From. Students’ Proof Assistant (SPA). In 7th
International Workshop on Theorem proving components for Educational software (ThEdu),
2018.

14

http://isa-afp.org/entries/SATSolverVerification.html
http://isa-afp.org/entries/SATSolverVerification.html
http://isa-afp.org/entries/Verified-Prover.shtml
http://isa-afp.org/entries/Verified-Prover.shtml
http://matryoshka.gforge.inria.fr/pubs/rp_report.pdf
http://matryoshka.gforge.inria.fr/pubs/rp_report.pdf

[39] N. Shankar and M. Vaucher. The mechanical verification of a DPLL-based satisfiability
solver. Electronic Notes in Theoretical Computer Science, 269:3–17, 2011.

[40] A. Steen and C. Benzmüller. The higher-order prover Leo-III. In D. Galmiche, S. Schulz, and
R. Sebastiani, editors, International Joint Conference on Automated Reasoning (IJCAR),
pages 108–116. Springer, 2018.

[41] G. Sutcliffe. The CADE ATP System Competition - CASC. AI Magazine, 37(2):99–101,
2016.

[42] J. Villadsen. Combinators for paraconsistent attitudes. In P. de Groote, G. Morrill, and
C. Retoré, editors, Logical Aspects of Computational Linguistics (LACL), volume 2099 of
LNCS, pages 261–278. Springer, 2001.

[43] J. Villadsen. Paraconsistent assertions. In G. Lindemann, J. Denzinger, I. J. Timm, and
R. Unland, editors, Multi-Agent System Technologies, volume 3187 of LNCS, pages 99–113,
2004.

[44] J. Villadsen. A paraconsistent higher order logic. In B. Buchberger and J. A. Campbell,
editors, Artificial Intelligence and Symbolic Computation, volume 3249 of LNCS, pages 38–
51. Springer, 2004.

[45] J. Villadsen. Supra-logic: Using transfinite type theory with type variables for paracon-
sistency. Logical Approaches to Paraconsistency, Journal of Applied Non-Classical Logics,
15(1):45–58, 2005.

[46] J. Villadsen, A. H. From, and A. Schlichtkrull. Natural deduction and the Isabelle proof
assistant. In P. Quaresma and W. Neuper, editors, Proceedings 6th International Workshop
on Theorem proving components for Educational software (ThEdu), volume 267 of Electronic
Proceedings in Theoretical Computer Science, pages 140–155. Open Publishing Association,
2018.

[47] J. Villadsen, A. H. From, and A. Schlichtkrull. Natural Deduction Assistant (NaDeA). In 7th
International Workshop on Theorem proving components for Educational software (ThEdu),
2018.

[48] J. Villadsen, A. B. Jensen, and A. Schlichtkrull. NaDeA: A natural deduction assistant with
a formalization in Isabelle. IfCoLog Journal of Logics and their Applications, 4(1):55–82,
2017.

[49] J. Villadsen and A. Schlichtkrull. Formalization of Many-Valued Logics. In H. Christiansen,
M. Jiménez-López, R. Loukanova, and L. Moss, editors, Partiality and Underspecification in
Information, Languages, and Knowledge, chapter 7. Cambridge Scholars Publishing, 2017.

[50] J. Villadsen and A. Schlichtkrull. Formalizing a paraconsistent logic in the Isabelle proof
assistant. In A. Hameurlain, J. Küng, R. Wagner, and H. Decker, editors, Transactions
on Large-Scale Data- and Knowledge-Centered Systems (TLDKS), volume 10620 of LNCS,
pages 92–122. Springer, 2017.

[51] J. Villadsen, A. Schlichtkrull, and A. H. From. A verified simple prover for first-order logic.
In 6th Workshop on Practical Aspects of Automated Reasoning (PAAR), pages 88–104, 2018.

15

Formalization of the Resolution Calculus for First-Order
Logic

Anders Schlichtkrull

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract

I present a formalization in Isabelle/HOL of the resolution calculus for first-order logic
with formal soundness and completeness proofs. To prove the calculus sound, I use the
substitution lemma, and to prove it complete, I use Herbrand interpretations and semantic
trees. The correspondence between unsatisfiable sets of clauses and finite semantic trees is
formalized in Herbrand’s theorem. I discuss the difficulties that I had formalizing proofs of
the lifting lemma found in the literature, and I formalize a correct proof. The completeness
proof is by induction on the size of a finite semantic tree. Throughout the paper I emphasize
details that are often glossed over in paper proofs. I give a thorough overview of formaliza-
tions of first-order logic found in the literature. The formalization of resolution is part of
the IsaFoL project, which is an effort to formalize logics in Isabelle/HOL.

Keywords First-order logic, Resolution, Isabelle/HOL, Herbrand’s theorem, Soundness, Com-
pleteness, Semantic trees

1 Introduction
The resolution calculus plays an important role in automatic theorem proving for first-order
logic as many of the most efficient automatic theorem provers, e.g. E [68], SPASS [74], and
Vampire [56], are based on superposition, an extension of resolution. Studying the resolution
calculus is furthermore an integral part of many university courses on logic in computer science.
The resolution calculus was introduced by Robinson in his ground-breaking paper [59] which also
introduced most general unifiers (MGUs).

The resolution calculus reasons about first-order literals, i.e. atoms and their negations. Since
the literals are first-order, they may contain full first-order terms. Literals are collected in clauses,
i.e. disjunctions of literals. The calculus is refutationally complete, which means that if a set of
clauses is unsatisfiable, then the resolution calculus can derive a contradiction (the empty clause)
from it. One can also use the calculus to prove any valid sentence by first negating it, then
transforming it to an equisatisfiable set of clauses, and lastly refuting this set with the resolution
calculus. Resolution is a calculus for first-order logic, but it does not have any machinery to
handle equality or any other theories.

There are several techniques for proving the completeness of resolution calculi. In this work
I use the one of semantic trees, which was introduced by Robinson [60]. Semantic trees are
binary trees that represent interpretations. I mostly follow textbooks by Ben-Ari [4], Chang and
Lee [19], and Leitsch [43]. The idea of Chang and Lee’s completeness proof is that a semantic
tree is cut smaller and smaller, and for each cut, a derivation is done towards the empty clause.

16

I also formalize Herbrand’s theorem, which cuts the tree down to finite size. I prove a stronger
version of the usual refutational completeness theorem by weakening its assumption to require
unsatisfiability in only a single countably infinite universe instead of in all universes. The usual
theorem follows directly from this, which is proven, e.g. by Chang and Lee as Theorem 4.2. I
discuss why this usual theorem is not formalized.

The formalization is included in the IsaFoL project [33] and the Archive of Formal Proofs [64]
where it is available for download. The IsaFoL project formalizes several logics in Isabelle/
HOL [47]. IsaFoL is part of a larger effort of research in this area. This also includes formalizations
of ground resolution, which is propositional by nature. The formalization in this paper stands
out from these by formalizing resolution for first-order logic. The theory needed to do this is
very different from that of ground resolution since first-order logic involves a richer syntax and
semantics. To the best of my knowledge, I present the first formalized completeness proof of the
resolution calculus for first-order logic.

Harrison [28] formalized Herbrand’s theorem, also known as uniformity, in a model theoretic
formulation. It says that if a purely existential formula is valid, then some disjunction of instances
of the body is propositionally valid. In automatic theorem proving, the theorem is viewed in a
different, equivalent way: A set of clauses is unsatisfiable only if some finite set of ground, i.e.
variable free, instances of its clauses is as well. This can be used to build a first-order refutation
prover from a propositional SAT solver. Such a prover enumerates ground instances, which it
tries to refute with the SAT solver. I formalize a third equivalent view stating exactly what the
completeness proof needs: If a set of clauses is unsatisfiable, then there is a finite semantic tree
whose branches falsify the set. This bridges first-order unsatisfiability with decisions made in a
semantic tree.

Understanding proofs of logical systems can be challenging since one must keep separate
the parts of the proofs that are about the syntactic level, and the parts that are about the
semantic level. It can be tempting to mix intuition about syntax and semantics. Fortunately,
a formalization makes the distinction very clear, and ideally this can aid in understanding the
proofs.

This paper extends my previous paper [63] which I presented at ITP 2016. It is extended with
more thorough explanations and now contains illustrative examples of structured Isar proofs.
Furthermore, the discussion of the tools used in the formalization has been expanded, and the
related-works section now contains a much more thorough overview of the formalizations of
first-order logic found in the literature. Additionally, the formalization now contains three new
versions of the soundness theorem and two new illustrative versions of the completeness theorem,
which are explained.

2 Overview
This section introduces the terminology of clausal first-order logic and the resolution rule. It
gives a brief explanation of semantic trees and gives the big picture of the proofs of Herbrand’s
theorem, the lifting lemma, and completeness.

A literal l is either an atom or its negation. The sign of an atom is True, while that of
its negation is False. The complement pc of an atom p is ¬p, and the complement (¬p)c of its
negation is p. The complement LC of a set of literals L is {lc | l ∈ L}. The set of variables in a
set of literals L is varsls L. A clause is a set of literals representing the universal closure of the
disjunction of the literals in the clause. The empty clause represents a contradiction since it is an
empty disjunction. A clause with an empty set of variables is called ground. A substitution σ is a
function from variables to terms, and is applied to a clause C by applying it to all variables in C.

17

The result is written C ·ls σ and is called an instance of C. We can likewise apply a substitution to
a single literal l ·l σ or term t ·t σ. The composition σ1 ·σ2 of two substitutions is the substitution
that maps any variable x to (σ1 x) ·t σ2. A unifier σ for a set of literals L is a substitution such
that applying it to L makes all the literals therein equal. A most general unifier (MGU) for a
set of literals L is a unifier σ for L such that any other unifier for L can be expressed as σ · τ for
some substitution τ .

We will consider the following formulation of the resolution rule:

C1 C2

((C1 − L1) ∪ (C2 − L2)) ·ls σ
varsls C1 ∩ varsls C2 = {}
L1 ⊆ C1, L2 ⊆ C2

σ is a substitution and an MGU of L1 ∪ L2
C

The conclusion of the rule is called a resolvent of C1 and C2. L1 and L2 are called clash-
ing sets of literals. Additionally, the calculus allows us to apply variable renaming to clauses
before we apply the resolution rule. Renaming variables in two clauses C1 and C2 such that
varsls C1 ∩ varsls C2 = {} is called standardizing apart. Notice that L1 and L2 are sets of literals.
Some other resolution calculi instead let L1 and L2 be single literals. These calculi then have an
additional rule called factoring, which allows unification of subsets of clauses. The completeness
of the above rule implies the completeness of resolution on single literals with factoring, as ex-
plained by e.g. Fitting [25], but I have not formalized this result. The idea is that the above rule
can be simulated by applications of resolution on single literals and factoring.

I now give an overview of the completeness proof. The completeness proof is very much
inspired by that of Chang and Lee [19], while the proof of the lifting lemma is inspired by that
of Leitsch [43].

Semantic trees are defined from an enumeration of Herbrand, i.e. ground, atoms. A semantic
tree is essentially a binary decision tree in which the decision of going left in a node on level
i corresponds to mapping the ith atom of the enumeration to True, and in which going right
corresponds to mapping it to False. See Fig. 1. Therefore, a finite path in a semantic tree can
be seen as a partial interpretation. This differs from the usual interpretations in first-order logic
in two ways. Firstly, it does not consist of a function denotation and a predicate denotation,
but instead assigns True and False to ground atoms directly. Secondly, it is finite, which means
that some ground literals are assigned neither True nor False. A partial interpretation is said
to falsify a ground clause if it, to all literals in the clause, assigns the opposite of their signs.
A branch is a path from the root of a tree to one of its leaves. An internal path is a path from
the root of a tree to some node that is not a leaf. A closed path is a path whose corresponding
partial interpretation falsifies some ground instance of a clause in the set of clauses. A closed
semantic tree for a set of clauses is a tree that has two properties: Firstly, each of its branches
is closed. Secondly, the internal paths in the tree are not closed. The second property expresses
minimality of the first property, because it ensures that no proper subtree of a closed semantic
tree can have the first property.

Note that Chang and Lee’s notion of semantic trees is more general than mine since it
allows each decision to assign truth values to several atoms. This generality is not needed in the
completeness proof, and therefore I prefer a simpler definition in order to ease formalization.

Herbrand’s theorem is proven in the following formulation: If a set of clauses is unsatisfiable,
then there is a finite and closed semantic tree for that set. I prove it in its contrapositive for-
mulation and therefore assume that all finite semantic trees of a set of clauses have an open
(non-closed) branch. By obtaining longer and longer branches of larger and larger finite seman-
tic trees, we can, using König’s lemma, obtain an infinite path, all of whose prefixes are open
branches of finite semantic trees. Thus these branches satisfy, that is, do not falsify, the set of
clauses. We can then prove that this infinite path, when seen as an Herbrand interpretation, also

18

Figure 1: Semantic tree with partial interpretation [p 7→ True, q 7→ False].

p 7→>

q 7→>

r(c) 7→>

...
...

r(c) 7→⊥

...
...

q 7→⊥

r(c) 7→>

...
...

r(c) 7→⊥

...
...

p 7→⊥

q 7→>

r(c) 7→>

...
...

r(c) 7→⊥

...
...

q 7→⊥

r(c) 7→>

...
...

r(c) 7→⊥

...
...

C1

C

C2

C ′
1 C ′

2

C ′

7 8

9 10ground

Figure 2: The lifting lemma. An arrow from C to C ′ indicates that C ′ is an instance of C.
The bars are derivations. Full bars or arrows are relations we know, and the dashed ones are
established by the lemma.

satisfies the set of clauses, and this concludes the proof. Converting the infinite path to a full
interpretation can be seen as the step that goes from syntax to semantics.

The lifting lemma lifts resolution derivation steps done on the ground level up to the first-
order world. The lemma considers two instances, C ′

1 and C ′
2, of two first-order clauses, C1 and

C2. It states that if C ′
1 and C ′

2 can be resolved to a clause C ′ then also C1 and C2 can be resolved
to a clause C. And not only that, it can even be done in such a way that C ′ is an instance of
this C. See Fig. 2. To prove the theorem, we look at the clashing sets of literals L′

1 ⊆ C ′
1 and

L′
2 ⊆ C ′

2. We partition C ′
1 in L′

1 and the rest, R′
1 = C ′

1 − L′
1. Then we lift this up to C1 by

partitioning it in L1, the part that instantiates to L′
1, and the rest R1, which instantiates to R′

1.
We do the same for C2. Since L′

1 and L′
2
C can be unified, so can L1 and L2

C, and therefore they
have an MGU. Thus C1 and C2 can be resolved to a resolvent C. With some bookkeeping of the
substitutions and unifiers, we can also show that C has the ground resolvent C ′ as an instance.

Lastly, completeness itself is proven. It states that the empty clause can be derived from
any unsatisfiable set of clauses. We start by obtaining a finite closed semantic tree for the set
of clauses. Then we cut off two sibling leaves. The branches ending in these leaves agree on all
atoms except for the one, a, in their leaves. Additionally they falsify a ground clause each, but,
by minimality of closed trees, their prefixes do not. Therefore, setting a to True in a sibling, must
have falsified a clause, and thus the literal ¬a must be in a clause. Likewise, setting a to False in
a sibling, must have falsified a clause, and thus the literal a must be in a clause. These clauses
can be resolved. We lift this up to the first-order world by the lifting lemma and resolve the
first-order clauses. Repeating this procedure, we obtain a derivation that ends when we have cut
the tree down to the root. Only the empty clause can be falsified here, so we have a derivation
of the empty clause.

19

3 Isabelle
This section explains the logic of Isabelle/HOL and the Isar language [75] for writing structured
proofs. Isar is illustrated with some simple examples.

Isabelle is a generic proof assistant that implements several logics, and Isabelle/HOL is its
implementation of a higher-order logic (HOL). HOL can be seen as a combination of typed
functional programming and logic. This gives, among other things, access to the usual logical
operators and quantifiers such as −→, ∧, ∨, ¬, ∀ and ∃. The long arrow (=⇒) is Isabelle’s meta-
implication, which for the purpose of this paper can be thought of as a normal implication (−→),
and likewise the big wedge (

∧
) can be thought of as universal quantification (∀).

In Isabelle’s Isar language one can write structured proofs that both humans can read and
Isabelle/HOL can check. I present a subset here, which is large enough for the reader to under-
stand this paper. Let us consider a template Isar proof:

theorem L:
assumes a1: A1

...
assumes an : An

shows B
proof R

C1

...
Cm

qed

Here L is the theorem’s name, A1, . . . , An are optional assumptions of the theorem, a1, . . . , an
are optional names of the assumption, and B is the theorem’s conclusion. If there are no assump-
tions the keyword shows may be omitted. R instructs Isabelle on how to start the proof. For
instance, if nothing is written, it applies a well-suited rule, and if a dash (−) is written, then no
rule is applied. C1, . . . , Cm is a list of statements, similar to the sentences of a paper proof, which
is to prove the theorem. Let us look at three kinds of statements. First, we have the have goal:

from F1 have s: S using F2 by M

Here S is a proposition which is proven by proof method M . Proof method M could be one
of Isabelle/HOL’s proof methods that implement automatic theorem provers. s is an optional
name of S. F1 and F2 are lists of names of facts thatM is allowed to use. They could be names of
previously proven theorems, assumptions or of a proposition of one of the preceding statements.
Both from F1 and using F2 can be omitted. Additionally from F1 can be replaced with then,
which refers to the fact that was most recently established, i.e. the proposition in the previous
statement.

Second, we have the obtain goal:

from F1 obtain t where s: S using F2 by M

Here t is a new constant that is introduced in the proof. S is a proposition that characterizes
t. It is named s. F1 and F2 are lists of facts that the proof method M is instructed to use to
prove the existence of t.

Third, we have the show goal:

from F1 show s: S using F2 by M

20

This is similar to the have goal except that it requires S to be one of the propositions that
R instructs us to prove. Sometimes S will be ?thesis, which refers to B. When we have shown
all statements required by R we can end the proof with qed.

Let us look at a variation of a simple proof of Cantor’s theorem from an introduction to
Isabelle/HOL by Nipkow and Klein [46] that illustrates the language. The theorem states that a
function from a set to its powerset cannot be surjective. Here the set is formalized as a type ′a
and its powerset as the type ′a set.

theorem cantor : ¬ surj (f :: ′a ⇒ ′a set)
proof
assume surj f
then have ∀A. ∃ a. A = f a using surj-def by metis
then have ∃ a. {x . x /∈ f x} = f a by blast
then obtain a where {x . x /∈ f x} = f a by blast
then show False by blast

qed

A list of statements can also form a calculation. In the example below the horizontal ellipses
(. . .) are part of the concrete Isabelle syntax while the vertical ellipsis (...) indicates that some
intermediate steps were omitted.

have s1: S0 = S1 using F1 by M1

also have s2: . . . = S2 using F2 by M2

...
also have sn : . . . = Sn using Fn by Mn

finally have sn+1: S0 = Sn using Fn+1 by Mn+1

This list of statements proves S0 = Sn by proving S0 = S1 = S2 = · · · = Sn where the first
equality S0 = S1 is proven by the first have goal and each subsequent equality Si = Si+1 is
proven by the also have goal with name si.

For example we can prove a simple lemma about the identity function:

lemma identities:
assumes ∀ y . identity y = y
shows identity (identity (identity x)) = x

proof −
have identity (identity (identity x)) = identity (identity x) using assms by auto
also have ... = identity x using assms by auto
also have ... = x using assms by auto
finally show identity (identity (identity x)) = x by −

qed

Isar allows many more kinds of constructions of proofs, for instance nesting proofs, combining
proof methods and more.

4 Clausal First-Order Logic
This section explains the formalization of the syntax and semantics of first-order clausal logic.

First, a signature is fixed where variable symbols, function symbols, and predicate symbols
are represented by the type string . The type string consists of strings over a finite alphabet, and
is thus a countably infinite type.

21

type-synonym var-sym = string
type-synonym fun-sym = string
type-synonym pred-sym = string

Similar to, e.g. Berghofer’s formalization of first-order logic [5], the predicate and function
symbols do not have fixed arities.

A first-order term is either a variable consisting of a variable symbol or it is a function
application consisting of a function symbol and a list of subterms:

datatype fterm = Var var-sym | Fun fun-sym (fterm list)

A literal is either positive or negative, and it contains a predicate symbol (a string) and a
list of terms. The datatype is parametrized with the type of terms ′t since it will both represent
first-order literals (fterm literal) and Herbrand literals. A clause is a set of literals.

datatype ′t literal = Pos pred-sym (′t list) | Neg pred-sym (′t list)

type-synonym ′t clause = ′t literal set

Ground fterm literals are formalized using a predicate groundl which holds for l if it contains
no variables. Ground fterm clauses are similarly formalized using a predicate groundls.

A semantics of terms and literals is also formalized. A variable denotation, var -denot , maps
variable symbols to values of the domain. The universe is represented by the type variable ′u.

type-synonym ′u var-denot = var-sym ⇒ ′u

Interpretations consist of denotations of functions and predicates. A function denotation maps
function symbols and lists of values to values:

type-synonym ′u fun-denot = fun-sym ⇒ ′u list ⇒ ′u

Likewise, a predicate denotation maps predicate symbols and lists of values to the two boolean
values:

type-synonym ′u pred-denot = pred-sym ⇒ ′u list ⇒ bool .

The semantics of a term is defined by the recursive function evalt:

fun evalt ::
′u var-denot ⇒ ′u fun-denot ⇒ fterm ⇒ ′u where

evalt E F (Var x) = E x
|evalt E F (Fun f ts) = F f (map (evalt E F) ts)

Here, map (evalt E F) [e1 , . . . , en] = [evalt E F e1 , . . . , evalt E F en], and
from now on map (evalt E F) ts is abbreviated as evalts E F ts.

If an expression evaluates to True in an interpretation, we say that it is satisfied by the
interpretation. If it evaluates to False, we say that it is falsified. The semantics of literals is a
function evall that evaluates literals:

fun evall ::
′u var-denot ⇒ ′u fun-denot ⇒ ′u pred-denot ⇒ fterm literal ⇒ bool

where
evall E F G (Pos p ts)←→ G p (evalts E F ts)
|evall E F G (Neg p ts)←→ ¬G p (evalts E F ts)

The semantics is extended to clauses:

22

definition evalc ::
′u fun-denot ⇒ ′u pred-denot ⇒ fterm clause ⇒ bool where

evalc F G C ←→ (∀E . ∃l ∈ C . evall E F G l)

It is important that the ranges of all the environments that evalc quantifies over are actually
subsets of the considered universe. The type system of Isabelle/HOL ensures this, as we can
inspect that the type of E indeed is ′u var -denot . Had I instead chosen to represent the universe
as a set, I would have to pass it as an argument to evalc and have a predicate ensure that all the
environments considered did not go outside this universe. Likewise, I would also have to make a
decision of what to do if the range of F was not a subset of the universe.

A set of clauses Cs is satisfied, written evalcs F G Cs, if all its clauses are satisfied:

definition evalcs ::
′u fun-denot ⇒ ′u pred-denot ⇒ fterm clause set ⇒ bool where

evalcs F G Cs ←→ (∀C ∈ Cs. evalc F G C)

The semantics can be illustrated with the universe nat of natural numbers, a function deno-
tation that maps add , mul , one, and zero to their usual meanings, a predicate denotation that
maps less, greater , and equals to their usual meanings, as well as a variable denotation that maps
x to 26 and y to 5:

fun Fnat :: nat fun-denot where
Fnat f [n,m] =

(if f = ′′add ′′ then n + m else
if f = ′′mul ′′ then n ∗ m else 0)

| Fnat f [] =
(if f = ′′one ′′ then 1 else
if f = ′′zero ′′ then 0 else 0)

| Fnat f us = 0

fun Gnat :: nat pred-denot where
Gnat p [x ,y] =

(if p = ′′less ′′ ∧ x < y then True else
if p = ′′greater ′′ ∧ x > y then True else
if p = ′′equals ′′ ∧ x = y then True else False)

| Gnat p us = False

fun Enat :: nat var-denot where
Enat x =

(if x = ′′x ′′ then 26 else
if x = ′′y ′′ then 5 else 0)

It is also illustrative to evaluate the literal equals(add(mul(y , y), one), x) with the above
denotations:

lemma evall Enat Fnat Gnat

(Pos ′′equals ′′

[Fun ′′add ′′ [Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′],Fun ′′one ′′ []]
,Var ′′x ′′]

) = True
by auto

5 Substitutions and Unifiers
This section formalizes substitutions, unifiers, MGUs, and the unification theorem, which states
the existence of MGUs.

A substitution is a function from variable symbols into terms:

23

type-synonym substitution = var-sym ⇒ fterm

This is very different from Chang and Lee where they are represented by finite sets [19]. The
advantage of functions is that they make it much easier to apply and compose substitutions. If
C ′ is an instance of C we write instance-ofls C ′ C . The composition of two substitutions, σ1 and
σ2, is also defined, and written σ1 ·σ2. We also define unifiers and MGUs of literals (and similarly
of terms):

definition unifierls σ L←→ (∃l ′. ∀l ∈ L. l ·l σ = l ′)

definition mguls σ L←→ unifierls σ L ∧ (∀u. unifierls u L −→ ∃i . u = σ·i)

One important theorem is the unification theorem, which states that if a finite set of literals
has a unifier, then it also has an MGU. This is usually proven by defining a unification algorithm
and proving it correct. This has been formalized several times. An early formalization is by
Paulson [48] in LCF of an algorithm by Manna and Waldinger [44]. Coen [21] used this as basis for
a formalization of the algorithm in Isabelle, and his formalization was improved first by Slind [72]
and later Krauss [38]. Their formalization [20] is now part of the Isabelle distribution. There,
terms are formalized as binary tree structures and substitutions as association lists. Sternagel
and Thiemann [73] formalize in the IsaFoR project [34] an algorithm presented by Baader and
Nipkow [2]. They formalize terms, unifiers and MGUs in a similar way to me. Therefore it
is relatively easy to obtain the unification theorem by proving my terms, unifiers, and MGUs
equivalent to the ones in IsaFoR.

theorem unification:
assumes finite L
assumes unifierls σ L
shows ∃θ. mguls θ L

For the purpose of formalizing the resolution calculus the choice of unification algorithm is
irrelevant since we only need one to prove the existence of MGUs. If one wants to formalize a
resolution prover the choice is important especially with respect to runtime. The two presented
algorithms seem to be efficient in practice, but have an exponential worst-case runtime. Ruiz-
Reina, Martín-Mateos, and Hidalgo [61], however, formalize, in ACL2, an algorithm by Corbin
and Bidoit [22] as presented by Baader and Nipkow [2], which has a quadratic worst-case runtime.
Some automatic theorem provers, e.g. SPASS, use the technique of term indexing to compute
MGUs – see, e.g. Sekar, Ramakrishnan, and Voronkov’s chapter on the topic [69]. I do not know
of any formalization of this technique in a proof assistant.

6 The Resolution Calculus
This section formalizes the resolution calculus and its soundness proof. It also formalizes steps
and derivations in the resolution calculus.

First, resolvents are formalized, i.e. the conclusions of the resolution rule:

definition resolution C1 C2 L1 L2 σ = ((C1 − L1) ∪ (C2 − L2)) ·ls σ
In Sect. 2 we saw that the resolution rule had three side-conditions. The rule is additionally

restricted to require that L1 and L2 are non-empty. When these side-conditions are fulfilled, the
rule is applicable.

24

definition applicable C1 C2 L1 L2 σ ←→
C1 6= {} ∧ C2 6= {} ∧ L1 6= {} ∧ L2 6= {}
∧ varsls C1 ∩ varsls C2 = {}
∧ L1 ⊆ C1 ∧ L2 ⊆ C2

∧mguls σ (L1 ∪ L2
C)

A step in the resolution calculus either inserts a resolvent of two clauses in a set of clauses,
or it inserts a variable renaming of one of the clauses. Two clauses are variable renamings of
each other if they can be instantiated to each other. Alternatively, we could say that we apply a
substitution which is a bijection between the variables in the clause and another set of variables.

definition var-renaming-of :: fterm clause ⇒ fterm clause ⇒ bool where
var-renaming-of C1 C2 ←→ instance-ofls C1 C2 ∧ instance-ofls C2 C1

A step in the resolution calculus is formalized as an inductive predicate named resolution-step.
In Isabelle/HOL this is done by specifying a number of rules characterizing the predicate. Specif-
ically there are two rules. One resolution-rule allows us to apply the resolution rule, and the other
standardize-apart allows us to rename clauses such that we can standardize them apart.

inductive resolution-step :: fterm clause set ⇒ fterm clause set ⇒ bool where
resolution-rule:
C1 ∈ Cs =⇒ C2 ∈ Cs =⇒ applicable C1 C2 L1 L2 σ =⇒

resolution-step Cs (Cs ∪ {resolution C1 C2 L1 L2 σ})
| standardize-apart:

C ∈ Cs =⇒ var-renaming-of C C ′ =⇒ resolution-step Cs (Cs ∪ {C ′})

Derivation steps are extended to derivations by taking the reflexive transitive closure of
resolution-step, which is given by rtranclp:

definition resolution-deriv = rtranclp resolution-step

The soundness proofs in the three books were not immediately ready to be formalized. The
proof by Ben-Ari uses Herbrand interpretations, but this machinery is actually not necessary
to prove soundness and does not seem to give a simpler proof. Chang and Lee prove soundness
for first-order logic by referring to the soundness proof for the propositional case, but they
do not make it clear how variables should be handled. Leitsch’s soundness proof refers to the
substitution principle, but neither states nor proves it. It can be found elsewhere, e.g. in the
textbook by Ebbinghaus, Flum, and Thomas [24] in the form of the substitution lemma. The
formalized soundness proof also uses the substitution lemma.

I prove the resolution rule sound by combining three simpler rules:

1. A substitution rule that allows us to infer instances.

2. A special, simpler, resolution rule.

3. A superset rule that allows us to infer supersets.

Rule 1, the substitution rule, states that we can do substitution:

C
C ·ls σ

Informally this seems obvious. C is satisfied and is a first-order clause, i.e. it represents a
universal quantification. C ·ls σ then instantiates its variables, which are bound and universally

25

quantified, and must therefore also be satisfied. Formally, however, this is not precise enough
since C being satisfied is a statement about variable denotations, i.e. a semantic form of instan-
tiation, while a substitution is a syntactic form of instantiation. This problem is overcome by
the substitution principle. The needed insight is that given a function denotation and a variable
denotation, any substitution can be converted to a variable denotation by evaluating the terms of
its domain. In the formalization this is done using Isabelle/HOL’s function composition operator
which is written as ◦ in infix notation.

definition evalsub E F σ = (evalt E F) ◦ σ

The substitution lemma then states that applying a substitution to a literal is semantically
the same as instead turning the substitution into a variable denotation:

lemma substitution: evall E F G (l ·l σ)←→ evall (evalsub E F σ) F G l

Let us now look at the soundness proof of substitution. The proof is written in Isar and uses
evalsub and the substitution lemma:

lemma subst-sound :
assumes asm: evalc F G C
shows evalc F G (C ·ls σ)
unfolding evalc-def proof
fix E
from asm have ∀E ′. ∃ l ∈ C . evall E ′ F G l using evalc-def by blast
then have ∃ l ∈ C . evall (evalsub E F σ) F G l by auto
then show ∃ l ∈ C ·ls σ. evall E F G l using substitution by blast

qed

Notice that I am unfolding the definition of evalc before the proof begins. The definition
says that evalc is a universal quantification over the variable denotations. Therefore Isabelle now
requires us to fix an arbitrary variable denotation and find a satisfied literal in C · σ. By the
assumption C has such a literal for any variable denotation E′ and in particular for σ transformed
to a variable denotation evalsub E F σ. The substitution lemma allows the substitution to be
applied instead of transformed and this concludes the proof.

Rule 2, the special substitution rule, is a special, ground-like, version of the resolution rule.
The rule is special since it is only allowed to remove two literals l1 and l2 instead of two sets of
literals and because it requires l1 and lc2 to be equal instead of unifiable:

C1 C2

(C1 − {l1}) ∪ (C2 − {l2})
l1 ∈ C1

l2 ∈ C2

l1 = lc2

Rule 3, the superset rule, states that from a clause follows any superset of the clause:

C1

C1 ∪ C2

The proofs of all three rules are made as short structured Isar proofs.
These four sound rules are combined to give the resolution rule, which must consequently

be sound. We are of course allowed to use the assumptions of the resolution rule, so we know
that when σ is applied to L1 and L2, they turn into a complementary pair of literals, which we
denote l1 ·ls σ and l2 ·ls σ. This justifies the bookkeeping inference below. It also means that we
can apply the special resolution rule. The bottom-most rule application uses the superset rule.

26

C1

C1 ·ls σ
C2

C2 ·ls σ substitution rule

(C1 ·ls σ − {l1 ·ls σ}) ∪ (C2 ·ls σ − {l2 ·ls σ}) special resolution

(C1 ·ls σ − L1 ·ls σ) ∪ (C2 ·ls σ − L2 ·ls σ)
book keeping

((C1 − L1) ∪ (C2 − L2)) ·ls σ superset rule

All this reasoning is made as structured Isar proofs. The soundness theorem is stated as
follows:

theorem resolution-sound :
assumes evalc F G C1 ∧ evalc F G C2

assumes applicable C1 C2 L1 L2 σ
shows evalc F G (resolution C1 C2 L1 L2 σ)

From this it follows that resolution steps are sound:

theorem step-sound :
assumes resolution-step Cs Cs ′

assumes evalcs F G Cs
shows evalcs F G Cs ′

And then it follows that resolution derivations are sound:

theorem derivation-sound :
assumes resolution-deriv Cs Cs ′

assumes evalcs F G Cs
shows evalcs F G Cs ′

The soundness theorem is also formalized in the refutational style:

theorem derivation-sound-refute:
assumes resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

shows ¬evalcs F G Cs

To summarize, I have defined a function resolution giving the conclusion of the resolution
rule, as well as a predicate applicable which formalizes its side conditions. I have combined these
to form the predicates resolution-step and resolution-derivation which formalize when a set of
clauses follows from another, respectively by a step or derivation of the resolution calculus. The
resolution rule and its steps and derivations were proven sound.

7 Herbrand Interpretations and Semantic Trees
Now that soundness is proven, it is time to take the first steps towards proving completeness.
Therefore this section formalizes Herbrand interpretations and semantic trees. It also formalizes
Herbrand’s theorem and emphasizes how an infinite path in a semantic tree is transformed to an
interpretation.

Herbrand interpretations are a special kind of interpretation characterized by two properties.
The first is that their universe is the set of all Herbrand terms. I chose that universes should be
represented by types and this is of course also the case for the universe of Herbrand terms. There-
fore, a new type hterm is introduced which is similar to fterm, but does not have a constructor
for variables:

27

datatype hterm = HFun fun-sym (hterm list)

This is the same datatype as in Berghofer’s formalization of natural
deduction [5]. Had I chosen to represent the universes by sets like Ridge and Margetson [58],
then I could instead have represented the Herbrand universe by the set of ground fterms.

Two functions called fterm-of -hterm and hterm-of -fterm are introduced that convert between
hterms and ground fterms. Note that some authors require the terms in the Herbrand universe
to be built from the function symbols in a considered set of clauses. I choose to use all function
symbols because it allows the Herbrand universe to be represented by the above datatype.

The second characteristic property is that the function denotation of an Herbrand interpre-
tation is HFun, and thus, evaluating a ground term under such an interpretation corresponds to
replacing all applications of Fun with HFun, that is, the ground term is interpreted as itself.

As we saw in Sect. 2, an enumeration of Herbrand atoms is needed, such that we can construct
our semantic trees. Therefore, the type of atoms is defined:

type-synonym ′t atom = pred-sym ∗ ′t list

Again the symbols are not restricted to those occurring in a considered set of clauses. Isabelle/
HOL provides the proof method countable-datatype that can automatically prove that a given
datatype, in our case hterm, is countable. Since also the predicate symbols are countable, then so
must hterm atom be. Furthermore, it is easy to prove that there are infinitely many hterm atoms.
Using these facts and Hilbert’s choice operator, I specify a bijection hatom-of -nat between the
natural numbers and the hterm atoms. Its inverse is called nat-of -hatom. Additionally, the func-
tions nat-of -fatom and fatom-of -nat enumerate the ground fterm atoms in the same order. A
function get-atom returns the atom corresponding to a literal. The enumeration will be used to
define which levels of the semantic trees correspond to which atoms.

7.1 Semantic Trees
In paper-proofs semantic trees are often labeled with the atoms that their nodes set to True or
False. In this formalization the trees are unlabeled, because for a given level, the corresponding
atom can always be calculated using the enumeration:

datatype tree = Leaf | Branching tree tree

The formalization contains a quite substantial, approximately 700-lines, theory on these un-
labeled binary trees, paths within them, and their branches. The details are not particularly
interesting, but a theory of binary trees is necessary.

In the formalization, bool lists represent both paths in trees and partial interpretations, de-
noted by the type partial -pred -denot . E.g. if we consider the path [True,True,False], then it is
the path from the root of a semantic tree that goes first left, then left again, and lastly right.
On the other hand, it is also the partial interpretation that considers hatom-of -nat 0 to be
True, hatom-of -nat 1 to be True and hatom-of -nat 2 to be False. Our formalization illustrates
the correspondence between partial interpretations and paths clearly by identifying their types.
Therefore, synonym dir is introduced for bool as well as the abbreviations Left for True and
Right for False.

The above datatype cannot represent infinite trees. Thus, infinite trees are modeled as sets
of paths with a wellformedness property:

abbreviation wf -tree :: dir list set ⇒ bool where
wf -tree T ≡ (∀ds d . (ds @ d) ∈ T −→ ds ∈ T)

28

Alternatively I could have used Isabelle’s codatatype package [8, 10], since codatatypes can
represent infinite-depth trees in a very natural way.

Infinite paths are modeled as functions from natural numbers into finite paths. Applying the
function to number i gives us the prefix of length i. From here on such functions are called infinite
paths, and their characteristic property is

abbreviation wf -infpath :: (nat ⇒ ′a list)⇒ bool where
wf -infpath f ≡ (f 0 = []) ∧ (∀n. ∃a. f (Suc n) = (f n) @ [a])

It must be made formal, what it means for a partial interpretation, i.e. a path, to falsify
an expression. A partial interpretation G falsifies, written falsifiesl G l , a ground literal l, if
the opposite of its sign occurs on index nat-of -fatom (get-atom l) of the interpretation. The
exclamation mark (!) is Isabelle/HOL’s nth operator, i.e. G ! i gives the ith element of G.

definition falsifiesl :: partial-pred-denot ⇒ fterm literal ⇒ bool where
falsifiesl G l ←→ groundl l
∧ (let i = nat-of -fatom (get-atom l) in

i < length G ∧G ! i = (¬sign l))

A ground clause C is falsified, written falsifiesg G C , if all its literals are falsified. A first-
order clause C is falsified, written falsifiesc G C , if it has a falsified ground instance. A partial
interpretation satisfies an expression if the partial interpretation does not falsify it. A set Cs of
first-order clauses is falsified by a partial interpretation if it falsifies some clause in Cs. A set Cs
of first-order clauses is falsified by a tree if each of the tree’s branches falsifies some clause in
Cs. Lastly, a semantic tree T is closed, written closed -tree T Cs, for a set of clauses Cs if it is a
tree that falsifies Cs, but whose internal paths do not. Notice that a closed tree is minimal with
respect to having falsifying branches, since any proper subtree has a branch that does not falsify
anything in the set.

7.2 Herbrand’s Theorem
The formalization of Herbrand’s theorem is mostly straightforward and is done as an Isar proof
that follows the sketch from Sect. 2. The challenging part is to take an infinite path, all of whose
prefixes satisfy a set of clauses Cs and then prove that its translation to an interpretation also
satisfies Cs. Chang and Lee [19] do not elaborate much on this, but it takes up a large part of
the formalization and illustrates the interplay of syntax and semantics.

The first step is to define how to transform the infinite path to an Herbrand interpretation.
The function denotation has to be HFun, and the infinite path needs to be converted to a
predicate denotation. This can be done as follows:

abbreviation extend :: (nat ⇒ partial-pred-denot)⇒ hterm pred-denot where
extend f P ts ≡

let n = nat-of -hatom (P , ts) in
f (Suc n) ! n

Because of currying, P and ts can be thought of as the predicate symbol and list of values
that we wish to evaluate in our semantics. It is done by collecting them to an Herbrand atom,
and finding its index. Thereafter a prefix of our infinite path is found that is long enough to have
decided whether the atom is considered True or False.

I now prove that if the prefixes collected in the infinite path f satisfy a set of clauses Cs,
then so does its extension to a full predicate denotation extend f .

Since I want to prove that the clauses in Cs are satisfied, I fix one C and prove that it has
the same property:

29

lemma extend-infpath:
assumes wf -infpath (f :: nat ⇒ partial-pred-denot)
assumes ∀n. ¬falsifiesc (f n) C
assumes finite C
shows evalc HFun (extend f) C

There are four ways in which clauses can be satisfied:

1. A first-order clause can be satisfied by a partial interpretation.

2. A ground clause can be satisfied by a partial interpretation.

3. A ground clause can be satisfied by an Herbrand interpretation.

4. A first-order clause can be satisfied by an Herbrand interpretation.

The four ways are illustrated as the nodes in Fig. 3. The extend -infpath lemma relates 1 and
4 using lemmas that relate 1 to 2 to 3 to 4. The four ways seem similar, but they are in fact
very different. For instance, a ground clause being satisfied is very different from a first-order
clause being satisfied, since there are no ground instances or variables to worry about. Likewise,
a ground clause being satisfied by a partial interpretation is clearly different from being satisfied
by an Herbrand interpretation, since the two types are vastly different: A partial interpretation
is a bool list while an Herbrand interpretation consists of a fun-sym ⇒ hterm list ⇒ hterm and
a pred -sym ⇒ hterm list ⇒ bool .

1 and 2 are related: If a first-order clause is satisfied by all prefixes of an infinite path, then
so is any, in particular ground, instance. This follows from the definition of being satisfied by a
partial interpretation.

2 and 3 are related: If a ground clause is satisfied by all prefixes of an infinite path f , then it
is also satisfied by extend f . This follows almost directly from the definition of extend .

3 and 4 are related: Ideally one would prove that if a ground clause is satisfied by an Herbrand
interpretation, then so is a first-order clause of which it is an instance. That is, however, too
general. Fortunately, there is a similarity that ties first-order clauses and ground clauses together.
Consider a variable denotation in the Herbrand universe, i.e. of type var -sym ⇒ hterm. There
is a function that converts its domain to fterms, and thus turns it in to a substitution:

fun sub-of -denot :: hterm var-denot ⇒ substitution
sub-of -denot E = fterm-of -hterm ◦ E

This is the machinery necessary to state the needed lemma: If the ground clause C ·ls
sub-of -denot E is satisfied by an Herbrand interpretation under E, then so is the first-order
clause C. The reason is simply that any variable in C is replaced by some ground term in the
domain of sub-of -denot E . This term evaluates to the same as the Herbrand term that it is
interpreted as in E.

The final step is to chain 1, 2, 3, and 4 together to relate 1 and 4. The steps are shown as
the arrows in Fig. 3.

1. Assume that C is satisfied by all prefixes of f .

2. Then the ground instance C ·ls sub-of -denot E is satisfied by all f ’s prefixes.

3. Then the ground instance C ·ls sub-of -denot E is satisfied by extend f under E in partic-
ular.

30

1 4

2 3

First-order

Partial Herbrand
interpretationinterpretation

Ground

Figure 3: Illustration of how to go from satisfiability of first-order clauses in partial interpretations
to their satisfiability in Herbrand interpretations. As shown, it can be done by going down to
the ground level and up again.

4. Then C is satisfied by extend f under E.

With this, Herbrand’s theorem is formalized:

theorem herbrand :
assumes ∀G. ¬evalcs HFun G Cs
assumes finite Cs ∧ (∀C ∈ Cs. finite C)
shows ∃T . closed-tree T Cs

The proof, as said, follows the sketch from Sect. 2.

8 Completeness
The completeness proof combines Herbrand’s theorem, the lifting lemma, and reasoning about
semantic trees and derivations. The purpose of this section is to take a look at the most challeng-
ing parts of the formalization of the proof. These are the lifting lemma, standardizing clauses
apart, and some finer details of reasoning about branches in semantic trees. Furthermore, the
section illustrates the derivation of the empty clause and shows a number of formal completeness
theorems.

8.1 Lifting Lemma
Let us first take a look at the formalization of the lifting lemma. More precisely I will explain a
flaw in proofs from the literature and present the formalization of a correct proof.

Let us look at the flawed proofs. The formalization of the resolution rule removes literals from
clauses before it applies the MGU. This is similar to several presentations from the literature
including those of Robinson [59] and Leitsch [43]. Another approach, which the formalization
used in an earlier version, is to apply the MGU before the literals are removed:

C1 C2

(C1 ·ls σ − L1 ·ls σ) ∪ (C2 ·ls σ − L2 ·ls σ)

varsls C1 ∩ varsls C2 = {}
L1 ⊆ C1, L2 ⊆ C2

σ is an MGU of L1 ∪ L2
C

31

L1

L1 ·ls τ
LC
2

L′
1 L′C

2

L′
1 ·ls σ

τ τ

η η

ϕ

σσ

Figure 4: The substitutions of the lifting lemma. An arrow from L to L′ labeled with η indicates
that L ·ls η = L′. Full arrows are relations we know. The dashed ones are established in the proof
of the lemma by noticing that η · σ is a unifier of L1 and LC

2 , which means we can obtain the
MGU τ and by the definition of MGUs also ϕ.

This is exactly the rule used by Ben-Ari [4]. Chang and Lee [19] use a similar approach with
more possibilities for factoring. However, I was not able to formalize their proofs of the lifting
lemma because they had some flaws. The flaws are described in my master’s thesis [62]. The most
critical flaw is that the proofs seem to use that B ⊆ A implies (A − B) ·ls σ = A ·ls σ − B ·ls σ,
which does not hold in general. Leitsch [42, Proposition 4.1] noticed flaws in Chang and Lee’s
proof already, and presented a counter-example to it.

Let us now look at a formalization of a correct proof. With the current approach the lifting
lemma is straightforward to formalize as an Isar proof following the proof by Leitsch [43]. The
Isar proof is presented below. It consists of four parts. First we obtain the subsets L1 and L2 of
C1 and C2 that we want to resolve upon. Next we obtain substitutions τ and ϕ as illustrated
in Fig. 4. This is where we use the unification theorem to obtain τ . We can then construct the
desired resolvent, and show that resolution is applicable.

To illustrate the correspondence between informal proofs and Isar proofs I present the whole
Isar proof below, interleaved with an informal proof that expands on the sketch from Sect. 2. The
reader should notice the similarities between formal and informal proof, but is not expected to
understand all details of the formal proof. Notice also that we do not need to assume groundness
of C ′

1 and C ′
2.

Lemma: Assume we have two finite clauses C1 and C2 that share no variables. Assume also that
C ′

1 is an instance of C1 and that C ′
2 is an instance of C2. Furthermore, assume that the resolution

rule is applicable to C ′
1 and C ′

2 on clashing sets of literals L′
1 and L′

2 with MGU σ. Then there
exist sets of literals L1 and L2 and substitution τ such that the resolution rule is applicable to
C1 and C2 on clashing sets of literals L1 and L2 with MGU τ and that their conclusion has the
conclusion from C ′

1 and C ′
2 as an instance.

lemma lifting :
assumes fin: finite C1 ∧ finite C2

assumes apart : varsls C1 ∩ varsls C2 = {}
assumes inst : instance-ofls C

′
1 C1 ∧ instance-ofls C

′
2 C2

assumes appl : applicable C′
1 C

′
2 L

′
1 L

′
2 σ

shows ∃L1 L2 τ . applicable C1 C2 L1 L2 τ ∧
instance-ofls (resolution C′

1 C
′
2 L

′
1 L

′
2 σ) (resolution C1 C2 L1 L2 τ)

32

proof −
– First we obtain the subsets to resolve upon:
Look at the clashing sets of literals L′

1 and L′
2. We partition C ′

1 in L′
1 and the rest, R′

1 = C ′
1−L′

1.
Likewise, we partition C ′

2 in L′
2 and the rest, R′

2 = C ′
2 − L′

2. Since C ′
1 is an instance of C1

there must be a substitution γ such that C1 ·ls γ = C ′
1. Likewise there must be a µ such

that C2 ·ls µ = C ′
2. Since the C1 and C2 share no variables, we can replace this with a single

substitution η. We now partition C1 in a part, L1, that η instantiates to L′
1 and a rest C1−L1

that η instantiates to R′
1. We call the rest R1. Likewise we obtain an L2 which η instantiates

to L′
2 and an R2 that η instantiates to R′

2.

define R′
1 where R′

1 = C′
1 − L′

1

define R′
2 where R′

2 = C′
2 − L′

2

from inst obtain γ µ where C1 ·ls γ = C′
1 ∧ C2 ·ls µ = C′

2

unfolding instance-ofls-def by auto
then obtain η where η-p: C1 ·ls η = C′

1 ∧ C2 ·ls η = C′
2

using apart merge-sub by force

from η-p obtain L1 where L1-p: L1 ⊆ C1 ∧ L1 ·ls η = L′
1 ∧ (C1 − L1) ·ls η = R′

1

using appl project-sub using applicable-def R′
1-def by metis

define R1 where R1 = C1 − L1

from η-p obtain L2 where L2-p: L2 ⊆ C2 ∧ L2 ·ls η = L′
2 ∧ (C2 − L2) ·ls η = R′

2

using appl project-sub using applicable-def R′
2-def by metis

define R2 where R2 = C2 − L2

– Then we obtain their MGU:
We assumed that resolution is applicable on clashing sets of literals L′

1 and L′
2 with MGU σ.

Therefore σ is an MGU of L′
1 ∪ L′

2
C which is the same as it being an MGU of (L1 ·ls η) ∪

(L2 ·ls η)C which again is the same as it being an MGU of (L1 ∪ L2
C) ·ls η. Thus σ is a unifier

of (L1 ∪L2
C) ·ls η, and therefore η · σ is a unifier of L1 ∪L2

C. By the unification theorem there
must also be an MGU τ of L1 ∪L2

C, and by the definition of it being an MGU there must also
be a substitution ϕ such that τ · ϕ = η · σ.

from appl have mguls σ (L′
1 ∪ L′

2
C)

using applicable-def by auto
then have mguls σ ((L1 ·ls η) ∪ (L2 ·ls η)C)
using L1-p L2-p by auto

then have mguls σ ((L1 ∪ L2
C) ·ls η)

using compls-subls subls-union by auto
then have unifierls σ ((L1 ∪ L2

C) ·ls η)
using mguls-def by auto

then have ησuni : unifierls (η · σ) (L1 ∪ L2
C)

using unifierls-def composition-conseq2l by auto
then obtain τ where τ -p: mguls τ (L1 ∪ L2

C)
using unification fin L1-p L2-p by (meson finite-UnI finite-imageI rev-finite-subset)

then obtain ϕ where ϕ-p: τ · ϕ = η · σ
using ησuni mguls-def by auto

– We show that we have the desired conclusion:
Define C as ((C1 − L1) ∪ (C2 − L2)) ·ls τ , i.e. the resolvent of C1 and C2 on clashing sets of
literals L1 and L2 with MGU τ . Let us see what ϕ instantiates it to:
C ·ls ϕ = (R1 ∪R2) ·ls (τ · ϕ) – by the definitions of C, R1, and R2.
= (R1 ∪R2) ·ls (η · σ) – since these two composed substitutions were equal.
= ((R1 ·ls η) ∪ (R2 ·ls η)) ·ls σ

33

= (R′
1 ∪R′

2) ·ls σ – by the definitions of R′
1 and R′

2.
In conclusion C ·ls ϕ = ((C ′

1−L′
1)∪ (C ′

2−L′
2)) ·ls σ, i.e. the conclusion from C1 and C2 has the

one from C ′
1 and C ′

2 as an instance.

define C where C = ((C1 − L1) ∪ (C2 − L2)) ·ls τ
have C ·ls ϕ = (R1 ∪ R2) ·ls (τ · ϕ)
using subls-union composition-conseq2ls using C-def R1-def R2-def by auto

also have ... = (R1 ∪ R2) ·ls (η · σ)
using ϕ-p by auto

also have ... = ((R1 ·ls η) ∪ (R2 ·ls η)) ·ls σ
using subls-union composition-conseq2ls by auto

also have ... = (R′
1 ∪ R′

2) ·ls σ
using η-p L1-p L2-p using R1-def R2-def by auto

finally have C ·ls ϕ = ((C′
1 − L′

1) ∪ (C′
2 − L′

2)) ·ls σ
unfolding R′

1-def R′
2-def by auto

then have ins: instance-ofls (resolution C′
1 C

′
2 L

′
1 L

′
2 σ) (resolution C1 C2 L1 L2 τ)

using resolution-def instance-ofls-def C-def by metis

– We show that the resolution rule is applicable:
We know that the resolution rule was applicable on C ′

1 and C ′
2 with clashing sets of literals L′

1

and L′
2. Therefore these sets must be non-empty. Since they are instances of C ′

1, C ′
2, L′

1, and L′
2,

these must also be non-empty. We have already established all other conditions of resolution
being applicable.
This concludes the proof.

have C′
1 6= {} ∧ C′

2 6= {} ∧ L′
1 6= {} ∧ L′

2 6= {}
using appl applicable-def by auto

then have C1 6= {} ∧ C2 6= {} ∧ L1 6= {} ∧ L2 6= {}
using η-p L1-p L2-p by auto

then have appli : applicable C1 C2 L1 L2 τ
using apart L1-p L2-p τ -p applicable-def by auto

from ins appli show ?thesis
by auto

qed

8.2 The Formal Completeness Proof
Like Herbrand’s theorem, I formalize completeness as an Isar proof following Chang and Lee [19].
This time, however, the proof is much longer than its informal counterpart. The paper proof is
about 30 lines, while the formal proof is approximately 150 lines. There are several reasons for
this:

1. Clauses have to be explicitly standardized apart.

2. The clauses falsified by branches ending in two sibling leaves must be resolved and the
sibling leaves must be cut off.

3. Even more of the tree must be cut off to minimize it.

4. The derivation-steps must be tied together.

We need to prove that the cut tree is closed. Furthermore, cutting the tree requires very precise
reasoning about the numbers of the ground atoms. In the following subsection I tackle 1, 2 and
4 which are particularly interesting.

34

Let us now look at the completeness proof from a high level to choose an appropriate induction
principle. The completeness proof consists of two steps. First Herbrand’s theorem is applied to
obtain a finite tree. Next the finite tree is cut smaller and a derivation step is made. Then the
process is repeated on the smaller tree. To prove that this works, I formalize the process using
induction on the size of the tree. The formalization uses the induction rule measure_induct_rule
instantiated with the size of a tree. This gives the following induction principle:

lemma
assumes

∧
x . (

∧
y . treesize y < treesize x =⇒ P y) =⇒ P x

shows P a

Here, the induction hypothesis holds for any tree of a smaller size, and this is needed since
several nodes are cut off in each step.

In order for the completeness theorem to fit with the above induction principle, it is first
formulated in an appropriate way, assuming the existence of a closed semantic tree. I show this
formulation along with a sketch of the inductive Isar proof:

theorem completeness ′:
assumes closed-tree T Cs
assumes ∀C∈Cs. finite C
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

using assms proof (induction T arbitrary : Cs rule: measure-induct-rule[of treesize])
fix T :: tree
fix Cs :: fterm clause set
assume ih:

∧
T ′ Cs. treesize T ′ < treesize T =⇒ closed-tree T ′ Cs =⇒

∀C∈Cs. finite C =⇒ ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

assume clo: closed-tree T Cs
assume finite-Cs: ∀C∈Cs. finite C
...

ultimately show ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′ by auto
qed

An alternative approach would have been to use an induction on the subtree relationship.

8.3 Standardizing Apart
In each step the resolved clauses must be standardized apart. Two functions can do this:

abbreviation std1 C ≡ C ·ls (λx . Var (′′1 ′′ @ x))

abbreviation std2 C ≡ C ·ls (λx . Var (′′2 ′′ @ x))

They take clauses C1 and C2 and create the clauses std1 C1 and std2 C2 which have added
respectively 1 and 2 to the beginning of all variables. The most important property is that the
clauses actually have distinct variables after the functions are applied. We need this such that
we can apply the resolution rule, and so we can use the lifting lemma.

lemma std-apart-apart : varsls (std1 C1) ∩ varsls (std2 C2) = {}
I prove that the functions actually rename the variables. This was a prerequisite for the

standardize apart rule of the calculus.

lemma std1-renames: var-renaming-of C1 (std1 C1)

In the completeness proof I need that C1 and std1 C1 are falsified by the same partial
interpretations:

lemma std1-falsifies: falsifiesc G C1 ←→ falsifiesc G (std1 C1)

35

a 7→ True a 7→ False





B

Figure 5: B is a path from the root of a semantic tree to a parent of two sibling nodes. B1 extends
B by going left and B2 by going right. B falsifies no clause in our set of clauses, but B1 falsifies
C1, and B2 falsifies C2.

8.4 Resolving Falsified Clauses
Let us now look at how to formalize the removal of two sibling leaves, and why the clauses
that their branches falsified can be resolved. In each step, the completeness proof removes two
sibling leaves. The branches, B1 = B @ [True] and B2 = B @ [False], ending in these sibling
leaves falsified a first-order clause each, C1 and C2. By the definition of falsification of first-order
clauses, B1 and B2 falsified ground instances C ′

1 and C ′
2 of C1 and C2 respectively. These ground

clauses are then resolved, and the resolvent is falsified by B. This is then lifted to the first-order
level using the lifting lemma. See the situation in Fig. 5.

Thus, on the ground level, two properties must be established:

1. The two ground clauses C ′
1 and C ′

2 falsified by B1 and B2 can be resolved.

2. Their ground resolvent C ′ is falsified by B. This ensures that the tree is closed when we
cut off B1 and B2 and minimize it.

Let us prove 1 first. This is done by proving that C ′
1 contains the negative literal l = Neg a

of number length B in the enumeration, and that C ′
2 contains its complement. Here, the case for

C ′
1 is presented. C ′

1 is falsified by B1, but not B, because the closed semantic tree is minimal.
Thus, it must be the decision of going left that was necessary to falsify C ′

1. Going left falsified
the negative literal l with number length B in the enumeration, and hence it must be in C ′

1.
Let us prove 2 next. To prove it we must show that the ground resolvent C ′ = (C ′

1 − {l}) ∪
(C ′

2−{lc}) is falsified by B. We do it by proving that the literals in both C ′
1−{l} and C ′

2−{lc}
are falsified. The case for C ′

1 − {l} is presented here. The overall idea is that l is falsified by B1,
but not by B. The decision of going left falsified l, and then all of C ′

1 was falsified. Therefore, the

36

other literals must have been falsified before we made the decision, in other words, they must
have been falsified already by B.

To formalize this we must prove that all the literals in C ′
1−{l} are indeed falsified by B. We

do it by a lemma showing that any other literal lo ∈ C ′
1 than l is falsified by B. Its proof first

shows that lo has another number than l has, i.e. other than length B . It seems obvious since
lo 6= l , but we also need to ensure that lo 6= lc. We do this by proving another lemma, which
says that a clause only can be falsified by a partial interpretation if it does not contain two
complementary literals. Then we show that lo has a number smaller than length (B @ [True]),
since lo is falsified by B @ [True]. This concludes the proof.

I abstract from True to d such that the lemma also will work for the path B @ [False] that
goes left:

lemma other-falsified :
assumes groundls C

′
1 ∧ falsifiesg (B @ [d]) C′

1

assumes l ∈ C′
1 ∧ nat-of -fatom (get-atom l) = length B

assumes lo ∈ C′
1 ∧ lo 6= l

shows falsifiesl B lo

8.5 The Derivation
At the end of the proof the derivations are tied together:

C1

std1 C1

C2

std2 C2

resolution C1 C2 L1 L2 σ

...
{}

The dots represent the derivation we obtain from the induction hypothesis. It is done using the
definitions of resolution-step and resolution-deriv . From herbrand and completeness ′ follows the
completeness theorem:

theorem completeness:
assumes finite Cs ∧ (∀C ∈ Cs. finite C)
assumes ∀(F :: hterm fun-denot) (G :: hterm pred-denot). ¬evalcs F G Cs
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

8.6 Further Completeness Theorems
Let us now look at the strength of the above completeness proof and consider several other
variants.

Notice that the above completeness theorem is actually stronger than the usual one. Usually,
the assumption would consider all interpretations of all universes. Here, however, the assumption
is weakened to consider only all interpretations of the Herbrand universe.

It could be illustrative to also formalize the usual formulation, but unfortunately, because of
my choice of representing universes by types this is not possible. The reason is that although
all statements in HOL are implicitly universally quantified over all types at the top, we are not
allowed to do type quantification explicitly inside HOL formulas.

I instead prove some other instructive formulations of the theorem. For the completeness
proof it was central that we considered the Herbrand universe, but for the theorem it is actually

37

not important. The Herbrand universe can be replaced by any countably infinite universe. To
prove this we fix an arbitrary countably infinite universe and obtain a bijection between it and
the Herbrand terms. Three functions are defined that can apply the bijection to respectively
variable denotations, function denotations, and predicate denotations:

definition E-conv :: (′a ⇒ ′b) ⇒ ′a var-denot ⇒ ′b var-denot where
E-conv b-of-a E ≡ λx . (b-of-a (E x))

definition F-conv :: (′a ⇒ ′b) ⇒ ′a fun-denot ⇒ ′b fun-denot where
F-conv b-of-a F ≡ λf bs. b-of-a (F f (map (inv b-of-a) bs))

definition G-conv :: (′a ⇒ ′b) ⇒ ′a pred-denot ⇒ ′b pred-denot where
G-conv b-of-a G ≡ λp bs. (G p (map (inv b-of-a) bs))

Proving some appropriate lemmas about these functions I arrive at the following completeness
theorem:

theorem completeness-countable:
assumes infinite (UNIV :: (′u :: countable) set)
assumes finite Cs ∧ (∀C ∈ Cs. finite C)
assumes ∀(F :: ′u fun-denot) (G :: ′u pred-denot). ¬evalcs F G Cs
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

In particular, I use it to replace the Herbrand universe with the universe of the natural
numbers:

theorem completeness-nat :
assumes finite Cs ∧ (∀C ∈ Cs. finite C)
assumes ∀(F :: nat fun-denot) (G :: nat pred-denot). ¬evalcs F G Cs
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

9 Discussion
Since this paper is a case study in formalizing mathematics, it is worthwhile considering which
tools were helpful in this regard. This section discusses each of these tools. The section also
gives an idea of how much work went in to making the formalization. It discusses the conse-
quences of the choice of representing universes as types. Lastly, it discusses the applicability of
the formalization to implemented automated theorem provers.

Integrated Development Environments (IDEs) help their users do software development.
Isabelle includes the Isabelle/jEdit Prover IDE, which has many useful features for navigat-
ing, reading, and writing proof documents. For instance it reveals type information of constants
when the user hovers the mouse cursor over them. The user can click on any constant or type
to jump to its definition and with another click she can jump back again. These features were
especially advantageous when the theory grew larger. This is not only useful when writing proofs
but also when reading them. In a formalization, every word is formally tied to its definition, so
if at some point I forget the meaning of some expression the definitions are available by the click
of a button. In my opinion this corroborates the claim that formal companions to paper proofs
are highly useful.

The structured proof language Isar was beneficial because it allows formal proofs to be written
as sequences of claims that follow from the previous claims. This clearly mirrors mathematical
paper proof, which is what I am formalizing. Furthermore, it makes the proofs easy to read, and
this is important when a formalization is to help in the understanding of a theory.

38

Isabelle/HOL includes several generic proof methods or tactics that can discharge proof goals.
Writing a proof in Isabelle/HOL is a process of stating the formula you think holds and showing
this from the previous statements with the right proof method. The simp and auto methods
do rewriting and more while, e.g. blast and metis are first-order automatic theorem provers.
Knowing which one to use in a given situation is a matter of knowledge of how the prover works,
of experience, and of trial and error.

The Sledgehammer tool [6] finds proofs by picking important facts from the theory and then
employing top-of-the-line automatic theorem provers and satisfiability modulo theory solvers. It
often helps proving claims that we know are true, but where finding the necessary facts from the
theory and libraries as well as choosing and instructing a proof method would be tedious.

It is also worthwhile considering how much work went into the formalization. The whole
development is about 3300 lines of code. A preliminary version of the theory was developed
during 5 months as part of my master’s thesis [62] including formalizations of clausal logic, its
semantics, unifiers, a resolution calculus, its soundness, Herbrand interpretations, semantic trees
and Herbrand’s theorem. I developed the rest of the theory during the first 5 months of my
PhD studies concurrently with my other duties. The completeness theorems in Subsect. 8.6 were
formalized with little work while writing this extended paper. The lifting lemma was the greatest
challenge because of the flaws in Chang and Lee’s proof. As soon as I looked at the proof by
Leitsch, it was straightforward to finish.

In Sect. 4, I chose to represent universes as sets. The advantage of this was that I did not
need additional predicates to restrict the ranges of variable and function denotations to stay
within the fixed universe, since this was captured in the types. This is rather convenient, since
then the proofs are not cluttered with reasoning about these predicates. On the other hand, in
Sect. 7, I needed to introduce a type for the Herbrand universe, where it could otherwise have
been captured directly as the set of ground terms. In Sect. 8, we also saw that a consequence was
that we could not express completeness in its usual formulation, but had to go with a stronger
formulation. To sum up, by formalizing universes as types rather than sets, I gained convenience,
but lost some expressibility.

Finally, it is worthwhile considering the applicability of the formalization to implementations
of automated theorem provers such as E, SPASS, and Vampire. Such automatic theorem provers
consist of a calculus and a function to construct proofs in the calculus. The present formalization is
purely of a calculus. Furthermore, the mentioned provers use the superposition calculus, which is
an extension of resolution to first-order logic with equality. Resolution and superposition coincide
for first-order logic without equality. The rules of superposition have several side conditions which
only serve to rule out unnecessary inferences while the resolution rule I formalize has no such
side conditions.

10 Related Work
The literature describes several formalizations of logic. This section takes a look at formalizations
of both intuitionistic and classical first-order logic. Furthermore, it looks at two results that go
beyond first-order logic. Lastly, it gives an overview of the IsaFoL project, which is an effort to
bring together researchers of formalizations of logic.

10.1 Formalizations of Proof Systems for First-Order Logic
The completeness of first-order logic is a landmark of logic and thus formalizing this theorem is
interesting in itself. Natural deduction calculi and sequent calculi are very suited for this purpose
because of their simplicity.

39

Persson [54] formalized, in ALF, intuitionistic first-order logic. He formalized an intuitionis-
tic natural deduction system and an intuitionistic sequent calculus. The semantics are defined
using topology, which is a generalization of the semantics for classical first-order logic. He for-
malized both natural deduction, sequent calculi, and an axiomatic system. He proved the natural
deduction systems and the sequent calculus sound, and proved the natural deduction with named
variables complete. Ilik [31] also formalized, in Coq, natural deduction for intuitionistic first-order
logic. He proved it complete with respect to a Kripke semantics. He also studied properties of in-
tuitionistic logic extended with delimited control operators known from programming languages.

Harrison [28] formalized, in HOL Light, model theoretic results about classical first-order
logic, including the compactness theorem, the Löwenheim-Skolem theorem, and Herbrand’s
theorem.

Moreover, there are several formalized completeness proofs for classical first-order natural
deduction. Berghofer [5] formalized natural deduction, in Isabelle/HOL, and proved it sound
and complete. He also proved the Löwenheim-Skolem theorem. Raffalli [55] proved, in Phox,
natural deduction complete for first-order logic. His semantics is that of minimal models. These
are similar to the sets of formulas true in the usual semantics, but behave differently with
respect to negation. The completeness statement is equivalent to the one with respect to the
usual semantics, but this is not formalized. Ilik [31] formalized, essentially, the same result in
Coq, although less abstractly.

Other authors formalized completeness proofs for classical first-order sequent calculi. Marget-
son and Ridge [45] formalized, in Isabelle/HOL, a sequent calculus. Their syntax is that of for-
mulas on negation normal form without first-order functions. They proved the calculus sound
and complete with respect to a semantics on this syntax. Braselmann and Koepke [14,15] proved,
in Mizar, a sequent calculus for first-order logic sound and complete. Schlöder and Koepke [67]
proved it complete even for uncountable languages. Ilik [31] also proved a sequent calculus com-
plete with respect to a Kripke-style semantics that he, Lee, and Herbelin [32] introduced for
classical first-order logic.

Many completeness proofs follow similar recipes. Blanchette, Popescu, and Traytel [9, 12]
formalized one such recipe, in Isabelle/HOL, as an abstract completeness proof for first-order
logic that is independent of syntax and proof system. An interesting aspect of the proof is that it
uses codatatypes to define and reason about infinite derivation trees. Their abstract completeness
theorem states that if a proof system has a number of fairness properties, then it is complete
in the following abstract sense: Any formula can either be proved or there exists some infinite
path in a fair derivation tree of the formula. This means that the user of their formalization
has three things to do in order to get a concrete completeness proof. First she needs to define a
syntax, second she needs to define a fair proof system and third, she has to interpret the infinite
paths as countermodels. The authors performed this step for a sequent calculus for first-order
logic with equality and sorts. My formalization does not follow this recipe, opting instead for
formalizing semantic trees. Blanchette, Popescu, and Traytel [11, 12] also formalized abstract
soundness results and used them to prove a certain kind of infinite proofs correct.

Breitner and Lohner [17] defined natural deduction in an abstract way that is independent of
syntax and the concrete rules of the system. They then used the abstract completeness proof by
Blanchette, Popescu, and Traytel to prove it complete in the abstract sense. They also defined a
novel graph representation of proofs, which is also independent of syntax and rules. They proved
that any natural deduction system and the corresponding graph representation can prove the
same theorems. Thus the graph representation is as sound and complete as the corresponding
natural deduction system. They concretely instantiated it with a propositional logic with only
conjunction and implication as well as a first-order logic with only universal quantification and
implication. Breitner [16] used their graph representation to implement a tool for teaching logic.

40

For automatic theorem provers, it is not only important that the calculus is complete, but
also that it can be implemented as a program. Ridge and Margetson [57, 58] verified a prover
based on their formalized sequent calculus. Since their calculus does not contain full first-order
terms, it means that they do not need any machinery such as MGUs to handle them. They also
implement the prover as an OCaml program.

In his master’s thesis, Gebhard [26] formalized several ground resolution calculi in the ΩMEGA
proof assistant. A version of this development is available online in The Theorem Prover Mu-
seum [37]. Gebhard proved completeness using induction on the excess literal number. The excess
literal number is the number of occurrences of literals in a set of clauses minus the number of
clauses. The technique was introduced by Anderson and Bledsoe [1] who used it to prove a
linear format for resolution complete. Arguably, semantic trees are a more pedagogical construc-
tion since they so naturally express interpretations, and therefore I prefer them. Furthermore,
Goubault-Larrecq and Jouannaud [27] showed that semantic trees can actually be used to prove
many of the refinements of resolution complete – including linear resolution. Another difference
from my formalization is that Gebhard uses proof planning. Proof plans were introduced by
Bundy [18] as formal specifications of LCF-style tactics, which are functions that can replace a
goal in a proof with zero or more new subgoals. I instead made structured proofs in the declar-
ative Isar language, which allowed me to write humanly readable proofs that can be checked by
the Isabelle/HOL proof assistant.

Concurrent with this Isabelle/HOL formalization of resolution, an important step in for-
malizing automatic theorem provers for first-order logic was taken. Peltier proved propositional
resolution [52] and a variant of the superposition calculus for first-order logic [53] sound and
complete. The superposition calculus can be seen as a highly efficient generalization of resolution
for first-order logic to first-order logic with equality. Therefore his formalization is representative
of the state of the art in formalizing the theory of automatic theorem proving.

10.2 Beyond Completeness of First-Order Logic
There are also results that go beyond completeness of first-order logic. An early such result is
Shankar’s formalization [70,71], in Nqthm, of Gödel’s first incompleteness theorem. Raffalli [55]
proved, in Phox, parts of the second incompleteness theorem. His proof is very abstract and
thus relies on strong assumptions about codings of formulas. He does not provide an explicit
coding and thus does not prove these assumptions. Paulson [49–51] did not take any shortcuts
and managed to formalize the entirety of both Gödel’s incompleteness theorems with a concrete
coding of formulas based on hereditarily finite set theory.

Harrison [29] proved the soundness and consistency of HOL Light. He did this in two ways.
First, he added an extra axiom to HOL Light that assumes the existence of a very large cardinal,
and with this he was able to prove the unaltered HOL Light sound and consistent. Secondly, in
unaltered HOL Light he proved the soundness and consistency of HOL Light altered by removing
its axiom of infinity. Kumar, Arthan, Myreen, and Owens [39] extended Harrison’s result by
proving, in HOL4, soundness and consistency of HOL Light with definitions. Their approach is
a bit different from Harrison’s. Instead of adding an axiom describing a large cardinal to HOL4,
their soundness proof assumes a specification of set theory. Additionally, they synthesize a verified
implementation of the inference rules of their definition of HOL Light. A similar result is Davis
and Myreen’s soundness proof [23], in HOL4, of the Milawa theorem prover.

41

10.3 IsaFoL
This formalization is part of IsaFoL [33], the Isabelle Formalization of Logic, which is a project
that brings together researchers of logic from many institutions. In the project we aim to develop
libraries of lemmas and methods for formalizing research on logic. In addition to this formalization
of logic, several other results have emerged from the project.

This paper is an example of IsaFoL catching up with classical unformalized results in Isabelle/
HOL. Likewise, Jensen, Villadsen, and I [35, 36] formalized an axiomatic system that forms the
kernel of a proof assistant for first-order logic with equality by Harrison [30]. In addition to
the advantages of having a formal companion to Harrison’s chapter on the proof assistant, the
formalization also enabled us to build a certified prover based on the calculus. Other efforts in
this direction are the work due to Blanchette, Traytel, Waldmann, and me [65] on a formalization
of a resolution prover for first-order logic, as well as the formalizations of many ground calculi
including SAT solvers and propositional resolution due to Blanchette, Fleury, andWeidenbach [7].

Additionally we develop new results in conjunction with formalizing them. Several term-orders
have been formalized by Becker, Blanchette, Waldmann, and Wand [3] as well as Blanchette,
Waldmann, and Wand [13]. These could serve as a basis for a higher-order superposition calculus.
Villadsen and I [66] formalized a propositional paraconsistent logic with infinitely many truth
values. Lammich wrote and verified a program that checks the certificates of satisfiability and
unsatisfiability that SAT solvers can generate [40,41].

11 Conclusion
This paper describes a formalization of the resolution calculus for first-order logic as well as its
soundness and completeness. This includes formalizations of the substitution lemma, Herbrand’s
theorem, and the lifting lemma. As far as I know, this is the first formalized soundness and
completeness proof of the resolution calculus for first-order logic.

The paper emphasizes how the formalization illustrates details glossed over in the paper
proofs. Such details are necessary in a formalization. For instance it shows the jump from sat-
isfiability by an infinite path in a semantic tree to satisfiability by an interpretation. It likewise
illustrates how and when to standardize clauses apart in the completeness proof, and the lemmas
necessary to allow this. Furthermore, the formalization combines theory from different sources.
The proofs of Herbrand’s theorem and completeness are based mainly on those by Chang and
Lee [19], while the proof of the lifting lemma is based on that by Leitsch [43]. The existence proof
of MGUs for unifiable clauses comes from IsaFoR [34].

The formalization is part of the IsaFoL project [33] on formalizing logics. When the project
was started in 2015, we hoped it would attract other researchers to join and formalize their
results by using and extending the library. It seems that we have had success with this since the
number of authors in the project has more than tripled since then.

Proof assistants take advantage of automatic theorem provers by using them to prove sub-
goals. This formalization is a step towards mutual benefit between the two areas of research.
Formalizations in proof assistants can help automatic theorem provers by contributing a highly
rigorous understanding of their meta-theory.

Acknowledgements

I would like to thank Jørgen Villadsen, Jasmin Christian Blanchette, and Dmitriy Traytel who
supervised me in making the formalization. I would also like to thank Jørgen, Jasmin, John

42

Bruntse Larsen, Andreas Halkjær From, and the anonymous referees for their valuable feedback
on the paper.

References
[1] R. Anderson and W. W. Bledsoe. A linear format for resolution with merging and a new

technique for establishing completeness. Journal of the ACM, 17(3):525–534, 1970.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[3] H. Becker, J. C. Blanchette, U. Waldmann, and D. Wand. Formalization of Knuth–Bendix
orders for lambda-free higher-order terms. Archive of Formal Proofs, Nov. 2016. http:
//isa-afp.org/entries/Lambda_Free_KBOs.shtml, Formal proof development.

[4] M. Ben-Ari. Mathematical Logic for Computer Science. Springer, 3rd edition, 2012.

[5] S. Berghofer. First-order logic according to Fitting. Archive of Formal Proofs, Aug. 2007.
http://isa-afp.org/entries/FOL-Fitting.shtml, Formal proof development.

[6] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgehammer with SMT solvers.
Journal of Automated Reasoning, 51(1):109–128, 2013.

[7] J. C. Blanchette, M. Fleury, and C. Weidenbach. A verified SAT solver framework with
learn, forget, restart, and incrementality. In N. Olivetti and A. Tiwari, editors, IJCAR
2016, volume 9706 of LNCS, pages 25–44. Springer, 2016.

[8] J. C. Blanchette, J. Hölzl, A. Lochbihler, L. Panny, A. Popescu, and D. Traytel. Truly
modular (co)datatypes for Isabelle/HOL. In G. Klein and R. Gamboa, editors, ITP 2014,
volume 8558 of LNCS, pages 93–110. Springer, 2014.

[9] J. C. Blanchette, A. Popescu, and D. Traytel. Abstract completeness. Archive of Formal
Proofs, Apr. 2014. http://isa-afp.org/entries/Abstract_Completeness.shtml, For-
mal proof development.

[10] J. C. Blanchette, A. Popescu, and D. Traytel. Foundational extensible corecursion: A proof
assistant perspective. In K. Fisher and J. Reppy, editors, ICFP’15, pages 192–204. ACM,
2015.

[11] J. C. Blanchette, A. Popescu, and D. Traytel. Abstract soundness. Archive of Formal
Proofs, Feb. 2017. http://isa-afp.org/entries/Abstract_Soundness.shtml, Formal
proof development.

[12] J. C. Blanchette, A. Popescu, and D. Traytel. Soundness and completeness proofs by coin-
ductive methods. Journal of Automated Reasoning, 58(1):149–179, 2017.

[13] J. C. Blanchette, U. Waldmann, and D. Wand. Formalization of recursive path orders for
lambda-free higher-order terms. Archive of Formal Proofs, Sept. 2016. http://isa-afp.
org/entries/Lambda_Free_RPOs.shtml, Formal proof development.

[14] P. Braselmann and P. Koepke. Gödel’s completeness theorem. Formalized Mathematics,
13(1):49–53, 2005.

[15] P. Braselmann and P. Koepke. A sequent calculus for first-order logic. Formalized Mathe-
matics, 13(1):33–39, 2005.

43

http://isa-afp.org/entries/Lambda_Free_KBOs.shtml
http://isa-afp.org/entries/Lambda_Free_KBOs.shtml
http://isa-afp.org/entries/FOL-Fitting.shtml
http://isa-afp.org/entries/Abstract_Completeness.shtml
http://isa-afp.org/entries/Abstract_Soundness.shtml
http://isa-afp.org/entries/Lambda_Free_RPOs.shtml
http://isa-afp.org/entries/Lambda_Free_RPOs.shtml

[16] J. Breitner. Visual theorem proving with the Incredible Proof Machine. In J. C. Blanchette
and S. Merz, editors, ITP 2016, volume 9807 of LNCS, pages 123–139. Springer, 2016.

[17] J. Breitner and D. Lohner. The meta theory of the Incredible Proof Machine. Archive of
Formal Proofs, May 2016. http://isa-afp.org/entries/Incredible_Proof_Machine.
shtml, Formal proof development.

[18] A. Bundy. The use of explicit plans to guide inductive proofs. In E. Lusk and R. Overbeek,
editors, CADE-9, volume 310 of LNCS, pages 111–120. Springer, 1988.

[19] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic
Press, Inc., 1st edition, 1973.

[20] M. Coen, K. Slind, and A. Krauss. Theory unification. Isabelle. http://isabelle.in.tum.
de/library/HOL/HOL-ex/Unification.html. Accessed 13 December 2017.

[21] M. D. Coen. Interactive Program Derivation. PhD thesis, University of Cambridge, 1992.
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-272.html.

[22] J. Corbin and M. Bidoit. A rehabilitation of Robinson’s unification algorithm. In IFIP
Congress, pages 909–914, 1983.

[23] J. Davis and M. O. Myreen. The reflective Milawa theorem prover is sound (down to the
machine code that runs it). Journal of Automated Reasoning, 2015.

[24] H. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer, 2nd edition, 1994.

[25] M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, 2nd edition, 1996.

[26] H. Gebhard. Beweisplanung für die Beweise der Vollständigkeit verschiedener Resolutions-
kalküle in ΩMEGA. Master’s thesis, Saarland University, 1999.

[27] J. Goubault-Larrecq and J.-P. Jouannaud. The blossom of finite semantic trees. In
A. Voronkov and C. Weidenbach, editors, Programming Logics: Essays in Memory of Harald
Ganzinger, LNCS, pages 90–122. Springer, 2013.

[28] J. Harrison. Formalizing basic first order model theory. In J. Grundy and M. Newey, editors,
TPHOL’s 1998, volume 1497 of LNCS, pages 153–170. Springer, 1998.

[29] J. Harrison. Towards self-verification of HOL Light. In U. Furbach and N. Shankar, editors,
IJCAR 2006, volume 4130 of LNCS, pages 177–191. Springer, 2006.

[30] J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University
Press, 2009.

[31] D. Ilik. Constructive Completeness Proofs and Delimited Control. PhD thesis, École Poly-
technique, 2010. https://tel.archives-ouvertes.fr/tel-00529021/document.

[32] D. Ilik, G. Lee, and H. Herbelin. Kripke models for classical logic. Annals of Pure and
Applied Logic, 161(11):1367–1378, 2010.

[33] IsaFoL authors. IsaFoL: Isabelle Formalization of Logic. https://bitbucket.org/isafol/
isafol. Accessed 13 December 2017.

44

http://isa-afp.org/entries/Incredible_Proof_Machine.shtml
http://isa-afp.org/entries/Incredible_Proof_Machine.shtml
http://isabelle.in.tum.de/library/HOL/HOL-ex/Unification.html
http://isabelle.in.tum.de/library/HOL/HOL-ex/Unification.html
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-272.html
https://tel.archives-ouvertes.fr/tel-00529021/document
https://bitbucket.org/isafol/isafol
https://bitbucket.org/isafol/isafol

[34] IsaFoR developers. An Isabelle/HOL formalization of rewriting for certified termination
analysis. http://cl-informatik.uibk.ac.at/software/ceta/. Accessed 13 December
2017.

[35] A. B. Jensen, A. Schlichtkrull, and J. Villadsen. Verification of an LCF-style first-order
prover with equality. In Isabelle Workshop 2016 Associated with ITP 2016, 2016.

[36] A. B. Jensen, A. Schlichtkrull, and J. Villadsen. First-order logic according to Harrison.
Archive of Formal Proofs, Jan. 2017. http://isa-afp.org/entries/FOL_Harrison.shtml,
Formal proof development.

[37] M. Kohlhase. Theorem prover museum – OMEGA theories – folders: propositional-logic,
resolution, proof-theory, prop-res. https://github.com/theoremprover-museum/OMEGA/
tree/master/theories. Accessed 13 December 2017.

[38] A. Krauss. Partial and nested recursive function definitions in higher-order logic. Journal
of Automated Reasoning, 44(4):303–336, 2010.

[39] R. Kumar, R. Arthan, M. O. Myreen, and S. Owens. Self-formalisation of higher-order logic:
Semantics, soundness, and a verified implementation. Journal of Automated Reasoning,
56(3):221–259, 2016.

[40] P. Lammich. Efficient verified (UN)SAT certificate checking. In L. de Moura, editor, CADE-
26, volume 10395 of LNCS, pages 237–254. Springer, 2017.

[41] P. Lammich. The GRAT tool chain. In S. Gaspers and T. Walsh, editors, SAT 2017, volume
10491 of LNCS, pages 457–463. Springer, 2017.

[42] A. Leitsch. On different concepts of resolution. Mathematical Logic Quarterly, 35(1):71–77,
1989.

[43] A. Leitsch. The Resolution Calculus. Springer, 1997.

[44] Z. Manna and R. Waldinger. Deductive synthesis of the unification algorithm. Science of
Computer Programming, 1(1):5–48, 1981.

[45] J. Margetson and T. Ridge. Completeness theorem. Archive of Formal Proofs, Sept. 2004.
http://isa-afp.org/entries/Completeness.shtml, Formal proof development.

[46] T. Nipkow and G. Klein. Concrete Semantics: With Isabelle/HOL. Springer, 2014.

[47] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic. Springer, 2002.

[48] L. C. Paulson. Verifying the unification algorithm in LCF. Science of Computer Program-
ming, 5(2):143–169, June 1985.

[49] L. C. Paulson. Gödel’s incompleteness theorems. Archive of Formal Proofs, Nov. 2013.
http://isa-afp.org/entries/Incompleteness.shtml, Formal proof development.

[50] L. C. Paulson. A machine-assisted proof of Gödel’s incompleteness theorems for the theory
of hereditarily finite sets. Review of Symbolic Logic, 7(03):484–498, 2014.

[51] L. C. Paulson. A mechanised proof of Gödel’s incompleteness theorems using Nominal
Isabelle. Journal of Automated Reasoning, 55(1):1–37, 2015.

45

http://cl-informatik.uibk.ac.at/software/ceta/
http://isa-afp.org/entries/FOL_Harrison.shtml
https://github.com/theoremprover-museum/OMEGA/tree/master/theories
https://github.com/theoremprover-museum/OMEGA/tree/master/theories
http://isa-afp.org/entries/Completeness.shtml
http://isa-afp.org/entries/Incompleteness.shtml

[52] N. Peltier. Propositional resolution and prime implicates generation. Archive of For-
mal Proofs, Mar. 2016. http://isa-afp.org/entries/PropResPI.shtml, Formal proof
development.

[53] N. Peltier. A variant of the superposition calculus. Archive of Formal Proofs, Sept. 2016.
http://isa-afp.org/entries/SuperCalc.shtml, Formal proof development.

[54] H. Persson. Constructive completeness of intuitionistic predicate logic. PhD thesis, Chalmers
University of Technology, 1996. http://web.archive.org/web/19970715002824/http:
//www.cs.chalmers.se/~henrikp/Lic/.

[55] C. Raffalli. Krivine’s abstract completeness proof for classical predicate logic. https:
//github.com/craff/phox/blob/master/examples/complete.phx, 2005, possibly earlier.
Accessed 13 December 2017.

[56] A. Riazanov and A. Voronkov. Vampire. In H. Ganzinger, editor, CADE-16, volume 1632
of LNCS, pages 292–296. Springer, 1999.

[57] T. Ridge. A mechanically verified, efficient, sound and complete theorem prover for
first order logic. Archive of Formal Proofs, Sept. 2004. http://isa-afp.org/entries/
Verified-Prover.shtml, Formal proof development.

[58] T. Ridge and J. Margetson. A mechanically verified, sound and complete theorem prover
for first order logic. In J. Hurd and T. Melham, editors, TPHOL’s 2005, volume 3603 of
LNCS, pages 294–309. Springer, 2005.

[59] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM, 12(1):23–41, 1965.

[60] J. A. Robinson. The generalized resolution principle. Machine Intelligence, 3:77–93, 1968.

[61] J.-L. Ruiz-Reina, F.-J. Martín-Mateos, J.-A. Alonso, and M.-J. Hidalgo. Formal correctness
of a quadratic unification algorithm. Journal of Automated Reasoning, 37(1):67–92, 2006.

[62] A. Schlichtkrull. Formalization of resolution calculus in Isabelle. Master’s thesis, Technical
University of Denmark, 2015. https://people.compute.dtu.dk/andschl/Thesis.pdf.

[63] A. Schlichtkrull. Formalization of the resolution calculus for first-order logic. In J. Blanchette
and S. Merz, editors, ITP 2016, volume 9807 of LNCS, pages 341–357. Springer, 2016.

[64] A. Schlichtkrull. The resolution calculus for first-order logic. Archive of Formal Proofs, June
2016. http://isa-afp.org/entries/Resolution_FOL.shtml, Formal proof development.

[65] A. Schlichtkrull, J. C. Blanchette, D. Traytel, and U. Waldmann. Formalization of Bach-
mair and Ganzinger’s simple ordered resolution prover. https://bitbucket.org/isafol/
isafol/src/master/Ordered_Resolution_Prover/. Accessed 13 December 2017.

[66] A. Schlichtkrull and J. Villadsen. Paraconsistency. Archive of Formal Proofs, Dec. 2016.
http://isa-afp.org/entries/Paraconsistency.shtml, Formal proof development.

[67] J. J. Schlöder and P. Koepke. The Gödel completeness theorem for uncountable languages.
Formalized Mathematics, 20(3):199–203, 2012.

[68] S. Schulz. System description: E 1.8. In K. McMillan, A. Middeldorp, and A. Voronkov,
editors, LPAR-19, volume 8312 of LNCS, pages 735–743. Springer, 2013.

46

http://isa-afp.org/entries/PropResPI.shtml
http://isa-afp.org/entries/SuperCalc.shtml
http://web.archive.org/web/19970715002824/http://www.cs.chalmers.se/~henrikp/Lic/
http://web.archive.org/web/19970715002824/http://www.cs.chalmers.se/~henrikp/Lic/
https://github.com/craff/phox/blob/master/examples/complete.phx
https://github.com/craff/phox/blob/master/examples/complete.phx
http://isa-afp.org/entries/Verified-Prover.shtml
http://isa-afp.org/entries/Verified-Prover.shtml
https://people.compute.dtu.dk/andschl/Thesis.pdf
http://isa-afp.org/entries/Resolution_FOL.shtml
https://bitbucket.org/isafol/isafol/src/master/Ordered_Resolution_Prover/
https://bitbucket.org/isafol/isafol/src/master/Ordered_Resolution_Prover/
http://isa-afp.org/entries/Paraconsistency.shtml

[69] R. Sekar, I. V. Ramakrishnan, and A. Voronkov. Term indexing. In Handbook of Automated
Reasoning, volume 2, pages 1853–1964. 2001.

[70] N. Shankar. Proof-checking Metamathematics. PhD thesis, University of Texas, 1986.

[71] N. Shankar. Metamathematics, Machines, and Gödel’s Proof. Cambridge University Press,
1994.

[72] K. Slind. Reasoning about Terminating Functional Programs. PhD thesis, Technical Uni-
versity of Munich, 1999. https://mediatum.ub.tum.de/?id=601660.

[73] C. Sternagel and R. Thiemann. Formalizing Knuth-Bendix orders and Knuth-Bendix com-
pletion. In F. van Raamsdonk, editor, RTA ’13, volume 21 of LIPIcs, pages 287–302. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2013.

[74] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wischnewski. SPASS
version 3.5. In R. A. Schmidt, editor, CADE-22, volume 5663 of LNCS, pages 140–145.
Springer, 2009.

[75] M. Wenzel. Isar — a generic interpretative approach to readable formal proof documents.
In Y. Bertot, G. Dowek, L. Théry, A. Hirschowitz, and C. Paulin, editors, TPHOL’s 1999,
volume 1690 of LNCS, pages 167–183. Springer, 1999.

47

https://mediatum.ub.tum.de/?id=601660

Formalizing Bachmair and Ganzinger’s
Ordered Resolution Prover

Anders Schlichtkrull1, Jasmin Christian Blanchette2,3, Dmitriy Traytel4, and
Uwe Waldmann3

1 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
2 Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

3 Max-Planck-Institut für Informatik, Saarland Informatics Campus, Saarbrücken, Germany
4 Institute of Information Security, Department of Computer Science, ETH Zürich, Zürich, Switzerland

Abstract

We present a formalization of the first half of Bachmair and Ganzinger’s chapter on
resolution theorem proving in Isabelle/HOL, culminating with a refutationally complete
first-order prover based on ordered resolution with literal selection. We develop general
infrastructure and methodology that can form the basis of completeness proofs for related
calculi, including superposition. Our work clarifies several of the fine points in the chapter’s
text, emphasizing the value of formal proofs in the field of automated reasoning.

1 Introduction
Much research in automated reasoning amounts to metatheoretical arguments, typically about the
soundness and completeness of logical inference systems or the termination of theorem proving
processes. Often the proofs contain more insights than the systems or processes themselves.
For example, the superposition calculus rules [2], with their many side conditions, look rather
arbitrary, whereas in the completeness proof the side conditions emerge naturally from the model
construction. And yet, despite being crucial to our field, today such proofs are usually carried out
without tool support beyond TEX.

We believe proof assistants are becoming mature enough to help. In this report, we present
a formalization, developed using the Isabelle/HOL system [21], of a first-order prover based
on ordered resolution with literal selection. We follow Bachmair and Ganzinger’s account [3]
from Chapter 2 of the Handbook of Automated Reasoning, which we will simply refer to as “the
chapter.” Our formal development covers the refutational completeness of two resolution calculi
for ground (i.e., variable-free) clauses and general infrastructure for theorem proving processes
and redundancy, culminating with a completeness proof for a first-order prover expressed as
transition rules operating on triples of clause sets. This material corresponds to the chapter’s first
four sections.

From the perspective of automated reasoning, increased trustworthiness of the results is an
obvious benefit of formal proofs. But formalizing also helps clarify arguments, by exposing and
explaining difficult steps. Making theorem statements (including definitions and hypotheses)
precise can be a huge gain for communicating results. Moreover, a formal proof can tell us exactly
where hypotheses and lemmas are used. Once we have created a library of basic results and a
methodology, we will be in a good position to study extensions and variants. Given that automatic

48

theorem provers are integrated in modern proof assistants, there is also an undeniable thrill in
applying these tools to reason about their own metatheory.

From the perspective of interactive theorem proving, formalization work constitutes a case
study in the use of a proof assistant. It gives us, as developers and users of such a system, an
opportunity to experiment, contribute to lemma libraries, and get inspiration for new features
and improvements.

Our motivation for choosing Bachmair and Ganzinger’s chapter is manyfold. The text is a
standard introduction to superposition-like calculi (together with Handbook Chapters 7 [18] and
27 [35]). It offers perhaps the most detailed treatment of the lifting of a resolution-style calculus’s
static completeness to a saturation prover’s dynamic completeness. It introduces a considerable
amount of general infrastructure, including different types of inference systems (sound, reductive,
counterexample-reducing, etc.), theorem proving processes, and an abstract notion of redundancy.
The resolution calculus, extended with a term order and literal selection, captures most of the
insights underlying ordered paramodulation and superposition, but with a simple notion of model.

The chapter’s level of rigor is uneven, as shown by the errors and imprecisions revealed by
our formalization. These are only to be expected in technical material of this kind. Far from
diminishing the original work, our corrections should increase its value to the research community.
We will see that the main completeness result does not hold, due to the improper treatment of
self-inferences. Naturally, our objective is not to diminish Bachmair and Ganzinger’s outstanding
achievements, which include the development of superposition; rather, it is to demonstrate that
even the work of some of the most celebrated researchers in our field can benefit from formalization.
Our view is that formal proofs can be used to complement and improve their informal counterparts.

This work is part of the IsaFoL (Isabelle Formalization of Logic) project,1 which aims at
developing a library of results about logical calculi used in automated reasoning. The Isabelle
theory files are available in the Archive of Formal Proofs (AFP).2 They amount to about 8000
lines of source text. Below we provide implicit hyperlinks from theory names. A better way to
study the theory files, however, is to open them in Isabelle/jEdit [37], an integrated development
environment for formal proof. This will ensure that logical and mathematical symbols are rendered
properly (e.g., ∀ instead of \<forall>) and let you inspect proof states. We used Isabelle version
2017, but the AFP is continuously updated to track Isabelle’s evolution. We assume the reader
has some familiarity with the chapter’s content.

2 Preliminaries
Ordered resolution depends on little background metatheory that needs to be formalized using
Isabelle. Much of it, concerning partial and total orders, well-foundedness, and finite multisets,
is provided by standard Isabelle libraries. We also need literals, clauses, models, terms, and
substitutions.

Isabelle. Isabelle/HOL [21] is a proof assistant based on classical higher-order logic (HOL) with
Hilbert choice, the axiom of infinity, and rank-1 polymorphism. It is the logic of Gordon’s original
HOL system [14] and of its many successors. HOL notations are similar to those of functional
programming languages. Functions are applied without parentheses or commas (e.g., f x y).
Through syntactic abbreviations, many traditional notations from mathematics are provided,
notably to denote simply typed sets and multisets. We refer to Nipkow and Klein [20, Part 1] for
a modern introduction.

1https://bitbucket.org/isafol/isafol/wiki/Home
2https://devel.isa-afp.org/entries/Ordered_Resolution_Prover.html

49

https://bitbucket.org/isafol/isafol/wiki/Home
https://devel.isa-afp.org/entries/Ordered_Resolution_Prover.html

Clauses and Models. We use the same library of clauses (Clausal_Logic.thy) as for the
verified SAT solver by Blanchette et al. [6], which is also part of IsaFoL. Atoms are represented
by a type variable ′a, which can be instantiated by arbitrary concrete types—e.g., numbers or
first-order terms. A literal, of type ′a literal (where the type constructor is written in ML-style
postfix syntax), can be of the form Pos A or Neg A, where A :: ′a is an atom. The literal order
> (written � in the chapter) extends a fixed atom order > by comparing polarities to break ties,
with Neg A > Pos A. Following the chapter, a clause is defined as a finite multiset of literals,
′a clause = ′a literal multiset , where multiset is the Isabelle type constructor of finite multisets.
Thus, the clause A ∨ B, where A and B are atoms, is identified with the multiset {A,B}; the
clause C ∨D, where C and D are clauses, is C]D; and the empty clause ⊥ is {}. The clause
order is the multiset extension of the literal order.

A Herbrand interpretation I is a value of type ′a set , specifying which ground atoms are true
(Herbrand_Interpretation.thy). The “models” operator � is defined in the usual way on atoms,
literals, clauses, sets, and multisets of clauses; for example, I � C ⇐⇒ ∃L ∈ C. I � L. Satisfiability
of a set or multiset of clauses N is defined by sat N ⇐⇒ ∃I. I � N.

Multisets are central to our development. Isabelle provides a multiset library, but it is much
less developed than those of sets and lists. As part of IsaFoL, we have already extended it
considerably and implemented further additions in a separate file (Multiset_More.thy). Some
of these, notably a plugin for Isabelle’s simplifier to apply cancellation laws, are described in a
recent paper [7, Sect. 3].

The main hurdle we faced concerned the multiset order. Multisets of clauses have type
′a literal multiset multiset . The corresponding order is the multiset extension of the clause order.
In Isabelle, the multiset order was called #⊂#, and it relied on the element type’s < operator,
through Isabelle’s type class mechanism. Unfortunately, for multisets, < was defined as the subset
relation, so when nesting multisets (as ′a multiset multiset), we obtained the multiset extension of
the subset relation. Initially, we worked around the issue by defining an order #⊂## on multisets
of multisets, but we also saw potential for improvement. After some discussions on the Isabelle
users’ mailing list, we decided to let < be the multiset order and introduce the symbol ⊂# for the
subset relation. To avoid introducing subtle changes in the semantics of existing developments,
we first renamed < to ⊂#, freeing up <; then, in the next Isabelle release, we renamed #⊂# to
<. In the intermediate state, all occurrences of < and of the lemmas about it were flagged as
errors, easing porting. Similar changes affected the nonstrict versions of the orders (e.g., ≤) and
all the lemmas about them (e.g., add_mono: M ≤M ′ =�⇒ N ≤ N ′ =�⇒M]N ≤M ′]N ′).

Terms and Substitutions. The IsaFoR (Isabelle Formalization of Rewriting) library—an
inspiration for IsaFoL—contains a definition of first-order terms and results about substitutions
and unification [32]. It makes sense to reuse this functionality. A practical issue is that most of
IsaFoR is not accessible from the AFP.

Resolution depends only on basic properties of terms and atoms, such as the existence
of most general unifiers (MGUs). We exploit this to keep the development parameterized
by a type of atoms ′a and an abstract type of substitutions ′s, through Isabelle locales [4]
(Abstract_Substitution.thy). A locale represents a module parameterized by types and terms
that satisfy some assumptions. Inside the locale, we can refer to the parameters and assumptions
in definitions, lemmas, and proofs. The basic operations provided by our locale are application
(· :: ′a ⇒ ′s ⇒ ′a), identity (id :: ′s), and composition (◦ :: ′s ⇒ ′s ⇒ ′s), about which some
assumptions are made (e.g., A · id = A for all atoms A). Substitution is lifted to literals, clauses,
sets of clauses, and so on. Many other operations can be defined in terms of the primitives—for

50

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Clausal_Logic.html
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Herbrand_Interpretation.html
http://devel.isa-afp.org/browser_info/current/AFP/Nested_Multisets_Ordinals/Multiset_More.html
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Abstract_Substitution.html

example:

is_ground A ⇐⇒ ∀σ. A = A · σ is_renaming σ ⇐⇒ ∃τ. σ ◦ τ = id

is_ground σ ⇐⇒ ∀A. is_ground (A · σ) instance_of C D ⇐⇒ ∃σ. C · σ = D

MGUs are also taken as a primitive: the mgu :: ′a set set ⇒ ′s option operation takes a set of
unification constraints, each of the form A1

?
= · · · ?

= An, and returns either an MGU or a special
value (None).

Perhaps the main reason why multisets are preferable to sets for representing clauses is
that they are better behaved with respect to substitution. Using a set representation of clauses,
applying σ = {x 7→ a, y 7→ a} to either the unit clause C = p(x) or the two-literal clause
D = p(x) ∨ p(y) yields a unit clause p(a). This oddity breaks a property called “stability under
substitution”—the requirement that D > C imply D · σ > C · σ.

To complete our formal development and ensure that our assumptions are legitimate, we
instantiate the locale’s parameters with IsaFoR types and operations and discharge its assumptions
(IsaFoR_Term.thy). This bridge is currently hosted on the IsaFoL repository, outside the AFP.

3 Refutational Inference Systems
In their Sect. 2.4, Bachmair and Ganzinger introduce basic conventions for refutational inference
systems. In Sect. 3, they present two ground resolution calculi and prove them refutationally
complete in Theorems 3.9 and 3.16. In Sect. 4.2, they introduce a notion of counterexample-
reducing inference system and state Theorem 4.4 as a generalization of Theorems 3.9 and 3.16 to
all such systems. For formalization, two courses of actions suggest themselves: follow the book
closely and prove the three theorems separately, or focus on the most general result. We choose
the latter, as being more consistent with the goal of providing a well-designed, reusable library,
at the cost of widening the gap between the text and its formal companion.

We collect the abstract hierarchy of inference systems in a single Isabelle theory file
(Inference_System.thy). An inference, of type ′a inference, is a triple (C, D,E) that consists of
a multiset of side premises C, a main premise D, and a conclusion E. An inference system, or
calculus, is a possibly infinite set of inferences:

locale inference_system =
fixes Γ :: ′a inference set

We use an Isabelle locale to fix, within a named context (inference_system), a set Γ of inferences
between clauses over atom type ′a. Inside the locale, we define a function infers_from that, given
a clause set N , returns the subset of Γ inferences whose premises all belong to N.

A satisfiability-preserving (or consistency-preserving) inference system enriches the inference
system locale with an assumption, whereas sound systems are characterized by a different
assumption:

locale sat_preserving_inference_system = inference_system +
assumes sat N =�⇒ sat (N ∪ concl_of ‘ infers_from N)

locale sound_inference_system = inference_system +
assumes (C, D,E) ∈ Γ =�⇒ I � C ∪ {D} =�⇒ I � E

The notation f ‘X above stands for the image of the set or multiset X under function f.
Soundness is a stronger requirement than satisfiability preservation. In Isabelle, this can be

expressed as a sublocale relation:

51

https://bitbucket.org/isafol/isafol/src/master/Ordered_Resolution_Prover/IsaFoR_Term.thy
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Inference_System.html

sublocale sound_inference_system < sat_preserving_inference_system

This command emits a proof goal stating that sound_inference_system’s assumption implies
sat_preserving_inference_system’s. Afterwards, all the definitions and lemmas about satisfiability-
preserving calculi become available about sound ones.

In reductive inference systems (reductive_inference_system), the conclusion of each inference is
smaller than the main premise according to the clause order. A related notion, the counterexample-
reducing inference systems, is specified as follows:

locale counterex_reducing_inference_system = inference_system +
fixes I_of :: ′a clause set ⇒ ′a set
assumes {} /∈ N =�⇒ D ∈ N =�⇒ I_of N 6� D =�⇒

(∀C ∈N. I_of N 6� C =�⇒ D ≤ C) =�⇒
∃C ⊆N. ∃E. I_of N � C ∧ (C, D,E) ∈ Γ ∧ I_of N 6� E ∧ E < D

The “model functor” parameter I_of maps clause sets to candidate models. The assumption is that
for any clause set N that does not contain {} (i.e., ⊥), if D ∈ N is the smallest counterexample—
the smallest clause in N that is falsified by I_of N—we can derive a smaller counterexample E
using an inference from clauses in N. This property is useful because if N is saturated (i.e., closed
under Γ inferences), we must have E ∈ N , contradicting D’s minimality:

theorem saturated_model : saturated N =�⇒ {} /∈ N =�⇒ I_of N � N
corollary saturated_complete: saturated N =�⇒ ¬ sat N =�⇒ {} ∈ N

Bachmair and Ganzinger claim that compactness of clausal logic follows from the refutational
completeness of ground resolution (Theorem 3.12), although they give no justification. Our argu-
ment relies on an inductive definition of saturation of a set of clauses: saturate :: ′a clause set ⇒
′a clause set . Most of the work goes into proving this key lemma, by rule induction on the saturate
function:

lemma saturate_finite: C ∈ saturate N =�⇒ ∃M ⊆N. finite M ∧ C ∈ saturate M

The interesting case is when C = ⊥. We establish compactness in a locale that combines
counterex_reducing_inference_system and sound_inference_system:

theorem clausal_logic_compact : ¬ sat N ⇐⇒ ∃M ⊆N. finite M ∧ ¬ sat M

To give a taste of the formalization, here is the formal proof, expressed using Isabelle’s structured
Isar format [36]:

proof
assume ¬ sat N
then have {} ∈ saturate N
using saturated_complete saturated_saturate saturate.base
unfolding true_clss_def by meson

then have ∃M ⊆N. finite M ∧ {} ∈ saturate M
using saturate_imp_finite_subset by fastforce

then show ∃M ⊆N. finite M ∧ ¬ sat M
using saturate_sound by auto

next
assume ∃M ⊆ N. finite M ∧ ¬ sat M
then show ¬ sat N
by (blast intro: true_clss_mono)

qed

52

In the “implies” direction, we rely on the calculus’s refutation completeness to show that ⊥
belongs to saturate N , on the above key lemma to obtain a finite subset M from which ⊥ can
be derived, and on the calculus’s soundness to conclude that M is unsatisfiable. We believe
satisfiability preservation could be used instead of soundness, relying on the property that
sat N =�⇒ sat (saturate N) for satisfiability-preserving calculi, but we have yet to find a good way
to prove this formally.

Our compactness result is meaningful only if the locale assumptions are consistent. In the next
section, we will exhibit two sound counterexample-reducing calculi that can be used to instantiate
the locale and retrieve an unconditional compactness theorem.

4 Ground Resolution
A useful strategy for establishing properties of first-order calculi is to initially restrict our
attention to ground calculi and then to lift the results to first-order formulas containing
terms with variables. Accordingly, the chapter’s Sect. 3 presents two ground calculi: a sim-
ple binary resolution calculus and an ordered resolution calculus with literal selection. Both
consist of a single resolution rule, with built-in positive factorization. Most of the explana-
tions and proofs concern the simpler calculus. To avoid duplication, we factor out the candi-
date model construction (Ground_Resolution_Model.thy). We then define the two calculi and
prove that they are sound and reduce counterexamples (Unordered_Ground_Resolution.thy,
Ordered_Ground_Resolution.thy).

Candidate Models. Refutational completeness is proved by exhibiting a model for any satu-
rated clause set N that does not contain ⊥. The model is constructed incrementally, one clause
C ∈ N at a time, starting with an empty Herbrand interpretation. The idea appears to have
originated with Brand [10] and Zhang and Kapur [38].

Bachmair and Ganzinger introduce two operators to build the candidate model: IC denotes the
current interpretation before considering C, and εC denotes the set of (zero or one) atoms added,
or produced, to ensure that C is satisfied. The candidate model construction is parameterized by
a literal selection function S . It can be ignored by taking S := λC. {}.

locale ground_resolution_with_selection =
fixes S :: ′a clause ⇒ ′a clause
assumes S C ⊆ C and L ∈ S C =�⇒ is_neg L

Inside the locale, we fix a clause set N , for which we try to derive a model. Then we define two
operators corresponding to εC and IC :

function production :: ′a clause ⇒ ′a set where
production C = {A | C ∈ N ∧ C 6= {} ∧ Max C = Pos A

∧
(⋃

D<C production D
)
6� C ∧ S C = {}}

definition interp :: ′a clause ⇒ ′a set where
interp C =

⋃
D<C production D

To ensure monotonicity of the construction, any produced atom must be maximal in its clause.
Moreover, productive clauses may not contain selected literals. In the chapter, εC and IC are
expressed in terms of each other. We simplified the definition by inlining IC in εC , so that only
εC is recursive. Since the recursive calls operate on clauses D that are smaller with respect to a
well-founded order, the definition is accepted [16]. Once the operators are defined, we can fold

53

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Ground_Resolution_Model.html
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Unordered_Ground_Resolution.html
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Ordered_Ground_Resolution.html

interp’s definition in production’s equation to derive the intended mutually recursive specification
as a lemma. Bachmair and Ganzinger’s IC and IN operators are introduced as abbreviations:

Interp C = interp C ∪ production C INTERP =
⋃

C∈N production C

We then prove a host of lemmas about these concepts. Lemma 3.4 amounts to six monotonicity
properties:

lemma Interp_imp_interp: C ≤ D =�⇒ D < D ′ =�⇒ Interp D � C =�⇒ interp D ′ � C
lemma Interp_imp_Interp: C ≤ D =�⇒ D ≤ D ′ =�⇒ Interp D � C =�⇒ Interp D ′ � C
lemma Interp_imp_INTERP : C ≤ D =�⇒ Interp D � C =�⇒ INTERP � C
lemma interp_imp_interp: C ≤ D =�⇒ D ≤ D ′ =�⇒ interp D � C =�⇒ interp D ′ � C
lemma interp_imp_Interp: C ≤ D =�⇒ D ≤ D ′ =�⇒ interp D � C =�⇒ Interp D ′ � C
lemma interp_imp_INTERP : C ≤ D =�⇒ interp D � C =�⇒ INTERP � C

In the chapter, the first property is wrongly stated with D ≤ D ′ instead of D < D ′, admitting
the counterexample N = {{A}} and C = D = D ′ = {A}. Lemma 3.3, whose proof depends on
monotonicity, is better proved after 3.4:

lemma productive_imp_INTERP : production C 6= {} =�⇒ INTERP � C
A more serious oddity is Lemma 3.7. Using our notations, it can be stated as

D ∈ N =�⇒ C 6= D =�⇒
(
∀D ′≤D. Interp D ′ � C

)
=�⇒ interp D � D ′

However, the last occurrence of D ′ is clearly wrong—the context suggests C instead. Even after
this amendment, we have a counterexample, corresponding to a gap in the proof: D = {},
C = {Pos A}, and N = {D,C}. Since this “lemma” is not actually used, we can simply ignore it.

Unordered Resolution. The unordered ground resolution calculus consists of a single binary
inference rule, with the side premise C∨A∨· · ·∨A, the main premise ¬A∨D, and the conclusion
C ∨D:

C ∨A ∨ · · · ∨A ¬A ∨D
C ∨D

Formally, this rule is captured by a predicate:

inductive unord_resolve :: ′a clause ⇒ ′a clause ⇒ ′a clause ⇒ bool where
unord_resolve (C] replicate (n+ 1) (Pos A)) ({Neg A}] D) (C] D)

Soundness is trivial to prove:

lemma unord_resolve_sound : unord_resolve C D E =�⇒ I � C =�⇒ I � D =�⇒ I � E
using unord_resolve.cases by fastforce

To prove completeness, it suffices to show that the calculus reduces counterexamples. This
corresponds to Theorem 3.8, except that the conclusion is strengthened slightly to match coun-
terex_reducing_inference_system’s assumption:

theorem unord_resolve_counterex_reducing :
assumes {} /∈ N and C ∈ N and INTERP N 6� C and
∀D ∈N. INTERP N 6� D =�⇒ C ≤ D

obtains D E where
D ∈ N and INTERP N � D and production N D 6= {} and
unord_resolve D C E and INTERP N 6� E and E < C

54

The arguments N to INTERP and production are necessary because we are outside the block
in which N was fixed. This explicit dependency allows us to instantiate the locale’s I_of ::
′a clause set ⇒ ′a set parameter with INTERP.

By instantiating the sound_inference_system and counterex_reducing_inference_system
locales, we obtain refutational completeness (Theorem 3.9 and Corollary 3.10) and compactness
of clausal logic (Theorem 3.12).

Ordered Resolution with Selection. Ordered ground resolution consists of a single rule,
ord_resolve. Like unord_resolve, it is sound and counterexample-reducing (Theorem 3.15). More-
over, it is reductive (Lemma 3.13): the conclusion is always smaller than the main premise
according to the clause order. The rule is given as

C1 ∨A1 ∨ · · · ∨A1 · · · Cn ∨An ∨ · · · ∨An ¬A1 ∨ · · · ∨ ¬An ∨D
C1 ∨ · · · ∨ Cn ∨D

with multiple side conditions whose role is to prune the search space and to make the rule
reductive.

The n-ary nature of the rule constitutes a substantial complication. The ellipsis notation hides
most of the complexity in the informal proof, but in Isabelle, even stating the rule is tricky, let
alone reasoning about it. We represent the n side premises by three parallel lists of length n:
CAs gives the entire clauses, whereas Cs and As store the Ci and the Ai = Ai ∨ · · · ∨Ai parts
separately. In addition, As is the list [A1, . . . , An]. The following inductive definition captures the
rule formally:

inductive ord_resolve :: ′a clause list ⇒ ′a clause ⇒ ′a clause ⇒ bool where
|CAs| = n =�⇒ |Cs| = n =�⇒ |As| = n =�⇒ |As| = n =�⇒ n 6= 0 =�⇒
(∀i < n. CAs ! i = Cs ! i] Pos ‘As ! i) =�⇒ (∀i < n. As ! i 6= {}) =�⇒
(∀i < n. ∀A ∈As ! i. A = As ! i) =�⇒ eligible As (D] Neg ‘ mset As) =�⇒
(∀i < n. strict_max_in (As ! i) (Cs ! i)) =�⇒ (∀i < n. S (CAs ! i) = {}) =�⇒
ord_resolve CAs (D] Neg ‘ mset As) ((

⋃
mset Cs)] D)

The xs ! i operator returns the (i + 1)st element of xs, and mset converts a list to a multiset.
Before settling on the above formulation, we tried storing the n premises in a multiset, since their
order is irrelevant. However, due to the permutative nature of multisets, there can be no such
things as “parallel multisets”; to keep the dependencies between the Ci’s and the Ai’s, we must
keep them in a single multiset of tuples, which is very unwieldy.

A previous version of the formalization represented each Ai ∨ · · · ∨ Ai as a value of type
′a × nat—the nat representing the number of times Ai is repeated. With this approach, the
definition of ord_resolve did not need to state the equality of the atoms in each As ! i. Other
than that, there was nothing to win, and the approach does not work on the first-order level
where atoms should be unifiable instead of equal. To achieve symmetry between the ground and
first-order calculi, we went with the current approach.

Formalization revealed an error and a few ambiguities in the rule’s statement. References to
S (D) in the side conditions should have been to S (¬A1 ∨ · · · ∨ ¬An ∨D). The ambiguities are
discussed in Appendix A.

Soundness is a good sanity check for our definition:

lemma ord_resolve_sound :
ord_resolve CAs DA E =�⇒ I � mset CAs =�⇒ I � DA =�⇒ I � E

55

The proof is by case distinction: either the interpretation I contains all atoms Ai, in which case
the D subclause of the main premise ¬A1 ∨ · · · ∨ ¬An ∨D must be true, or there exists an index
i such that Ai /∈ I, in which case the corresponding Ci must be true. In both cases, the conclusion
C1 ∨ · · · ∨ Cn ∨D is true.

5 Theorem Proving Processes
In their Sect. 4, Bachmair and Ganzinger switch from a static to a dynamic view of saturation:
from clause sets closed under inferences to theorem proving processes that start with a clause
set N0 and keep deriving new clauses until ⊥ is generated or no inferences are possible. Proving
processes support an important optimization: redundant clauses can be deleted at any point from
the clause set, and redundant inferences need not be performed at all.

A derivation performed by a proving process is a possibly infinite sequence N0 B N1 B
N2 B · · · , where B relates clause sets (Proving_Process.thy). In Isabelle, such sequences are
captured by lazy lists, a codatatype [5] generated by LNil :: ′a llist and LCons :: ′a⇒ ′a llist ⇒
′a llist , and equipped with lhd (“head”) and ltl (“tail”) selectors that extract LCons’s arguments.
Unlike datatypes, codatatypes allow infinite values—e.g., LCons 0 (LCons 1 (LCons 2 . . .)). The
coinductive predicate chain checks that its argument is a nonempty lazy list whose elements are
consecutively related by a given binary predicate R:

coinductive chain :: (′a⇒ ′a⇒ bool)⇒ ′a llist ⇒ bool where
chain R (LCons x LNil)
| chain R xs =�⇒ R x (lhd xs) =�⇒ chain R (LCons x xs)

A derivation is a lazy list Ns of clause sets satisfying the chain predicate with R = B. Derivations
depend on a redundancy criterion presented as two functions, RF and RI, that specify redundant
clauses and redundant inferences, respectively:

locale redundancy_criterion = inference_system +
fixes
RF :: ′a clause set ⇒ ′a clause set and
RI :: ′a clause set ⇒ ′a inference set

assumes
RI N ⊆ Γ and
N ⊆ N ′ =�⇒ RF N ⊆ RF N ′ and
N ⊆ N ′ =�⇒ RI N ⊆ RI N ′ and
N ′ ⊆ RF N =�⇒ RF N ⊆ RF (N \N ′) and
N ′ ⊆ RF N =�⇒ RI N ⊆ RI (N \N ′) and
sat (N \RF N) =�⇒ sat N

By definition, a transition from M to N is possible if the only new clauses added are conclusions
of inferences from M and any deleted clauses would be redundant in N :

inductive B :: ′a clause set ⇒ ′a clause set ⇒ bool where
N \M ⊆ concl_of ‘ infers_from M =�⇒M \N ⊆ RF N =�⇒M B N

This rule combines deduction (the addition of inferred clauses) and deletion (the removal of
redundant clauses) in a single transition. The chapter keeps the two operations separated, but
this is problematic, as we will see in Sect. 7.

A key concept to connect static and dynamic completeness is that of the set of persistent
clauses, or limit of a sequence of clause sets: N∞ =

⋃
i

⋂
j≥iNj . These are the clauses that belong

56

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Proving_Process.html

to all clause sets except for at most a finite prefix of the sequence Ni. We also need the supremum
of a sequence,

⋃
iNi, and of a bounded prefix,

⋃j
i=0Ni. We introduce these missing functions

(Lazy_List_Liminf.thy):

definition Liminf :: ′a llist ⇒ ′a where
Liminf xs =

⋃
i<|xs|

⋂
j:i≤j<|xs| xs ! j

definition Sup :: ′a llist ⇒ ′a where
Sup xs =

⋃
i<|xs| xs ! i

definition Sup_upto :: ′a llist ⇒ nat ⇒ ′a where
Sup_upto xs j =

⋃
i:i<|xs|∧i≤j xs ! i

Even though codatatypes open the door to coinductive methods, we follow whenever possible
the chapter’s index-based approach. When interpreting the notation

⋃
i

⋂
j≥iNj for the case of

a finite sequence of length n, it is crucial to use the right upper bounds, namely i, j < n. For j,
it is clear that ‘< n’ is needed to keep Nj ’s index within bounds. For i, the danger is more subtle:
if i ≥ n, then ⋂j : i≤j<nNj collapses to the trivial infimum

⋂
j∈{}Nj , i.e., the set of all clauses.

Lemma 4.2 connects the redundant clauses and inferences at the limit to those of the supremum,
and the satisfiability of the limit to that of the initial clause set. Formally:

lemma Rf_limit_Sup: chain (B) Ns =�⇒ RF (Liminf Ns) = RF (Sup Ns)
lemma Ri_limit_Sup: chain (B) Ns =�⇒ RI (Liminf Ns) = RI (Sup Ns)
lemma sat_limit_iff : chain (B) Ns =�⇒

(
sat (Liminf Ns)⇐⇒ sat (lhd Ns)

)

The proof of the last lemma relies on

lemma deriv_sat_preserving : chain (B) Ns =�⇒ sat (lhd Ns) =�⇒ sat (Sup Ns)

In the chapter, this property follows “by the soundness of the inference system Γ and the
compactness of clausal logic,” contradicting the claim that “we will only consider consistency-
preserving inference systems” [3, Sect. 2.4] and not sound ones. Thanks to Isabelle, we now know
that soundness is unnecessary. By compactness, it suffices to show that all finite subsets D of⋃

iNi are satisfiable. By finiteness of D, there must exist an index k such that D ⊆ ⋃k
i=0Ni.

We perform an induction on k. The base case is trivial since N0 is assumed to be satisfiable.
For the induction step, if k is beyond the end of the list, then

⋃k
i=0Ni =

⋃k−1
i=0 Ni and we can

apply the induction hypothesis directly. Otherwise, we have that the set Sup_upto Ns (k − 1) ∪
concl_of ‘ infers_from (Sup_upto Ns (k − 1)) is satisfiable by the induction hypothesis and
satisfiability preservation of Γ inferences. Hence, Sup_upto Ns (k−1) ∪ Ns !k, i.e., Sup_upto Ns k,
is satisfiable, as desired.

Next, we show that the limit is saturated, under some assumptions and for a relaxed notion
of saturation. A clause set N is saturated up to redundancy if all inferences from nonredundant
clauses in N are redundant:

definition saturated_upto :: ′a clause set ⇒ bool where
saturated_upto N ⇐⇒ infers_from (N \RF N) ⊆ RI N

The limit is saturated for fair derivations—derivations in which no inferences from nonredundant
persisting clauses are delayed indefinitely:

definition fair_clss_seq :: ′a clause set llist ⇒ bool where
fair_clss_seq Ns ⇐⇒ let N ′ = Liminf Ns \RF (Liminf Ns) in

concl_of ‘ infers_from N ′ \RI N ′ ⊆ Sup Ns ∪ RF (Sup Ns)

The criterion must also be effective, which is expressed by a locale:

57

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Lazy_List_Liminf.html

locale effective_redundancy_criterion = redundancy_criterion +
assumes γ ∈ Γ =�⇒ concl_of γ ∈ N ∪ RF N =�⇒ γ ∈ RI N

In a locale that combines sat_preserving_inference_system and effective_redundancy_criterion,
we have Theorem 4.3:

theorem fair_derive_saturated_upto:
chain (B) Ns =�⇒ fair_clss_seq Ns =�⇒ saturated_upto (Liminf Ns)

It is easy to show that the trivial criterion defined by RF N = {} and RI N = {γ ∈ Γ |
concl_of γ ∈ N} satisfies the requirements on effective_redundancy_criterion. A more useful
instance is the standard redundancy criterion, which depends on a counterexample-reducing
inference system Γ (Standard_Redundancy.thy):

definition RF :: ′a clause set ⇒ ′a clause set where
RF N = {C | ∃D ⊆N. (∀I. I � D =�⇒ I � C) ∧ (∀D ∈D. D < C)}

definition RI :: ′a clause set ⇒ ′a inference set where
RI N = {γ ∈ Γ | ∃D ⊆N. (∀I. I � D] side_prems_of γ =�⇒ I � concl_of γ) ∧

(∀D ∈D. D < main_prem_of γ)}

Standard redundancy qualifies as effective_redundancy_criterion. In the chapter, this is stated
as Theorems 4.7 and 4.8, which depend on two auxiliary properties, Lemmas 4.5 and 4.6. The
main result, Theorem 4.9, is that counterexample-reducing calculi are refutationally complete
also under the application of standard redundancy:

theorem saturated_upto_complete: saturated_upto N =�⇒ (¬ sat N ⇐⇒ {} ∈ N)

The informal proof of Lemma 4.6 applies Lemma 4.5 in a seemingly impossible way, confusing
redundant clauses and redundant inferences and exploiting properties that appear only in the
first lemma’s proof. Our solution is to generalize the core argument into the following lemma and
apply it to prove Lemmas 4.5 and 4.6:

lemma wlog_non_Rf :
(∃D ⊆N. (∀I. I � D] C =�⇒ I � E) ∧ (∀D ′∈D. D ′ < D)) =�⇒
∃D ⊆N \RF N. (∀I. I � D] C =�⇒ I � E) ∧ (∀D ′∈D. D ′ < D)

Incidentally, the informal proof of Theorem 4.9 also needlessly invokes Lemma 4.5.
Finally, given a redundancy criterion (RF,RI) for Γ, its standard extension for Γ′ ⊇ Γ is defined

as (RF,R′I), where R′I N = RI N ∪ (Γ′ \ Γ) (Proving_Process.thy). The standard extension
is itself a redundancy criterion and it preserves effectiveness, saturation up to redundancy, and
fairness. In Isabelle, this can be expressed by leaving the locales and using the locale predicates—
explicit predicates named after the locales and parameterized by the locale arguments:

lemma standard_redundancy_criterion_extension:
Γ ⊆ Γ′ =�⇒ redundancy_criterion Γ RF RI =�⇒ redundancy_criterion Γ′ RF R′I

lemma standard_redundancy_criterion_extension_effective:
Γ ⊆ Γ′ =�⇒ effective_redundancy_criterion Γ RF RI =�⇒
effective_redundancy_criterion Γ′ RF R′I

lemma standard_redundancy_criterion_extension_saturated_upto_iff :
Γ ⊆ Γ′ =�⇒ redundancy_criterion Γ RF RI =�⇒
(redundancy_criterion.saturated_upto Γ RF RI N ⇐⇒
redundancy_criterion.saturated_upto Γ′ RF R′I N)

58

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Standard_Redundancy.html
http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/Proving_Process.html

lemma standard_redundancy_criterion_extension_fair_iff :
Γ ⊆ Γ′ =�⇒ effective_redundancy_criterion Γ RF RI =�⇒
(effective_redundancy_criterion.fair_clss_seq Γ′ RF R′I Ns ⇐⇒
effective_redundancy_criterion.fair_clss_seq Γ RF RI Ns)

6 First-Order Resolution
The chapter’s Sect. 4.3 presents a first-order version of the ordered resolution rule and a first-order
prover, RP, based on that rule. The first step towards lifting the completeness of ground resolution
is to show that we can lift individual ground resolution inferences (FO_Ordered_Resolution.thy).

Inference Rule. First-order ordered resolution consists of a single rule. In the chapter, ground
and first-order resolution are both called O�S . In the formalization, we also let the rules share
the same name, but since they exist in separate locales the system generates qualified names which
make this unambiguous: Isabelle generates the name ground_resolution_with_selection.ord_resolve,
which refers to ground resolution, and FO_resolution.ordered_resolve, which refers to first-order
resolution. If the user is in doubt at any time, the system can always tell which one is meant.

The rule is given as

C1 ∨A11 ∨ · · · ∨A1k1 · · · Cn ∨An1 ∨ · · · ∨Ankn ¬A1 ∨ · · · ∨ ¬An ∨D
C1 · σ ∨ · · · ∨ Cn · σ ∨D · σ

where σ is the (canonical) MGU that solves all unification problems Ai1
?
= · · · ?

= Aiki

?
= Ai, for

1 ≤ i ≤ n. As expected, the rule has several side conditions. The Isabelle representation of this
rule is based on that of its ground counterpart, generalized to apply σ:

inductive ord_resolve :: ′a clause list ⇒ ′a clause ⇒ ′s⇒ ′a clause ⇒ bool where
|CAs| = n =�⇒ |Cs| = n =�⇒ |As| = n =�⇒ |As| = n =�⇒ n 6= 0 =�⇒
(∀i < n. CAs ! i = Cs ! i] Pos ‘As ! i) =�⇒ (∀i < n. As ! i 6= {}) =�⇒
Some σ = mgu (set_mset ‘ set (map2 add_mset As As)) =�⇒
eligible σ As (D] Neg ‘ mset As) =�⇒
(∀i < n. strict_max_in (As ! i · σ) (Cs ! i · σ)) =�⇒ (∀i < n. S (CAs ! i) = {}) =�⇒
ord_resolve CAs (D] Neg ‘ mset As) σ (((

⋃
mset Cs)] D) · σ)

The rule as stated is incomplete; for example, p(x) and ¬ p(f(x)) cannot be resolved because
x and f(x) are not unifiable. Such issues arise when the same variable names appear in different
premises. In the chapter, the authors circumvent this issue by stating, “We also implicitly assume
that different premises and the conclusion have no variables in common; variables are renamed
if necessary.” For the formalization, we first considered enforcing the invariant that all derived
clauses use mutually disjoint variables, but this does not help when a clause is repeated in an
inference’s premises. An example is the inference

p(x) p(y) ¬ p(a) ∨ ¬ p(b)

⊥

where p(x) and p(y) are the same clause up to renaming. Instead, we rely on a predicate ord_
resolve_rename, based on ord_resolve, that standardizes the premises apart. The renaming is per-
formed by a function called renamings_apart :: ′a clause list ⇒ ′s list that, given a list of clauses,
returns a list of corresponding substitutions to apply. This function is part of the abstract interface
for terms and substitutions (which we presented in Sect. 2) and is implemented using IsaFoR.

59

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/FO_Ordered_Resolution.html

Like for the ground case, it is important to establish soundness. We prove that any ground
instance of the rule ord_resolve is sound:

lemma ord_resolve_ground_inst_sound :
ord_resolve CAs DA As As σ E =�⇒ I � mset CAs · σ · η =�⇒ I � DA · σ · η =�⇒
is_ground_subst η =�⇒ I � E · η

Likewise, ground instances of ord_resolve_rename are sound. It then follows that the rules
ord_resolve and ord_resolve_rename are sound:

lemma ord_resolve_rename_sound :
ord_resolve_rename CAs DA As As σ E =�⇒
(∀σ. is_ground_subst σ =�⇒ I � (mset CAs + {DA}) · σ) =�⇒
is_ground_subst η =�⇒ I � E · η

Lifting Lemma. To lift ground inferences to the first-order level, we consider a set of clauses
M and introduce an adjusted version SM of the selection function S .

definition SM :: ′a literal multiset ⇒ ′a literal multiset where
SM C =
(if C ∈ grounding_of_clss M then

(SOME C ′. ∃D ∈M. ∃σ. C = D · σ ∧ C ′ = S D · σ ∧ is_ground_subst σ)
else
S C)

Here SOME is Hilbert’s epsilon operator, which picks an element as described if it exists and an
arbitrary one otherwise. In this definition the element does exists, and so we need not worry about
it picking an arbitrary one. The new selection function depends on both S and M and works
in such a way that any ground instance inherits the selection of at least one of the nonground
clauses of which it is an instance. This property is captured formally as

lemma S_M_grounding_of_clss:
C ∈ grounding_of M =�⇒
∃D ∈M. ∃σ. C = D · σ ∧ SM C = S D · σ ∧ is_ground_subst σ

where grounding_of M is the set of ground instances of a set of clauses M.
The lifting lemma, Lemma 4.12, states that whenever there exists a ground inference of E

from clauses belonging to grounding_of M , there exists a (possibly) more general inference from
clauses belonging to M :

lemma ord_resolve_rename_lifting :
(∀ρ C . is_renaming ρ =�⇒ S (C · ρ) = S C · ρ) =�⇒
ord_resolve SM CAs DA As As σ E =�⇒
{DA} ∪ set CAs ⊆ grounding_of M =�⇒
∃ηs η θ CAs0 DA0 As0 As0 E0 τ.

ord_resolve_rename S CAs0 DA0 As0 As0 τ E0 ∧
CAs0 · ηs = CAs ∧ DA0 · η = DA ∧ E0 · θ = E ∧ {DA0} ∪ set CAs0 ⊆M

The informal proof of this lemma consists of two sentences spanning four lines of text. In Isabelle,
these two sentences translate to 250 lines and 400 lines, respectively, excluding auxiliary lemmas.
Our proof involves six steps:

1. Obtain a list of first-order clauses CAs0 and a first-order clause DA0 that belong to M and
that generalize CAs and DA with substitutions ηs and η, respectively.

60

2. Choose atoms As0 and As0 in the first-order clauses on which to resolve.

3. Standardize CAs0 and DA0 apart, yielding CAs ′0 and DA′0.

4. Obtain the MGU τ of the literals on which to resolve.

5. Show that ordered resolution on CAs ′0 and DA′0 with τ as MGU is applicable.

6. Show that the resulting resolvent E0 generalizes E with substitution θ.

In step 1, suitable clauses must be chosen so that S (CAs0 ! i) generalizes SM (CAs ! i), for
0 ≤ i < n, and S DA0 generalizes SM DA. By the definition of SM , this is always possible. In step
2, we choose the literals to resolve upon in the first-order inference depending on the selection on
the ground inference. If some literals are selected in DA, we define As0 as the selected literals in
DA0, such that (As0 ! i) · η = As ! i for each i. Otherwise, As must be a singleton list containing
some atom A, and we define As0 as the singleton list consisting of an arbitrary A0 ∈ DA0 such
that A0 · η = A. Step 3 may seem straightforward until one realizes that renaming variables can
in principle influence selection. To rule this out, our lemma assumes stability under renaming:
S (C · ρ) = S C · ρ for any renaming substitution ρ and clause C. This requirement seems natural,
but it is not mentioned in the chapter.

The above choices allow us to perform steps 4 to 6. In the chapter, the authors assume that
the obtained CAs0 and DA0 are standardized apart from each other as well as their conclusion
E0. This means that they can obtain a single ground substitution µ that connect CAs0, DA0,
E0 to CAs, DA, E. By contrast, we provide separate substitutions ηs, η, θ for the different side
premises, the main premise, and the conclusion.

7 A First-Order Prover
Modern resolution provers interleave inference steps with steps that delete or reduce (simplify)
clauses. In their Sect. 4.3, Bachmair and Ganzinger introduce the nondeterministic abstract prover
RP that works on triples of clause sets and that generalizes the Otter-style and DISCOUNT-style
loops [12,17]. RP’s core rule, called inference computation, performs first-order ordered resolution as
described above; the other rules delete or reduce clauses or move them between clause sets. We for-
malize RP and prove it complete assuming a fair strategy (FO_Ordered_Resolution_Prover.thy).

Abstract First-Order Prover. The RP prover is a relation; on states of the form (N ,P ,O),
where N is the set of new clauses, P is the set of processed clauses, and O is the set of old clauses.
RP’s formal definition is very close to the original formulation:

inductive ; :: ′a state ⇒ ′a state ⇒ bool where
Neg A ∈ C =�⇒ Pos A ∈ C =�⇒ (N ∪ {C},P ,O) ; (N ,P ,O)
| D ∈ P ∪O =�⇒ subsumes D C =�⇒ (N ∪ {C},P ,O) ; (N ,P ,O)
| D ∈ N =�⇒ strictly_subsumes D C =�⇒ (N ,P ∪ {C},O) ; (N ,P ,O)
| D ∈ N =�⇒ strictly_subsumes D C =�⇒ (N ,P ,O ∪ {C}) ; (N ,P ,O)
| D ∈ P ∪O =�⇒ reduces D C L =�⇒ (N ∪ {C] {L}},P ,O) ; (N ∪ {C},P ,O)
| D ∈ N =�⇒ reduces D C L =�⇒ (N ,P ∪ {C] {L}},O) ; (N ,P ∪ {C},O)
| D ∈ N =�⇒ reduces D C L =�⇒ (N ,P ,O ∪ {C] {L}}) ; (N ,P ∪ {C},O)
| (N ∪ {C},P ,O) ; (N ,P ∪ {C},O)
| ({},P ∪ {C},O) ; (concl_of ‘ infers_between O C,P ,O ∪ {C})

61

http://devel.isa-afp.org/browser_info/current/AFP/Ordered_Resolution_Prover/FO_Ordered_Resolution_Prover.html

The rules correspond, respectively, to tautology deletion, forward subsumption, backward sub-
sumption in P and O, forward reduction, backward reduction in P and O, clause processing,
and inference computation.

Initially, N consists of the problem clauses and the other two sets are empty. Clauses in N are
reduced using P ∪O, or even deleted if they are tautological or subsumed by P ∪O; conversely,
N can be used for reducing or subsuming clauses in P ∪O. Clauses eventually move from N to
P , one at a time. As soon as N is empty, a clause from P is selected to move to O. Then all
possible resolution inferences between this given clause and the clauses in O are computed and
put in N, closing the loop.

The subsumption and reduction rules depend on the following predicates:

subsumes D C ⇐⇒ ∃σ. D · σ ⊆ C
strictly_subsumes D C ⇐⇒ subsumes D C ∧ ¬ subsumes C D

reduces D C L ⇐⇒ ∃D′ L′ σ. D = D′] {L′} ∧ −L = L′ · σ ∧ D′ · σ ⊆ C

The definition of the set infers_between O C, on which inference computation depends, is more
subtle. In the chapter, the set of inferences between C and O consists of all inferences from
O ∪ {C} that have C as exactly one of their premises. This, however, leads to an incomplete
prover, because it ignores inferences that need multiple copies of C. For example, assuming a
maximal selection function (one that always returns all negative literals), the resolution inference

p p ¬ p ∨ ¬ p

⊥

is possible. Yet if the clause ¬ p ∨ ¬ p reaches O earlier than p, the inference would not
be performed. This counterexample requires ternary resolution, but there also exists a more
complicated one for binary resolution, where both premises are the same clause. Consider the
clause set containing

(1) q(a, c, b) (2) ¬ q(x, y, z) ∨ q(y, z, x) (3) ¬ q(b, a, c)

and an order > on atoms such that q(c, b, a) > q(b, a, c) > q(a, c, b). Inferences between (1) and
(2) or between (2) and (3) are impossible due to order restrictions. The only possible inference
involves two copies of (2):

¬ q(x, y, z) ∨ q(y, z, x) ¬ q(x′, y′, z′) ∨ q(y′, z′, x′)

¬ q(x, y, z) ∨ q(z, x, y)

From the conclusion, we derive ¬ q(a, c, b) by (3) and ⊥ by (1). This incompleteness is a severe
flaw, although it is probably just an oversight. Fortunately, it can easily be repaired by defining
infers_between O C as {(C, D,E) ∈ Γ | C ∪ {D} ⊆ O ∪ {C} ∧ C ∈ C ∪ {D}}.

Projection to Theorem Proving Process. On the first-order level, a derivation can be
expressed as a lazy list Ss of states, or as three parallel lazy lists Ns, Ps, Os. The limit state of
a derivation Ss is defined as Liminf Ss = (Liminf Ns, Liminf Ps, Liminf Os), where Liminf on the
right-hand side is as in Sect. 5.

Bachmair and Ganzinger use the completeness of ground resolution to prove RP complete.
The first step is to show that first-order derivations can be projected down to theorem proving
processes on the ground level. This corresponds to Lemma 4.10. Adapted to our conventions, its
statement is as follows:

62

If S ; S ′, then grounding_of S �∗ grounding_of S ′, with � based on some extension
of ordered resolution with selection function S and the standard redundancy criterion
(RF,RI).

This raises some questions: (1) Exactly which instance of the calculus are we extending? (2) Which
calculus extension should we use? (3) How can we repair the mismatch between �∗ in the lemma
statement and � where the lemma is invoked?

Regarding question (1), it is not clear which selection function to use. Is the function the
same S as in the definition of RP or is it arbitrary? It takes a close inspection of the proof of
Lemma 4.13, where Lemma 4.10 is invoked, to find out that the selection function used there is
SLiminf Os .

Regarding question (2), the phrase “some extension” is cryptic. It suggests an existential
reading, and from the context it would appear that a standard extension (Sect. 5) is meant.
However, neither the lemma’s proof nor the context where it is invoked supplies the desired
existential witness. A further subtlety is that the witness should be independent of S and S ′,
so that transitions can be joined to form a single theorem proving derivation. Our approach is
to let � be the standard extension for the proof system consisting of all sound derivations:
Γ = {(C, D,E) | ∀I. I � C ∪ {D} =�⇒ I � E}. This also eliminates the need for Bachmair and
Ganzinger’s subsumption resolution rule, a special calculus rule that is, from what we understand,
implicitly used in the proof of Lemma 4.10 for the subcases associated with RP’s reduction rules.

As for question (3), when the lemma is invoked, it is used to join transitions together to whole
theorem proving processes. That requires these transitions to be of � – not �∗. The need for �∗
instead of � arises because one of the cases requires a combination of deduction and deletion,
which Bachmair and Ganzinger model as separate transitions. By merging the two transitions
(Sect. 5), we avoid the issue altogether and can use � in the formal counterpart of Lemma 4.10.

With these issues resolved, we can prove Lemma 4.10. In Sect. 6 we established that ground
instances of the resolution rule are sound. Since our ground proof system consists of all sound
inference rules we can reuse that lemma in proving the inference computation case. We prove
Lemma 4.10 for single steps and extend it to entire derivations:

lemma RP_ground_derive: S ; S ′ =�⇒ grounding_of S � grounding_of S ′
lemma RP_ground_derive_chain:

chain (;) Ss =�⇒ chain (�) (lmap grounding_of Ss)

The lmap function applies its first argument elementwise to its second argument.

Fairness and Clause Movement. From a given initial state (N 0, {}, {}), many derivations
are possible, reflecting RP’s nondeterminism. In some derivations, we could leave a crucial clause
in N or P without ever reducing it or moving it to O, and then fail to derive ⊥ even if N 0 is
unsatisfiable. For this reason, refutational completeness is guaranteed only for fair derivations.
These are defined as derivations such that Liminf Ns = Liminf Ps = {}, guaranteeing that no
clause will stay forever in N or P .

Fairness is expressed by the fair_state_seq predicate, which is distinct from the fair_clss_seq
predicate presented in Sect. 5. In particular, Theorem 4.3 is used in neither the informal nor the
formal proof, and appears to play a purely pedagogic role in the chapter. For the rest of this
section, we fix a lazy list of states Ss, and its projections Ns , Ps , and Os , such that chain (;) Ss,
fair_state_seq Ss, and lhd Os = {}.

Thanks to fairness, any nonredundant clause C in Ss’s projection to the ground level eventually
ends up in O and stays there. This is proved informally as Lemma 4.11, but again there are some

63

difficulties. The vagueness concerning the selection function can be resolved as for Lemma 4.10,
but there is another, deeper flaw.

Bachmair and Ganzinger’s proof idea is as follows. By hypothesis, the ground clause C must
be an instance of a first-order clause D in Ns ! j ∪ Ps ! j ∪ Os ! j for some index j. If C ∈ Ns ! j,
then by nonredundancy of C, fairness of the derivation, and Lemma 4.10, there must exist a
clause D′ that generalizes C in Ps ! l ∪ Os ! l for some l > j. By a similar argument, if D′ belongs
to Ps ! l, it will be in Os ! l′ for some l′ > l, and finally in all Os ! k with k ≥ l′. The flaw is that
backward subsumption can delete D′ without moving it to O. The subsumer clause would then
be a strictly more general version of D′ (and of the ground clause C).

Our solution is to choose D, and consequently D′, such that it is minimal, with respect to
subsumption, among the clauses that generalize C in the derivation. This works because strict
subsumption is well founded—which we also proved, by reduction to a well-foundedness result
about the strict generalization relation on first-order terms, included in IsaFoR [15, Sect. 2]. By
minimality, D′ cannot be deleted by backward subsumption. This line of reasoning allows us to
prove Lemma 4.11, where O_of extracts the O component of a state:

lemma fair_imp_Liminf_minus_Rf_subset_ground_Liminf_state:
Gs = lmap grounding_of Ss =�⇒
Liminf Gs −RF (Liminf Gs) ⊆ grounding_of (O_of (Liminf Ss))

In the formalization of the above proof, we do not prove l > j and l′ > l. While they guide human
intuition, they are not necessary to prove the lemma.

Soundness and Completeness. The chapter’s main result is Theorem 4.13, which states
that, for fair derivations, the prover is sound and complete. Soundness follows from Lemma 4.2
(sat_deriv_Liminf_iff) and is, perhaps not surprisingly, independent of whether the derivation
is fair.

theorem RP_sound :
{} ∈ clss_of (Liminf Sts) =�⇒ ¬ sat (grounding_of (lhd Sts))

Because we have brought Lemmas 4.10, 4.11, and 4.12 into a suitable shape, completeness is
not difficult to formalize:

theorem RP_saturated_if_fair : saturated_upto (Liminf (lmap grounding_of Ss))
corollary RP_complete_if_fair :
¬ sat (grounding_of (lhd Ss)) =�⇒ {} ∈ O_of (Liminf Ss)

A crucial point that is not clear from the text is that we must always use the selection
function S on the first-order level and SLiminf Os on the ground level. Another noteworthy part
of the proof is the passage “Liminf Gs (and hence Liminf Ss) contains the empty clause” (using
our notations). Obviously, if grounding_of (Liminf Ss) contains ⊥, then Liminf Ss must as well.
However, the authors do not explain the step from Liminf Gs, the limit of the grounding, to
grounding_of (Liminf Ss), the grounding of the limit. Fortunately, by Lemma 4.11, the latter
contains all the nonredundant clauses of the former, and the empty clause is nonredundant. Hence
the informal argument is fundamentally correct. For the other direction, which is used in the
soundness proof, we can prove that the former includes the latter.

8 Discussion
Bachmair and Ganzinger cover a lot of ground in a few pages. We found much of the material
straightforward to formalize: it took us about two weeks to reach their Sect. 4.3, which introduces

64

the RP prover and establishes its refutational completeness. By contrast, we needed months to
fully understand and formalize that section. While the Handbook chapter succeeds at conveying
the key ideas at the propositional level, the lack of rigor makes it difficult to develop a deep
understanding of ordered resolution proving on first-order clauses.

There are several reasons why Sect. 4.3 did not lend itself easily to a formalization. The proofs
often depend on lemmas and theorems from previous sections without explicitly mentioning
them. The lemmas and proofs do not quite fit together. And while the general idea of the proofs
stands up, they have many confusing flaws that must be repaired. Our methodology involved the
following steps: (1) rewrite the informal proofs to a handwritten pseudo-Isabelle; (2) fill in the
gaps, emphasizing which lemmas are used where; (3) turn the pseudo-Isabelle into real Isabelle,
but with sorry placeholders for the proofs; and (4) replace the sorrys with proofs. Progress was
not always linear. As we worked on each step, more than once we discovered an earlier mistake.

The formalization helps us answer questions such as, “Is effectiveness of ordered resolution
(Lemma 3.13) actually needed, and if so, where?” (Answer: It is needed to prove Theorem 3.15.) It
also allows us to track definitions and hypotheses precisely, so that we always know the scope and
meaning of every definition, lemma, or theorem. If a hypothesis appears too strong or superfluous,
we can try to rephrase or eliminate it; the proof assistant tells us where the proof breaks. If a
definition is changed, the proof assistant tells us where proofs of the related lemmas break. In the
best case, the proofs do not break at all since the automation of the proof assistant is flexible
enough to still prove them. This happened, for example, when we changed the definition of � to
combine deduction and deletion.

Starting from RP, we could refine it to obtain an efficient imperative implementation, following
the lines of Fleury, Blanchette, and Lammich’s verified SAT solver with the two-watched-literals
optimization [13]. However, this would probably involve a huge amount of work. To increase provers’
trustworthiness, a more practical approach is to have them generate detailed proofs that record
all inferences leading to the empty clause [27,31]. Such output can be independently checked by
verified programs or reconstructed using a proof assistant’s inference kernel. This is the approach
implemented in Sledgehammer [8], which integrates automatic provers in Isabelle. Formalized
metatheory could in principle be used to deduce a formula’s satisfiability from a finite saturation.

We found Isabelle/HOL eminently suitable to this kind of formalization work. Its logic—
classical simple type theory extended with polymorphism, type classes, and the axiom of choice—
balances expressiveness and automatability. We nowhere felt the need for dependent types. We
benefited from many features of the system, including codatatypes [5], Isabelle/jEdit [37], the Isar
proof language [36], locales [4], and Sledgehammer [8]. It is perhaps indicative of the maturity of
theorem proving technology that most of the issues we encountered were unrelated to Isabelle.
The main challenge was to understand the informal proof well enough to design suitable locale
hierarchies and state the definitions and lemmas precisely, and correctly.

9 Related Work
Formalizing the metatheory of logic and deduction is an enticing proposition for many researchers
in interactive theorem proving. In this section, we briefly review some of the main related work,
without claim to exhaustiveness. Two recent, independent developments are particularly pertinent.

Peltier [24] proved static refutational completeness of a variant of the superposition calculus in
Isabelle/HOL. Since superposition generalizes ordered resolution, his result subsumes our static
completeness theorem. On the other hand, he did not formalize a prover or dynamic completeness,
nor did he attempt to develop general infrastructure. It would be interesting to extend his formal
development to obtain a verified superposition prover. We could also consider calculus extensions

65

such as polymorphism [11,34], type classes [34], and AVATAR [33]. Two significant differences
between Peltier’s work and ours is that he represents clauses as sets instead of multisets (to
exploit Isabelle’s better proof automation for sets) and that he relies, for terms and unification,
on an example theory file included in Isabelle (Unification.thy) instead of IsaFoR.

Hirokawa et al. [15] formalized, also in Isabelle/HOL, an abstract Knuth–Bendix completion
procedure as well as ordered (unfailing) completion, a method developed by Bachmair, Ganzinger,
and Plaisted [1]. Superposition combines ordered resolution (to reason about clauses) and ordered
completion (to reason about equality). There are many similarities between their formalization
and ours, which is unsurprising given that both follow work by Bachmair and Ganzinger; for
example, they need to reason about the limit of fair infinite sequences of sets of equations and
rewrite rules to establish completeness.

The literature contains many other formalized completeness proofs, mostly for inference
systems of theoretical interest. Early work was carried out in the 1980s and 1990s, notably by
Shankar [29] and Persson [25]. Some of our own efforts are also related: completeness of unordered
resolution using semantic trees by Schlichtkrull [28]; completeness of a Gentzen system following
the Beth–Hintikka style and soundness of a cyclic proof system for first-order logic with inductive
definitions by Blanchette, Popescu, and Traytel [9]; and completeness of a SAT solver based on
CDCL (conflict-driven clause learning) by Blanchette, Fleury, Lammich, and Weidenbach [6].

The formal Beth–Hintikka-style completeness proof mentioned above has a generic flavor,
abstracting over the inference system. Could it be used to prove completeness of the ordered
resolution calculus, or even of the RP prover? The central idea is to build a finitely branching tree
that encodes a systematic proof attempt. Given a fair strategy for applying calculus rules, infinite
branches correspond to countermodels. It should be possible to prove ordered resolution complete
using this approach, by storing clause sets N on the tree’s nodes. Each node would have at most
one child, corresponding to the new clause set after performing a deduction. Such degenerate
trees would be isomorphic to derivations N0 B N1 B · · · represented by lazy lists. However, the
requirement that inferences can always be postponed, called persistence [9, Sect. 3.9], is not met
for deletion steps based on a redundancy criterion. Moreover, while the generic framework takes
care of applying inferences fairly and of employing König’s lemma to extract an infinite path from
a failed proof attempt (which is, incidentally, overkill for degenerate trees that have only one
infinite path), it offers no help in building a countermodel from an infinite path (i.e., in proving
Bachmair and Ganzinger’s Theorem 3.9).

Beyond completeness, Gödel’s first incompleteness theorem has been formalized in Nqthm by
Shankar [30], in Coq by O’Connor [22], in HOL Light by Harrison (in unpublished work), and
in Isabelle/HOL by Paulson [23]. Paulson additionally proved Gödel’s second incompleteness
theorem. We refer to our earlier papers [6, 9, 28] for further discussions of related work.

10 Conclusion
We presented a formal proof that captures the core of Bachmair and Ganzinger’s Handbook
chapter on resolution theorem proving. For all its idiosyncrasies, the chapter withstood the test of
formalization, once we had added self-inferences to the RP prover. Given that the text is a basic
building block of automated reasoning (as confirmed by its placement as Chapter 2), we believe
there is value in clarifying its mathematical content for the next generations of researchers. We
hope that our work will be useful to the editors of a future revision of the Handbook.

Formalization of the metatheory of logical calculi is one of the many connections between
automatic and interactive theorem proving. We expect to see wider adoption of proof assistants
by researchers in automated reasoning, as a convenient way to develop metatheory. By building
formal libraries of standard results, we aim to make it easier to formalize state-of-the-art research

66

http://isabelle.in.tum.de/website-Isabelle2017/dist/library/HOL/HOL-ex/Unification.html

as it emerges. We also see potential uses of formal proofs in teaching automated reasoning, inspired
by the use of proof assistants in courses on the semantics of programming languages [19,26].

Acknowledgment. Christoph Weidenbach discussed Bachmair and Ganzinger’s chapter with us on many
occasions and hosted Schlichtkrull at the Max-Planck-Institut in Saarbrücken. Christian Sternagel and René
Thiemann answered our questions about IsaFoR. Mathias Fleury, Florian Haftmann, and Tobias Nipkow helped
enrich and reorganize Isabelle’s multiset library. Mathias Fleury, Robert Lewis, Simon Robillard, Mark Summerfield,
Sophie Tourret, and the anonymous reviewers suggested many textual improvements.

Blanchette was partly supported by the Deutsche Forschungsgemeinschaft (DFG) project Hardening the
Hammer (grant NI 491/14-1). He also received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement No. 713999, Matryoshka).
Traytel was partly supported by the DFG program Program and Model Analysis (PUMA, doctorate program
1480).

A Errors and Imprecisions Discovered in the Chapter
We discussed several mathematical errors and imprecisions, of various severity levels, in Bachmair
and Ganzinger’s chapter. We also found lemmas that are stated but not explicitly applied
afterwards. In this appendix, we list our findings exhaustively for reference.

Let us start with the errors and imprecisions. We ignore infelicities that are not mathematical in
nature, such as typos and LATEX macros gone wrong (e.g., “by the defn[candidate model]candidate
model for N ” on page 34); for such errors, careful reading is a more effective antidote than
formalization. We also ignore minor ambiguities, such as whether the clause C ∨A ∨ · · · ∨A may
contain zero occurrences of A, if they can be resolved easily by appealing to the context and the
reader’s common sense.

– One of Lemma 3.4’s claims is that if clause C is true in ID, then C is also true in ID ′,
where C � D � D ′. This does not hold if C = D = D ′ and C is productive. Similarly, the
first sentence of the proof is wrong if D = D ′ and D is productive: “First, observe that
ID ⊆ ID ⊆ ID ′ ⊆ ID ′ ⊆ IN , whenever D ′ � D.”

– The last occurrence of D ′ in the statement of Lemma 3.7 should be changed to C. In
addition, it is not clear whether the phrase “another clause C” implies that C 6= D, but the
counterexample we gave in Sect. 4 works in both cases. Correspondingly, in the proof, the case
distinction is incomplete, as can be seen by specializing the proof for the counterexample.

– In the chapter’s Figure 2, in Sect. 3, the selection function is wrongly applied: references
to S (D) should be changed to S (¬A1 ∨ · · · ∨ ¬An ∨ D). Moreover, in condition (iii), it
is not clear with respect to which clause the “selected atom” must be considered, the two
candidates being S (¬A1 ∨ · · · ∨ ¬An ∨D) and S (Ci ∨Ai ∨ · · · ∨Ai). We assume the latter
is meant. Finally, phrases like “A1 is maximal with respect to D” (here and in Figure 4) are
slightly ambiguous, because it is unclear whether A1 denotes an atom or a (positive) literal,
and whether it must be maximal with respect to D’s atoms or literals. From the context,
we infer that an atom-with-atom comparison is meant.

– The notation
⋃

i

⋂
j≥iNj used in the chapter’s Sect. 4.1 only partially specifies the range of

i and j if Nj is a finite sequence. Clearly, j must be bounded by the length of the list, but
it is less obvious that i also needs a bound, to avoid the inner intersection to expand to be
the set of all clauses for indices i beyond the list’s end.

67

– Soundness is required in the chapter’s Sect. 4.1, even though it is claimed in Sect. 2.4 that
only consistency-preserving inference systems will be considered.

– In Sect. 4.1, it is claimed that “a fair derivation can be constructed by exhaustively applying
inferences to persisting formulas.” However, this construction is circular: The notion of
persisting formula (i.e., the formulas that belong to the limit) depends itself on the derivation.

– In the proof of Theorem 4.3, the case where γ ∈ RI(N∞ \RF(N∞)) is not covered.

– In Sect. 4.2, the phrase “side premises that are true in N ” must be understood as meaning
that the side premises both belong to N and are true in IN .

– Lemma 4.5 states the basic properties of the redundant clause operatorRF (monotonicity and
independence). Lemma 4.6 states the corresponding properties of the redundant inference
operator RI. As justification for Lemma 4.6, the authors tell us that “the proof uses
Lemma 4.5,” but redundant inferences are a more general concept than redundant clauses,
and we see no way to bridge the gap.

– Similarly, in the proof Theorem 4.9, the application of Lemma 4.5 does not fit. What is
needed is a generalization of Lemma 4.6.

– In condition (ii) of Figure 4, Sect. 4.2, Aiiσ should be changed to Aijσ.

– In nth side premise of Figure 4, Sect. 4.2, A1n should be changed to An1.

– Sect. 4.3 states “Subsumption defines a well-founded ordering on clauses.” A simple counter-
example is an infinite sequence repeating some clause. A correct statement would instead
be “Proper subsumption defines a well-founded ordering on clauses.”

– In Lemma 4.10 it is not clear which selection function is used. When the lemma is applied
in the proofs of Lemma 4.11 and Theorem 4.13, it must be SO∞ .

– In Lemma 4.10 G(S) and G(S ′) are related by �∗, but � is needed in the proofs of
Lemma 4.11 and Lemma 4.13 since then derivations in RP, which are possibly infinite, can
be projected to theorem proving processes. However G(S)�G(S ′) does not hold in one of
the cases since a combination of deduction and deletion is required. A solution is to change
the definition of � to allow such combinations.

– In Lemma 4.10 it is not clear that the extension used should be the same between any
considered pair of states. Otherwise, the lemma cannot be used to project derivations in RP
to theorem proving processes.

– In Lemma 4.11 it is not clear which selection function is used. When the lemma is applied
in the proofs of Theorem 4.13, it must be SO∞ .

– A step in the proof of Lemma 4.11 considers a clause D ∈ Pl which has a nonredundant
instance C. It is claimed that when D is removed from P , another clause D′ with C as
instance appears in some O′l. That, however, does not follow if D was removed by backward
subsumption. The problem can be resolved by choosing D as minimal, with respect to
subsumption, among the clauses that generalize C in the derivation. This can be done since
proper subsumption is well founded.

68

– In Lemma 4.11, a minor inconsistency is that the described first-order derivation is indexed
from 1 instead of 0.

– In the proof of Theorem 4.13, the conclusion of Lemma 4.11 is stated as N∞\R(N∞) ⊆ O∞,
but it should have been N∞ \R(N∞) ⊆ G(O∞). Furthermore, when lemma 4.11 was first
stated the conclusion was N∞ \RF(N∞) ⊆ G(S∞). The two are by fairness equivalent, but
we find N∞ \ R(N∞) ⊆ G(O∞) more intuitive since it more clearly expresses that all
nonredundant clauses grow old.

Chief among the factors that contribute to making the chapter hard to follow is that many
lemmas are stated (and usually proved) but not referenced later. We already mentioned the
unfortunate Lemma 3.7. Sect. 4 contains several other specimens:

– Theorem 4.3 (fair_derive_saturated_upto) states a completeness theorem for fair derivations.
However, in Sect. 4.3, fairness is defined differently, and neither the text nor the formalization
applies this theorem.

– For the same reason, the property stated in the next-to-last sentence of Sect. 4.1 (standard_
redundancy_criterion_extension_fair_iff), which lifts fairness with respect to (RF,RI) to
a standard extension (RF,R′I), is not needed later.

– Lemma 4.2 (sat_deriv_Liminf_iff, Ri_Sup_subset_Ri_Liminf) is not referenced in the
text, but we need it to prove Theorem 4.13 (fair_state_seq_complete).

– Lemma 4.2 (Rf_Sup_subset_Rf_Liminf) is not referenced in the text, but we need it to
prove Lemma 4.11 (fair_imp_Liminf_minus_Rf_subset_ground_Liminf_state).

– Lemma 4.6 (saturated_upto_complete_if) is not referenced in the text, but we need it
to prove Lemma 4.10 (resolution_prover_ground_derivation), Lemma 4.11 (fair_imp_
Liminf_minus_Rf_subset_ground_Liminf_state), and Theorem 4.13 (fair_state_seq_
complete).

– Theorem 4.8 (Ri_effective) is not referenced in the text, but we need it to prove Theorem 4.13
(fair_state_seq_complete).

– Theorem 4.9 (saturated_upto_complete) is invoked implicitly in the next-to-last sentence
in the proof of Theorem 4.13 (fair_state_seq_complete).

– The sentence “In that case, if the derivation is fair with respect to inferences in Γ the
derivation is also fair with respect to inferences in Γ′, and vice versa” on page 38 of Section 4.1
(redundancy_criterion_standard_extension_saturated_upto_iff) is not referenced in the
text, but we need it to prove Theorem 4.13 (fair_state_seq_complete).

References
[1] L. Bachmair, N. Dershowitz, and D. A. Plaisted. Completion without failure. In H. Aït-Kaci

and M. Nivat, editors, Rewriting Techniques—Resolution of Equations in Algebraic Structures,
volume 2, pages 1–30. Academic Press, 1989.

[2] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection
and simplification. Journal of Logic and Computation, 4(3):217–247, 1994.

69

[3] L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, pages 19–99. Elsevier and MIT Press,
2001.

[4] C. Ballarin. Locales: A module system for mathematical theories. Journal of Automated
Reasoning, 52(2):123–153, 2014.

[5] J. Biendarra, J. C. Blanchette, A. Bouzy, M. Desharnais, M. Fleury, J. Hölzl, O. Kuncar,
A. Lochbihler, F. Meier, L. Panny, A. Popescu, C. Sternagel, R. Thiemann, and D. Traytel.
Foundational (co)datatypes and (co)recursion for higher-order logic. In C. Dixon and
M. Finger, editors, FroCoS 2017, volume 10483 of LNCS, pages 3–21. Springer, 2017.

[6] J. C. Blanchette, M. Fleury, P. Lammich, and C. Weidenbach. A verified SAT solver
framework with learn, forget, restart, and incrementality. Journal of Automated Reasoning,
61(3):333–366, 2018.

[7] J. C. Blanchette, M. Fleury, and D. Traytel. Nested multisets, hereditary multisets, and
syntactic ordinals in Isabelle/HOL. In D. Miller, editor, FSCD 2017, volume 84 of LIPIcs,
pages 11:1–11:18. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2017.

[8] J. C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban. Hammering towards QED.
Journal of Formalized Reasoning, 9(1):101–148, 2016.

[9] J. C. Blanchette, A. Popescu, and D. Traytel. Soundness and completeness proofs by
coinductive methods. Journal of Automated Reasoning, 58(1):149–179, 2017.

[10] D. Brand. Proving theorems with the modification method. SIAM Journal on Computing,
4(4):412–430, 1975.

[11] S. Cruanes. Logtk: A logic toolkit for automated reasoning and its implementation. In
S. Schulz, L. de Moura, and B. Konev, editors, PAAR-2014, volume 31 of EPiC Series in
Computing, pages 39–49. EasyChair, 2014.

[12] J. Denzinger, M. Kronenburg, and S. Schulz. DISCOUNT—a distributed and learning
equational prover. Journal of Automated Reasoning, 18(2):189–198, 1997.

[13] M. Fleury, J. C. Blanchette, and P. Lammich. A verified SAT solver with watched literals
using Imperative HOL. In J. Andronick and A. P. Felty, editors, CPP 2018, pages 158–171.
ACM, 2018.

[14] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

[15] N. Hirokawa, A. Middeldorp, C. Sternagel, and S. Winkler. Infinite runs in abstract completion.
In D. Miller, editor, FSCD 2017, volume 84 of LIPIcs, pages 19:1–19:16. Schloss Dagstuhl—
Leibniz-Zentrum für Informatik, 2017.

[16] A. Krauss. Partial recursive functions in higher-order logic. In U. Furbach and N. Shankar,
editors, IJCAR 2006, volume 4130 of LNCS, pages 589–603. Springer, 2006.

[17] W. McCune. Otter 2.0. In M. E. Stickel, editor, CADE-10, volume 449 of LNCS, pages
663–664. Springer, 1990.

70

[18] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, pages 371–443. Elsevier
and MIT Press, 2001.

[19] T. Nipkow. Teaching semantics with a proof assistant: No more LSD trip proofs. In V. Kuncak
and A. Rybalchenko, editors, VMCAI 2012, volume 7148 of LNCS, pages 24–38. Springer,
2012.

[20] T. Nipkow and G. Klein. Concrete Semantics: With Isabelle/HOL. Springer, 2014.

[21] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, 2002.

[22] R. O’Connor. Essential incompleteness of arithmetic verified by Coq. In J. Hurd and T. F.
Melham, editors, TPHOLs 2005, volume 3603 of LNCS, pages 245–260. Springer, 2005.

[23] L. C. Paulson. A machine-assisted proof of Gödel’s incompleteness theorems for the theory
of hereditarily finite sets. Review of Symbolic Logic, 7(3):484–498, 2014.

[24] N. Peltier. A variant of the superposition calculus. Archive of Formal Proofs, 2016, 2016.

[25] H. Persson. Constructive completeness of intuitionistic predicate logic—a formalisation in
type theory. Licentiate thesis, Chalmers tekniska högskola and Göteborgs universitet, 1996.

[26] B. C. Pierce. Lambda, the ultimate TA: Using a proof assistant to teach programming
language foundations. In G. Hutton and A. P. Tolmach, editors, ICFP 2009, pages 121–122.
ACM, 2009.

[27] G. Reger and M. Suda. Checkable proofs for first-order theorem proving. In G. Reger and
D. Traytel, editors, ARCADE 2017, volume 51 of EPiC Series in Computing, pages 55–63.
EasyChair, 2017.

[28] A. Schlichtkrull. Formalization of the resolution calculus for first-order logic. Journal of
Automated Reasoning, 61(4):455–484, 2018.

[29] N. Shankar. Towards mechanical metamathematics. Journal of Automated Reasoning,
1(4):407–434, 1985.

[30] N. Shankar. Metamathematics, Machines, and Gödel’s Proof, volume 38 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1994.

[31] G. Sutcliffe, J. Zimmer, and S. Schulz. TSTP data-exchange formats for automated theorem
proving tools. In W. Zhang and V. Sorge, editors, Distributed Constraint Problem Solving
and Reasoning in Multi-Agent Systems, volume 112 of Frontiers in Artificial Intelligence and
Applications, pages 201–215. IOS Press, 2004.

[32] R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In S. Berghofer,
T. Nipkow, C. Urban, and M. Wenzel, editors, TPHOLs 2009, volume 5674 of LNCS, pages
452–468. Springer, 2009.

[33] A. Voronkov. AVATAR: The architecture for first-order theorem provers. In A. Biere and
R. Bloem, editors, CAV 2014, volume 8559 of LNCS, pages 696–710. Springer, 2014.

[34] D. Wand. Polymorphic+typeclass superposition. In S. Schulz, L. de Moura, and B. Konev,
editors, PAAR-2014, volume 31 of EPiC Series in Computing, pages 105–119. EasyChair,
2014.

71

[35] C. Weidenbach. Combining superposition, sorts and splitting. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume II, pages 1965–2013.
Elsevier and MIT Press, 2001.

[36] M. Wenzel. Isabelle/Isar—a generic framework for human-readable proof documents. In
R. Matuszewski and A. Zalewska, editors, From Insight to Proof: Festschrift in Honour of
Andrzej Trybulec, volume 10(23) of Studies in Logic, Grammar, and Rhetoric. University of
Białystok, 2007.

[37] M. Wenzel. Isabelle/jEdit—a prover IDE within the PIDE framework. In J. Jeuring, J. A.
Campbell, J. Carette, G. D. Reis, P. Sojka, M. Wenzel, and V. Sorge, editors, CICM 2012,
volume 7362 of LNCS, pages 468–471. Springer, 2012.

[38] H. Zhang and D. Kapur. First-order theorem proving using conditional rewrite rules. In E. L.
Lusk and R. A. Overbeek, editors, CADE-9, volume 310 of LNCS, pages 1–20. Springer,
1988.

72

A Verified Automatic Prover Based on Ordered Resolution

Anders Schlichtkrull1, Jasmin Christian Blanchette2, and Dmitriy Traytel3

1 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
2 Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

2 Max-Planck-Institut für Informatik, Saarland Informatics Campus, Saarbrücken, Germany
3 Institute of Information Security, Department of Computer Science, ETH Zürich, Zürich, Switzerland

Abstract

First-order theorem provers based on superposition, such as E, SPASS, and Vampire,
play an important role in formal software verification. They are based on sophisticated
logical calculi that combine ordered resolution and equality reasoning. They also employ
advanced algorithms, data structures, and heuristics. As a step towards verifying the cor-
rectness of state-of-the-art provers, we specify, using the Isabelle/HOL proof assistant, a
purely functional ordered resolution prover and formally establish its soundness and refu-
tational completeness. Methodologically, we apply stepwise refinement to obtain, from an
abstract specification of a nondeterministic prover, a verified deterministic program, written
in a subset of Isabelle/HOL from which we extract purely functional Standard ML code that
constitutes a semidecision procedure for first-order logic.

CSS Concepts: Theory of computation / Logic and verification; Theory of computation /
Automated reasoning; Software and its engineering / Completeness

Additional Key Words and Phrases: automatic theorem provers, proof assistants, first-
order logic, refinement

1 Introduction
Formal verification of programs aims at ensuring correctness by mechanically checking their be-
havior with respect to a logical specification. Automatic theorem provers based on superposition,
such as E [Schulz, 2013b], SPASS [Weidenbach et al., 2009], and Vampire [Kovács and Voronkov,
2013], are often employed as backends in verification tools. They are used to discharge verification
conditions [Bobot et al., 2011; Paulson and Blanchette, 2012], but also to generate loop invariants
[Kovács and Voronkov, 2009]. Superposition is a highly successful logical calculus for first-order
logic with equality, which generalizes both ordered resolution [Bachmair and Ganzinger, 2001]
and ordered (unfailing) completion [Bachmair et al., 1989].

Resolution does not operate on first-order formulas but instead on sets of clauses. A clause
is an n-ary disjunction of literals L1 ∨ · · · ∨ Ln whose free variables are interpreted universally.
Each literal is either an atom A or its negation ¬A. An atom is a symbol applied to a tuple of
terms—e.g., divides(2, n). The empty clause, which is false, is denoted by ⊥. Resolution works
by refutation: Conceptually, the calculus proves a conjecture ∀x̄. C from axioms A by deriving
⊥ from A ∪ {∃x̄.¬C}, indicating its unsatisfiability.

73

Compared with plain resolution, ordered resolution relies on an order on the atoms to restrict
the search space. Another important difference is that it uses a redundancy criterion to discard
subsumed clauses at any point; for example, p(x) ∨ q(x) and p(5) are subsumed by p(x).

Using formal verification, we aim to develop trustworthy programs. But why should anyone
trust verification tools? In particular, modern superposition provers are highly optimized pro-
grams that rely on sophisticated calculi, with a rich metatheory, and specialized data structures.
In this paper, we propose an answer by verifying, in Isabelle/HOL [Nipkow et al., 2002], a purely
functional prover based on ordered resolution. The verification relies on stepwise refinement
[Wirth, 1971]. Four layers are connected by three refinement steps:

• Our starting point, layer 1 (Section 4), is an abstract Prolog-style nondeterministic res-
olution prover in a highly general form, as presented by Bachmair and Ganzinger [2001]
and as formalized by Schlichtkrull et al. [2018a,b]. It operates on possibly infinite sets of
clauses. Its soundness and refutational completeness are inherited by the other layers.

• Layer 2 (Section 5) operates on finite multisets of clauses and introduces a priority queue to
ensure that logical inferences are performed in a fair manner, guaranteeing completeness:
Given a valid conjecture, the prover will eventually find a proof.

• Layer 3 (Section 6) is a deterministic program that works on finite lists, committing to a
concrete strategy for assigning priorities to clauses. However, it is not fully executable: It
abstracts over operations on atoms and employs logical specifications instead of executable
functions for some auxiliary notions.

• Finally, layer 4 (Section 7) is a fully executable program. It provides a concrete datatype
for atoms and executable definitions for all auxiliary notions, including unifiers, clause
subsumption, and the order on atoms.

From layer 4, we can extract Standard ML code by invoking Isabelle’s code generator [Haftmann
and Nipkow, 2010]. The resulting prover serves first and foremost as a proof of concept: It uses
an efficient calculus (layer 1) and a reasonable strategy to ensure fairness (layers 2 and 3), but it
depends on naive list-based data structures. Further refinement steps will be required to obtain
a prover that is competitive with the state of the art.

The refinement steps connect vastly different levels of abstraction, spanning much of computer
science. The most abstract level is occupied by an infinitary logical calculus and the semantics of
first-order logic. Soundness and completeness relate these two notions. At the functional program-
ming level, soundness amounts to a safety property: Whenever the program terminates normally,
its outcome is correct, whether it is a proof or a finite saturation witnessing unprovability. Corre-
spondingly, refutational completeness is a liveness property: The program will always terminate
normally with a proof if the conjecture is valid. Our executable functional prover demonstrates
that, far from being academic exercises, Bachmair and Ganzinger’s [2001] framework and its for-
malization by Schlichtkrull et al. [2018a,b] accurately capture the metatheory of actual provers.

To our knowledge, our program is the first verified prover for first-order logic implementing
an optimized calculus. It is also the first example of the application of refinement in this context.
This methodology has been used to verify SAT solvers [Blanchette et al., 2018; Marić, 2010],
which decide the satisfiability of propositional formulas, but first-order logic is semidecidable—
sound and complete provers are guaranteed to terminate only for unsatisfiable (i.e., provable)
clause sets. This complicates the transfer of completeness results across refinement layers.

Our contributions are as follows:

• We unveil a verified sound and complete first-order prover based on ordered resolution.

74

• We propose a general methodology, using modern tools, for refining an abstract Prolog-
style definition of a refutational prover to an ML-style functional program, applicable to
provers and other nondeterministic semidecision procedures that can be stated abstractly.

• We present a reusable library of Isabelle/HOL definitions, lemmas, and proofs that supports
the methodology. These concern atoms, terms, substitutions, and derivation chains.

In addition, we offer a few “proof pearls”—smaller proving puzzles that illustrate specific tech-
niques and that we find instructive or elegant.

Our work is connected to the IsaFoL (Isabelle Formalization of Logic) project,1 which aims
at developing a library of results about logic and automated reasoning. The Isabelle source files
are available in the IsaFoL repository2 and in the Archive of Formal Proofs.3 The parts specific
to the functional prover refinement amount to about 4000 lines of source text. A convenient way
to study the files is to open them in the Isabelle/jEdit [Wenzel, 2012] development environment,
as explained in the repository’s readme file. This will ensure that logical symbols are rendered
properly and will let you inspect proof states. The files were created using Isabelle version 2017,
but the repositories will be updated to track Isabelle’s evolution.

2 Isabelle/HOL
Isabelle [Nipkow and Klein, 2014; Nipkow et al., 2002] is a generic proof assistant that sup-
ports multiple object logics. Its most developed instantiation, Isabelle/HOL, provides a version
of classical higher-order logic (HOL) [Church, 1940] that supports rank-1 (top-level) polymor-
phism, Haskell-style type classes, and Hilbert’s choice operator. Unlike the type theories that
underlie Agda [Bove et al., 2009] and Coq [Bertot and Castéran, 2004], HOL has no built-in
notion of computation or executability. Nonetheless, a substantial fragment of HOL corresponds
closely to Standard ML or Haskell and can be exported to these languages using a code generator
[Haftmann and Nipkow, 2010].

Isabelle’s syntax is inspired by both ML and traditional mathematical conventions. The types
are built from type variables ′a, ′b, . . . and n-ary type constructors, normally written in postfix
notation (e.g., ′a list). The infix type constructor ′a ⇒ ′b is interpreted as the (total) function
space from ′a to ′b. Propositions are terms of type bool , a datatype equipped with the constructors
False and True. The familiar logical symbols ∀, ∃, ¬, ∧, ∨, =�⇒, ⇐⇒, and = are normal functions,
although the quantifiers and equality on functions fall outside the executable fragment.

Isabelle adheres to a tradition initiated by the LCF system [Gordon et al., 1979]: All logical
inferences are derived by a small trusted kernel, and types and functions are defined rather
than axiomatized to guard against inconsistencies. Isabelle/HOL provides high-level specification
mechanisms inspired by typed functional programming (e.g., ML) and logic programming (e.g.,
Prolog). These let us define large classes of types and operations, such as inductive datatypes,
recursive functions, inductive predicates, and their coinductive counterparts. For example, the
codatatype and corec commands [Biendarra et al., 2017] can be used to define codatatype
and productive corecursive functions in the style of Haskell, and the coinductive command
can be used to introduce coinductive predicates. Internally, Isabelle synthesizes suitable low-
level nonrecursive definitions and derives the user specifications via primitive inferences. This
foundational approach allows the system to provide a highly expressive, trustworthy specification
language.

1https://bitbucket.org/isafol/isafol/wiki/Home
2https://bitbucket.org/isafol/isafol/src/master/Functional_Ordered_Resolution_Prover/
3https://isa-afp.org/entries/Ordered_Resolution_Prover.html

75

https://bitbucket.org/isafol/isafol/wiki/Home
https://bitbucket.org/isafol/isafol/src/master/Functional_Ordered_Resolution_Prover/
https://isa-afp.org/entries/Ordered_Resolution_Prover.html

Isabelle proofs are expressed in a language called Isar [Wenzel, 2007]. It encourages a declar-
ative, hierarchical style reminiscent of the format suggested by Lamport [1995], but with al-
phanumeric labels to identify intermediate proof steps. Isar also supports low-level tactics that
manipulate the proof state directly, similar to those offered by Coq and other systems [Milner,
1984].

Most Isabelle formalizations are structured using locales [Ballarin, 2014]. A locale is a pa-
rameterized module, similar to an ML functor. The parameters may be types or terms satisfying
some assumptions. For example, Isabelle/HOL provides the following basic specifications:

locale semigroup =
fixes ∗ :: ′a⇒ ′a⇒ ′a
assumes (a ∗ b) ∗ c = a ∗ (b ∗ c)

locale monoid = semigroup +
fixes 1 :: ′a
assumes 1 ∗ a = a and a ∗ 1 = a

The semigroup locale is parameterized by a type ′a and a binary operation ∗ on ′a, which must
be associative. The monoid locale inherits these parameters and assumptions and enriches them
with a constant 1 assumed to be left- and right-neutral. Once a locale is declared, we can enter its
scope at any point in a formal development. Within a locale’s scope, we can use its parameters
and assumptions in definitions, lemma statements, and proofs.

To actually use a locale, we must instantiate the parameters with concrete types and terms.
For example, we can instantiate monoid by taking (′a, ∗, 1) to be (nat ,+, 0) or (nat ,×, 1), where
nat is the type of natural numbers and 0, 1,+,× have their usual semantics. Before we can retrieve
the definitions and lemmas from a locale, we must discharge the assumptions (e.g., 0 + a = a for
all a :: nat). If a locale is parameterized by exactly one type variable, it can be introduced as
a type class instead. This can be useful to offload some bureaucracy onto the type system, but
it has its limitations: As in Haskell, a type class can be instantiated with a given type at most
once.

3 Atoms and Substitutions
The first three refinement layers are based on an abstract library of first-order atoms and sub-
stitutions. In the fourth and final layer, the abstract framework is instantiated with concrete
datatypes and functions. We start from the library of clausal logic developed by Blanchette et al.
[2018], which is parameterized by a type ′a of logical atoms. Literals are defined as an inductive
datatype with constructors for positive and negative literals:

datatype ′a literal =
Pos ′a
| Neg ′a

The type of clauses is then defined as the abbreviation ′a clause = ′a literal multiset , where
multiset is the type constructor of finite multisets. Thus, the clause ¬A ∨ B, where A and B
are arbitrary atoms, is represented by the multiset {Neg A, Pos B}, and the empty clause ⊥ is
represented by {}. The complement operation is defined as−NegA = PosA and −PosA = NegA
for any atom A.

In automated reasoning, it is customary to view clauses as multisets of literals rather than
as sets. One reason is that multisets behave more naturally under substitution. For example,
applying the substitution {y 7→ x} to the two-literal clause p(x) ∨ p(y) results in a two-literal
clause p(x) ∨ p(x), preserving the structure of the clause.

The truth value of ground (i.e., variable-free) atoms is given by a Herbrand interpretation: a
set, of type ′a set , of all true ground atoms. The “models” predicate |= is defined as I |= A ⇐⇒

76

A ∈ I. This definition is lifted to literals, clauses, and sets of clauses in the usual way:

I |= Pos A⇐⇒ A ∈ I I |= C ⇐⇒ ∃L ∈ C. I |= L
I |= Neg A⇐⇒ A /∈ I I |= D ⇐⇒ ∀C ∈D. I |= C

A set of clauses D is satisfiable if there exists an interpretation I such that I |= D.
Ordered resolution crucially depends on a notion of substitution and of most general unifier

(MGU). These auxiliary concepts are provided by a third-party library, IsaFoR (Isabelle Formal-
ization of Rewriting) [Thiemann and Sternagel, 2009]. To reduce our dependency on external
libraries, we hide them behind abstract locales parameterized by a type of atoms ′a and a type
of substitutions ′s. We will usually think of the atoms as being first-order terms, which can be
either a variable or a symbol applied to a list of first-order terms. Another possibility would
be to use applicative first-order terms, also called λ-free higher-order terms. A substitution is
modeled as a function from variables to terms. Substitutions can be applied to first-order terms
by mapping them onto the terms’ variables.

We start by defining a locale substitution_ops that declares the basic operations on substi-
tutions: application (·), identity (id), and composition (◦):

locale substitution_ops =
fixes
· :: ′a⇒ ′s⇒ ′a and
id :: ′s and
◦ :: ′s⇒ ′s⇒ ′s

Within the locale’s scope, we introduce a number of derived concepts. Ground atoms are defined
as atoms that are left unchanged by substitutions:

is_ground A⇐⇒ ∀σ. A = A · σ

A ground substitution is a substitution whose application always results in ground atoms:

is_ground σ ⇐⇒ ∀A. is_ground(A · σ)

Nonstrict and strict generalization are defined as

generalizes A B ⇐⇒ ∃σ. A · σ = B
strictly_generalizes A B ⇐⇒ generalizes A B ∧ ¬ generalizes B A

The operators on atoms are lifted to literals, clauses, and sets of clauses. The grounding of a
clause is defined as

grounding_of C = {C · σ | is_ground σ}
The operator is lifted to sets of clauses in the obvious way. Clause subsumption is defined as

subsumes C D ⇐⇒ ∃σ. C · σ ⊆ D
strictly_subsumes C D ⇐⇒ subsumes C D ∧ ¬ subsumes D C

Unifiers and MGUs are characterized as follows, where A :: ′a set represents a unification con-
straint A1

?
= · · · ?

= Ak and S :: ′a set set represents a set of unification constraints:

is_unifier σA⇐⇒ |A · σ| ≤ 1
is_unifier σ S ⇐⇒ ∀A ∈ S . is_unifier σA

is_mgu σ S ⇐⇒ is_unifier σ S ∧ (∀τ. is_unifier τ S =�⇒ ∃γ. τ = σ ◦ γ)

77

The next locale, substitution, characterizes the substitution_ops operations using assump-
tions. A separate locale is necessary because we cannot interleave assumptions and definitions in
a single locale. In addition, substitution fixes a function for renaming clauses apart (so that they
do not share any variables) and a function that, given a list of atoms, constructs an atom with
these as subterms:

locale substitution = substitution_ops +
fixes

renamings_apart :: ′a clause list ⇒ ′s list and
atm_of_atms :: ′a list ⇒ ′a

assumes
A · id = A and
A · (σ ◦ τ) = (A · σ) · τ and
(∀A. A · σ = A · τ) =�⇒ σ = τ and
is_ground_cls (C · σ) =�⇒ ∃τ. is_ground τ ∧ C · τ = C · σ and
wf strictly_generalizes and
|renamings_apart Cs| = |Cs| and
ρ ∈ renamings_apart Cs =�⇒ is_renaming ρ and
var_disjoint (Cs · renamings_apart Cs) and
atm_of_atms As · σ = atm_of_atms Bs ⇐⇒ map (λA. A · σ) As = Bs

The above definition is presented to give a flavor of our development. We refer to the Is-
abelle theory files for the precise definitions. Inside the locale, we prove further properties of
the substitution_ops operations. Notably, we prove well-foundedness of the strictly_subsumes
predicate based on the well-foundedness of strictly_generalizes, which is stated as an assump-
tion. The atm_of_atms operation is needed for encoding a clause into a single atom in this
well-foundedness proof.

Finally, a third locale, mgu, extends substitution by fixing a function mgu :: ′a set set ⇒
′s option that computes an MGU σ given a set of unification constraints. If a unifier exists, it
returns Some σ; otherwise, it returns None.

4 Bachmair and Ganzinger’s Prover
The formalization by Schlichtkrull et al. [2018a,b] of a nondeterministic ordered resolution prover
presented by Bachmair and Ganzinger [2001] forms layer 1 of our refinement. Resolution is
first defined on ground terms and proved sound and complete with respect to a propositional
semantics. First-order ordered resolution is then defined and proved sound, and the ground
completeness result is lifted to obtain completeness of the first-order resolution prover. The
resolution inference rule is n-ary, with an optional “selection” mechanism to guide the proof
search. In this paper, we disable selection and hence only need to consider the binary case, which
can be implemented efficiently and forms the basis of modern provers such as E, SPASS, and
Vampire.

The ordered resolution calculus is parameterized by a total order > (“larger than”) on atoms.
The ground version of the calculus consists of the single inference rule

C ∨A ∨ · · · ∨A ¬A ∨D
C ∨D

where atom A must be larger than all the atoms in clause C and larger than or equal to all the
atoms in clause D. The side condition is not necessary for soundness, but it rules out many un-

78

necessary inferences, thereby pruning the search space. Because clauses are defined as multisets,
the order of the literals in a clause is immaterial; ¬A ∨B and B ∨ ¬A are the same clause.

For first-order logic, the order on atoms > is extended to an order � on nonground atoms so
that B � A if and only if for all ground substitutions σ, we have B · σ > A · σ. The nonground
version of the calculus consists of the single inference rule

C ∨A1 ∨ · · · ∨Ak ¬A ∨D
(C ∨D) · σ

where σ is the (canonical) MGU that solves the unification problem A1
?
= · · · ?

= Ak
?
= A, each

Ai · σ is strictly �-maximal with respect to the atoms in C · σ, and A · σ is �-maximal with
respect to the atoms in D ·σ. An important detail is that to achieve completeness, the rule must
be adapted slightly to rename apart the variables occurring in different premises.

Resolution works by saturation. A set of clauses D is saturated if any conclusion from premises
in D is already in D. The ordered resolution calculus is refutationally complete, meaning that
any unsatisfiable saturated set of clauses necessarily contains ⊥.

Resolution provers exploit the calculus’s completeness in the following way. They start with a
finite set of initial clauses—the input problem—and successively add conclusions from premises
in the set. If the inference rule is applied in a fair fashion on the available clauses, the set reaches
saturation at the limit; if the set is unsatisfiable, this means ⊥ is eventually derived, after finitely
many steps. Crucially, not only do efficient provers add clauses to their working set, they also
remove clauses that are deemed redundant. This requires a refined notion of saturation. We call
a set of clauses D saturated up to redundancy, formally saturated_upto D, if any inference from
nonredundant clauses in D yields a redundant conclusion.

Bachmair and Ganzinger’s nondeterministic first-order prover, called RP, captures the “dy-
namic” aspects of saturation. It builds on the first-order ordered resolution rule and a redun-
dancy criterion. The redundant clauses are those that are tautological (i.e., clauses of the form
C ∨ A ∨ ¬A) and those that are subsumed by another clause in the working set—for example,
the clauses B and A∨B are both subsumed if the working set already contains B. Furthermore,
RP takes advantage of subsumption resolution, which can be expressed as an inference rule:

D ∨ L C ∨ (D ∨ −L) ·σ
C ∨D ·σ

The conclusion subsumes the second premise, which may therefore be deleted.
The RP prover is defined as an inductive predicate on states, where a state is a triple

S = (N ,P ,O) of new clauses N, processed clauses P , and old clauses O. Initially, N is the
input problem (including the negated conjecture), and P ∪O is empty. Clauses can be removed
if they are tautological or subsumed or after subsumption resolution has been applied. When
all clauses in N have been processed (either removed entirely or moved to P), a clause from P
can be chosen for inference computation: This clause is moved to O, and all its conclusions with
premises from the other old clauses are introduced to form the new N.

In Isabelle, an inductive predicate is specified as a set of Horn-style introduction rules, as in
Prolog, but with the conclusion on the right. RP is defined as follows:

inductive :: ′a state ⇒ ′a state ⇒ bool where
Neg A ∈ C ∧ Pos A ∈ C =�⇒ (N ∪ {C},P ,O) 1 (N ,P ,O)
| D ∈ P ∪O ∧ subsumes D C =�⇒ (N ∪ {C},P ,O) 2 (N ,P ,O)
| D ∈ N ∧ strictly_subsumes D C =�⇒ (N ,P ∪ {C},O) 3 (N ,P ,O)
| D ∈ N ∧ strictly_subsumes D C =�⇒ (N ,P ,O ∪ {C}) 4 (N ,P ,O)
| D ∈ P ∪O ∧ reduces D C L =�⇒ (N ∪ {C] {L}},P ,O) 5 (N ∪ {C},P ,O)

79

| D ∈ N ∧ reduces D C L =�⇒ (N ,P ∪ {C] {L}},O) 6 (N ,P ∪ {C},O)
| D ∈ N ∧ reduces D C L =�⇒ (N ,P ,O ∪ {C] {L}}) 7 (N ,P ∪ {C},O)
| (N ∪ {C},P ,O) 8 (N ,P ∪ {C},O)
| ({},P ∪ {C},O) 9 (concl_of ‘ infers_between O C,P ,O ∪ {C})

Subscripts on identify the rules. The notation f ‘ X stands for the image of the set (or
multiset) X under function f, infers_between O C calculates all the inferences whose premises
are a subset of O ∪ {C} that contains C, and reduces D C L ⇐⇒ ∃D′ L′ σ. D = D′] {L′} ∧
−L = L′ · σ ∧ D′ · σ ⊆ C.
Example 4.1. There are many ways to derive ⊥ from the unsatisfiable clause set {p(x), ¬p(a)∨
¬p(b)}. The derivation on the left-hand side below relies on the two mandatory rules (rules
8 and 9). On the right-hand side, we show a shorter derivation that exploits reduction and
subsumption to avoid performing resolution inferences. In both cases, we assume a reasonable
term order.

({p(x), ¬p(a) ∨ ¬p(b)}, {}, {}) ({p(x), ¬p(a) ∨ ¬p(b)}, {}, {})
 8 ({¬p(a) ∨ ¬p(b)}, {p(x)}, {}) 8 ({¬p(a) ∨ ¬p(b)}, {p(x)}, {})
 8 ({}, {p(x), ¬p(a) ∨ ¬p(b)}, {}) 5 ({¬p(b)}, {p(x)}, {})
 9 ({}, {¬p(a) ∨ ¬p(b)}, {p(x)}) 5 ({⊥}, {p(x)}, {})
 9 ({¬p(a)}, {}, {p(x), ¬p(a) ∨ ¬p(b)}) 3 ({⊥}, {}, {})
 8 ({}, {¬p(a)}, {p(x), ¬p(a) ∨ ¬p(b)}) 8 ({}, {⊥}, {})
 9 ({⊥}, {}, {p(x), ¬p(a) ∨ ¬p(b), ¬p(a)}) 9 ({}, {}, {⊥})
 8 ({}, {⊥}, {p(x), ¬p(a) ∨ ¬p(b), ¬p(a)})
 9 ({}, {}, {p(x), ¬p(a) ∨ ¬p(b), ¬p(a), ⊥})

Example 4.2. The next example shows that RP can diverge even on unsatisfiable clause sets:

({¬p(a, a), p(x, x), ¬p(f(x), y) ∨ p(x, y)}, {}, {})
 +

8 ({}, {¬p(a, a), p(x, x), ¬p(f(x), y) ∨ p(x, y)}, {})
 9 ({}, {¬p(a, a), p(x, x)}, {¬p(f(x), y) ∨ p(x, y)})
 9 ({p(x, f(x))}, {¬p(a, a)}, {¬p(f(x), y) ∨ p(x, y), p(x, x)})
 8 ({}, {¬p(a, a), p(x, f(x))}, {¬p(f(x), y) ∨ p(x, y), p(x, x)})
 9 ({p(x, f(f(x)))}, {¬p(a, a)}, {¬p(f(x), y) ∨ p(x, y), p(x, x), p(x, f(x))})
 8 · · ·

We can leave ¬p(a, a) in P forever and always generate more clauses of the form p(x, fi(x)), for
increasing values of i. This emphasizes the importance of employing a fair strategy for moving
clauses from P to O.

Formally, a derivation is a possibly infinite sequence of states S0 S1 S2 · · · . In
Isabelle, this is expressed by the codatatype of lazy lists:

codatatype ′a llist =
LNil
| LCons ′a (′a llist)

Lazy list operation names are prefixed by an L or l to distinguish them from the corresponding
operations on finite lists. For example, lhd xs yields xs’s head (if xs 6= LNil), and lnth xs i yields
the (i+ 1)st element of xs (if i < |xs|).

We capture the mathematical notation S0 S1 S2 · · · formally as chain () Ss,
where Ss is a lazy list of states and chain is a coinductive predicate:

80

coinductive chain :: (′a⇒ ′a⇒ bool)⇒ ′a llist ⇒ bool where
chain R (LCons x LNil)
| chain R xs ∧ R x (lhd xs) =�⇒ chain R (LCons x xs)

Coinduction is used to allow infinite chains. The base case is needed to allow finite chains. Chains
cannot be empty.

Another important notion is that of the limit of a sequence Xs of sets. It is defined as the set
of elements that are members of all positions of Xs except for an at most finite prefix:

definition Liminf :: ′a set llist ⇒ ′a set where
Liminf Xs =

⋃
i<|Xs|

⋂
j:i≤j<|Xs| lnth Xs j

Liminf and other operators working on clause sets are lifted pointwise to states. For example, the
limit of a sequence of states is defined as Liminf Ss = (Liminf Ns, Liminf Ps, Liminf Os), where
Ns, Ps, and Os are the projections of the N , P , and O components of Ss. For the rest of this
section, we assume that Ss is a derivation.

The soundness theorem states that if RP derives ⊥ (represented by the multiset {}) from a
set of clauses, that set must be unsatisfiable:

theorem RP_sound :
{} ∈ Liminf Ss =�⇒ ¬ satisfiable (grounding_of (lhd Ss))

A stronger, finer-grained notion of soundness relates models before and after a transition:

theorem RP_model :
S S ′ =�⇒ (I |= grounding_of S ′ ⇐⇒ I |= grounding_of S)

The canonical way of expressing the unsatisfiability of a set or multiset of first-order clauses with
respect to Herbrand interpretations is as the unsatisfiability of its grounding.

Completeness of the prover can only be guaranteed when its rules are executed in a fair
order, such that clauses do not get stuck forever in N or P. Accordingly, fairness is defined as
Liminf Ns = Liminf Ps = {}. The completeness theorem states that the limit of a fair derivation
is saturated:

theorem RP_saturated_if _fair :
fair Ss =�⇒ saturated_upto (Liminf (grounding_of Ss))

In particular, if the initial problem is unsatisfiable, ⊥ must appear in the O component of the
limit of any fair derivation:

corollary RP_complete_if _fair :
fair Ss ∧ ¬ satisfiable (grounding_of (lhd Ss)) =�⇒ {} ∈ O_of (Liminf Ss)

5 Ensuring Fairness
The second refinement layer is the prover RPw, which ensures fairness by assigning a weight to
every clause and by organizing the set of processed clauses—the P component of a state—as
a priority queue, where lighter clauses are chosen before heavier clauses. By assigning heavier
weights to newer clauses, we can guarantee that all derivations are fair.

Another necessary ingredient for completeness is that derivations must be complete; for ex-
ample, the incomplete derivation consisting of the single state ({C}, {}, {}) is not fair because
C is never processed. This requirement is expressed formally as full_chain (w) Ss, where the
full_chain predicate is defined coinductively as

81

coinductive full_chain :: (′a⇒ ′a⇒ bool)⇒ ′a llist⇒ bool where
(∀y. ¬ R x y) =�⇒ full_chain R (LCons x LNil)
| full_chain R xs ∧ R x (lhd xs) =�⇒ full_chain R (LCons x xs)

and characterized by the equivalence

lemma full_chain_iff _chain:
full_chain R xs ⇐⇒ chain R xs ∧ (lfinite xs =�⇒ ∀y. ¬ R (llast xs) y)

For the rest of this section, we fix a full chain Ss such that P_of (lhd Ss) = O_of (lhd Ss) = {}.
Because each RPw rule corresponds to an RP rule, it is straightforward to lift the soundness

and completeness results from RP to RPw. The main difficulty is to show that the priority queue
ensures fairness of full derivations, which is needed to obtain an unconditional completeness
theorem for RPw, without the assumption fair Ss.

5.1 Definition
The weight of a clause C, which defines its priority in the queue, may depend both on the clause
itself and on when it was generated. As a result, the RPw prover represents clauses by a pair
(C, i), where i is the timestamp—the larger the timestamp, the newer the clause. A state is
now a quadruple S = (N ,P ,O, t), where the first three components are finite multisets and t is
the timestamp to assign to the next generation of clauses. Formally, we have the following type
abbreviations:

type_synonym ′a wclause = ′a clause × nat
type_synonym ′a wstate =
′a wclause multiset × ′a wclause multiset × ′a wclause multiset × nat

We extend the FO_resolution_prover locale, in which RP is defined, with a weight function
that, for any given clause, is strictly monotone with respect to the timestamp, so that older
copies of a clause are preferred to newer ones:

locale weighted_FO_resolution_prover = FO_resolution_prover +
fixes weight :: ′a wclause ⇒ nat
assumes i < j =�⇒ weight (C, i) < weight (C, j)

The RPw prover uses ′a wclause for clauses. It is defined inductively as follows:

inductive w :: ′a wstate ⇒ ′a wstate ⇒ bool where
Neg A ∈ C ∧ Pos A ∈ C =�⇒ (N] {(C, i)},P ,O, t) w1 (N ,P ,O, t)
| D ∈ fst ‘ (P]O) ∧ subsumes D C =�⇒ (N + {(C, i)},P ,O, t) w2 (N ,P ,O, t)
| D ∈ fst ‘N ∧ C ∈ fst ‘ P ∧ strictly_subsumes D C =�⇒

(N ,P ,O, t) w3 (N , {(E, k) ∈ P . E 6= C},O, t)
| D ∈ fst ‘N ∧ strictly_subsumes D C =�⇒ (N ,P ,O] {(C, i)}, t) w4 (N ,P ,O, t)
| D ∈ fst ‘ (P]O) ∧ reduces D C L =�⇒

(N] {(C] {L}, i)},P ,O, t) w5 (N] {(C, i)},P ,O, t)
| D ∈ fst ‘N ∧ reduces D C L ∧ (∀j. (C] {L}, j) ∈ P =�⇒ j ≤ i) =�⇒

(N ,P] {(C] {L}, i)},O, t) w6 (N ,P] {(C, i)},O, t)
| D ∈ fst ‘N ∧ reduces D C L =�⇒ (N ,P ,O]{(C]{L}, i)}, t) w7 (N ,P]{(C, i)},O, t)
| (N] {(C, i)},P ,O, t) w8 (N ,P] {(C, i)},O, t)
| (∀(D, j) ∈ P . weight (C, i) ≤ weight (D, j)) ∧
N = mset_set ((λD. (D, t)) ‘ concl_of ‘ infers_between (set_mset (fst ‘O)) C) =�⇒
({},P] {(C, i)},O, t) w9 (N , {(D, j) ∈ P . D 6= C},O] {(C, i)}, t+ 1)

82

where fst is the function that returns the first component of a pair, mset_set converts a set to
the multiset with exactly one copy of each element in the set, and set_mset converts a multiset
to the set of elements in the multiset. Each RPw rule i corresponds to RP rule i.

RPw uses finite multisets for representing N , P , and O. They offer a compromise between
the layer 1 representation as sets and the layer 3 implementation as lists. Finite multisets help
eliminate some unfair derivations:

• The finiteness condition guarantees that each clause in N gets the opportunity to move to
P (and further to O).

• The set-based RP allows idle transitions, such as (N ∪ {C},P ,O) (N ,P ∪ {C},O)
where C ∈ N ∩ P . The use of multisets and] precludes such steps in RPw.

In the inductive definition of RPw, the last rule, which computes inferences, assigns times-
tamp t to each newly computed clause D and increments t. Since we want P to work as a priority
queue, we let the prover choose a clause C with the smallest weight.

Timestamps are preserved when clauses are moved between N , P , and O. They are also
preserved by reduction steps (rules 5 to 7), even though reduction alters the clauses by removing
unnecessary literals. This works because reduction can only happen finitely many times—a k-
literal clause can be reduced at most k times. Therefore, there is no danger of divergence due to
an infinite chain of reductions. Incidentally, it would also be possible to assign the current t as the
reduced clause’s timestamp, but this would effectively penalize the clause, for no good reason.
If anything, a reduced clause becomes more interesting, not less; after all, the most interesting
clause by far is ⊥.

Timestamps introduce a new danger. It may be the case that a clause C is in a limit (of
a sequence of states or of a state component) if we project away the timestamps, but that no
single timestamped clause (C, i) belongs to the limit, because the timestamps keep changing,
as in the infinite sequence {(C, 0)}, {(C, 1)}, {(C, 2)}, This could in principle arise due to
subsumption, leading to derivations such as

(_, _] {(C, 0)}, _)
(_, _] {(C, 0), (C, 1)}, _) (_, _] {(C, 1)}, _) +

(_, _] {(C, 1), (C, 2)}, _) (_, _] {(C, 2)}, _) + · · ·

To prevent this behavior, the RPw rules are formulated so that whenever they remove the earliest
copy of any clause C ∈ P , they also remove all its copies from P . This property is captured by
the following lemma, which is proved by case distinction on the rules:

lemma preserve_min_P :
S w S ′ ∧ (C, i) ∈ P_of S ∧ (∀k. (C, k) ∈ P_of S =�⇒ k ≥ i) ∧ C ∈ fst ‘ P_of S ′ =�⇒
(C, i) ∈ P_of S ′

This completes our review of RPw. As an intermediate step towards a more concrete prover,
we restrict the weight function to be a linear equation that considers both timestamps and clause
sizes:

locale weighted_FO_resolution_prover_with_size_timestamp_factors = FO_resolution_prover +
fixes
| | :: ′a⇒ nat and
size_factor :: nat and
timestamp_factor :: nat

assumes

83

timestamp_factor > 0
begin
fun weight :: ′a wclause ⇒ nat where

weight (C, i) = size_factor ∗ |C|+ timestamp_factor ∗ i
end

where |C| =
∑

A :A∈C∨¬A∈C |A|. It is easy to prove that this definition of weight is strictly
monotone and hence that this locale is a sublocale of weighted_FO_resolution_prover. This
gives us a correspondingly specialized version of RPw that will form the basis of further refinement
steps.

The idea of organizing P as a priority queue is well known in the automated reasoning
community. It is mentioned in a footnote in Bachmair and Ganzinger [2001, p. 44], but they
require their weight function to be monotone not only in the timestamp but also in the clause
size, claiming that this is necessary to ensure fairness. Although it often makes sense to prefer
small clauses to large ones, our proof reveals that clause size is irrelevant for fairness, even
in the presence of reductions. This demonstrates how working out the details and making all
assumptions explicit using a proof assistant can help us clarify fine theoretical points.

Example 5.1. The following derivation, based on the function weight (C, i) = |C| + i, follows
the second derivation of Example 4.1:

({(p(x), 0), (¬p(a) ∨ ¬p(b), 0)}, {}, {}, 1)

 w8 ({(¬p(a) ∨ ¬p(b), 0)}, {(p(x), 0)}, {}, 1)

 w8 ({}, {(p(x), 0), (¬p(a) ∨ ¬p(b), 0)}, {}, 1)

 w9 ({}, {(¬p(a) ∨ ¬p(b), 0)}, {(p(x), 0)}, 2)

 w9 ({(¬p(a), 2)}, {}, {(p(x), 0), (¬p(a) ∨ ¬p(b), 0)}, 3)

 w8 ({}, {(¬p(a), 2)}, {(p(x), 0), (¬p(a) ∨ ¬p(b), 0)}, 3)

 w9 ({(⊥, 3)}, {}, {(p(x), 0), (¬p(a) ∨ ¬p(b), 0), (¬p(a), 2)}, 4)

 w8 ({}, {(⊥, 3)}, {(p(x), 0), (¬p(a) ∨ ¬p(b), 0), (¬p(a), 2)}, 4)

 w9 ({}, {}, {(p(x), 0), (¬p(a) ∨ ¬p(b), 0), (¬p(a), 2), (⊥, 3)}, 5)

Due to the weight function, the clause p(x) must be moved from P to O before ¬p(a) ∨ ¬p(b).

5.2 Refinement Proofs
To lift the soundness and completeness results about RP to RPw, we must first show that any
possible behavior of RPw on states of type wstate is a possible behavior of RP on the corresponding
values of type state, without timestamps. Formally:

lemma weighted_RP_imp_RP :
S w S ′ =�⇒ state_of S state_of S ′

The proof is by straightforward induction on the introduction rules of RPw, with one difficult case.
Inference computation (rule 9) converts a set to a finite multiset using mset_set. This operation
is undefined for infinite sets. Thus, we must show that from a finite set of clauses, only a finite
set of inferences may be performed by infers_between:

lemma finite_ord_FO_resolution_inferences_between:
finite D =�⇒ finite (infers_between D C)

84

Our formal proof caters for n-ary resolution, but in our application we only need the binary case.
A binary resolution inference takes two premises, of the form CAA = C ∨ A1 ∨ · · · ∨ Ak and
DA = ¬A∨D, and produces a conclusion E = (C ∨D) ·σ. It can be represented compactly by a
tuple of the form (CAA,DA,AA, A,E), where AA = A1 ∨ · · · ∨ Ak. We must show that the set
of such tuples returned by infers_between is finite, assuming D is finite.

First, observe that the E component of a tuple is fully determined by the other four compo-
nents. Hence it suffices to consider tuples of the form (CAA,DA,AA, A). Let DC = D ∪ {C},
and let n be the length of the longest clause in DC. Moreover, let A =

⋃
D∈DC atms_of D and

AA = {B | set_mset B ⊆ A ∧ |B| ≤ n}. Then all inferences between D and C belong to
DC ×DC ×AA ×A, which is a cartesian product of finite sets.

5.3 Soundness and Completeness Proofs
Using the refinement theorem, it is easy to lift the RP_model theorem (Section 4) to RPw:

theorem weighted_RP_model :
S w S ′ =�⇒ (I |= grounding_of S ′ ⇐⇒ I |= grounding_of S)

Completeness is considerably more difficult. We first show that the use of timestamps ensures
that all full RPw derivations are fair. From this fact follows unconditional completeness.

In principle, a full derivation could be unfair by virtue of being finite and ending in a state
such as N or P is nonempty. However, this is impossible because a transition of rule 8 or 9 could
then be taken from the last state, contradicting the hypothesis that the derivation is full. Hence,
finite full derivations are necessarily fair:

lemma fair_if _finite:
lfinite Ss =�⇒ fair (lmap state_of Ss)

There are two ways in which an infinite derivation Ss in RPw could be unfair: A clause could
get stuck forever in N , or in P . We show that the N case is impossible by defining a measure
on states that decreases with respect to the lexicographic extension of > on natural numbers to
pairs, which is a well-founded relation. The measure is

abbreviation RP_basic_measure :: ′a wstate ⇒ nat2 where
RP_basic_measure (N ,P ,O, t) ≡

(
sum ((λ(C,_). |C|+ 1) ‘ (N] P]O)), |N |

)

The first component of the pair is the total size of all the clauses in the state, plus 1 for each
clause to ensure that empty clauses are counted. The second component is the number of clauses
in N .

It is easy to see why the measure is decreasing. Rule 9, inference computation, is not applicable
due to our assumption that a clause remains stuck in N . Rule 8, which moves a clause from N
to P , decreases the measure’s second component while leaving the first component unchanged.
The other rules decrease the first component since they remove clauses or literals. Formally:

lemma weighted_RP_basic_measure_decreasing_N :
S w S ′ ∧ (C,_) ∈ N_of S =�⇒
(RP_basic_measure S ′, RP_basic_measure S) ∈ RP_basic_rel

where RP_basic_rel = natLess <lex> natLess.
What about the case where a clause C is stuck in P? Lemma preserve_min_P (Section 5.1)

states that in any step, either all copies of a clause C ∈ P are removed or the one with minimum
timestamp is preserved. It follows that C’s timestamp will either remain stable or decrease over
time. Since > is well founded on natural numbers, eventually a fixed i will be reached and will
belong to the limit:

85

lemma persistent_wclause_in_P_if _persistent_clause_in_P :
C ∈ Liminf (lmap P_of (lmap state_of Ss)) =�⇒
∃i. (C, i) ∈ Liminf (lmap (set_mset ◦ P_of) Ss)

Again, we define a measure, but it must also decrease when inferences are computed and
new clauses appear in N . (In this case, RP_basic_measure may increase.) Our new measure is
parameterized by a predicate p that can be used to filter out undesirable clauses:

abbreviation RP_filtered_measure :: (′a wclause ⇒ bool)⇒ ′a wstate ⇒ nat3 where
RP_filtered_measure p (N ,P ,O, t) ≡(
sum ((λ(C,_). |C|+1)‘{Di ∈ N]P]O | pDi}), |{Di ∈N | pDi}| , |{Di ∈ P | pDi}|

)

Notice that RP_filtered_measure (λ_. True) essentially amounts to RP_basic_measure. In the
formalization, we use RP_filtered_measure (λ_. True) to avoid code duplication.

Suppose the clause C that is stuck in P has weight w in the limit, and suppose that a clause
D is moved from P to O by the inference computation rule. That clause’s weight must be at
most w; otherwise, it would not have been preferred to C.

Infinite derivations necessarily consist of segments each consisting of finitely many applica-
tions of rules other than rule 9 followed by an application of rule 9: (∗w1–8 ◦ w9)ω. Since each
application of rule 9 increases the t component of the state, eventually we reach a state in which
t > w. As a consequence of strict monotonicity of weight, any clauses generated by inference
computation from that point on will have weights above C’s, and if C remains stuck, then so
must these clauses. Thus, we can ignore these clauses altogether, by using λ(C, i). i ≤ w as the
filter p.

We adapt the corresponding relation to consider the extra argument:

abbreviation RP_filtered_rel :: (nat3)2 set where
RP_filtered_rel ≡ natLess <lex> natLess <lex> natLess

The measure RP_filtered_measure (λ(_, i). i ≤ w) decreases in steps occurring between
inference computations and for all steps once we have reached a state where t > w (at which
point all inference computations are blocked by C). To obtain a measure that also decreases on
inference computation, we add a component w+ 1− t to the measure. We also add a component
RP_basic_measure S to the measure to ensure that it decreases when a clause (C, i) such that
i > w is simplified. This yields the combined measure

abbreviation RP_combined_measure :: nat ⇒ ′a wstate ⇒ nat × nat3 × nat3 where
RP_combined_measure w S ≡
(w + 1− t_of S , RP_filtered_measure (λ(_, i). i ≤ w) S , RP_basic_measure S)

This measure is indeed decreasing with respect to a left-to-right lexicographic order:

lemma weighted_RP_basic_measure_decreasing_P :
S w S ′ ∧ Ci ∈ P_of S =�⇒
(RP_combined_measure (weight Ci) S ′, RP_combined_measure (weight Ci) S)
∈ natLess <lex> RP_filtered_rel <lex> RP_basic_rel

By combining the two lemmas weighted_RP_basic_measure_decreasing_N and weighted_RP_basic_
measure_decreasing_P, we can prove fairness for all derivations starting with P = O = {}:

theorem weighted_RP_fair :
fair (lmap state_of Ss)

86

Since all derivations in RPw are fair and its derivations are also derivations of RP, it is trivial to
lift RP’s saturation and completeness theorems, RP_saturated_if_fair and RP_complete_if_fair :

corollary weighted_RP_saturated :
saturated_upto (Liminf (lmap grounding_of Ss))

corollary weighted_RP_complete:
¬ satisfiable (grounding_of (lhd Ss)) =�⇒ {} ∈ O_of (Liminf (lmap state_of Ss))

6 Eliminating Nondeterminism
The third refinement layer defines a functional program RPd that embodies a specific rule ap-
plication strategy, thereby eliminating the nondeterminism present in RPw. Clauses are now
represented as lists, and multisets of clauses as lists of lists. Although the program is deter-
ministic, some auxiliary functions are specified mathematically and are not directly executable;
making these executable is the objective of the fourth refinement layer (Section 7).

6.1 Definition
Our prover corresponds roughly to the following pseudocode:

function RPd (N ,P ,O, t) is
repeat forever
if ⊥ ∈ P]O then
return P]O

else if N = P = {} then
return O

else if N = {} then
let C be a minimal-weight clause in P ;
N := conclusions of all inferences from O] {C} involving C, with timestamp t;
move C from P to O;
t := t+ 1

else
remove an arbitrary clause C from N ;
reduce C using P]O;
if C = ⊥ then
return {⊥}

else if C is neither a tautology nor subsumed by a clause in P]O then
reduce P using C;
reduce O using C, moving any reduced clauses from O to P ;
remove all clauses from P and O that are strictly subsumed by C;
add C to P

The function should be invoked with N as the input problem, P = O = {}, and an arbitrary
timestamp t. The loop is loosely modeled after the proof procedure implemented in Vampire
[Voronkov, 2014, Section 3].

Instead of finite multisets, the actual RPd definition in Isabelle uses finite lists, bringing us
closer to executable code. The # operator abbreviates the Cons constructor, and @ is the append
operator. The list-based representations compel us to introduce the following type abbreviations:

87

type_synonym ′a lclause = ′a literal list
type_synonym ′a dclause = ′a lclause × nat
type_synonym ′a dstate = ′a dclause list × ′a dclause list × ′a dclause list × nat

A state is a tuple (N ,P ,O, t) as before, but with different types.
The prover is defined inside a locale that inherits weighted_FO_resolution_prover_with_

size_timestamp_factors. The core function, RPd_step, performs a single iteration of the main
loop. Here is the complete definition, excluding auxiliary functions:

fun RPd_step :: ′a dstate ⇒ ′a dstate where
RPd_step (N ,P ,O, t) =
if ∃Ci ∈ P @O. fst Ci = [] then

([], [], remdups P @ O, t+ |remdups P |)
else

(case N of
[]⇒
(case P of

[]⇒ (N ,P ,O, t)
| P0 # P ′ ⇒

let
(C, i) = select_min_weight_clause P0 P ′;
N = map (λD. (D, t)) (remdups (resolve_rename C C

@ concat (map (resolve_rename_either_way C ◦ fst) O)));
P = filter (λ(D, j). mset D 6= mset C) P ;
O = (C, i) # O;
t = t+ 1

in
(N ,P ,O, t))

| (C, i) #N ⇒
let
C = reduce (map fst (P @O)) [] C

in
if C = [] then

([], [], [([], i)], t+ 1)
else if is_tautology C ∨ subsume (map fst (P @O)) C then

(N ,P ,O, t)
else

let
P = reduce_all C P ;
(back_to_P ,O) = reduce_all2 C O;
P = back_to_P @ P ;
O = filter ((¬) ◦ strictly_subsume [C] ◦ fst) O;
P = filter ((¬) ◦ strictly_subsume [C] ◦ fst) P ;
P = (C, i) # P

in
(N ,P ,O, t))

The code above relies on some nonexecutable constructs, such as the existential quantifier. The
quantifier is unproblematic because it ranges over a finite set, but some of the auxiliary functions
rely on infinite quantification. Notably, subsumption of D by C is defined as ∃σ. C · σ ⊆ D
(Section 3), where σ ranges over all substitutions. Nonexecutable constructs are acceptable if we

88

know that we can replace them by equivalent executable constructs further down the refinement
chain; for example, an implementation of subsumption can compute a finite set of candidates for
σ using matching, instead of blindly enumerating all possibilities.

The prover’s main program is a tail-recursive function that repeatedly calls RPd_step until
a final state, of the form ([], [],O, t), is reached, at which point it returns O stripped of its
timestamps:

partial_function (option) RPd :: ′a dstate ⇒ ′a lclause list option where
RPd S = if is_final S then Some (map fst (O_of S)) else RPd (RPd_step S)

Since there are no guarantees that the recursion will terminate, we cannot introduce the function
using the fun command [Krauss, 2006], which is restricted to well-founded recursion. Instead,
we use partial_function (option) [Krauss, 2010], which puts the computation in an option
monad. The function’s result is of the form Some R if the recursion terminates and None if
the computation diverges. Executing the function would never actually return None, but it is
convenient to define it mathematically in this way. For example, it allows us to state and prove
a characterization such as the following, which can be used to replace a terminating call RPd S
by a finite iteration RPd_stepk S :

lemma deterministic_RP_SomeD :
RPd S = Some R =�⇒ ∃S ′ k. RPd_stepk S = S ′ ∧ is_final S ′ ∧ R = map fst (O_of S ′)

6.2 Refinement Proofs
Using refinement, we connect the RPd_step function to the RPw predicate. RPd_step has a coarser
granularity than RPw: A single invocation on a nonfinal state S can amount to a chain of RPw

transitions. This is captured by the following weak-refinement property:

lemma nonfinal_deterministic_RP_step:
¬ is_final S =�⇒ wstate_of S +

w wstate_of (RPd_step S)

where wstate_of converts RPd states to RPw states. The entire proof, including key lemmas, is
about 1300 lines long. It follows the case distinctions present in the definition of RPd_step:

case ∃Ci ∈ P @O. fst Ci = []:

By induction on |remdups P |, there must exist a derivation of the form

wstate_of (N ,P ,O, t)
 ∗w2 wstate_of ([],P ,O, t)
 w9 wstate_of (N ′, P ′, (C, i) #O, t+ 1)

 ∗w wstate_of ([], [], remdups P ′ @O, t+ |remdups P ′|)

for P ′ = filter (λ(D, j). mset D 6= mset C) P and suitable N ′ and (C, i) ∈
P . The last step is justified by the induction hypothesis.

case N = P = []:

Contradiction with the assumption that (N ,P ,O, t) is a nonfinal state.

case N = []:

89

It suffices to show that the transition

wstate_of ([],P ,O, t) w9 wstate_of (N ′, P ′, (C, i) #O, t+ 1)

is possible, where (C, i) ∈ P is a minimal-weight clause and

N ′ = map (λD. (D, t)) (remdups (resolve_rename C C
@ concat (map (resolve_rename_either_way C ◦ fst) O)))

P ′ = filter (λ(D, j). mset D 6= mset C) P

The main proof obligation is that N ′, converted to multisets, equals the
multiset mset_set ((λD. (D, t)) ‘ concl_of ‘ infers_between (set_mset (fst ‘
O)) C) specified in rule w9. The distance between the functional pro-
gram and its mathematical specification is at its greatest here. The proof
is tedious but straightforward.

otherwise:

Let C ′ = reduce (map fst P @ map fst O) [] C. If C ′ = [], then

wstate_of ((C, i) #N ′,P ,O, t)
 ∗w5 wstate_of (([], i) #N ′,P ,O, t)
 ∗w3 wstate_of (([], i) #N ′, [],O, t)
 ∗w4 wstate_of (([], i) #N ′, [], [], t)
 w8 wstate_of (N ′, [([], i)], [], t)
 ∗w2 wstate_of ([], [([], i)], [], t)

 w9 wstate_of ([], [], [([], i)], t)

Otherwise, if is_tautology C ′ ∨ subsume (map fst (P @O)) C ′, then

wstate_of ((C, i) #N ,P ,O, t)
 ∗w5 wstate_of ((C ′, i) #N ,P ,O, t)
 w1,2 wstate_of (N ,P ,O, t)

Otherwise:

wstate_of ((C, i) #N ′,P ,O, t)
 ∗w5 wstate_of ((C ′, i) #N ′,P ,O, t)
 ∗w6 wstate_of ((C ′, i) #N ′,P ′,O, t)
 ∗w7 wstate_of ((C ′, i) #N ′, back_to_P @ P ′,O′, t)
 ∗w4 wstate_of ((C ′, i) #N ′, back_to_P @ P ′,O′′, t)
 ∗w3 wstate_of ((C ′, i) #N ′,P ′′,O′′, t)
 w8 wstate_of (N ′, (C ′, i) # P ′′,O′′, t)

for suitable clause lists P ′, back_to_P , O′, O′′, and P ′′.
The above refinement theorem, about computations from nonfinal states, is complemented

by the following trivial result concerning final states:

lemma final_deterministic_RP_step:
is_final S =�⇒ RPd_step S = S

90

6.3 Soundness and Completeness Proofs
Let S0 = (N0, [], [], t0) be an arbitrary initial state. For RPd, soundness means that whenever
RPd S0 terminates with some clause set R, then R is a saturation that satisfies the same models
as N0. In addition, if N0 is unsatisfiable, then R contains ⊥, which provides a simple syntactic
check for unsatisfiability. Completeness means that divergence is possible only if N0 is satisfiable.
Note that for satisfiable clause sets N0, both termination and divergence are possible.

To lift soundness and completeness results from RPw to RPd, we first define Ss as a full chain
of nontrivial RPd steps starting from S0. Formally, we let Ss = derivation_from S0, with

primcorec derivation_from :: ′a dstate ⇒ ′a dstate llist where
derivation_from S = LCons S (if is_final S then LNil else derivation_from (RPd_step S))

Based on Ss, we let wSs = lmap wstate_of Ss and note that wSs is a full chain of “big” +
w

steps. Using a lemma that will be proved in Section 6.4, we obtain a full chain sswSs of “small”
 w steps. This chain satisfies the conditions postulated on Ss in Section 5.3, allowing us to lift
the results presented there.

The soundness results are proved in a nameless locale, or context, that assumes termination:

context
fixes R :: ′a lclause list
assumes RPd S0 = Some R

The definition of RPd, using partial_function, gives us an induction rule restricted to the case
where RPd terminates (i.e., returns a Some value). This rule can be used to prove that Ss and
hence wSs and sswSs are finite sequences.

Soundness takes the form of a pair of theorems that lift weighted_RP_model and weighted_
RP_saturated :

theorem deterministic_RP_model :
I |= grounding_of N0 ⇐⇒ I |= grounding_of R

theorem deterministic_RP_saturated :
saturated_upto (grounding_of R)

Admittedly, the terminology is somewhat confusing. For RP and RPw, it is natural—indeed, it is
conform to the literature—to classify saturation as a completeness property. However, for finite
derivations, such as those considered here, saturations amount to a soundness property.

In most applications, all that matters is the satisfiability status of the set N0. It can be
retrieved syntactically:

corollary deterministic_RP_refutation:
¬ satisfiable (grounding_of N0)⇐⇒ {} ∈ R

Completeness is proved in a separate nameless locale that assumes nontermination: RPd S0 =
None. The strongest result we prove is that this assumption implies the satisfiability of N0:

theorem deterministic_RP_complete:
satisfiable (grounding_of N0)

The proof is by contradiction:

Assume that ¬ satisfiable (grounded_of N0). Hence, by weighted_RP_complete we
have {} ∈ O_of sswSs. It is easy to show that sswSs’s limit is a subset of wSs’s
limit; hence {} ∈ O_of wSs. This implies the existence of a natural number k such
that {} ∈ O_of (lnth wSs k). Hence {} ∈ O_of (RPd_stepk S0). However, by an
induction on k, we can show that RPd must terminate after at most k iterations,
contradicting the assumption that RPd diverges.

91

6.4 A Coinductive Puzzle
A single “big” step of the deterministic prover RPd may consist of multiple “small” steps of the
weighted prover RPw. To transfer the results from RPw to RPd, we must expand RPd’s big steps.
The core of the expansion is an abstract property of chains and a relation’s transitive closure:

Let R be a relation and xs a chain of R+ transitions. There exists a chain of R
transitions that embeds xs—i.e., that contains all elements of xs in the same order and
with only finitely many elements inserted between each pair of consecutive elements
of xs.

On finite chains, this property would follow by straightforward induction. But the complete-
ness proof must also consider infinite chains. To prove the property on infinite chains requires us
to use coinduction and corecursion up-to techniques.

The desired property is formalized as follows:

lemma chain_tranclp_imp_exists_chain:
chain R+ xs =�⇒ ∃ys. chain R ys ∧ xs v ys ∧ lhd xs = lhd ys ∧ llast xs = llast ys

where the embedding v of lazy lists is defined coinductively using the function ++, which
prepends a finite list to a lazy list:

coinductive v :: ′a llist ⇒ ′a llist ⇒ bool where
lfinite xs =�⇒ LNil v xs
| xs v ys =�⇒ LCons x xs v zs ++ LCons x ys

fun ++ :: ′a list ⇒ ′a llist ⇒ ′a llist where
[] ++ xs = xs
| (z # zs) ++ xs = LCons z (zs ++ xs)

The definition of v ensures that infinite lazy lists only embed other infinite lazy lists, but not
the finite ones. Formally: xs v ys =�⇒ (lfinite xs ⇐⇒ lfinite ys). The unguarded calls to llast may
seem worrying, but the function is conveniently defined to always return the same unspecified
element for infinite lists (i.e., ¬ lfinite xs ∧ ¬ lfinite ys =�⇒ llast xs = llast ys).

To prove chain_tranclp_imp_exists_chain, we instantiate the existential quantifier by the
following corecursively defined witness:

corec wit :: (′a⇒ ′a⇒ bool)⇒ ′a llist ⇒ ′a llist where
wit R xs = (case xs of

LCons x (LCons y ys)⇒ LCons x (pick R x y ++ wit R (LCons y ys))
| _⇒ xs)

Here pick R x y returns an arbitrary finite list of R-related intermediate states connecting the
R+-related states x and y . Formally,

pick R x y = SOME zs. chain R (llist_of (x # zs @ [y]))

where llist_of converts finite lists into lazy list and SOME is Hilbert’s choice operator. Thus, pick
satisfies the characteristic property R+ x y =�⇒ chain R (llist_of (x # pick R x y @ [y])). The use
of Hilbert choice makes pick, and wit, nonexecutable. This is acceptable because these constants
are used only in the proofs and not in the actual prover’s code.

The definition of wit is not primitively corecursive. Although there is a guarding LCons con-
structor, the corecursive call occurs under ++, which makes the productivity of this function sub-
tle. This syntactic structure of the definition is called corecursive up to ++. Ultimately, wit is pro-
ductive because ++ does not remove any LCons constructors from its second arguments. A slightly

92

weaker requirement, called friendliness, is supported by Isabelle’s corec command [Blanchette
et al., 2017]. Hence, ++ must be registered as a “friend,” which involves a one-line proof, for the
above definition to be accepted by Isabelle.

The four conjuncts in chain_tranclp_imp_exists_chain are then discharged separately under
the common assumption chain R+ xs. In increasing difficulty: lhd (wit R xs) = lhd xs follows by
simple rewriting. Next, llast (wit R xs) = llast xs requires an induction in the case of finite chains
xs. For any infinite chain zs of type ′a llist , llast zs is defined as a fixed but not further specified
value of type ′a. The properties xs v wit R xs and chain R (wit R xs) require a coinduction
on v and chain, respectively. In keeping with the definitional principle of corecursion up to ++,
plain coinduction on v and chain does not suffice and we must use coinduction up to ++ on v
and chain. We contrast the coinduction (left) and coinduction up to ++ (right) rules for chain:

∀xs. P xs =�⇒ (∃z . xs = LCons z Nil) ∨
(∃z zs. xs = LCons z zs ∧

P zs ∧ R z (lhd zs))

∀xs. P xs =�⇒ chain R xs

∀xs. P xs =�⇒ (∃z . xs = LCons z Nil) ∨
(∃z zs ys . xs = LCons z (ys ++ zs) ∧

P zs ∧ chain R (z # ys @ [lhd zs])

∀xs. P xs =�⇒ chain R xs

The property chain_tranclp_imp_exists_chain easily extends to full chains (because the last
element in the case of finite chains remains unchanged), as required in Section 6.3.

7 Obtaining Executable Code
Our deterministic prover RPd is already quite close to being an executable program. There are
two main ingredients missing: a concrete representation of terms, over which we have abstracted
so far, and an executable algorithm for clause subsumption.

7.1 First-Order Terms
First-order terms are a core data structure in various fields of computer science, be it logic,
rewriting, (tree) automata theory, or programming languages (as types of the simply typed
λ-calculus). It should be no surprise that various formalizations of terms exist. We instantiate
our abstract notion of atoms using a particularly comprehensive formalization of terms developed
as part of the IsaFoR library [Thiemann and Sternagel, 2009]. This rewriting-independent part of
IsaFoR has recently migrated to the Archive of Formal Proofs [Sternagel and Thiemann, 2018].

IsaFoR terms are defined as the following datatype:

datatype (′f, ′v) term =
Var ′v
| Fun ′f ((′f, ′v) term list)

To simplify notation, in this paper we fix ′f = ′v = nat and abbreviate (′f, ′v) term by term. In
the formalization, polymorphic types are used whenever possible. IsaFoR also defines the standard
monadic term substitution · :: term ⇒ (′v ⇒ term) ⇒ term and a function unify :: (term ×
term) list ⇒ lsubst ⇒ lsubst , where lsubst = (′v × term) list is the list-based representation of a
finite substitution. The function unify computes the MGU for a list of unification constraints that
is compatible with a given substitution. IsaFoR includes a wealth of theorems about the defined
functions, including the correctness of unify and the well-foundedness of strict term generalization
> :: term ⇒ term ⇒ bool defined by t > s⇐⇒ (∃σ. s · σ = t) ∧ (@σ. t · σ = s).

93

This infrastructure allows us to conveniently instantiate our locales substitution_ops, substitution,
and mgu. We instantiate the type ′a of atoms with term and the type ′s of substitutions with
′v ⇒ term and the constants ·, id, ◦, and atm_of_atms with ·, Var, λσ τ x. σ x · τ , and Fun 0,
respectively. (The function symbol name 0 is arbitrary.) For the computation of the MGU, there
is a slight type mismatch: IsaFoR offers a list-based unifier, whereas our locale requires the type
term set set ⇒ (′v ⇒ term) option. It is easy to translate a finite set of finite sets of terms
(where the inner sets of terms are the ones to be unified) into a finite list of pairs of constraints.
To be executable, the translation requires us to sort the terms contained in a set with respect to
some arbitrary (but executable) linear order on terms.

Only the function renamings_apart was not present in IsaFoR. We supply this definition:

fun renamings_apart :: term clause list ⇒ (′v ⇒ term) list where
renamings_apart [] = []
| renamings_apart (C # Cs) =

let
σs = renamings_apart Cs;
σ = λv. v + max ({0} ∪ vars_clause_list (Cs · σs)) + 1

in σ # σs

where vars_clause_list :: term clause list ⇒ ′v set returns the variables contained in a list of
clauses. The creation of fresh variable names relies on ′v = nat.

Finally, the FO_resolution_prover locale further requires that the type of atoms supports
two comparison operators: a well-order > and a comparison � that is stable under substitution
(i.e., B � A =�⇒ B ·σ � A ·σ). Moreover, > and � must coincide on ground atoms. Our approach
is to instantiate � with the Knuth–Bendix order (KBO) [Knuth and Bendix, 1970] on terms,
which is formalized in IsaFoR [Sternagel and Thiemann, 2013]. KBO is executable, stable under
substitution, well founded, and total on ground terms. The well-order >, which must be total
on all terms, is then defined as an arbitrary extension of a partial well-founded order � to a
well-order, using Hilbert choice. This makes > nonexecutable, which is unproblematic given that
> is used only in proofs and not in the actual prover’s code (which relies on �).

Working with different orders poses a slight technical challenge in Isabelle. Orders are orga-
nized as type classes, which are comfortable to work with as they hide the order assumption.
However, a type class can be instantiated with a concrete order at most once—in our case by
>. This instantiation propagates to subsequent definitions, such as sorting or computing the
minimum. To use a different order for sorting, we must resort to lower-level definitions that are
explicitly parameterized by the comparison operation. This is inconvenient when we are defining
programs and even more so when we are reasoning about them.

7.2 Clause Subsumption
The second hurdle concerns clause subsumption. Its mathematical definition, subsumes C D ⇐⇒
∃σ. C · σ ⊆ D, involves an infinite quantification ranging over substitutions.

The problem of deciding whether such a substitution exists is NP-complete [Kapur and Naren-
dran, 1986]. We start with the following naive code. In contrast to the mathematical definition,
which operates on multisets of literals, our function operates on lists:

fun subsumes_list :: term literal list ⇒ term literal list ⇒ osubst ⇒ bool where
subsumes_list [] Ks σ = True
| subsumes_list (L# Ls) Ks σ =

(∃K ∈ set Ks. is_pos K = is_pos L ∧

94

case match_term_list [(atm_of L, atm_of K)] σ of
None⇒ False
| Some ρ⇒ subsumes_list Ls (remove1 K Ks) ρ)

In the type declaration, osubst abbreviates ′v ⇒ term option. The function recurses on its first
argument. In the recursive case, we must consider all possible matching literals for L from Ks
compatible with the substitution σ. The bounded existential quantification that expresses this
nondeterminism can be executed by iterating over the finite list Ks. The functions is_pos and
atm_of are the discriminator and selector for literals. The function match_term_list is provided
by IsaFoR. It attempts to extend a given substitution into Some matcher for a list of matching
constraints, given as term pairs. If the extension is impossible, match_term_list returns None.
This substitution-passing style is typical of purely functional implementations of unification and
matching procedures and is inherited by our subsumes_list.

It is easy to prove that the above executable function correctly implements clause subsump-
tion: subsumes (mset Ls) (mset Ks) = subsumes_list Ls Ks (λx.None), where mset converts
lists to multisets by forgetting the order of the elements. After the registration of this equation,
Isabelle’s code generator will rewrite any code that contains the nonexecutable left-hand side to
use the executable right-hand side instead.

Clause subsumption is a hot spot in a resolution prover. This has led to the empirical studies
of various heuristics to improve on the naive exhaustive search [Schulz, 2013a; Tammet, 1998].
Following Tammet [1998], we implement a heuristic that often reduces the number of calls to
match_term_list, which is linear in the size of the input terms, by first performing a simpler,
imprecise comparison. For example, terms with different root symbols will never match, and these
can be compared in constant time. Similarly, literals with opposite polarities cannot match.
Accordingly, we sort our (list-represented) clauses with respect to a literal quasi-order (i.e., a
transitive and reflexive relation) leq_lit such that

is_pos L = is_pos K ∧ match_term_list [(atm_of L, atm_of K)] σ = Some ρ =�⇒ leq_lit L K

Any quasi-order satisfying this property can be used in a refinement of subsumes_list to remove
too small literals (with respect to leq_lit), as highlighted in gray below:

fun subsumes_list′ :: term literal list ⇒ term literal list ⇒ osubst ⇒ bool where
subsumes_list′ [] Ks σ = True
| subsumes_list′ (L# Ls) Ks σ =

let Ks = filter (leq_lit L) Ks in
(∃K ∈ set Ks. is_pos K = is_pos L ∧

case match_term_list [(atm_of L, atm_of K)] σ of
None⇒ False
| Some ρ⇒ subsumes_list′ Ls (remove1 K Ks) ρ)

The theorem subsumes_list Ls Ks ρ = subsumes_list′ (sort leq_lit Ls) Ks ρ allows the code
generator to refine the unoptimized version. In our prover, we let leq_lit be a quasi-order that
considers negative literals smaller than positive ones, that considers variables smaller than non-
variable terms, and that sorts terms according to a total order on their root symbols.

This refinement is a local optimization: It requires us to explicitly sort one of the input clauses.
A more efficient but also more intrusive refinement would be to maintain the invariant that all
clauses in the prover’s state are sorted with respect to leq_lit. Sorting Ls for each invocation of
clause subsumption could then be avoided, and filtering Ks could be performed more efficiently.
However, maintaining the invariant would require changes throughout the prover’s code.

95

7.3 The End Result
Finally, Isabelle can export our prover to Standard ML, Haskell, OCaml, or Scala. The command

export_code prover in SML module_name RP

generates a Standard ML module containing the implementation of our prover in slightly more
than 1000 lines of code, including dependencies. The generated module exports the ML function

val prover : ((nat, nat) term literal list * nat) list -> bool

Even though in Isabelle we have proved that for any unsatisfiable input prover will terminate
and return False, the code generator guarantees only partial correctness of its output: If the
generated program terminates on the ML input generated from the Isabelle term t and evaluates
to the Boolean result b, the proposition prover t = b is provable in Isabelle. (There is recent work
towards providing stronger guarantees [Hupel and Nipkow, 2018].) By soundness, we also know
that the Boolean b indicates the satisfiability of the input clause set.

After we have worked hard to obtain an executable prover, it would be a shame not to run
it on some example. We selected benchmark MSC015 from the TPTP library [Sutcliffe, 2017], a
particularly challenging family Φn of first-order problems. Each problem consists of the following
n+ 2 clauses (2 unit clauses and n two-literal clauses):

¬ p(b, . . . , b) p(a, . . . , a)

¬ p(a, b, . . . , b) ∨ p(b, a, . . . , a)

¬ p(x1, a, b, . . . , b) ∨ p(x1, b, a, . . . , a)
...

¬ p(x1, . . . , xn−2, a, b) ∨ p(x1, . . . , xn−2, b, a)

¬ p(x1, . . . , xn−2, xn−1, a) ∨ p(x1, . . . , xn−2, xn−1, b)

A comment in the benchmark warns us that back in 2007, no prover could solve the Φ23 within
an hour. Even in 2018, only one prover solves Φ22 within 300 s, and four provers solve Φ20 within
300 s. Our verified prover solves Φ20 in 100 s and Φ22 in 200 s. Although our prover cannot yet
challenge state-of-the-art provers in general, its performance is respectable and could be improved
further using refinement.

8 Discussion and Related Work
We found Bachmair and Ganzinger’s [2001] chapter and its formalization by Schlichtkrull et al.
[2018a,b] suitable as a starting point for a verified prover. Nonetheless, we faced some difficul-
ties, notably concerning the identification of suitable refinement layers. We developed layers 2, 3,
and 4 largely in parallel, with each of the authors working on a separate layer. Bringing layer 2
into a state such that it both ensures fairness and could be refined further by layer 3 required
several iterations.

Stepwise refinement helped us achieve separation of concerns: fairness, determinism, and
executability were achieved successively. Another strength of refinement is that it allows us to
prove results at a high level of abstraction; for example, the fairness of layer 2 is inherited by
layers 3 and 4 and could be inherited by further layers. The main weakness of refinement is that
some nontrivial machinery is necessary to lift results from one layer to the next. We believe the
gain in modularity makes this worthwhile.

96

It took us quite some time to design a suitable measure to prove the fairness of the layer 2
prover RPw. Our solution amounts to advancing to a state carrying a suitably high timestamp
and filtering out all overly heavy clauses. Initially, our proof consisted of two steps—advancing
and filtering—each with its own measure. This proof gave us the insurance that RPw was fair,
but we found that combining the measures is both more succinct and more intelligible.

The main goal of our formalization effort was not to obtain a “QED” as quickly as possi-
ble but to investigate how to harness a modern proof assistant to formalize the metatheory of
automatic theorem provers. We found Isabelle suitable for this verification task. The Isar proof
language allows us to state key intermediate steps, as in a paper proof. Standard tactics, including
Isabelle’s simplifier, can be used to discharge proof obligations. The Sledgehammer tool [Paul-
son and Blanchette, 2012] uses superposition provers and SMT (satisfiability-modulo-theories)
solvers to swiftly identify which lemmas are necessary to prove a goal; standard Isabelle tactics
are then used to certify the proof. Isabelle’s support for coinductive methods, including the coin-
ductive, codatatype, and corec commands, helps reason about infinite processes. Locales are
a useful abstraction for defining the refinement layers. And the libraries included in the Isabelle
distribution, the Archive of Formal Proofs, and the third-party IsaFoR certainly saved us months
of work.

The Archive also includes a refinement framework [Lammich, 2013], which has been used in
a separate effort to connect the imperative code of an efficient SAT solver to an abstract calculus
[Blanchette et al., 2018]. The framework is helpful in a variety of situations, including when the
refinement relation between a concrete and an abstract data representation is not a function. But
since converting a list to a multiset (between our levels 3 and 2) or a multiset to a set (between
levels 2 and 1) is a function, we did not see a need to employ it. Moreover, the framework is
currently not designed for refining semidecision procedures, as acknowledged privately by its
author, Peter Lammich. We conjecture that its support for separation logic could be useful if we
were to refine the prover further to obtain imperative code.

Thanks to the verification, we can trust to a very high extent that our ordered resolution
prover is sound and complete. To make the prover’s performance competitive with E, SPASS,
and Vampire, we would need to extend the current work along two axes. First, we should use
superposition, together with its extensive simplification machinery, as the base calculus. A good
starting point would be to apply our methodology to Peltier’s [2016] formalization of (a gener-
alization of) superposition. Given that most of a modern superposition prover’s code consists
of heuristics, which are easy to verify, the full verification of a competitive superposition prover
appears to be a realistic objective for a forthcoming Ph.D. thesis. Second, the chain of refinement
should be continued to cover optimized algorithms and data structures. These could be specified
by refining layer 4 further, along the lines of Fleury et al.’s [2018] refinement of an imperative
SAT solver.

In computer science, metatheories and implementations are often left unconnected. A metathe-
ory may inspire an implementation, or vice versa, but the connection is rarely made explicit. By
formalizing the metatheory, the implementation, and their connection, we can demonstrate not
only the implementation’s correctness but also the metatheory’s adequacy for describing poten-
tial implementations. In particular, we have now confirmed that Bachmair and Ganzinger [2001]
(with the exceptions noted by Schlichtkrull et al. [2018b]) accurately describe the abstract prin-
ciples of an executable functional prover, even though they provide few details beyond layer 1.

We built our verified prover on Schlichtkrull et al.’s [2018a,b] formalization of ordered res-
olution. Related efforts, developed using Isabelle/HOL, include Peltier’s [2016] formalization of
superposition and Schlichtkrull’s [2018] formalization of unordered resolution. However, these
developments only cover logical calculi; had we started with any of them, the first step would
have been to define an abstract prover in the style of layer 1 and prove basic properties about

97

it. Another related effort is Hirokawa et al.’s [2017] formalization of ordered completion, which
(like ordered resolution) can be regarded as a special case of superposition.

Formalizing a theorem proving tool using a theorem proving tool is a thrilling (if self-
referential) prospect for many researchers. An early result is Ridge and Margetson’s [2005] verified
first-order prover, based on a sequent calculus for first-order logic without full first-order terms
but only variables. Kumar et al. [2016] formalized the soundness of a proof assistant for higher-
order logic. Jensen et al. [2018] verified the soundness of a kernel for a proof assistant for first-order
logic that includes a tableau prover. There are several verified SAT solvers [Blanchette et al.,
2018; Lescuyer, 2011; Marić, 2008, 2010; Oe et al., 2012; Shankar and Vaucher, 2011]. Among
these, two implement efficient data structures such as the two watched literals [Blanchette et al.,
2018; Oe et al., 2012]. SAT being a decidable problem, termination has been proved for most
solvers. First-order logic, on the other hand, is semidecidable, which is partly what makes our
present work original. Lifting, via refinement, an abstract completeness result expressed in terms
of the limit of a possibly infinite derivation to a possibly nonterminating functional program is
something we have not found anywhere in the literature.

A pragmatic approach to combine the efficiency of unverified code with the trustworthiness of
verified code consists of checking certificates produced by reasoning tools—e.g., proofs produced
by SAT solvers [Cruz-Filipe et al., 2017; Lammich, 2017]. Researchers from the first-order theorem
proving community are now advocating this approach for their systems as well [Reger and Suda,
2017]. An ad hoc version of this approach is used in Sledgehammer and similar tools to reconstruct
proofs found by first-order provers [Blanchette et al., 2016; Kaliszyk and Urban, 2013].

9 Conclusion
Starting from Schlichtkrull et al.’s [2018a,b] abstract specification of an ordered resolution prover,
we verified, through a refinement chain, a purely functional prover that uses lists as its main data
structure. The resulting program is interesting in its own right and could be refined further to
obtain an implementation that is competitive with the state of the art.

The stepwise refinement methodology is a keystone of our approach, and we found it en-
tirely adequate for this kind of work. Each refinement step cleanly isolates concerns, yielding
intelligible proof obligations. Refinement also helped us identify an unnecessary assumption in
Bachmair and Ganzinger [2001] and generally clarify the argument. Lifting results from one
layer to another required some thought, especially the completeness results, which correspond to
liveness properties. Having now established a methodology and built basic formal libraries, we
expect that verifying other saturation-based provers, using Isabelle/HOL or other systems, will
be substantially easier.

Acknowledgements Alexander Bentkamp, Mathias Fleury, Andreas Halkjær From, Carsten
Fuhs, Peter Lammich, Mark Summerfield, and Jørgen Villadsen suggested many textual improve-
ments. Blanchette has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement No. 713999,
Matryoshka).

References
Bachmair, L., Dershowitz, N., and Plaisted, D. A. (1989). Completion without failure. In Aït-
Kaci, H. and Nivat, M., editors, Rewriting Techniques—resolution of Equations in Algebraic
Structures, volume 2, pages 1–30. Academic Press.

98

Bachmair, L. and Ganzinger, H. (2001). Resolution theorem proving. In Robinson, A. and
Voronkov, A., editors, Handbook of Automated Reasoning, volume I, pages 19–99. Elsevier and
MIT Press.

Ballarin, C. (2014). Locales: A module system for mathematical theories. Journal of Automated
Reasoning, 52(2):123–153.

Bertot, Y. and Castéran, P. (2004). Interactive Theorem Proving and Program Development—
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
Springer.

Biendarra, J., Blanchette, J. C., Bouzy, A., Desharnais, M., Fleury, M., Hölzl, J., Kuncar, O.,
Lochbihler, A., Meier, F., Panny, L., Popescu, A., Sternagel, C., Thiemann, R., and Traytel,
D. (2017). Foundational (co)datatypes and (co)recursion for higher-order logic. In Dixon, C.
and Finger, M., editors, FroCoS 2017, volume 10483 of LNCS, pages 3–21. Springer.

Blanchette, J. C., Böhme, S., Fleury, M., Smolka, S. J., and Steckermeier, A. (2016). Semi-
intelligible Isar proofs from machine-generated proofs. Journal of Automated Reasoning,
56(2):155–200.

Blanchette, J. C., Bouzy, A., Lochbihler, A., Popescu, A., and Traytel, D. (2017). Friends with
benefits: Implementing corecursion in foundational proof assistants. In Yang, H., editor, ESOP
2017, volume 10201 of LNCS, pages 111–140. Springer.

Blanchette, J. C., Fleury, M., Lammich, P., and Weidenbach, C. (2018). A verified SAT solver
framework with learn, forget, restart, and incrementality. Journal of Automated Reasoning,
61(1–4):333–365.

Bobot, F., Filliâtre, J.-C., Marché, C., and Paskevich, A. (2011). Why3: Shepherd your herd of
provers. In Leino, K. R. M. and Moskal, M., editors, Boogie 2011, pages 53–64.

Bove, A., Dybjer, P., and Norell, U. (2009). A brief overview of Agda—a functional language
with dependent types. In Berghofer, S., Nipkow, T., Urban, C., and Wenzel, M., editors,
TPHOLs 2009, volume 5674 of LNCS, pages 73–78. Springer.

Church, A. (1940). A formulation of the simple theory of types. Journal of Symbolic Logic,
5(2):56–68.

Cruz-Filipe, L., Heule, M. J. H., Jr., W. A. H., Kaufmann, M., and Schneider-Kamp, P. (2017).
Efficient certified RAT verification. In de Moura, L., editor, CADE-26, volume 10395 of LNCS,
pages 220–236. Springer.

Fleury, M., Blanchette, J. C., and Lammich, P. (2018). A verified SAT solver with watched
literals using Imperative HOL. In Andronick, J. and Felty, A. P., editors, CPP 2018, pages
158–171. ACM.

Gordon, M. J. C., Milner, R., and Wadsworth, C. P. (1979). Edinburgh LCF: A Mechanised
Logic of Computation, volume 78 of LNCS. Springer.

Haftmann, F. and Nipkow, T. (2010). Code generation via higher-order rewrite systems. In
Blume, M., Kobayashi, N., and Vidal, G., editors, FLOPS 2010, volume 6009 of LNCS, pages
103–117. Springer.

99

Hirokawa, N., Middeldorp, A., Sternagel, C., and Winkler, S. (2017). Infinite runs in abstract
completion. In Miller, D., editor, FSCD 2017, volume 84 of LIPIcs, pages 19:1–19:16. Schloss
Dagstuhl—Leibniz-Zentrum für Informatik.

Hupel, L. and Nipkow, T. (2018). A verified compiler from Isabelle/HOL to CakeML. In Ahmed,
A., editor, ESOP 2018, volume 10801 of LNCS, pages 999–1026. Springer.

Jensen, A. B., Larsen, J. B., Schlichtkrull, A., and Villadsen, J. (2018). Programming and
verifying a declarative first-order prover in Isabelle/HOL. AI Commun., 31(3):281–299.

Kaliszyk, C. and Urban, J. (2013). PRocH: Proof reconstruction for HOL Light. In Bonacina,
M. P., editor, CADE-24, volume 7898 of LNCS, pages 267–273. Springer.

Kapur, D. and Narendran, P. (1986). NP-completeness of the set unification and matching
problems. In Siekmann, J. H., editor, CADE-8, volume 230 of LNCS, pages 489–495. Springer.

Knuth, D. E. and Bendix, P. B. (1970). Simple word problems in universal algebras. In Leech,
J., editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press.

Kovács, L. and Voronkov, A. (2009). Finding loop invariants for programs over arrays using a
theorem prover. In Watt, S. M., Negru, V., Ida, T., Jebelean, T., Petcu, D., and Zaharie, D.,
editors, SYNASC 2009, page 10. IEEE Computer Society.

Kovács, L. and Voronkov, A. (2013). First-order theorem proving and Vampire. In Sharygina,
N. and Veith, H., editors, CAV 2013, volume 8044 of LNCS, pages 1–35. Springer.

Krauss, A. (2006). Partial recursive functions in higher-order logic. In Furbach, U. and Shankar,
N., editors, IJCAR 2006, volume 4130 of LNCS, pages 589–603. Springer.

Krauss, A. (2010). Recursive definitions of monadic functions. EPTCS, 43:1–13.

Kumar, R., Arthan, R., Myreen, M. O., and Owens, S. (2016). Self-formalisation of higher-order
logic: Semantics, soundness, and a verified implementation. Journal of Automated Reasoning,
56(3):221–259.

Lammich, P. (2013). Automatic data refinement. In Blazy, S., Paulin-Mohring, C., and Pichardie,
D., editors, ITP 2013, volume 7998 of LNCS, pages 84–99. Springer.

Lammich, P. (2017). The GRAT tool chain—efficient (UN)SAT certificate checking with formal
correctness guarantees. In Gaspers, S. and Walsh, T., editors, SAT 2017, volume 10491 of
LNCS, pages 457–463. Springer.

Lamport, L. (1995). How to write a proof. American Mathematical Monthly, 7(102):600–608.

Lescuyer, S. (2011). Formalizing and Implementing a Reflexive Tactic for Automated Deduction
in Coq. PhD thesis, Université Paris-Sud.

Marić, F. (2008). Formal verification of modern SAT solvers. Archive of Formal Proofs. Formal
Proof Development. http://isa-afp.org/entries/SATSolverVerification.html.

Marić, F. (2010). Formal verification of a modern SAT solver by shallow embedding into
Isabelle/HOL. Theoretical Computer Science, 411(50):4333–4356.

Milner, R. (1984). The use of machines to assist in rigorous proof. Philosophical Transactions
of the Royal Society A, 312:411–422.

100

http://isa-afp.org/entries/SATSolverVerification.html

Nipkow, T. and Klein, G. (2014). Concrete Semantics: With Isabelle/HOL. Springer.

Nipkow, T., Paulson, L. C., and Wenzel, M. (2002). Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer.

Oe, D., Stump, A., Oliver, C., and Clancy, K. (2012). versat: A verified modern SAT solver. In
Kuncak, V. and Rybalchenko, A., editors, VMCAI 2012, volume 7148 of LNCS, pages 363–378.
Springer.

Paulson, L. C. and Blanchette, J. C. (2012). Three years of experience with Sledgehammer,
a practical link between automatic and interactive theorem provers. In Sutcliffe, G., Schulz,
S., and Ternovska, E., editors, IWIL-2010, volume 2 of EPiC Series in Computing, pages 1–11.
EasyChair.

Peltier, N. (2016). A variant of the superposition calculus. Archive of Formal Proofs. Formal
Proof Development. http://isa-afp.org/entries/SuperCalc.html.

Reger, G. and Suda, M. (2017). Checkable proofs for first-order theorem proving. In Reger,
G. and Traytel, D., editors, ARCADE 2017, volume 51 of EPiC Series in Computing, pages
55–63. EasyChair.

Ridge, T. and Margetson, J. (2005). A mechanically verified, sound and complete theorem
prover for first order logic. In Hurd, J. and Melham, T., editors, TPHOL’s 2005, volume 3603
of LNCS, pages 294–309. Springer.

Schlichtkrull, A. (2018). Formalization of the resolution calculus for first-order logic. Journal of
Automated Reasoning, 61(1–4):455–484.

Schlichtkrull, A., Blanchette, J. C., Traytel, D., and Waldmann, U. (2018a). Formalization of
Bachmair and Ganzinger’s ordered resolution prover. Archive of Formal Proofs. Formal Proof
Development. http://isa-afp.org/entries/Ordered_Resolution_Prover.html.

Schlichtkrull, A., Blanchette, J. C., Traytel, D., and Waldmann, U. (2018b). Formalizing Bach-
mair and Ganzinger’s ordered resolution prover. In Galmiche, D., Schulz, S., and Sebastiani,
R., editors, IJCAR 2018, volume 10900 of LNCS, pages 89–107. Springer.

Schulz, S. (2013a). Simple and efficient clause subsumption with feature vector indexing. In
Bonacina, M. P. and Stickel, M. E., editors, Automated Reasoning and Mathematics—Essays
in Memory of William W. McCune, volume 7788 of LNCS, pages 45–67. Springer.

Schulz, S. (2013b). System description: E 1.8. In McMillan, K., Middeldorp, A., and Voronkov,
A., editors, LPAR-19, volume 8312 of LNCS, pages 735–743. Springer.

Shankar, N. and Vaucher, M. (2011). The mechanical verification of a DPLL-based satisfiability
solver. Electronic Notes in Theoretical Computer Science, 269:3–17. LSFA 2010.

Sternagel, C. and Thiemann, R. (2013). Formalizing Knuth-Bendix orders and Knuth-Bendix
completion. In van Raamsdonk, F., editor, RTA 2013, volume 21 of LIPIcs, pages 287–302.
Schloss Dagstuhl—Leibniz-Zentrum für Informatik.

Sternagel, C. and Thiemann, R. (2018). First-order terms. Archive of Formal Proofs. Formal
Proof Development. http://isa-afp.org/entries/First_Order_Terms.html.

Sutcliffe, G. (2017). The TPTP problem library and associated infrastructure—from CNF to
th0, TPTP v6.4.0. Journal of Automated Reasoning, 59(4):483–502.

101

http://isa-afp.org/entries/SuperCalc.html
http://isa-afp.org/entries/Ordered_Resolution_Prover.html
http://isa-afp.org/entries/First_Order_Terms.html

Tammet, T. (1998). Towards efficient subsumption. In Kirchner, C. and Kirchner, H., editors,
CADE-15, volume 1421 of LNCS, pages 427–441. Springer.

Thiemann, R. and Sternagel, C. (2009). Certification of termination proofs using CeTA. In
Berghofer, S., Nipkow, T., Urban, C., and Wenzel, M., editors, TPHOLs 2009, volume 5674
of LNCS, pages 452–468. Springer.

Voronkov, A. (2014). AVATAR: The architecture for first-order theorem provers. In Biere, A.
and Bloem, R., editors, CAV 2014, volume 8559 of LNCS, pages 696–710. Springer.

Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., and Wischnewski, P. (2009).
SPASS version 3.5. In Schmidt, R. A., editor, CADE-22, volume 5663 of LNCS, pages 140–145.
Springer.

Wenzel, M. (2007). Isabelle/Isar—a generic framework for human-readable proof documents.
In Matuszewski, R. and Zalewska, A., editors, From Insight to Proof: Festschrift in Honour
of Andrzej Trybulec, volume 10(23) of Studies in Logic, Grammar, and Rhetoric. University
of Białystok.

Wenzel, M. (2012). Isabelle/jEdit—a prover IDE within the PIDE framework. In Jeuring, J.,
Campbell, J. A., Carette, J., Reis, G. D., Sojka, P., Wenzel, M., and Sorge, V., editors, CICM
2012, volume 7362 of LNCS, pages 468–471. Springer.

Wirth, N. (1971). Program development by stepwise refinement. Communications of the ACM,
14(4).

102

NaDeA: A Natural Deduction Assistant with a
Formalization in Isabelle

Jørgen Villadsen, Alexander Birch Jensen, and Anders Schlichtkrull

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract

We present a new software tool for teaching logic based on natural deduction. Its proof
system is formalized in the proof assistant Isabelle such that its definition is very precise.
Soundness of the formalization has been proved in Isabelle. The tool is open source software
developed in TypeScript / JavaScript and can thus be used directly in a browser without
any further installation. Although developed for computer science bachelor students who are
used to study and program concrete computer code in a programming language we consider
the approach relevant for a broader audience and for other proof systems as well.

Keywords Natural Deduction, Formalization, Isabelle Proof Assistant, First-Order Logic, Higher-
Order Logic.

1 Introduction
In this paper we present the NaDeA software tool. First, we provide the motivation and a short
description. We then present the natural deduction system as it is done in a popular textbook
[15] and as is it done in NaDeA by looking at its formalization in Isabelle. This illustrates
the differences between the two approaches. We also present the semantics of first-order logic as
formalized in Isabelle. Thereafter we explain how NaDeA is used to construct a natural deduction
proof. After that, we explain the soundness proof of the natural deduction proof system in
Isabelle. Lastly, we compare NaDeA to other natural deduction assistants and consider how
NaDeA could be improved.

1.1 Motivation
We have been teaching a bachelor logic course — with logic programming — for a decade using a
textbook with emphasis on tableaux and resolution [1]. We have started to use the proof assistant
Isabelle [2] and refutation proofs are less preferable here. The proof system of natural deduction
[3, 4, 5, 15] with the introduction and elimination rules as well as a discharge mechanism seems
more suitable. The natural deduction proof system is widely known, used and studied among

The present article substantially extends our presentation and tool demonstration at TTL 2015 (Fourth
International Conference on Tools for Teaching Logic, Rennes, France, 9–12 June 2015). In particular, a new
section with elaboration on the formalization in Isabelle has been added. We would like to thank Stefan Berghofer,
Jasmin Christian Blanchette, Mathias Fleury and Dmitriy Traytel for discussions about the formalization of logical
inference systems in Isabelle. We would also like to thank Andreas Halkjær From, Andreas Viktor Hess, John
Bruntse Larsen, Ashokaditya Mohanty and the referees for comments on the paper.

103

logicians throughout the world. However, our experience shows that many of our computer science
bachelor students struggle to understand the most difficult aspects.

This also goes for other proof systems. We find that teaching logic to computer science bache-
lor students can be hard because in our case they do not have a strong theoretical mathematical
background. Instead, most students are good at understanding concrete computer code in a
programming language. The syntax used in Isabelle is in many ways similar to a programming
language. A clear and explicit formalization of first-order logic and a proof system may help the
students in understanding important details.

We find it important to teach both the semantics of first-order logic and the soundness proof
to bachelor students. In the present course the formal semantics as well as the soundness proof in
Isabelle are presented to the students. The formalization is also available online in NaDeA and
the entire Isabelle file is available in NaDeA too. However, in the present course the students are
not expected to be able to construct such a formalization in Isabelle from scratch.

The proof assistant Isabelle is different from a programming language because the expressions
are not necessarily computable. For instance, quantifications over infinite domains are possible.

1.2 The Tool
We present the natural deduction assistant NaDeA with a formalization of its proof system in
the proof assistant Isabelle. It can be used directly in a browser without any further installation
and is available here:

http://nadea.compute.dtu.dk/

NaDeA is open source software developed in TypeScript / JavaScript and stored on GitHub. The
formalization of its proof system in Isabelle is available here:

http://logic-tools.github.io/

Once NaDeA is loaded in the browser — about 250 KB with the jQuery Core library — no
internet connection is required. Therefore NaDeA can also be stored locally.

We present the proof in an explicit code format that is equivalent to the Isabelle syntax,
but with a few syntactic differences to make it easier to understand for someone trying to learn
Isabelle. In this format, we present the proof in a style similar to that of Fitch’s diagram proofs.
We avoid the seemingly popular Gentzen’s tree style to focus less on a visually pleasing graphical
representation that is presumably much more challenging to implement.

We find that the following requirements constitute the key ideals for any natural deduction
assistant. It should be:

– Easy to use.

– Clear and explicit in every detail of the proof.

– Based on a formalization that can be proved at least sound, but preferably also complete.

Based on this, we saw an opportunity to develop NaDeA which offers help for new users, but
also serves to present an approach that is relevant to the advanced users.

In a paper considering the tools developed for teaching logic over the last decade [14, p. 137],
the following is said about assistants (not proof assistants like Isabelle but tools for learn-
ing/teaching logic):

104

http://nadea.compute.dtu.dk/
http://logic-tools.github.io/

Assistants are characterized by a higher degree of interactivity with the user. They
provide menus and dialogues to the user for interaction purposes. This kind of tool
gives the students the feeling that they are being helped in building the solution. They
provide error messages and hints in the guidance to the construction of the answer.
Many of them usually offer construction of solution in natural deduction proofs. [...]
They are usually free licensed and of open access.

We think that this characterization in many ways fits NaDeA. While NaDeA might not bring
something new to the table in the form of delicate graphical features, we emphasize the fact that
it has some rather unique features such as a formalization of its proof system in Isabelle.

2 Natural Deduction in a Textbook
We consider natural deduction as presented in a popular textbook on logic in computer science
[15]. First, we take a look at substitution, which is central to the treatment of quantifiers in
natural deduction.

2.1 On Substitution
The following definition for substitution is used in [15, p. 105 top]:

Given a variable x, a term t and a formula φ we define φ[t/x] to be the formula
obtained by replacing each free occurrence of variable x in φ with t.

The usual side conditions that come with rules using this substitution seem to be omitted, but
we are shortly after [15, p. 106 top] given the following definition of what it means that ’t must
be free for x in φ’:

Given a term t, a variable x and a formula φ, we say that t is free for x in φ if no free
x leaf in φ occurs in the scope of ∀y or ∃y for any variable y occurring in t.

The following quote [15, p. 106 bottom] emphasizes the side conditions:

It might be helpful to compare ’t is free for x in φ’ with a precondition of calling
a procedure for substitution. If you are asked to compute φ[t/x] in your exercises
or exams, then that is what you should do; but any reasonable implementation of
substitution used in a theorem prover would have to check whether t is free for x in
φ and, if not, rename some variables with fresh ones to avoid the undesirable capture
of variables.

In our formalization such notions and their complications become easier to explain because all
side conditions of the rules are very explicitly stated. We see it as one of the major advantages
of presenting this formalization to students.

2.2 Natural Deduction Rules
We now present the natural deduction rules as described in the literature, again using [15]. The
first 9 are rules for classical propositional logic and the last 4 are for first-order logic. Intuitionistic
logic can be obtained by omitting the rule PBC (proof by contradiction, called “Boole” later)
and adding the ⊥-elimination rule (also known as the rule of explosion) [16]. The rules are as
follows:

105

¬φ
...
⊥
φ

PBC
φ φ→ ψ

ψ
→ E

φ
...
ψ

φ→ ψ
→ I

φ ∨ ψ

φ
...
χ

ψ
...
χ

χ ∨E
φ

φ ∨ ψ ∨I1
ψ

φ ∨ ψ ∨I2

φ ∧ ψ
φ

∧E1
φ ∧ ψ
ψ

∧E2
φ ψ

φ ∧ ψ ∧I

∃xφ

x0 φ [x0/x]
...
χ

χ ∃E
φ [t/x]

∃xφ ∃I

∀xφ
φ [t/x]

∀E

x0
...

φ [x0/x]

∀xφ ∀I

Side conditions to rules for quantifiers:

∃E: x0 does not occur outside its box (and therefore not in χ).
∃I: t must be free for x in φ.
∀E: t must be free for x in φ.
∀I: x0 is a new variable which does not occur outside its box.

In addition there is a special copy rule [15, p. 20]:

A final rule is required in order to allow us to conclude a box with a formula which has
already appeared earlier in the proof. [...] The copy rule entitles us to copy formulas
that appeared before, unless they depend on temporary assumptions whose box has
already been closed.

The copy rule is not needed in our formalization due to the way it manages a list of assumptions.
As it can be seen, there are no rules for truth, negation or biimplication, but the following

equivalences can be used:

> ≡ ⊥ → ⊥
¬A ≡ A→ ⊥

A↔ B ≡ (A→ B) ∧ (B → A)

The symbols A and B are arbitrary formulas.

106

3 Natural Deduction in NaDeA
One of the unique features of NaDeA is that it comes with a formalization in Isabelle of the
natural deduction proof system, including a proof in Isabelle of the soundness theorem for the
proof system. In this section we present the definitions necessary for expressing the soundness
theorem and the proof in Isabelle is presented in section 5.

3.1 Syntax for Terms and Formulas
The terms and formulas of the first-order logic language are defined as the datatypes term and
formula (later abbreviated tm and fm, respectively). The type identifier represents predicate and
function symbols (later abbreviated id).

identifier := string

term := Var nat | Fun identifier [term, ..., term]

formula := Falsity | Pre identifier [term, ..., term] | Imp formula formula |
Dis formula formula | Con formula formula |
Exi formula | Uni formula

Truth, negation and biimplication are abbreviations. In the syntax of our formalization, we refer
to variables by use of the de Bruijn indices. That is, instead of identifying a variable by use
of a name, usually x, y, z etc., each variable has an index that determines its scope. The use
of de Bruijn indices instead of named variables allows for a simple definition of substitution.
Furthermore, it also serves the purpose of teaching the students about de Bruijn indices. Note
that we are not advocating that de Bruijn indices replace the standard treatment of variables in
general. It arguably makes complex formulas harder to read, but the pedagogical advantage is
that the notion of scope is practiced.

3.2 Natural Deduction Rules
Provability in NaDeA is defined inductively as follows (OK p z means that the formula p follows
from the list of assumptions z and member p z means that p is a member of the list z):

member p z
OK p z Assume

OK Falsity ((Imp p Falsity) # z)
OK p z Boole

OK (Imp p q) z OK p z
OK q z

Imp_E
OK q (p # z)

OK (Imp p q) z
Imp_I

OK (Dis p q) z OK r (p # z) OK r (q # z)
OK r z

Dis_E

OK p z
OK (Dis p q) z

Dis_I1
OK q z

OK (Dis p q) z
Dis_I2

OK (Con p q) z
OK p z

Con_E1
OK (Con p q) z

OK q z
Con_E2

OK p z OK q z
OK (Con p q) z

Con_I

107

OK (Exi p) z OK q ((sub 0 (Fun c []) p) # z) news c (p#q#z)
OK q z

Exi_E

OK (sub 0 t p) z
OK (Exi p) z

Exi_I

OK (Uni p) z
OK (sub 0 t p) z

Uni_E
OK (sub 0 (Fun c []) p) z news c (p # z))

OK (Uni p) z
Uni_I

Instead of writing OK p z we could also use the syntax z ` p, even in Isabelle, but we prefer a
more programming-like approach.

The operator # is between the head and the tail of a list. news c l checks if the identifier c
does not occur in any of the formulas in the list l and sub n t p returns the formula p where the
term t has been substituted for the variable with the de Bruijn index n.

Note that new constants instead of variables not occuring in the assumptions are used in the
existential elimination rule and in the universal introduction rule.

In the types we use⇒ for function spaces. We include the definitions of member, news and sub
because they are necessary for the soundness theorem and also for the formalization in section 5:

member :: fm ⇒ fm list ⇒ bool

member p [] = False
member p (q # z) = (if p = q then True else member p z)

new_term :: id ⇒ tm ⇒ bool

new_term c (Var n) = True
new_term c (Fun i l) = (if i = c then False else new_list c l)

new_list :: id ⇒ tm list ⇒ bool

new_list c [] = True
new_list c (t # l) = (if new_term c t then new_list c l else False)

new :: id ⇒ fm ⇒ bool

new c Falsity = True
new c (Pre i l) = new_list c l
new c (Imp p q) = (if new c p then new c q else False)
new c (Dis p q) = (if new c p then new c q else False)
new c (Con p q) = (if new c p then new c q else False)
new c (Exi p) = new c p
new c (Uni p) = new c p

news :: id ⇒ fm list ⇒ bool

news c [] = True
news c (p # z) = (if new c p then news c z else False)

108

inc_term :: tm ⇒ tm

inc_term (Var n) = Var (n + 1)
inc_term (Fun i l) = Fun i (inc_list l)

inc_list :: tm list ⇒ tm list

inc_list [] = []
inc_list (t # l) = inc_term t # inc_list l

sub_term :: nat ⇒ tm ⇒ tm ⇒ tm

sub_term v s (Var n) = (if n < v then Var n else if n = v then s else Var (n – 1))
sub_term v s (Fun i l) = Fun i (sub_list v s l)

sub_list :: nat ⇒ tm ⇒ tm list ⇒ tm list

sub_list v s [] = []
sub_list v s (t # l) = sub_term v s t # sub_list v s l

sub :: nat ⇒ tm ⇒ fm ⇒ fm

sub v s Falsity = Falsity
sub v s (Pre i l) = Pre i (sub_list v s l)
sub v s (Imp p q) = Imp (sub v s p) (sub v s q)
sub v s (Dis p q) = Dis (sub v s p) (sub v s q)
sub v s (Con p q) = Con (sub v s p) (sub v s q)
sub v s (Exi p) = Exi (sub (v + 1) (inc_term s) p)
sub v s (Uni p) = Uni (sub (v + 1) (inc_term s) p)

3.3 Semantics for Terms and Formulas
To give meaning to formulas and to prove NaDeA sound we need a semantics of the first-order
logic language. We present the semantics below. e is the environment, i.e. a mapping of variables
to elements. f maps function symbols to the maps they represent. These maps are from lists of
elements of the universe to elements of the universe. Likewise, g maps predicate symbols to the
maps they represent. ’a is a type variable that represents the universe. It can be instantiated
with any type. For instance, it can be instantiated with the natural numbers, the real numbers
or strings.

109

semantics_term :: (nat ⇒ ’a) ⇒ (id ⇒ ’a list ⇒ ’a) ⇒ tm ⇒ ’a

semantics_term e f (Var n) = e n
semantics_term e f (Fun i l) = f i (semantics_list e f l)

semantics_list :: (nat ⇒ ’a) ⇒ (id ⇒ ’a list ⇒ ’a) ⇒ tm list ⇒ ’a list

semantics_list e f [] = []
semantics_list e f (t # l) = semantics_term e f t # semantics_list e f l

semantics :: (nat ⇒ ’a) ⇒ (id ⇒ ’a list ⇒ ’a) ⇒ (id ⇒ ’a list ⇒ bool) ⇒
fm ⇒ bool

semantics e f g Falsity = False
semantics e f g (Pre i l) = g i (semantics_list e f l)
semantics e f g (Imp p q) = (if semantics e f g p then semantics e f g q else True)
semantics e f g (Dis p q) = (if semantics e f g p then True else semantics e f g q)
semantics e f g (Con p q) = (if semantics e f g p then semantics e f g q else False)
semantics e f g (Exi p) =

(? x. semantics (% n. if n = 0 then x else e (n – 1)) f g p)
semantics e f g (Uni p) =

(! x. semantics (% n. if n = 0 then x else e (n – 1)) f g p)

Most of the cases of semantics should be self-explanatory, but the Uni case is complicated. The
details are not important here, but in the case for Uni it uses the universal quantifier (!) of
Isabelle’s higher-order logic to consider all values of the universe. It also uses the lambda ab-
straction operator (%) to keep track of the indices of the variables. Likewise, the case for Exi uses
the existential quantifier (?) of Isabelle’s higher-order logic.

We have proved soundness of the formalization in Isabelle (shown here as a derived rule):

OK p []
semantics e f g p Soundness

This result makes NaDeA interesting to a broader audience since it gives confidence in the for-
mulas proved using the tool. The proof in Isabelle of the soundness theorem is presented in
section 5.

4 Construction of a Proof
We show here how to build and edit proofs in NaDeA. Furthermore, we describe the presentation
of proofs in NaDeA.

In order to start a proof, you have to start by specifying the goal formula, that is, the formula
you wish to prove. To do so, you must enable editing mode by clicking the Edit button in the
top menu bar. This will show the underlying proof code and you can build formulas by clicking
the red ¤ symbol. Alternatively, you can load a number of tests by clicking the Load button.

At all times, once you have fully specified the conclusion of any given rule, you can continue
the proof by selecting the next rule to apply. Again you can do this by clicking the red ¤ symbol.
Furthermore, NaDeA allows for undoing and redoing editing steps with no limits.

All proofs are conducted in backward-chaining mode. That is, you must start by specifying
the formula that you wish to prove. You then apply the rules inductively until you reach a proof
— if you can find one. The proof is finished by automatic application of the Assume rule once
the conclusion of a rule is found in the list of assumptions.

110

To start over on a new proof, you can load the blank proof by using the Load button, or you
can refresh the page.

In NaDeA we present any given natural deduction proof (or an attempt at one) in two different
types of syntax. One syntax follows the rules as defined in section 3 and is closely related to the
formalization in Isabelle, but with a simplified syntax that makes it suitable for teaching purposes.
The proof is not built as most often seen in the literature about natural deduction. Usually, for
each rule the premises are placed above its conclusion separated by a line. We instead follow
the procedure of placing each premise of the rule on separate lines below its conclusion with an
additional level of indentation. Here is a screenshot followed by the proof tree:

p ∧ (p→ q)
(1)

p→ q
p ∧ (p→ q)

(1)

p
q

p ∧ (p→ q)→ q
(1)

The above proof can also be written in terms of the OK syntax as follows:

1 OK (Imp (Con (Pre "P" []) (Imp (Pre "P" []) (Pre "Q" []))) (Pre "Q" [])) [] Imp_I

2 OK (Pre "Q" []) [(Con (Pre "P" []) (Imp (Pre "P" []) (Pre "Q" [])))] Imp_E

3 OK (Imp (Pre "P" []) (Pre "Q" []))
[(Con (Pre "P" []) (Imp (Pre "P" []) (Pre "Q" [])))] Con_E2

4 OK (Con (Pre "P" []) (Imp (Pre "P" []) (Pre "Q" [])))
[(Con (Pre "P" []) (Imp (Pre "P" []) (Pre "Q" [])))] Assume

5 OK (Pre "P" []) [Con (Pre "P" []) (Imp (Pre "P" []) (Pre "Q" [])))] Con_E1

6 OK (Con (Pre "P" []) (Imp (Pre "P" []) (Pre "Q" [])))
[(Con (Pre "P" []) (Imp (Pre "P" []) (Pre "Q" [])))] Assume

So in a way we have the two presentation styles. However, the standard form displayed in the
screenshot is always presented and the programming style with the OK syntax is switched on
and off with a single click in the browser. The programming style is mandatory when a formula
must be entered. We find that the students in general prefer the standard form but also that the
switch to the programming style when necessary is rather unproblematic.

For a small but quite interesting example of a proof of a first-order formula consider the

111

following screenshot:

The line with the * in the proof is for the side condition that requires that the constant c’ is
new. By clicking on the proof the check is displayed in the OK syntax as follows:

news (Fun ”c*” []) [(Uni (Dis (Pre ”P” [Var 0]) (Pre ”Q” [Var 0]))),
(Dis (Uni (Pre ”P” [Var 0])) (Uni (Pre ”Q” [Var 0])))]

The constant c’ is written as ”c*” here.

5 Formalization in Isabelle
Formalizations in Isabelle are written in a language that combines functional programming and
logic. Our computer science bachelor students know programming from an introductory pro-
gramming course and are introduced to logic in our course. This makes Isabelle a well suited
way to present a sound proof system compared to a more abstract and mathematical approach.
Furthermore, the language used in Isabelle is somewhat close to English, which also aids the
intuitions of the students. Isabelle also allows the students to interactively inspect the different
states of the proof and get an overview of the lemmas and theorems that are used in the steps
– all in one screen. In this section we present the soundness proof using our formalization and
show the concepts known from programming and logic.

5.1 An Overview
We first give an overview of the formalization in Isabelle. In the overview we see a number of
datatypes tm and fm, that represent the objects that we want to reason about. We also see a
primitive recursive function member which is used in the inductive definition OK of the proof
system. Lastly, we see the soundness theorem of the proof system. We will explain these concepts
as well as show and elaborate on the parts of the formalization that we did not put in the overview.

theory NaDeA imports Main begin

type_synonym id = "char list"

112

datatype tm = Var nat | Fun id "tm list"

datatype fm = Falsity | Pre id "tm list" | Imp fm fm | Dis fm fm | Con fm fm |
Exi fm | Uni fm

primrec
member :: "fm ⇒ fm list ⇒ bool"

where
"member p [] = False" |
"member p (q # z) = (if p = q then True else member p z)"

(∗ More primitive recursive functions as included in the previous sections ∗)

inductive
OK :: "fm ⇒ fm list ⇒ bool"

where
Assume:

"member p z =⇒ OK p z" |
Boole:

"OK Falsity ((Imp p Falsity) # z) =⇒ OK p z" |
Imp_E:

"OK (Imp p q) z =⇒ OK p z =⇒ OK q z" |
Imp_I:

"OK q (p # z) =⇒ OK (Imp p q) z" |

(∗ More rules as included in the previous sections ∗)

(∗ A proof of soundness’ is included in the following sections ∗)

theorem soundness: "OK p [] =⇒ semantics e f g p"
proof (simp add: soundness’) qed

end

5.2 Terms and Formulas
Terms are defined by a datatype tm. Datatypes are a well-known concept from functional pro-
gramming. A term is either a variable or a function application. Therefore, we have a constructor
Var which constructs a variable from a nat representing its de Bruijn index. Likewise, we have a
constructor Fun which constructs a function application from an id which is its function identifier
and a "tm list" which represents its subterms.

When we introduce a datatype in Isabelle, we implicitly state that all terms can be constructed
from its constructors. We also implicitly state that if two terms are equal then they must have
been constructed from the same constructor and arguments. [18]

Formulas are also formalized as a datatype fm. It has a constructor for each operator and
quantifier of our first-order logic.

5.3 Membership and Other Primitive Recursive Functions
List membership is defined as a primitive recursive function member over lists. The constructor
for lists is # which separates the head of the list from the tail. The member function is primitive
recursive because it removes a constructor from one of its arguments in every recursive call

113

[2]. In Isabelle, primitive recursive functions are defined in much the same way as in functional
programming, namely by stating cases for the different constructors.

The intuition of the function is that member p z returns true if the formula p is found in the
list of formulas z and false otherwise. The function considers two cases: either the list is empty
or it has a head and a tail. In the first case it is clear that the formula is not a member of the
list. In the second case, we use the pattern (q # z) where q is the head of the list and z is the
tail. If the head is equal to p it is true that p is a member of the list. Otherwise, we continue by
looking in the tail of the list.

Other primitive recursive functions used in the theory are semantics_term, semantics_list,
semantics, new, news, inc_term, inc_list, sub_term, sub_list and sub. These functions define
the semantics, increasing the de Bruijn indices of a term, a constant being new to an expression,
and substitution.

5.4 Proof System
Our proof system is defined by an inductive predicate. Each of the rules of the system is a case
in the inductive predicate. For instance, consider the following rule:

Assume: "member p z =⇒ OK p z"

The rule means that OK p z follows from member p z. Another case is the more complex rule:

Imp_E: "OK (Imp p q) z =⇒ OK p z =⇒ OK q z"

It states that OK q z follows from OK (Imp p q) z and OK p z. This corresponds to the usual
notation for inference rules:

OK (Imp p q) z OK p z
OK q z

Imp_E

That a predicate is inductive means that it holds exactly when it can be derived using the given
cases.

5.5 Proof of Soundness
We are now ready for the proof of soundness.

fun
put :: "(nat ⇒ ’a) ⇒ nat ⇒ ’a ⇒ nat ⇒ ’a"

where
"put e v x = (λn. if n < v then e n else if n = v then x else e (n − 1))"

The function put updates an environment by mapping variable v to value x. This is used in
the definition of the quantifiers, but always for the outermost bound variable. Existing variables
greater than v are pushed one position up, i.e. variable i now points to the value of variable i − 1
in the old environment.

We use fun to declare many different functions without being restricted to the primitive
recursive form. The operator λ is for lambda abstraction applied to occurrences of the parameter
value and is known from functional programming. More informally, if E is some expression in
Isabelle then λx. E x is the function that takes an input, for instance y, and returns E y.

lemma "put e 0 x = (λn. if n = 0 then x else e (n − 1))" proof simp qed

114

This lemma shows that put is a generalization of the expression

λn. if n = 0 then x else e (n − 1)

which appears in the semantics. We use this generalization to prove properties of putting that we
use in our soundness proof. The lemma is followed by a proof. In this case, the proof is performed
automatically by the simplifier simp. The beginning of the proof is marked by proof and the
end is marked by qed. The proof method simp works by applying simplification rules [18]. It
contains rules that are generated from definitions of functions, datatypes, etc., in addition to
simplification rules from the Isabelle library.

lemma increment:
"semantics_term (put e 0 x) f (inc_term t) = semantics_term e f t"
"semantics_list (put e 0 x) f (inc_list l) = semantics_list e f l"

proof (induct t and l rule: semantics_term.induct semantics_list.induct)
qed simp_all

The lemma increment shows that we preserve the semantics of a term when we increment its de
Bruijn indices while putting a value x at index 0. The reason is that putting pushes the values
one index up in the environment. The proof is by induction on t and l, which is stated as

induct t and l rule: semantics_term.induct semantics_list.induct

and it generates four proof goals; one for each of the cases in semantics_term and semantics_list.
These goals can be inspected in the Isabelle editor by placing the cursor right after

(induct t and l rule: semantics_term.induct semantics_list.induct)

and looking in the so-called state panel. The proof method simp_all applies the simplifier to all
available proof goals [18]. We place simp_all after qed in order to finish the proof and to allow
inspection of the proof state interactively in Isabelle.

lemma commute: "put (put e v x) 0 y = put (put e 0 y) (v + 1) x"
proof force qed

The lemma commute shows that the function put commutes. More precisely, we want to put
a value at position v + 1 in the environment and one at position 0, and the theorem shows that
the order in which we do this does not matter, as long as we are careful with the indices.

The proof is automatic and uses the proof method force, which works by simplification and
classical reasoning [2].

fun
all :: "(fm ⇒ bool) ⇒ fm list ⇒ bool"

where
"all b z = (∀p. if member p z then b p else True)"

The function all checks if the predicate b is true for all formulas in a list. The ∀ operator is
for universal quantification.

lemma allhead: "all b (p # z) =⇒ b p" proof simp qed

lemma alltail: "all b (p # z) =⇒ all b z" proof simp qed

lemma allnew: "all (new c) z = news c z"
proof (induct z) qed (simp, simp, metis)

115

The lemma allhead states that if b holds for the entire list, then it holds for the head of the
list in particular. The lemma alltail is similar, but for the tail of the list. Finally, the lemma
allnew shows the equivalence between news and all combined with new. The proof uses the proof
methods simp and metis in the order they are written, i.e. simp the first proof goal generated
by the structural induction on z. Then simp simplifies the second proof goal which is afterwards
proved by metis. The metis proof method is a resolution theorem prover [17].

lemma map’:
"new_term c t =⇒ semantics_term e (f(c := m)) t = semantics_term e f t"
"new_list c l =⇒ semantics_list e (f(c := m)) l = semantics_list e f l"

proof (induct t and l rule: semantics_term.induct semantics_list.induct)
qed (simp, simp, metis, simp, simp, metis)

lemma map:
"new c p =⇒ semantics e (f(c := m)) g p = semantics e f g p"

proof (induct p arbitrary: e)
qed (simp, simp, metis map’(2), simp, metis, simp, metis, simp, metis, simp_all)

lemma allmap:
"news c z =⇒ all (semantics e (f(c := m)) g) z = all (semantics e f g) z"

proof (induct z) qed (simp, simp, metis map)

The lemma map’ shows that we preserve the semantics of a term if we map a constant that is
new to the term to another value. Here, f(c := m) maps function identifier c to m in the function
map f. Because the lemma is quite obvious it can be proved automatically. The first and third
goals are proved by simp, and the second and fourth are simplified by simp and then proved
by metis. The lemma map shows that the property of map’ can be extended to also hold for
formulas. This can also be proved automatically. There are seven proof goals of the induction
corresponding to each of the formula constructors. We use simp to discharge of the first proof
goal, then simp followed by metis for the next four. This time we use metis map’(2) to prove the
case for predicates. This works by applying metis with the addition of the second part of map’
as a fact with which it can reason. The last two proof goals are proved with the simplifier using
simp_all. The lemma allmap further extends the property of the lemma map’ to also hold for
lists of formulas. We prove it using simp and metis map.

lemma substitute’:
"semantics_term e f (sub_term v s t) =

semantics_term (put e v (semantics_term e f s)) f t"
"semantics_list e f (sub_list v s l) =

semantics_list (put e v (semantics_term e f s)) f l"
proof (induct t and l rule: semantics_term.induct semantics_list.induct)
qed simp_all

The lemma substitute’ is the famous substitution lemma for terms. This lemma shows a re-
lation between the world of syntax and the world of semantics. More specifically, the relation is
between the syntactical operation of substitution and the semantic notion of variable environ-
ments. The two are related because a substitution instantiates a variable with a term, and this
term represents a value. Thus we get the same semantics of the term if we instead of substitution
put the value directly at the index of the variable in the environment. The proof is by induction
and simp_all.

lemma substitute:
"semantics e f g (sub v t p) = semantics (put e v (semantics_term e f t)) f g p"

116

proof (induct p arbitrary: e v t)
fix i l e v t
show "semantics e f g (sub v t (Pre i l)) =

semantics (put e v (semantics_term e f t)) f g (Pre i l)"
proof (simp add: substitute’(2)) qed

next
fix p e v t assume ∗: "semantics e’ f g (sub v’ t’ p) =

semantics (put e’ v’ (semantics_term e’ f t’)) f g p" for e’ v’ t’
have "semantics e f g (sub v t (Exi p)) =

(∃x. semantics (put (put e 0 x) (v + 1)
(semantics_term (put e 0 x) f (inc_term t))) f g p)"

using ∗ proof simp qed
also have "... =

(∃x. semantics (put (put e v (semantics_term e f t)) 0 x) f g p)"
using commute increment(1) proof metis qed

finally show "semantics e f g (sub v t (Exi p)) =
semantics (put e v (semantics_term e f t)) f g (Exi p)" proof simp qed

have "semantics e f g (sub v t (Uni p)) =
(∀x. semantics (put (put e 0 x) (v + 1)

(semantics_term (put e 0 x) f (inc_term t))) f g p)"
using ∗ proof simp qed

also have "... =
(∀x. semantics (put (put e v (semantics_term e f t)) 0 x) f g p)"

using commute increment(1) proof metis qed
finally show "semantics e f g (sub v t (Uni p)) =

semantics (put e v (semantics_term e f t)) f g (Uni p)" proof simp qed
qed simp_all

The lemma substitute extends the substitution lemma to hold also for formulas. The proof is
by induction on a formula p. In the proof we write arbitrary: e v t because then e, v and t are also
arbitrary in the induction hypothesis. This more general induction hypothesis is necessary for the
proof. Most cases can be proven by the simplifier without any instructions, but we prove the cases
for predicates Pre, existential quantification Exi and universal quantification Uni more explicitly.
For the predicates, we only need instruct the simplifier to use substitute’(2) as a simplification
rule by writing (simp add: substitute’(2)). For the existential quantification we make an explicit
proof. We fix the subformula p of an existential quantification for which we want to prove the
property. As said, we want to prove it with an arbitrary variable environment e, an arbitrary
variable v, and an arbitrary term t so we fix those as well. We then state the induction hypothesis
∗ which says that for the subformula p of our existential quantification we can put the value of
the term t in the environment instead of doing substitution with t:

assume ∗: "semantics e’ f g (sub v’ t’ p) =
semantics (put e’ v’ (semantics_term e’ f t’)) f g p" for e’ v’ t’

The for keyword ensures that e’, v’, and t’ are arbitrary as we wished. We wish to prove the
substitution lemma for the existential quantification Exi p, i.e. that

semantics e f g (sub v t (Exi p)) =
semantics (put e v (semantics_term e f t)) f g (Exi p)

The keyword also together with finally is used to make a proof from left to right of the equality

117

of two expressions. This is what we want to do, and thus we start from the left-hand side:

semantics e f g (sub v t (Exi p))

and realize that by the definition of substitution and the semantics of Exi we just need a single
value x for which the semantics of sub (v + 1) (inc_term t) p is true under the environment
put e 0 x. At the same time, we realize that we can now use the induction hypothesis. Therefore,
instead of considering the semantics of sub (v + 1) (inc_term t) p under put e 0 x, we equiva-
lently consider the semantics of p under the variable environment which is put e 0 x with the
value of t put on index v + 1. We must thus continue our proof from

(∃x. semantics (put (put e 0 x) (v + 1)
(semantics_term (put e 0 x) f (inc_term t))) f g p)

We can make this expression much simpler by using commute and increment(1).

(∃x. semantics (put (put e v (semantics_term e f t)) 0 x) f g p)

We finish our proof using the semantics of Exi, as well as the fact that put generalizes putting
at index 0, and we get the right-hand side we were looking for:

semantics (put e v (semantics_term e f t)) f g (Exi p)

Then follows a proof of substitution for the universal quantification Uni since it has the
same induction hypothesis. The proof is very similar. Finally we write qed simp_all to prove the
remaining cases by simplification.

lemma soundness’: "OK p z =⇒ all (semantics e f g) z =⇒ semantics e f g p"
proof (induct arbitrary: f rule: OK.induct)
fix f p z assume "all (semantics e f g) z"

"all (semantics e f’ g) (Imp p Falsity # z) =⇒
semantics e f’ g Falsity" for f’

then show "semantics e f g p" proof force qed
next
fix f p q z r assume "all (semantics e f g) z"

"all (semantics e f’ g) z =⇒ semantics e f’ g (Dis p q)"
"all (semantics e f’ g) (p # z) =⇒ semantics e f’ g r"
"all (semantics e f’ g) (q # z) =⇒ semantics e f’ g r" for f’

then show "semantics e f g r" proof (simp, metis) qed
next
fix f p q z assume "all (semantics e f g) z"

"all (semantics e f’ g) z =⇒ semantics e f’ g (Con p q)" for f’
then show "semantics e f g p" "semantics e f g q"
proof (simp, metis, simp, metis) qed

next
fix f p z q c assume ∗: "all (semantics e f g) z"

"all (semantics e f’ g) z =⇒ semantics e f’ g (Exi p)"
"all (semantics e f’ g) (sub 0 (Fun c []) p # z) =⇒ semantics e f’ g q"
"news c (p # q # z)" for f’

obtain x where "semantics (λn. if n = 0 then x else e (n − 1)) f g p"
using ∗(1) ∗(2) proof force qed

then have "semantics (put e 0 x) f g p" proof simp qed

118

then have "semantics (put e 0 x) (f(c := λw. x)) g p"
using ∗(4) allhead allnew map proof blast qed

then have "semantics e (f(c := λw. x)) g (sub 0 (Fun c []) p)"
proof (simp add: substitute) qed

moreover have "all (semantics e (f(c := λw. x)) g) z"
using ∗(1) ∗(4) alltail allnew allmap proof blast qed

ultimately have "semantics e (f(c := λw. x)) g q" using ∗(3) proof simp qed
then show "semantics e f g q" using ∗(4) allhead alltail allnew map
proof blast qed

next
fix f z t p assume "all (semantics e f g) z"

"all (semantics e f’ g) z =⇒ semantics e f’ g (sub 0 t p)" for f’
then have "semantics (put e 0 (semantics_term e f t)) f g p"
proof (simp add: substitute) qed
then show "semantics e f g (Exi p)" proof (simp, metis) qed

next
fix f z t p assume "all (semantics e f g) z"

"all (semantics e f’ g) z =⇒ semantics e f’ g (Uni p)" for f’
then show "semantics e f g (sub 0 t p)" proof (simp add: substitute) qed

next
fix f c p z assume ∗: "all (semantics e f g) z"

"all (semantics e f’ g) z =⇒ semantics e f’ g (sub 0 (Fun c []) p)"
"news c (p # z)" for f’

have "semantics (λn. if n = 0 then x else e (n − 1)) f g p" for x
proof −
have "all (semantics e (f(c := λw. x)) g) z"
using ∗(1) ∗(3) alltail allnew allmap proof blast qed

then have "semantics e (f(c := λw. x)) g (sub 0 (Fun c []) p)"
using ∗(2) proof simp qed

then have "semantics (λn. if n = 0 then x else e (n − 1))
(f(c := λw. x)) g p"

proof (simp add: substitute) qed
then show "semantics (λn. if n = 0 then x else e (n − 1)) f g p"
using ∗(3) allhead alltail allnew map proof blast qed

qed
then show "semantics e f g (Uni p)" proof simp qed

qed simp_all

The lemma soundness’ shows the soundness of the proof system. It is done by rule induction
on the rules of the proof system. We have to prove that assuming that the derivations in the
premises follow logically, then so does the derivation in the conclusion. For the rules Boole, Dis_E,
Con_E1, Con_E2 and Uni_E we state the induction hypothesis, and the assumption that the
premises are satisfied. We then do the proof by automation. For Uni_I, Exi_E and Exi_I we
write out the proofs explicitly because they are more complicated. We prove the remaining rules
sound by automation with the substitution lemma as simplification rule. The keyword next is
used to separate the different cases.

Let us look at how we proved Uni_I sound. The ∗ states our induction hypothesis which
states that if our assumptions z are satisfied by any function map then so is p with a constant

119

Fun c [] substituted for 0.

all (semantics e f’ g) z =⇒ semantics e f’ g (sub 0 (Fun c []) p)

We additionally assume that the side condition that c is new to p#z.

news c (p # z)

Since we want to prove the derivation from z to Uni p sound we also assume that the premises
z are satisfied by a fixed f and a fixed g.

all (semantics e f g) z

We then wish to prove that so is Uni p. Since the premises are satisfied by f and since c is new
to them they must also be satisfied by f(c := λw. x).

all (semantics e (f(c := λw. x)) g) z

In this step we used the proof method blast which is a tableau prover [17]. Then it follows by
our induction hypothesis that also p with c substituted for 0 is satisfied.

semantics e (f(c := λw. x)) g (sub 0 (Fun c []) p)

We then use the substitution lemma to add the value of t to the environment instead of doing
the substitution.

semantics (λn. if n = 0 then x else e (n − 1)) (f(c := λw. x)) g p

Since c is new to p we might as well evaluate it in f instead of f(c := λw. x) and this concludes
the proof.

semantics (λn. if n = 0 then x else e (n − 1)) f g p

5.6 A Consistency Corollary to the Soundness Theorem
Soundness is the main theorem about the formalization of the natural deduction proof system.
As a corollary we immediately prove the following consistency result about the proof system:

Something, but not everything, can be proved.

In Isabelle we can prove it using the simplifier (simp), some simple rules and Isabelle’s prover for
intuitionistic logic (iprover), although a classical prover (say, metis) would work too, of course:

corollary "∃p. OK p []" "∃p. ¬OK p []"
proof −
have "OK (Imp p p) []" for p proof (rule Imp_I, rule Assume, simp) qed
then show " ∃p. OK p []" proof iprover qed
have "¬ semantics (e :: nat ⇒ unit) f g Falsity" for e f g proof simp qed
then show " ∃p. ¬OK p []" using soundness proof iprover qed

qed

Recall that ∃ is the existential quantifier in Isabelle. The symbol ¬ is negation in Isabelle. The
first part (∃p. OK p []) follows from a simple proof of p → p (for an arbitrary formula p in
first-order logic). The second part (∃p. ¬OK p []) follows from the proof of soundness and from
the fact that the semantics of Falsity is always false (for simplicity we consider universes with
just one element, provided by the unit type).

120

5.7 Style of the Proof
When you do a proof in Isabelle, you need to choose how close you want the steps of the proof to
be to each other. On one hand the proof should be understandable, but on the other hand you
do not want the readers to get lost in small details. Larger steps also allow the reader to think
for himself instead of having everything spelled out in detail. If a student wants to gain more
insight, she can expand it, and let Isabelle check if the details she added were correct. Isabelle
also has tools that allow its users to see which steps simp used to prove a result.

The notation we chose to use is close to that of programming rather than that of mathematics
and set theory. Isabelle, however, also supports a more classical notation. Our motivation for the
choice is our students’ background from programming, as well as to show that a very well-defined
structure lies beneath the logical symbols both at the object and the meta levels.

We use the formal semantics and soundness proof in our teaching. Among other things the
students can make calculation using the formal semantics in Isabelle and also make changes to
the formal semantics (for example, replacing the if-then-else with logical operators in Isabelle,
or adding negation to the logic).

6 Related Work
Formalizations of model theory and proof theory of first-order logic are rare, for example [6, 7,
11, 20, 21].

Throughout the development of NaDeA we have considered some of the natural deduction
assistants currently available. Several of the tools available share some common flaws. They can
be hard to get started with, or depend on a specific platform. However, there are also many tools
that each bring something useful and unique to the table. One of the most prominent is Panda,
described in [13]. Panda includes a lot of graphical features that make it fast for the experienced
user to conduct proofs, and it helps the beginners to tread safely. Another characteristic of Panda
is the possibility to edit proofs partially before combining them into a whole. It definitely serves
well to reduce the confusion and complexity involved in conducting large proofs. However, we
still believe that the way of presenting the proof can be more explicit. In NaDeA, every detail is
clearly stated as part of the proof code. In that sense, the students should become more aware
of the side conditions to rules and how they work.

Another tool that deserves mention is ProofWeb [10] which is open source software for teach-
ing natural deduction. It provides interaction between some proof assistants (Coq, Isabelle, Lego)
and a web interface. The tool is highly advanced in its features and uses its own syntax. Also,
it gives the user the possibility to display the proof in different formats. However, the advanced
features come at the cost of being very complex for bachelor students and require that you learn
a new syntax. It serves as a great tool for anyone familiar with natural deduction that wants to
conduct complex proofs that can be verified by the system. It may, on the other hand, prove less
useful for teaching natural deduction to beginners since there is no easy way to get started. In
NaDeA, you are free to apply any (applicable) rule to a given formula, and thus, beginners have
the freedom to play around with the proof system in a safe way. Furthermore, the formalized
soundness result for the proof system of NaDeA makes it relevant for a broader audience, since
this gives confidence in that the formulas proved with the tool are actually valid.

121

7 Further Work
In NaDeA there is support for proofs in propositional logic as well as first-order logic. We would
also like to extend to more complex logic languages, the most natural step being higher-order
logic. This could be achieved using the CakeML approach [8].

Other branches of logic would also be interesting. Apart from just extending the natural
deduction proof system to support other branches of logic, another option is to implement other
proof systems as well.

Because the NaDeA tool has a formalization in Isabelle of its proof system, we would like to
provide features that allow for a more direct integration with Isabelle. For instance, we would
like to allow for proofs to be exported to a format suitable for Isabelle such that Isabelle could
verify the correctness of the proofs. A formal verification of the implementation would require
much effort, but perhaps it could be reimplemented on top of Isabelle (although probably not in
TypeScript / JavaScript) or using Isabelle’s code generation facility.

We would like to extend NaDeA with more features in order to help the user in conducting
proofs and in understanding logic. For example, the tool could be extended with step-by-step
execution of the auxiliary primitive recursive functions used in the side conditions of the natural
deduction rules.

NaDeA has been successfully classroom tested in a regular course with around 70 bachelor
students in computer science each year. The students find the formal semantics and the proof
of the soundness theorem relevant and instructive. We have extended NaDeA with a so-called
ProofJudge system [19] which allows students to submit solutions and get feedback. We are in
the process of adding to NaDeA a simple automated theorem prover [20, 21], verified by the
Isabelle proof assistant and developed using Isabelle’s code generation facility, in order to make
it possible to better guide the students if for example sub-proofs are started and there is in fact
no possible proof.

References
[1] Mordechai Ben-Ari. Mathematical Logic for Computer Science. Third Edition. Springer

2012.

[2] Tobias Nipkow, Lawrence C. Paulson and Markus Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic. Lecture Notes in Computer Science 2283, Springer 2002.

[3] Dag Prawitz. Natural Deduction. A Proof-Theoretic Study. Stockholm: Almqvist & Wiksell
1965.

[4] Francis Jeffry Pelletier. A Brief History of Natural Deduction. History and Philosophy of
Logic, 1-31, 1999.

[5] Melvin Fitting. First-Order Logic and Automated Theorem Proving. Second Edition
Springer 1996.

[6] John Harrison. Formalizing Basic First Order Model Theory. Lecture Notes in Computer
Science 1497, 153–170, Springer 1998.

[7] Stefan Berghofer. First-Order Logic According to Fitting. Formal Proof Development.
Archive of Formal Proofs 2007.

122

[8] Ramana Kumar, Rob Arthan, Magnus O. Myreen and Scott Owens. HOL with Definitions:
Semantics, Soundness, and a Verified Implementation. Lecture Notes in Computer Science
8558, 308–324, Springer 2014.

[9] Jørgen Villadsen, Anders Schlichtkrull and Andreas Viktor Hess. Meta-Logical Reasoning in
Higher-Order Logic. Accepted at 29th International Symposium Logica, Hejnice Monastery,
Czech Republic, 15-19 June 2015.

[10] ProofWeb. Online http://proofweb.cs.ru.nl/login.php (ProofWeb is both a system for
teaching logic and for using proof assistants through the web). Accessed September 2016.

[11] Jasmin Christian Blanchette, Andrei Popescu and Dmitriy Traytel. Unified Classical Logic
Completeness - A Coinductive Pearl. Lecture Notes in Computer Science 8562, 46–60, 2014.

[12] Krysia Broda, Jiefei Ma, Gabrielle Sinnadurai and Alexander Summers. Pandora: A Rea-
soning Toolbox Using Natural Deduction Style. Logic Journal of IGPL, 15(4):293–304, 2007.

[13] Olivier Gasquet, François Schwarzentruber and Martin Strecker. Panda: A Proof Assistant
in Natural Deduction for All. A Gentzen Style Proof Assistant for Undergraduate Students.
Lecture Notes in Computer Science 6680, 85–92. Springer 2011.

[14] Antonia Huertas. Ten Years of Computer-Based Tutors for Teaching Logic 2000-2010:
Lessons learned. Lecture Notes in Computer Science 6680, 131–140, Springer 2011.

[15] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning About
Systems. Second Edition. Cambridge University Press 2004.

[16] Jonathan P. Seldin. Normalization and Excluded Middle. I. Studia Logica, 48(2):193–217,
1989.

[17] Jasmin Christian Blanchette, Lukas Bulwahn and Tobias Nipkow. Automatic Proof and
Disproof in Isabelle/HOL. Lecture Notes in Computer Science 6989, 12-27, 2011.

[18] Tobias Nipkow and Gerwin Klein. Concrete Semantics with Isabelle/HOL. Springer 2014.

[19] Jørgen Villadsen. ProofJudge: Automated Proof Judging Tool for Learning Mathemati-
cal Logic. Exploring Teaching for Active Learning in Engineering Education Conference
(ETALEE), Copenhagen, Denmark, 2015.

[20] Jørgen Villadsen, Anders Schlichtkrull and Andreas Halkjær From. Code Generation for a
Simple First-Order Prover. Isabelle Workshop, Nancy, France, 2016.

[21] Alexander Birch Jensen, Anders Schlichtkrull and Jørgen Villadsen. Verification of an LCF-
Style First-Order Prover with Equality. Isabelle Workshop, Nancy, France, 2016.

123

http://proofweb.cs.ru.nl/login.php

Programming and Verifying a Declarative First-Order
Prover in Isabelle/HOL

Alexander Birch Jensen, John Bruntse Larsen, Anders Schlichtkrull, and Jørgen
Villadsen

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract

We certify in the proof assistant Isabelle/HOL the soundness of a declarative first-order
prover with equality. The LCF-style prover is a translation we have made, to Standard
ML, of a prover in John Harrison’s Handbook of Practical Logic and Automated Reasoning.
We certify it by replacing its kernel with a certified version that we program, certify and
generate code from; all in Isabelle/HOL. In a declarative proof each step of the proof is
declared, similar to the sentences in a thorough paper proof. The prover allows proofs to
mix the declarative style with automatic theorem proving by using a tableau prover. Our
motivation is teaching how automated and declarative provers work and how they are used.
The prover allows studying concrete code and a formal verification of correctness. We show
examples of proofs and how they are made in the prover. The entire development runs in
Isabelle’s ML environment as an interactive application or can be used standalone in OCaml
or Standard ML (or in other functional programming languages like Haskell and Scala with
some additional work).

Keywords Isabelle, verification, declarative proofs for first-order logic with equality, soundness,
LCF-style prover

1 Introduction
There are two styles of writing proofs in provers – the procedural style and the declarative style.
In the procedural style, users write a script of instructions that tells the prover how to prove a
theorem. Only by executing each instruction can the user see what happens in the proof. In the
declarative style, proofs resemble thorough proofs on paper because they are written as a chain
of sentences of varying level of detail. Thus, a user can read and understand a declarative proof
without executing the prover. The declarative style is supported in advanced proof assistants
such as Isabelle/HOL [29].

We develop a declarative prover intended mainly for educational purposes that users can quite
easily inspect and for which a formal soundness proof is also accessible in Isabelle/HOL. We do
this by translating, to the functional programming language Standard ML (SML), John Harri-
son’s interactive theorem prover for classical first-order logic with equality from his Handbook
of Practical Logic and Automated Reasoning [13]. The kernel of his prover is based on a proof
system that uses equality which is advantageous because it means that it avoids substitution.

124

(∀x. P (x) ∧ (∀y. P (y) ∧H(y, x) −→ G(y)) −→ G(x)) ∧
((∃x. P (x) ∧ ¬G(x)) −→

(∃x. P (x) ∧ ¬G(x) ∧ (∀y. P (y) ∧ ¬G(y) −→ J(x, y)))) ∧
(∀xy. P (x) ∧ P (y) ∧H(x, y) −→ ¬J(y, x)) −→
(∀x. P (x) −→ G(x))

Figure 1: Pelletier’s problem 46

1.1 The LCF-style Prover
The main aim of the present work has been to evaluate the prospects of a simple LCF-style prover
as a certified declarative first-order prover that is generated from a specification in Isabelle/HOL
and that can be inspected for educational purposes.

The prover follows the LCF-style of having a trusted kernel on which other components are
built [14]. The main benefit is that if the user trusts the kernel, then she can also trust the other
components.

We take advantage of this in our certification. By certifying the soundness of the kernel, we
ensure the soundness of all the other components because they rely on the kernel to generate
theorems.

We therefore program a kernel similar to Harrison’s in Isabelle/HOL and certify its sound-
ness by defining a semantics on the first-order formulas with equality. Then we use Isabelle’s
code reflection facility to generate a module that represents the kernel and import it into the
special Isabelle/ML environment for Standard ML. Hereafter we load the rest of the prover into
Isabelle/ML along with a number of examples.

The whole prover, its verification and many examples of proofs are available in the Archive
of Formal Proofs (AFP) [19]. The AFP entry is a single theory file which is structured as follows:

• A definition of the syntax of FOL with equality.

• A definition of the axioms and rules of the kernel.

• A definition of a semantics of FOL with equality.

• Definitions of a proof system consisting of the axioms and rules of the kernel.

• A soundness proof of the proof system.

• Code reflection of the axioms and rules.

• The prover that builds on top of the kernel.

• Examples of proofs in the prover.

The prover includes a tableau prover which allows proofs to mix the declarative proof style
with automatic theorem proving, and we show several examples of such proofs.

1.2 Declarative Proof of Pelletier’s Problem 46
As test cases for our declarative prover we have considered several of the most difficult first-order
logic problems in Pelletier’s Seventy-Five Problems for Testing Automatic Theorem Provers [31].

125

Figure 2: Example of a declarative proof in our prover running inside Isabelle/jEdit. The initial
string encodes Pelletier’s problem 46 and the prover function calls in black (prove, assume,
conclude, proof, fix and qed) mark steps in the proof. The prover runs in the Isabelle/ML
environment.

As mentioned earlier, the prover allows proofs to mix the declarative style with use of au-
tomatic theorem proving. Let us illustrate this by considering Pelletier’s problem 46 in Figure
1.

We prove the formula in a declarative style with our prover as shown in Figure 2 including
the use of the automatic tableau prover. To explain the intuition of the proof, Figure 3 shows
the proof recast in natural language. The proof is structured in the same way as the declarative
proof.

The idea of the proof is that we break down the structure of the formula until we are in a
state where the automation can take care of the rest.

In the next section we provide a short introduction to Isabelle/HOL and in the subsequent
sections we describe first the architecture for the declarative prover and then the formalization
in Isabelle/HOL.

Parts of this paper are adapted from our previous workshop paper [17].

2 Isabelle/HOL
Isabelle/HOL is a proof assistant for higher-order logic. Higher-order logic can be thought of as
a mix of logic and typed functional programming. Isabelle/HOL includes the usual logical con-
nectives −→, ←→, ∨, ∧, ¬ as well as equality = and non-equality 6=. Additionally Isabelle/HOL
allows us to specify rules using =⇒. For instance Isabelle/HOL axiomatizes modus-ponens as

126

We will prove Pelletier’s problem 46 (Figures 1 and 2).

Since its outermost structure is an implication, we start by assuming the three formulas
in the conjunction on the left-hand side of the arrow:

- We assume ∀x. P (x) ∧ (∀y. P (y) ∧H(y, x) −→ G(y)) −→ G(x) and

∃x. P (x) ∧ ¬G(x)) −→ (∃x. P (x) ∧ ¬G(x) ∧ (∀y. P (y) ∧ ¬G(y) −→ J(x, y))) and

∀xy. P (x) ∧ P (y) ∧ h(x, y) −→ ¬J(y, x).
These assumptions are labeled A.

- From this we conclude the right-hand side ∀x. P (x) −→ G(x).
Since it is a universal quantification we do it as follows:

- We fix an arbitrary element, x.

- Then we conclude P (x) −→ G(x) as follows:
- We assume P (x) and label the assumption B.

- Then we conclude G(x) which follows by assumptions A and B.
This is proved automatically with the tableau prover.

Figure 3: The declarative proof of Pelletier’s problem 46 recast as a structured proof in natural
language

(P −→ Q) =⇒ P =⇒ Q. It is convention to separate the assumptions from the conclusions of
theorems and lemmas using =⇒ even though, at least logically, one might as well use −→.

Isabelle/HOL also includes commands for defining types, defining functions and declaring
theorems. We list these in Table 1.

In making our certified prover, we found the following tools of Isabelle/HOL essential:

• The structured proof language Isabelle/Isar [41], which offers ample features for writing
declarative proofs, as well as proof methods such as simp, fastforce and metis, which can
discharge proof goals [43].

• Sledgehammer [2], which can discharge proof goals by employing multiple automatic the-
orem provers (ATPs) as well as satisfiability-modulo-theories (SMT) solvers and proof
reconstruction in Isabelle/Isar.

• Isabelle/ML [44], which is a way to use Standard ML (SML) inside the Isabelle environment.
It can be embedded in Isabelle/Isar which means that it can be used side by side with
Isabelle/HOL.

• Isabelle’s code generation [10] and its code reflection is used to generate code from Isabelle/
HOL definitions and load it into the Isabelle/ML environment.

• The Isabelle/jEdit Prover IDE (Integrated Development Environment) [42], which allows
both for navigating, stating and checking formalizations in Isabelle/Isar and for program-
ming and debugging in Isabelle/ML.

Isabelle/ML and in particular Isabelle’s code generation have been most relevant for the
integration of Isabelle/HOL and Standard ML code, and furthermore Isabelle/jEdit is used for

127

Command Description
type_synonym Defines a syntactic abbreviation of a type.

datatype Defines an ML-style datatype.
definition Defines a (non-recursive) function or constant.

abbreviation Defines a syntactical abbreviation of a term.
primrec Defines a primitive recursive function.

inductive Defines an inductive predicate based on a set of introduction rules.
lemma Declares a lemma and is followed by a proof.

theorem Declares a theorem and is followed by a proof.
corollary Declares a corollary and is followed by a proof.

code_reflect Generates code that is reflected into the Isabelle/ML environment.

Table 1: A subset of Isabelle/HOL’s commands

our declarative prover too. In addition, Sledgehammer was particularly useful for the starting
point of our work, namely Alexander B. Jensen’s thesis [16], since it allows Isabelle novices to
prove theorems without having deep knowledge about Isabelle’s library of theorems.

3 Architecture for Declarative Prover
Figure 4 shows the architecture of the entire development. The development consists of a single
Isabelle theory file, which has an Isabelle/HOL part and an Isabelle/ML part. The two parts are
connected with code reflection.

The part in Isabelle/HOL defines types for formulas and theorems, as well as functions for
axioms and rules. These are then used inductively to define the proof system which is proved
sound with respect to a semantics.

Hereafter, code reflection connects the Isabelle/HOL part with the Isabelle/ML part: Isabelle
is instructed to generate code from the Isabelle/HOL definitions, and the code is then loaded into
the Isabelle/ML environment. The loaded code consists of an ML module with a signature con-
sisting of the type of formulas, the type of theorems, the axiom functions and the rule functions.
It is the kernel of the declarative prover.

The part in Isabelle/ML defines the declarative prover. The declarative prover is a number
of ML-functions that make calls into the kernel. These functions include derived rules, a tableau
prover and various tactics.

The idea of the architecture is that we prove the axioms and rules sound in Isabelle/HOL.
We load the axioms and rules into Isabelle/ML by using reflection, and the ML signature system
then ensures that all values of the type for a theorem are built from the loaded axioms and rules.
Thus these values represent theorems of the sound proof system.

Our entire development can run from a single file in a window in the Isabelle/jEdit IDE. As
already mentioned the file is available and maintained in the Archive of Formal Proofs against
the current release of Isabelle and the file includes both the Isabelle/HOL and the Isabelle/ML
part [19]. It is possible to replace the code-reflection with a code generation tool that exports
the kernel to a source code file in either OCaml, Haskell, Scala or SML.

128

Isabelle

Isabelle/HOL Isabelle/ML

axiom_addimp
. . .

axiom_exists
modusponens

gen

Axioms and Rules

Proof System `

Soundness Theorem

Kernel

Derived Rules

Tableau Prover

Tactics

Declarative Prover

Inductive Definition

Semantics

code-reflect

export_code

OCaml Haskell Scala SML

Figure 4: Architecture of the certified declarative prover in Isabelle.

129

4 Formalization of Terms and Formulas
We formalize formulas in the same style as Harrison’s OCaml code which has the parameter ’a
for the type of atoms and variable identifiers represented as strings.

type_synonym id = String .literal

This way the atoms can be instantiated for either propositional logic or first-order logic.

datatype ′a fm = Truth | Falsity | Atom ′a |
Imp 〈 ′a fm〉 〈 ′a fm〉 | Iff 〈 ′a fm〉 〈 ′a fm〉 |
And 〈 ′a fm〉 〈 ′a fm〉 | Or 〈 ′a fm〉 〈 ′a fm〉 |
Not 〈 ′a fm〉 | Exists id 〈 ′a fm〉 | Forall id 〈 ′a fm〉

We similarly formalize the terms and first-order atoms. Function identifiers and predicate
identifiers are also represented by strings:

datatype tm = Var id | Fn id 〈tm list〉

datatype fol = Rl id 〈tm list〉

Thus the first-order formulas are represented by the type fol fm.

5 Proof System
The entire axiomatic proof system can be seen in Figure 5 and comes from Harrison’s textbook.
The idea is that the validity of the rules and axioms should be evident and that they should be
easy to implement. Harrison recognizes that substitution with named variable bindings is not
entirely trivial. There are ways to alleviate these complications, for instance by using de Bruijn
indices or nominals, but Harrison takes another approach. He takes inspiration from proof systems
for first-order logic with equality by Tarski [39] and Monk [28] which avoid substitution entirely
in their axioms and rules.

Harrison’s rules and axioms in Figure 5 are structured as follows:

Inference rules (1-2) The inference rules are modus ponens (1) and generalization (2).

Propositional axioms (3-5) The propositional axioms, together with modus ponens (1), form
a proof system of the propositional logic with −→ and ⊥ as the only operators. Harrison refers
to the proof system P0 by Church [7] which consists exactly of these three axioms and modus
ponens.

First-order axioms (6-11) The first-order axioms, together with the propositional axioms
and the inference rules, form a proof system for first-order logic with only the operators −→, ⊥,
∀ and the rest defined as abbreviations. Axioms 6-9 appear in the axiomatic systems by Tarski
and Monk and so does an axiom similar to the congruence axioms 10-11.

Further operator axioms (12-19) These further operator axioms characterize ←→, >, ¬,
∧, ∨ and ∃ in terms of −→, ⊥ and ∀.

In addition to the advantage of leading to a simple kernel, the approach allows Harrison to
present named variable bindings to the user without any conversion from an internal represen-
tation.

The same approach is used by the proof checker Metamath [25] which uses a similar set of
axioms also inspired by Tarski [39].

130

6 Formalization of Axioms and Proof Rules
Since axioms and proof rules will be formalized as functions, they should be functions that return
theorems. Therefore we introduce a datatype for the theorems, as well as a selector concl , such
that concl (Thm x) = x .

datatype "thm" = Thm (concl : 〈fol fm〉)

We can then define the rules and axioms of the proof system as functions in Isabelle/HOL.
Let us consider the simplest such function, namely axiom_addimp.

definition axiom_addimp :: "fol fm ⇒ fol fm ⇒ thm"
where
"axiom_addimp p q ≡ Thm (Imp p (Imp q p))"

This axiom simply implements the well-known axiom p −→ (q −→ p). Notice also the type
annotation. The axiom takes two formulas and returns a theorem.

We also consider a proof rule, namely gen, which is the generalization rule.

definition gen :: "id ⇒ thm ⇒ thm"
where
"gen x s ≡ Thm (Forall x (concl s))"

This implements the rule `s
`∀x. s . Notice that this function takes a theorem as input since it

is a proof rule.

6.1 Side Conditions
The axioms axiom_impall and axiom_existseq have the side condition that x is not, respectively,
free in p or occurs in t .

¬free_in x p
p −→ (∀x. p)

¬occurs_in x t
∃x. x = t

Therefore we have to choose what the functions should return when the side conditions are
not fulfilled.

Harrison chose to throw an exception but these are not available in Isabelle/HOL. We there-
fore considered several alternatives. One possibility would be to return undefined . Another pos-
sibility would be to return a thm option which would be None when the side conditions are not
fulfilled.

We choose instead that the implementation returns Thm Truth when the side conditions are
not fulfilled. This solution simplifies the code and the proofs. It clearly ensures soundness since,
when things go wrong, we return a formula that is obviously valid.

abbreviation (input) "fail_thm ≡ Thm Truth"

We define the following functions for terms and lists of terms:

primrec
occurs_in :: "id ⇒ tm ⇒ bool"

and
occurs_in_list :: "id ⇒ tm list ⇒ bool"

where
"occurs_in i (Var x) = (i = x)" |
"occurs_in i (Fn _ l) = occurs_in_list i l" |
"occurs_in_list _ [] = False" |
"occurs_in_list i (h # t) =

(occurs_in i h ∨ occurs_in_list i t)"

131

1. modus ponens p −→ q p
q

2. generalization
p

∀x. p

3. axiom addimp p −→ q −→ p

4. axiom distribimp (p −→ q −→ r) −→ (p −→ q) −→ p −→ r

5. axiom doubleneg ((p −→ ⊥) −→ ⊥) −→ p

6. axiom allimp (∀x. p −→ q) −→ (∀x. p) −→ (∀x. q)

7. axiom impall
¬free_in x p
p −→ (∀x. p)

8. axiom existseq
¬occurs_in x t
∃x. x = t

9. axiom eqrefl t = t

10. axiom funcong s1 = t1 −→ · · · −→ sn = tn −→ f(s1, . . . , sn) = f(t1, . . . , tn)

11. axiom predcong s1 = t1 −→ · · · −→ sn = tn −→ P (s1, . . . , sn) −→ P (t1, . . . , tn)

12. axiom iffimp1 (p←→ q) −→ p −→ q

13. axiom iffimp2 (p←→ q) −→ q −→ p

14. axiom impiff (p −→ q) −→ (q −→ p) −→ (p←→ q)

15. axiom true > ←→ (⊥ −→ ⊥)

16. axiom not ¬p←→ (p −→ ⊥)

17. axiom and (p ∧ q)←→ ((p −→ q −→ ⊥) −→ ⊥)

18. axiom or (p ∨ q)←→ ¬(¬p ∧ ¬q)

19. axiom exists (∃x. p)←→ ¬(∀x.¬p)

Figure 5: The axiomatic proof system.
132

We define the following function for formulas:

primrec free_in :: "id ⇒ fol fm ⇒ bool"
where
"free_in _ Truth = False" |
"free_in _ Falsity = False" |
"free_in i (Atom a) =

(case a of Rl _ l ⇒ occurs_in_list i l)" |
"free_in i (Imp p q) = (free_in i p ∨ free_in i q)" |
"free_in i (Iff p q) = (free_in i p ∨ free_in i q)" |
"free_in i (And p q) = (free_in i p ∨ free_in i q)" |
"free_in i (Or p q) = (free_in i p ∨ free_in i q)" |
"free_in i (Not p) = free_in i p" |
"free_in i (Exists x p) = (i 6= x ∧ free_in i p)" |
"free_in i (Forall x p) = (i 6= x ∧ free_in i p)"

definition axiom_impall :: "id ⇒ fol fm ⇒ thm"
where
"axiom_impall x p ≡

if ¬ free_in x p then Thm (Imp p (Forall x p))
else fail_thm"

Axiom axiom_existseq is defined in the same way as axiom axiom_impall .

6.2 Congruence Axioms
The most complicated axioms are the congruence axioms, axiom_funcong and axiom_predcong .

s1 = t1 −→ · · · −→ sn = tn −→
f(s1, · · · , sn) = f(t1, · · · , tn)

s1 = t1 −→ · · · −→ sn = tn −→
P (s1, · · · , sn) −→ P (t1, · · · , tn)

For axiom_funcong , Harrison’s implementation takes the two lists lefts = [s1, . . . , sn] and
rights = [t1, . . . , tn] as input, and constructs the above nested implication.

let axiom_funcong f lefts rights =
itlist2

(fun s t p −> Imp (mk_eq s t,p)) lefts rights
(mk_eq (Fn (f,lefts)) (Fn (f,rights)))

The function itlist2 is defined as

let rec itlist2 f l1 l2 b =
match (l1,l2) with
([],[]) −> b

| (h1::t1,h2::t2) −> f h1 h2 (itlist2 f t1 t2 b)
| _ −> failwith "itlist2";;

His idea is that we have a function which adds an equality of two terms as an antecedent to a
formula. Then we can use that function and itlist2 to iteratively add equalities of the terms in
our lists as antecedents starting from the formula f(t1, . . . , tn) = f(s1, . . . , sn).

Our formalization instead splits the functionality of axiom_funcong into two functions:

133

• foldr Imp takes a list of formulas [F1, . . . , Fn] and adds them as antecedents to a formula
F to build a nested implication F1 −→ · · · −→ Fn −→ F .

• zip_eq takes two lists of formulas, [s1, . . . , sn], [t1, . . . , tn] and builds the corresponding list
of equalities [s1 = t1, . . . , sn = tn].

definition zip_eq :: "tm list ⇒ tm list ⇒ fol fm list"
where
"zip_eq l l ′ ≡ map (λ(t , t ′). Atom (Rl (STR ′′= ′′) [t , t ′]))

(zip l l ′)"

The idea of our approach is that we can separately reason about constructing equalities
and adding antecedents, and this will make it easier to prove soundness. We now implement
axiom_funcong as follows by first constructing the equalities, and then the nested implication.

definition axiom_funcong :: "id ⇒ tm list ⇒ tm list ⇒ thm"
where
"axiom_funcong i l l ′ ≡

if equal_length l l ′ then
Thm (foldr Imp (zip_eq l l ′)

(Atom (Rl (STR ′′= ′′) [Fn i l , Fn i l ′])))
else fail_thm"

We formalize axiom_predcong in a similar way.

definition axiom_predcong :: "id ⇒ tm list ⇒ tm list ⇒ thm"
where
"axiom_predcong i l l ′ ≡

if equal_length l l ′ then
Thm (foldr Imp (zip_eq l l ′)

(Imp (Atom (Rl i l)) (Atom (Rl i l ′))))
else fail_thm"

7 Formalization of Axiomatic Proof System
Since we want to prove the whole system sound, we need to characterize the theorems, which
are built exclusively from the axioms and the rules. We therefore define the proof system as an
inductive predicate OK . Writing ("` _" 0) we introduce the turnstile as syntax for the OK
predicate where the underscore denotes that the formula follows the turnstile. The 0 denotes the
precedence of the notation. After where follows each of the rules and axioms as introduction
rules in the inductive predicate. The underscores there are dummy variables, that is, each one of
them corresponds to a fresh Isabelle/HOL variable.

inductive OK :: "fol fm ⇒ bool" ("` _" 0)
where

134

modusponens:
"` concl s =⇒
` concl s ′ =⇒ ` concl (modusponens s s ′)" |

gen:
"` concl s =⇒ ` concl (gen _ s)" |

axiom_addimp: "` concl (axiom_addimp _ _)" |
axiom_distribimp: "` concl (axiom_distribimp _ _ _)" |
axiom_doubleneg : "` concl (axiom_doubleneg _)" |
axiom_allimp: "` concl (axiom_allimp _ _ _)" |
axiom_impall : "` concl (axiom_impall _ _)" |
axiom_existseq : "` concl (axiom_existseq _ _)" |
axiom_eqrefl : "` concl (axiom_eqrefl _)" |
axiom_funcong : "` concl (axiom_funcong _ _ _)" |
axiom_predcong : "` concl (axiom_predcong _ _ _)" |
axiom_iffimp1 : "` concl (axiom_iffimp1 _ _)" |
axiom_iffimp2 : "` concl (axiom_iffimp2 _ _)" |
axiom_impiff : "` concl (axiom_impiff _ _)" |
axiom_true: "` concl axiom_true" |
axiom_not : "` concl (axiom_not _)" |
axiom_and : "` concl (axiom_and _ _)" |
axiom_or : "` concl (axiom_or _ _)" |
axiom_exists: "` concl (axiom_exists _ _)"

8 Semantics
To prove the rules sound, we of course need a semantics of terms and formulas. The formalization
is mostly straightforward. We represent universes as types, and therefore the semantics refers
to the universe by a type variable ′a. A noteworthy case of the semantics is the one for the
atoms, where we interpret the = predicate applied to two terms as an equality. This is done by
evaluating the terms and seeing if their values are equal.

primrec — Semantics of terms
semantics_term ::
"(id ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ tm ⇒ ′a"

and
semantics_list ::
"(id ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒ tm list ⇒ ′a list"

where
"semantics_term e _ (Var x) = e x" |
"semantics_term e f (Fn i l) = f i (semantics_list e f l)" |
"semantics_list _ _ [] = []" |
"semantics_list e f (t # l) =

semantics_term e f t # semantics_list e f l"

primrec — Semantics of formulas
semantics
:: "(id ⇒ ′a) ⇒ (id ⇒ ′a list ⇒ ′a) ⇒

(id ⇒ ′a list ⇒ bool) ⇒ fol fm ⇒ bool"
where
"semantics _ _ _ Truth = True" |
"semantics _ _ _ Falsity = False" |
"semantics e f g (Atom a) =

(case a of Rl i l ⇒

135

if i = STR ′′= ′′ ∧ length2 l then
(semantics_term e f (hd l) =
semantics_term e f (hd (tl l)))

else g i (semantics_list e f l))" |
"semantics e f g (Imp p q) =

(semantics e f g p −→ semantics e f g q)" |
"semantics e f g (Iff p q) =

(semantics e f g p ←→ semantics e f g q)" |
"semantics e f g (And p q) =

(semantics e f g p ∧ semantics e f g q)" |
"semantics e f g (Or p q) =

(semantics e f g p ∨ semantics e f g q)" |
"semantics e f g (Not p) = (¬ semantics e f g p)" |
"semantics e f g (Exists x p) =

(∃ v . semantics (e(x := v)) f g p)" |
"semantics e f g (Forall x p) =

(∀ v . semantics (e(x := v)) f g p)"

9 Soundness of the Proof System
Harrison only presents a very high-level soundness proof which leaves most of the exercise up
to the reader. Furthermore, his proof is about the proof system, not its implementation. Our
approach is therefore to device a proof ourselves, using Isabelle/jEdit to explore proofs and to
help us reveal the necessary lemmas.

We prove the soundness by rule induction on the proof system, and thus need to prove one
case for each axiom and rule. Cases for the axioms without side conditions and the gen rule are
proved sound using only the automation of Isabelle/HOL.

Cases for the axioms with side conditions are not as easy to prove. Here, we need to come up
with appropriate lemmas to prove them sound. We present and explain these lemmas.

The modus_ponens case is proved with a short declarative proof that also relies on automa-
tion.

9.1 Axioms with Non-Free or Non-Occurring Variables
The first challenge in the soundness proof is the two axioms, axiom_impall and axiom_existseq ,
that require a variable to be respectively non-free or non-occurring in an expression. For ax-
iom_existseq it is clear that the formula holds if we assign the value of x to t. By inspecting
the semantics of the existential quantifier, we realize that the variable x must not occur in t. It
is however not clear to Isabelle that this problem is avoided when x does not occur in t. The
lemma map’ explicitly states that if x does not occur in t, then the semantic value of t is the
same for all values of x. The statement is extended to hold for lists of terms due to the inductive
definition of terms.

lemma map ′:
"¬ occurs_in x t =⇒

semantics_term e f t = semantics_term (e(x := v)) f t"
"¬ occurs_in_list x l =⇒

semantics_list e f l = semantics_list (e(x := v)) f l"

The lemma map is similar, but states that if the variable x does not occur freely in p (or if
it does not occur at all) then the truth value of p is the same for all values of x.

136

lemma map:
"¬ free_in x p =⇒

semantics e f g p ←→ semantics (e(x := v)) f g p"

By inspecting the semantics of the universal quantifier, we see that this exactly states that the
semantics of p is the same as ∀x. p. This fact is an even stronger result than what we need to prove
axiom_impall valid. We are now ready to prove axiom_impall using map and axiom_existseq
using map′.

9.2 Congruence Axioms
The next challenge is to prove the congruence axioms, axiom_funcong and axiom_predcong
sound. We now take advantage of the foldr Imp function we introduced earlier, and prove a
lemma explaining its semantics. The lemma states that a nested implication is true exactly when
the truth of its antecedents implies the truth of its conclusion.

lemma imp_chain_equiv :
"semantics e f g (foldr Imp l p) ←→

(∀ q ∈ set l . semantics e f g q) −→ semantics e f g p"

We then also state a lemma which explains the semantics of foldr Imp (zip_eq l l ′) p. The
lemma states that it holds exactly when the semantical equality between l and l′ implies the
truth of p.

lemma imp_chain_zip_eq :
"equal_length l l ′ =⇒

semantics e f g (foldr Imp (zip_eq l l ′) p) ←→
semantics_list e f l = semantics_list e f l ′ −→

semantics e f g p"

With this we prove the congruence axioms sound using automation in lemmas funcong and
predcong . It is easy to see that the lemma funcong proves a theorem in the first-order logic,
since its conclusion is encapsulated by semantics. The formula is the main content of the Isabelle
definition of axiom_funcong .

lemma funcong :
"equal_length l l ′ =⇒

semantics e f g (foldr Imp (zip_eq l l ′)
(Atom (Rl (STR ′′= ′′) [Fn i l , Fn i l ′])))"

Likewise in the lemma predcong , we see a theorem in the first-order logic. The formula is the
main content of the Isabelle definition of axiom_predcong .

lemma predcong :
"equal_length l l ′ =⇒

semantics e f g (foldr Imp (zip_eq l l ′)
(Imp (Atom (Rl i l)) (Atom (Rl i l ′))))"

9.3 Soundness Theorem
We then prove soundness. Often, soundness is expressed as provability implying validity. There-
fore we would like a HOL predicate expressing validity. That is unfortunately not possible,
because of our choice of representing universes as types, which one cannot quantify over inside
HOL.

Instead, we express soundness as follows:

137

theorem soundness:
"` p =⇒ semantics e f g p"

This also expresses soundness, since it states that the provability of any formula p implies its
truth, for any environment e, function denotation f and predicate denotation g. The proof is by
rule-induction on the proof system as described.

From our main theorem we immediately obtain a consistency corollary which states that
there is a formula that we cannot prove:

corollary "¬ (` Falsity)"
using soundness
by fastforce

10 Prover
Since we have defined all the necessary datatypes for our logic as well as the axioms and rules used
to construct theorems, we are ready to expose them to the Isabelle/ML environment using code-
reflection. To do this we use the Isabelle code_reflect command which takes a structure name as
well as a list of datatypes and their constructors, as well as a list of functions. It then generates
a signature and structure based on them and exposes it to the Isabelle/ML environment. In
particular, we tell Isabelle that the datatypes fm, tm and fol should be in the signature along
with their respective constructors. Likewise we tell Isabelle that the signature should include
functions modusponens, gen, . . . , concl .

code_reflect
Proven

datatypes
fm = Falsity | Truth | Atom | Imp | Iff |

And | Or | Not | Exists | Forall
and
tm = Var | Fn

and
fol = Rl

functions
modusponens gen axiom_addimp axiom_distribimp
axiom_doubleneg axiom_allimp axiom_impall
axiom_existseq axiom_eqrefl axiom_funcong
axiom_predcong axiom_iffimp1 axiom_iffimp2
axiom_impiff axiom_true axiom_not axiom_and
axiom_or axiom_exists concl

Let us inspect the signature of the generated module:

structure Proven:
sig
val axiom_addimp: fol fm −> fol fm −> thm
val axiom_allimp: string −> fol fm −> fol fm −> thm
val axiom_and: fol fm −> fol fm −> thm
val axiom_distribimp: fol fm −> fol fm −> fol fm −> thm
val axiom_doubleneg: fol fm −> thm
val axiom_eqrefl: tm −> thm
val axiom_exists: string −> fol fm −> thm
val axiom_existseq: string −> tm −> thm

138

val axiom_funcong: string −> tm list −> tm list −> thm
val axiom_iffimp1: fol fm −> fol fm −> thm
val axiom_iffimp2: fol fm −> fol fm −> thm
val axiom_impall: string −> fol fm −> thm
val axiom_impiff: fol fm −> fol fm −> thm
val axiom_not: fol fm −> thm
val axiom_or: fol fm −> fol fm −> thm
val axiom_predcong: string −> tm list −> tm list −> thm
val axiom_true: thm
val concl: thm −> fol fm
datatype ’a fm =

And of ’a fm ∗ ’a fm
| Atom of ’a
| Exists of string ∗ ’a fm
| Falsity
| Forall of string ∗ ’a fm
| Iff of ’a fm ∗ ’a fm
| Imp of ’a fm ∗ ’a fm
| Not of ’a fm
| Or of ’a fm ∗ ’a fm
| Truth

datatype fol = Rl of string ∗ tm list
val gen: string −> thm −> thm
val modusponens: thm −> thm −> thm
type num
type thm
datatype tm = Fn of string ∗ tm list | Var of string

end

By inspecting the signature of the reflected module we see that the only functions that return
values of type thm are the axioms and rules. This fact and the soundness proof certify the
soundness of the kernel assuming that we trust ML’s type-system and Isabelle’s code generator.

Notice that a user cannot write e.g. Thm Falsity in ML since the Thm value constructor is
not exposed in the signature and thus unavailable to the user.

11 Declarative Prover
The signature above fits with the one in Harrison’s prover. We translate his prover from OCaml
to SML such that we can run the prover inside of Isabelle in the Isabelle/ML environment. The
translation was not too difficult, but there were some challenges arising from the differences
between SML (as defined in the revised standard from 1997 [27]) and OCaml.

• In SML there is no built-in polymorphic ordering and hashing. Therefore we, when needed,
define orderings and hash functions explicitly for each datatype.

• In SML there is no shallow/pointer comparison. All places it is used in the OCaml version
we can fortunately replace it with structural equality.

• In SML one cannot put guards on case-expressions. Therefore we use if-then-else instead
in these cases.

• OCaml has widely used preprocessors (camlp4 and camlp5). Harrison uses them when
parsing formulas. We choose not to use a preprocessor. One unfortunate consequence of

139

this is that when we want to use formulas as input, they are strings, and thus /\ needs to
written as /\\ in order to escape the backslash.

Harrison’s OCaml code contains many examples that are run when executing his code. We have
collected these examples and translated them to SML. We have systematically tested that both
versions produce the same output. The results are available online [37].

Let us take a look at how (our translation of) Harrison’s proof assistant works and how it
plugs into our generated kernel.

11.1 Derived Rules
The rules and axioms are functions that return theorems. By combining them Harrison obtains
new such functions, i.e. derived rules. For instance the rule which takes a theorem ` q and
produces ` p −→ q where p is some formula. The ML-implementation of this looks as follows:

fun add_assum p th =
modusponens (axiom_addimp (concl th) p) th;

The idea is that the above code implements the following proof where we think of q as concl th:

1. ` q
2. ` q −→ p −→ q (axiom_addimp)
3. ` p −→ q (modusponens 1 2)

We can also inspect the type of add_assum and see that it indeed takes a formula and a
theorem and returns a theorem:

fm −> thm −> thm

11.2 Tableau Prover
Harrison implements a tableau prover for first-order logic on top of the kernel. It is implemented
as code and thus calls into the kernel. The prover implements a tableau system with unification
— see e.g. Wikipedia [45] or Hähnle’s chapter in the Handbook of Automated Reasoning [11].
The tableau is expanded in a preorder-fashion. Whenever a pair of complementary literals is
found the resulting unifier will be applied to an environment that is passed on to the next node
to be expanded. In the code, branching on a disjunctive formula is handled by working on the
left branch immediately, and delaying the work on the right branch by building a continuation
function.

The tableau prover takes as parameter a number n indicating how many times universal
quantifiers are allowed to introduce fresh variables. An outer function tries to build tableaux
with larger and larger n until it, if the formula can be refuted, succeeds.

Harrison proves informally that the tableau prover is complete for first-order logic without
equality.

11.3 Tactics
Tactics are a way to implement backwards reasoning in a proof assistant. When a user wants to
use tactics he first states the goal he wants to prove. He can then use a tactic to reduce the goal
to a number of subgoals from which the goal follows. The subgoals can likewise be reduced with
tactics until they become trivial and then the proof is done.

140

A state in this process is represented by a datatype goals which looks as follows in the ML-
implementation:

datatype goals =
Goals of ((string ∗ fol fm) list ∗ fol fm)list ∗

(thm list −> thm);

Each (string ∗ fol fm) list ∗ fol fm represents a subgoal with a number of assumptions. More
precisely, the subgoal value ([p1, . . . , pi], q) represents the implication p1 ∧ ... ∧ pi −→ q.

The ((string ∗ fol fm) list ∗ fol fm) list represents a list of subgoals:

p11 ∧ . . . ∧ p1i1 −→ q1
...
pn1 ∧ . . . ∧ pnin −→ qn

The string in the type allows us to label the assumptions.
The (thm list −> thm) is called a justification function and represents a rule which will bring

us from the subgoals to the goal P we ultimately want to prove. It should thus represent a rule
on the following form:



` p11 ∧ . . . ∧ p1i1 −→ q1
...
` pn1 ∧ . . . ∧ pnin −→ qn


 =⇒ ` P

Let’s consider a simple example of a goals. Say we want to prove >∧>. A goals for this could
be a list with the single subgoal

> ∧>
together with a justification:

(` > ∧ >) =⇒ (` > ∧ >)
In ML this could be the value ([([],And(Truth,Truth)],hd) where hd gives the head of a list, and so
indeed when it is given [` > ∧ >] it will return ` > ∧ >.

A tactic is then simply a function of the type goals -> goals that should reduce the subgoals
to something simpler and change the justification function accordingly. This is similar to how it
was done in LCF [9,26].

For instance we could apply a conjunction introduction tactic to our current example which
would then produce the subgoals

>
>

together with a justification: (
` >
` >

)
=⇒ ` > ∧>

A simple example of a tactic is the conjunction introduction tactic which replaces a subgoal
of the form a −→ p ∧ q with two subgoals a −→ p and a −→ q.

Let us look at how to program the conjunction introduction tactic. In general, the tactic is
supposed to go from a goals with the following justification (and a corresponding list of subgoals)




` p11 ∧ . . . ∧ p1i1 −→ a ∧ b
` p21 ∧ . . . ∧ p2i2 −→ q2
...
` pn1 ∧ . . . ∧ pnin −→ qn


 =⇒ ` P

141

to the following justification (and a corresponding list of subgoals)



` p11 ∧ . . . ∧ p1i1 −→ a
` p11 ∧ . . . ∧ p1i1 −→ b
` p21 ∧ . . . ∧ p2i2 −→ q2
...
` pn1 ∧ . . . ∧ pnin −→ qn




=⇒ ` P

The tactic is implemented as follows. The call it makes to imp_trans_chain and and_pair is
described below, but for brevity we leave out the function definitions.

fun conj_intro_tac (Goals((asl,And(a,b))::gls,jfn)) =
let fun jfn’ (tha::thb::ths) =
jfn(imp_trans_chain [tha, thb] (and_pair a b)::ths) in

Goals((asl,a)::(asl,b)::gls,jfn’)
end;

The subgoals are changed as described – namely from (asl,And(a,b))::gls to (asl,a)::(asl,b)::gls.
There is also a new justification function jfn’ . In its definition the function call imp_trans_chain
[tha, thb] (and_pair a b) takes theorems ` asl −→ a and ` asl −→ b and from these produces
` asl −→ a ∧ b by calls into the kernel. When this is done we have the list of theorems that the
original justification function expected and we can then simply apply it to produce the theorem
we finally want.

Harrison implements several functions that are, or return, tactics:

• conj_intro_tac – conjunction introduction

• forall_intro_tac – forall introduction

• exists_intro_tac – existential introduction

• imp_intro_tac – implication introduction

• auto_tac – tableau prover

• lemma_tac – adding a new assumption

• exists_elim_tac – existential elimination

• disj_elim_tac – disjunction elimination

11.4 Declarative Proofs
Harrison builds the deductive prover on top of the tactics. The first step is to define a function
prove which takes a formula and a list of tactics. It then sets up a goals with that formula and
applies the tactics in the list one after another. In the end it returns the formula as a theorem if
the tactics were successful in proving it.

We use this function in Fig. 6 to conduct a proof. Notice that the proof is actually an SML-
expression directly calling prove. Because proofs are SML-expressions it is easy to extend the
prover’s syntax by writing new functions. The proof has a nested structure with some subproofs
introduced by the function proof that are processed in a similar way. Some of these proofs use the
have function to state intermediate steps towards proving the final goal. Let us first look at how
this works if we for instance write have p using [q] in some goals g. Here p is some formula and

142

q is some theorem. The have function calls lemma_tac with p and using [q] , and the following
happens:

The goals g has a first subgoal of the form asl −→ w. This subgoal is replaced with p −→
asl −→ w. Furthermore the justification function is changed. The new one calls using [q] which
constructs the theorem ` asl −→ univeral_closure q. Hereafter it will use the tableau prover
to construct ` universal_closure q −→ p if possible. From this follows ` asl −→ p. The new
justification function expects as input ` p −→ asl −→ w and therefore it can now construct
` asl −→ w. This is what the old justification function expected as input and thus it is applied.

As we saw, have and using can be used to prove an intermediate step with a previously
proved theorem. Likewise, have and by can be used to refer to a previously established fact in
the proof. In the implementation this can be done by ensuring that the steps that introduce facts
put them in the assumption list of the goals – as we saw have did. Then by can simply find them
there by their name. Combining have and proof allows subproofs to prove intermediate steps in
a similar manner.

Other tactics to be used in declarative proofs are

• note – similar to have, but the intermediate step is named.

• fix – which is simply a forall-introduction rule.

• assume – which does implication introduction.

• consider – which does existential elimination and introduces an appropriate variable.

• so – which modifies e.g. the have tactic to use the previous fact to prove its intermediate
step.

• conclude – indicates that we prove a subgoal.

• qed – indicates the end of the proof.

The declarative prover is able to give the user a rudimentary form of feedback when developing
the proof:

• The type system of SML will tell the user if she enters a proof wrongly on the highest level

• On the lower level, the tactics will throw exceptions if they are applied on a goals they did
not expect.

We have tried several workflows for building proofs:

• It is possible, but arguably a bit tedious, to build the proof from scratch with the help from
the SML type system and the exceptions.

• Another possibility is to start with a formula that can be proved with the tableau prover,
and then expand the proof more and more to the desired granularity, each time filling in
the next part to be expanded with a call to the tableau prover. This of course only works
on formulas that the prover can prove.

• A third possibility is to write the proof first by manually applying tactics to goals and
printing the resulting goals until one has a proof. Hereafter the proof can be reconstructed
in the declarative style.

143

Isabelle/jEdit presents both type errors and exceptions directly in its output panel, which is
updated live while the user is writing her proof. However, there is definitely room for improvement
when it comes to the usability of the prover.

For declarative proofs it is a huge advantage to have powerful proof automation that can
take care of some of the simpler steps. As a rather challenging example, consider the following
formalization with predicate r for rich and function f for father [23, page 128]:

If every person that is not rich has a rich father, then some rich person must have a
rich grandfather.

∀x(¬r(x)→ r(f(x)))→ ∃x(r(x) ∧ r(f(f(x))))
The tableau prover can in fact find the proof automatically and almost instantaneously. We

can easily use the tableau prover and/or the declarative prover as a stand-alone program as
follows. In Isabelle, we can introduce a Standard ML function auto and test it on some examples
including the above one (of course a more advanced version of the function auto is possible, also
using some helper functions):

ML {∗
fun auto s = prove (<!s!>) [our thesis at once, qed]
∗}

ML_val {∗ auto "A ==> A" ∗}

ML_val {∗ auto "exists x. D(x) ==> forall x. D(x)" ∗}

ML_val {∗ auto "(forall x. ~R(x) ==> R(f(x)))
==> exists x. R(x) /\\ R(f(f(x)))" ∗}

Using Isabelle’s code generator we obtain a stand-alone Standard ML program auto for the cer-
tified automated theorem prover. We have then used the tool SMLtoJs (“SML toys”) to translate
the Standard ML code to JavaScript such that we can use it in our NaDeA system [40] running
in a browser (here auto is run for just a fraction of a second and if necessary terminated).

12 Evaluation of the Declarative Prover
We first evaluate the usability of the declarative prover and then we evaluate the adequacy of
the soundness proof.

12.1 Usability of the Declarative Prover
Recall Figures 1 and 2 with Pelletier’s problem 46. With this example we have already shown
that we can prove a challenging theorem in the prover with the declarative style.

We now wish to further evaluate the prover by using it to prove a mathematical theorem. We
therefore consider Pelletier’s problem 43. The problem defines from a relation P another relation
Q as follows:

Q(x, y)←→ (∀z. P (z, x)←→ P (z, y))

The problem then claims that Q is symmetric.
Additionally, we to want construct a declarative proof with a stronger resemblance to our

understanding of thorough paper proofs as chains of sentences. Thus, the proof should break

144

down the structure of the formula to an appropriate level, and on that level resemble a thorough
paper proof consisting of a chain of sentences.

Figure 6 shows such a proof in the declarative proof language. We also discuss this and some
alternative proofs in Alexander B. Jensen’s thesis [16].

The first step of the proof is to show ∀x y.Q(x, y) ←→ Q(y, x) assuming (∀x y.Q(x, y) ←→
∀z. P (z, x) ←→ P (z, y)). We assume the left-hand side of the implication in the main formula
with the assume command and give it the name A. The command is in many ways similar
to its Isabelle counterpart. We then fix variables x and y using fix x, fix y to eliminate the
quantifiers. We further break down the problem and show the conjunction of both directions
of the bi-implication in Q(x, y) ←→ Q(y, x). We show the formula using the command have
which is similar to conclude except that it does not have to directly solve a sub-goal. The
sub-goal ∀z. P (z, y) ←→ P (z, x) for the −→ direction is solved by using the assumption A
which is achieved by so have (< !"forall z. P(z,x) <=> P(z,y)"!>) by ["A"]. In the following sub-
goal, where the left-hand side and right-hand side are swapped, we use only the previous fact
and no assumptions. The command at once can be used when the goal can be solved by pure
first-order reasoning from the previous fact. From the conjunction of implications, we show that
it is equivalent to the bi-implication using so our thesis at once and thus finish the proof.

To show that this proof is comparable to the declarative proofs in Isabelle/Isar and Isabelle/HOL,
we present in Figure 7 a similar proof in that system. The correspondence is clear.

12.2 Adequacy of the Soundness Proof
Let us also evaluate the soundness proof. In order to believe it, we need to convince ourselves that
the ` predicate indeed represents the ML-type thm. In order to do this we need to check that
all the axioms and rules for which we generate code, indeed appear in the definition of `. The
process is easy but allows for mistakes due to human error. Imagine for instance that someone
writes the following axiom, and generates code for it, but forgets to add it to ` – thus bypassing
the soundness proof.

definition axiom_false :: "thm" where
"axiom_false ≡ Thm Falsity"

It is not a catastrophe, since his peers can spot his mistake by inspection of `, but is none
the less undesirable.

One way to remedy this problem is to disallow, also in Isabelle/HOL, constructions such as
Thm Falsity . One way to do this is to define the axioms, rules and ` on formulas instead of
theorems. Hereafter one can define the type of theorems as the set of formulas derivable with `
using Isabelle’s typedef command. The lifting package of Isabelle can then lift the axioms and
rules to work on this new type. The concl function will then be defined to convert theorems back
to formulas.

With such a definition we can express soundness:

theorem soundness: "semantics e f g (concl p)"

And consistency:

theorem consistency : "concl p 6= Falsity"

Another, similar, way to remedy the problem is to define a predicate characterizing the valid
formulas and then define the theorems as the valid formulas using typedef . Unfortunately, as we
noticed in Section 9.3, this is not possible. One way to overcome this is to introduce a new type

145

prove
(<!"(forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)) ==> forall x y. Q(x,y) <=> Q(y,x)"!>)
[

assume [("A", <!"forall x y. Q(x,y) <=> forall z. P(z,x) <=> P(z,y)"!>)],
conclude (<!"forall x y. Q(x,y) <=> Q(y,x)"!>) proof
[

fix "x", fix "y",
conclude (<!"Q(x,y) <=> Q(y,x)"!>) proof
[

have (<!"(Q(x,y) ==> Q(y,x)) /\\ (Q(y,x) ==> Q(x,y))"!>) proof
[

conclude (<!"Q(x,y) ==> Q(y,x)"!>) proof
[

assume [("", <!"Q(x,y)"!>)],
so have (<!"forall z. P(z,x) <=> P(z,y)"!>) by ["A"],
so have (<!"forall z. P(z,y) <=> P(z,x)"!>) at once,
so conclude (<!"Q(y,x)"!>) by ["A"],
qed

],
conclude (<!"Q(y,x) ==> Q(x,y)"!>) proof
[

assume [("", <!"Q(y,x)"!>)],
so have (<!"forall z. P(z,y) <=> P(z,x)"!>) by ["A"],
so have (<!"forall z. P(z,x) <=> P(z,y)"!>) at once,
so conclude (<!"Q(x,y)"!>) by ["A"],
qed

],
qed

],
so our thesis at once,
qed

],
qed

],
qed

]

Figure 6: A detailed proof of Pelletier’s problem 43 in the declarative prover.

146

lemma "(∀ x y . Q(x ,y) ←→ (∀ z . P(z ,x) ←→ P(z ,y))) −→ (∀ x y . Q(x ,y) ←→ Q(y ,x))"
proof

assume A: "∀ x y . Q(x ,y) ←→ (∀ z . P(z ,x) ←→ P(z ,y))"
show "∀ x y . Q(x ,y) ←→ Q(y ,x)"
proof (rule, rule)

fix x y
show "Q(x ,y) ←→ Q(y ,x)"
proof −

have "(Q(x ,y) −→ Q(y ,x)) ∧ (Q(y ,x) −→ Q(x ,y))"
proof

show "Q(x ,y) −→ Q(y ,x)"
proof

assume "Q(x ,y)"
then have "∀ z . P(z ,x) ←→ P(z ,y)" using A by blast
then have "∀ z . P(z ,y) ←→ P(z ,x)" by blast
then show "Q(y ,x)" using A by blast

qed
next

show "Q(y ,x) −→ Q(x ,y)"
proof

assume "Q(y ,x)"
then have "∀ z . P(z ,y) ←→ P(z ,x)" using A by blast
then have "∀ z . P(z ,x) ←→ P(z ,y)" by blast
then show "Q(x ,y)" using A by blast

qed
qed
then show "Q(x ,y) ←→ Q(y ,x)" by blast

qed
qed

qed

Figure 7: A detailed proof of Pelletier’s problem 43 in Isabelle/HOL.

147

U , using Isabelle’s typedecl command, and then assume absolutely nothing about it. Then if a
formula evaluates to true for all environments and interpretations over this universe, we can,
informally, argue that it must be valid, since U is completely arbitrary. Again we can then define
the rules and axioms on the type of formulas, and then lift them to work on theorems. With
this approach soundness is captured in the types – any theorem value or function that returns
a theorem is valid. Consistency can be expressed and proved in the same way as when we lifted
`. One can, however, argue that defining the theorems as the valid formulas goes against the
meaning of the word theorem – theorem being a syntactic notion and validity being a semantic
notion. In first-order logic the two words capture the same meaning for sound and complete proof
systems, but for other logics such as ZFC there are no sound and complete proof systems with
respect to their usual semantics, and thus the words have very distinct meanings.

We have implemented both approaches of having thm as a type. Their code is available
online [18]. We, however, prefer our current approach because we feel that for teaching purposes
there are already enough concepts to talk about and adding lifting to the mix might confuse
more than help.

13 Related Work
The literature contains several other formalizations of logic and contains also declarative provers.
Let us first look at some other formalizations of logic.

Harrison [12] formalized, in HOL Light, soundness and consistency proofs for the HOL of
HOL Light without definitions. More precisely he considered three different logics: HOL, HOL
+ I and HOL − ∞. HOL + I is HOL extended with an axiom claiming the existence of a very
large cardinal, and HOL − ∞ is HOL where the axiom of infinity is removed. His results are
to prove in HOL + I that HOL is sound and consistent, and to prove in HOL that HOL −
∞ is sound and consistent. Kumar et al. [20] extended Harrison’s work by proving, in HOL4,
that HOL with definitions is sound and consistent. Their proofs rely on assuming a specification
of a set-theory. Our work differs from this by using the meta-logic of Isabelle/HOL and the
object logic of FOL. Using Isabelle/HOL on the meta-level has at least two advantages seen from
a teaching perspective. Firstly, Isabelle/HOL provides a complete integrated package of proof
assistant, prover integrated development environment and code-generation. This enables students
to load the entire development directly in Isabelle including verification, code-reflection and the
execution of the prover. Secondly, having FOL on the object level has pedagogical advantages,
since it is a logic that students are often familiar with and thus we can assume they have
some understanding of its syntax and semantics. Thus, we see our development as a pedagogical
stepping stone students can take towards the self-verifications of Harrison and Kumar et al.

Other provers based on verified proof systems for first-order logics are our NaDeA system [40]
and Breitner’s The Incredible Proof Machine [6]. They offer, by design, only limited automation
and the connection between the verification and the implementation is, furthermore, entirely
informal. Margetson and Ridge’s automatic prover for first-order logic in negation normal form
without first-order terms [24, 34, 35] makes the connection explicit, opting for execution within
Isabelle/HOL’s rewrite engine. Our prover stands out from these in two ways. Firstly, it is an
interactive theorem prover where users can employ techniques of declarative proving, automation,
tactics, etc. as they wish. Secondly, the connection between the verification and the system is
made explicit using code-generation.

There are many other formalizations of logic such as e.g. Persson’s constructive completeness
of intuitionistic predicate logic [33], Braselmann, Koepke and Schlöder’s sequent calculus for un-
countable languages [4, 5, 38], Berghofer’s natural deduction [1], Ilik’s constructive completeness

148

results for classical and intuitionistic logic [15], Blanchette, Popescu and Traytel’s abstract com-
pleteness library [3], Schlichtkrull’s resolution calculus [36], Peltier’s superposition calculus [32],
and Paulson’s proof of Gödel’s incompleteness theorems [30]. These formalizations, however, do
not formalize provers.

Let us now look at some other declarative provers. Geuvers [8] studies the history, ideas
and future of proof assistants. For instance, he emphasizes the advantage of having declarative
provers since they allow proofs in proof assistants to look like the texts that mathematicians write
and understand. Furthermore he emphasizes that declarative proofs are easier to adapt when a
definition is changed, since they explicitly document in each step which facts are supposed to hold
there. He also gives an overview of declarative proofs in the proof assistants Mizar, Isabelle/Isar,
Coq/C-Zar, and HOL Light (Mizar mode).

Our prover stands out from these provers in that it relies on a verified kernel. Furthermore, it
is not meant as an advanced production scale proof assistant, but instead as a smaller program
that is easy to understand and whose inner workings can be taught. None the less, the prover
still has the advantages of being declarative that Geuvers described.

14 Conclusion
We have in Isabelle/HOL certified the soundness of the underlying axiomatic proof system of the
declarative first-order prover. Using code reflection, we obtain from the proof system a certified
kernel that is loaded into the Isabelle/ML environment. The declarative prover uses the certified
kernel, and thus we also consider the soundness of the prover certified.

Declarative proofs mention explicitly the intermediate proof states, in contrast to procedural
proofs that merely explain what method is used to go to the next state. We have given example
proofs using the prover in Isabelle. Due to the compactness and transparent approach we think
that the certified declarative prover is useful as a tool for teaching logic.

Many well-known theorems can be proved by full automation using the tableau prover, e.g.
Pelletier’s problems 1–46 except for problems 34 (also known as Andrews’s challenge), 43 and
46.

For problem 43 and 46 that could not be proved automatically in reasonable time with the
current tableau prover, we have shown how the proofs can be written as declarative proofs that
resemble paper proofs and combine the declarative language with a high level of automation.
It would be interesting to improve the tableau prover or to add, say, a resolution prover, which
would be certified by using the certified kernel. We have not considered the tricky problem 34
yet.

Our declarative prover follows the LCF-style of having a trusted kernel on which other com-
ponents are built. In a single Isabelle theory file we certify the soundness of the kernel and
use code reflection to obtain a simple yet quite powerful interactive theorem prover. Our com-
bination of derived rules, a tableau prover, tactics and a declarative prover opens up for easy
experimentation with reliable combinations of automatic and interactive proof techniques — and
such techniques are in high demand as the following quote suggests:

In view of the practical limitations of pure automation, it seems today that, whether
one likes it or not, interactive proof is likely to be the only way to formalize most
non-trivial theorems in mathematics or computer system correctness. [14]

Learning the declarative style is of course beneficial for a computer science student who wants
to use one of the aforementioned provers. Even for those who will never use a proof assistant
again, it can be a helpful learning experience. Lamport recommends a structured style even for

149

paper proofs [21,22]. His experience is that this style helps reveal mistakes and cope with details.
He also suggests using this style for teaching because it allows for additional explanation and has
a clear logical structure that is easy to learn from. The concrete style he uses resembles very much
that of our declarative prover. Furthermore, the style is implemented in the TLAPS prover [22].
We conjecture that a good way to learn this structured style is by studying and understanding a
concrete prover. Our prover emphasizes the connection between the logical systems, its semantics
and the prover that implements them. A student can study all these aspects in the package we
provide.

Acknowledgements We would like to thank Jasmin Christian Blanchette for valuable feed-
back on the workshop paper [17] on which parts of this paper are based. We would also like
to thank Andrei Popescu for helpful discussions, and finally, we would like to thank Andreas
Halkjær From and the anonymous referees for constructive comments on drafts of the paper.

References
[1] S. Berghofer. First-order logic according to Fitting. Archive of Formal Proofs, Aug. 2007.

http://isa-afp.org/entries/FOL-Fitting.shtml, Formal proof development.

[2] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgehammer with SMT solvers.
In N. Bjørner and V. Sofronie-Stokkermans, editors, CADE-23, pages 116–130. Springer,
2011.

[3] J. C. Blanchette, A. Popescu, and D. Traytel. Soundness and completeness proofs by coin-
ductive methods. Journal of Automated Reasoning, 58(1):149–179, 2017.

[4] P. Braselmann and P. Koepke. Gödel’s completeness theorem. Formalized Mathematics,
13(1):49–53, 2005.

[5] P. Braselmann and P. Koepke. A sequent calculus for first-order logic. Formalized Mathe-
matics, 13(1):33–39, 2005.

[6] J. Breitner. Visual theorem proving with the Incredible Proof Machine. In J. C. Blanchette
and S. Merz, editors, International Conference on Interactive Theorem Proving, volume 9807
of LNCS, pages 123–139. Springer, 2016.

[7] A. Church. Introduction to Mathematical Logic. Princeton: Princeton University Press,
1956.

[8] H. Geuvers. Proof assistants: History, ideas and future. Sadhana, 34(1):3–25, 2009.

[9] M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF – A Mechanised Logic
of Computation, volume 78 of LNCS. Springer, 1979.

[10] F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems. In
M. Blume, N. Kobayashi, and G. Vidal, editors, Functional and Logic Programming (FLOPS
2010), volume 6009 of LNCS, pages 103–117. Springer, 2010.

[11] R. Hähnle. Tableaux and related methods. Handbook of Automated Reasoning, 1(101-176):4,
2001.

[12] J. Harrison. Towards self-verification of HOL Light. In U. Furbach and N. Shankar, editors,
IJCAR 2006, volume 4130 of LNCS, pages 177–191. Springer, 2006.

150

http://isa-afp.org/entries/FOL-Fitting.shtml

[13] J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University
Press, 2009.

[14] J. Harrison, J. Urban, and F. Wiedijk. History of interactive theorem proving. In J. Siek-
mann, editor, Handbook of the History of Logic vol. 9 (Computational Logic), pages 135–214.
Elsevier, 2014.

[15] D. Ilik. Constructive Completeness Proofs and Delimited Control. PhD thesis, École Poly-
technique, 2010.

[16] A. B. Jensen. Development and verification of a proof assistant. Master’s thesis, Technical
University of Denmark, 2016.

[17] A. B. Jensen, A. Schlichtkrull, and J. Villadsen. Verification of an LCF-style first-order
prover with equality. Isabelle Workshop, 2016.

[18] A. B. Jensen, A. Schlichtkrull, and J. Villadsen. https://bitbucket.org/isafol/isafol/
src/master/FOL_Harrison/, 2017. IsaFoL Entry – First-Order Logic According to Harri-
son.

[19] A. B. Jensen, A. Schlichtkrull, and J. Villadsen. First-order logic according to Harri-
son. Archive of Formal Proofs, Jan. 2017. http://isa-afp.org/entries/FOL_Harrison.
shtml,Formal proof development.

[20] R. Kumar, R. Arthan, M. O. Myreen, and S. Owens. Self-formalisation of higher-order logic:
Semantics, soundness, and a verified implementation. Journal of Automated Reasoning,
56(3):221–259, 2016.

[21] L. Lamport. How to write a proof. Global Analysis in Modern Mathematics, pages 311–321,
1993. Also published in American Mathematical Monthly, 102(7):600-608, August-September
1995.

[22] L. Lamport. How to write a 21st century proof. Journal of fixed point theory and applications,
11(1):43–63, 2012.

[23] R. Letz. First-order tableau methods. In M. D’Agostino, D. M. Gabbay, and R. Hähnle,
editors, Handbook of Tableau Methods, pages 125–196. Kluwer Academic Publishers, 1999.

[24] J. Margetson and T. Ridge. Completeness theorem. Archive of Formal Proofs, Sept. 2004.
http://isa-afp.org/entries/Completeness.shtml, Formal proof development.

[25] N. D. Megill. Metamath: A Computer Language for Pure Mathematics. Lulu Press, Mor-
risville, North Carolina, 2007. http://us.metamath.org/downloads/metamath.pdf.

[26] R. Milner. LCF: A way of doing proofs with a machine. In J. Bečvář, editor, Mathematical
Foundations of Computer Science, volume 74 of LNCS, pages 146–159. Springer, 1979.

[27] R. Milner, M. Tofte, and D. Macqueen. The Definition of Standard ML. MIT Press, Cam-
bridge, MA, USA, 1997.

[28] J. Monk. Mathematical Logic. Graduate Texts in Mathematics. Springer New York, 1976.

[29] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic, volume 2283 of LNCS. Springer, 2002.

151

https://bitbucket.org/isafol/isafol/src/master/FOL_Harrison/
https://bitbucket.org/isafol/isafol/src/master/FOL_Harrison/
http://isa-afp.org/entries/FOL_Harrison.shtml
http://isa-afp.org/entries/FOL_Harrison.shtml
http://isa-afp.org/entries/Completeness.shtml
http://us.metamath.org/downloads/metamath.pdf

[30] L. C. Paulson. A mechanised proof of Gödel’s incompleteness theorems using Nominal
Isabelle. Journal of Automated Reasoning, 55(1):1–37, 2015.

[31] F. J. Pelletier. Seventy-five problems for testing automatic theorem provers. Journal of
Automated Reasoning, 2(2):191–216, 1986.

[32] N. Peltier. A variant of the superposition calculus. Archive of Formal Proofs, Sept. 2016.
http://isa-afp.org/entries/SuperCalc.shtml, Formal proof development.

[33] H. Persson. Constructive completeness of intuitionistic predicate logic. PhD thesis, Chalmers
University of Technology, 1996.

[34] T. Ridge. A mechanically verified, efficient, sound and complete theorem prover for
first order logic. Archive of Formal Proofs, Sept. 2004. http://isa-afp.org/entries/
Verified-Prover.shtml, Formal proof development.

[35] T. Ridge and J. Margetson. A mechanically verified, sound and complete theorem prover
for first order logic. In J. Hurd and T. Melham, editors, TPHOL’s 2005, volume 3603 of
LNCS, pages 294–309. Springer, 2005.

[36] A. Schlichtkrull. Formalization of the resolution calculus for first-order logic. In J. C.
Blanchette and S. Merz, editors, International Conference on Interactive Theorem Proving,
volume 9807 of LNCS, pages 341–357. Springer, 2016.

[37] A. Schlichtkrull and J. Villadsen. https://github.com/logic-tools/sml-handbook/
tree/master/code, 2017. README: SML version of code for John Harrison’s “Handbook
of Practical Logic and Automated Reasoning”.

[38] J. J. Schlöder and P. Koepke. The Gödel completeness theorem for uncountable languages.
Formalized Mathematics, 20(3):199–203, 2012.

[39] A. Tarski. A simplified formalization of predicate logic with identity. Journal of Symbolic
Logic, 39(3):602–603, 1974.

[40] J. Villadsen, A. B. Jensen, and A. Schlichtkrull. NaDeA: A natural deduction assistant with
a formalization in Isabelle. IfCoLog Journal of Logics and their Applications, 4(1):55–82,
2017.

[41] M. Wenzel. Isar - A generic interpretative approach to readable formal proof documents. In
Y. Bertot, G. Dowek, L. Théry, A. Hirschowitz, and C. Paulin, editors, Theorem Proving in
Higher Order Logics, volume 1690 of LNCS, pages 167–184, 1999.

[42] M. Wenzel. System description: Isabelle/jEdit in 2014. In Proceedings Eleventh Workshop on
User Interfaces for Theorem Provers, UITP 2014, Vienna, Austria, 17th July 2014, pages
84–94, 2014.

[43] M. Wenzel. The Isabelle/Isar reference manual, 2016. http://isabelle.in.tum.de/dist/
doc/isar-ref.pdf.

[44] M. Wenzel. Isabelle/jEdit, 2016. http://isabelle.in.tum.de/dist/doc/jedit.pdf.

[45] Wikipedia. Method of analytic tableaux, 2017. https://en.wikipedia.org/wiki/Method_
of_analytic_tableaux.

152

http://isa-afp.org/entries/SuperCalc.shtml
http://isa-afp.org/entries/Verified-Prover.shtml
http://isa-afp.org/entries/Verified-Prover.shtml
https://github.com/logic-tools/sml-handbook/tree/master/code
https://github.com/logic-tools/sml-handbook/tree/master/code
http://isabelle.in.tum.de/dist/doc/isar-ref.pdf
http://isabelle.in.tum.de/dist/doc/isar-ref.pdf
http://isabelle.in.tum.de/dist/doc/jedit.pdf
https://en.wikipedia.org/wiki/Method_of_analytic_tableaux
https://en.wikipedia.org/wiki/Method_of_analytic_tableaux

Formalized Meta-Theory of a Paraconsistent Logic

Anders Schlichtkrull

DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract
Classical logics are explosive, meaning that everything follows from a contradiction.

Paraconsistent logics are logics that are not explosive. This chapter presents the meta-
theory of a paraconsistent infinite-valued logic, in particular showing that while the question
of validity for a given formula can be reduced to a consideration of only finitely many truth
values, this does not mean that the logic collapses to a finite-valued logic. All definitions
and theorems are formalized in the Isabelle/HOL proof assistant.

1 Introduction
The previous chapters in the thesis considered classical logics, which have many applications
including reasoning about mathematics, computer science and engineering. Classical logics are
by design explosive – everything follows from a contradiction. This is mostly uncontroversial,
but it seems problematic for certain kinds of reasoning. In paraconsistent logics, everything does
not follow from a contradiction. Non-classical logics should also enjoy the benefits of formal-
ization, and therefore this chapter presents a formalization of a paraconsistent infinite-valued
propositional logic.

The entry on paraconsistent logic in the Stanford Encyclopedia of Philosophy [10] thoroughly
motivates paraconsistent logics by arguing that some domains do contain inconsistencies, but this
should not make meaningful reasoning impossible. An example from computer science is that in
large knowledge bases an inconsistency can easily occur if just one data point is entered wrong.
A reasoning system based on such a database needs a meaningful way to deal with the incon-
sistency. Many other examples are mentioned from philosophy, linguistics, automated reasoning
and mathematics. A recent book [1] looks at paraconsistency in the domain of engineering. There
is no one paraconsistent logic to rule them all – there are many logics which can be used in differ-
ent contexts. The encyclopedia gives a taxonomy of paraconsistent logics consisting of discussive
logics, non-adjunctive systems, preservationism, adaptive logics, logics of formal inconsistency,
relevant logics and many-valued logics.

The logic considered here is the propositional fragment of a paraconsistent infinite-valued
higher-order logic by Villadsen [15, 16, 17, 18] and more recently Jensen and Villadsen in an
extended abstract [7]. The propositional logic, here called V, has a semantics with the two
classical truth values and countably infinitely many non-classical truth values. When U is a
subset of the non-classical truth values, VU is the logic defined the same as V except for the
restriction that its non-classical truth values are only those in U . In VU with a finite U , one can
find out whether a formula p is valid by enumerating enough interpretations that they cover all
possible assignments of the propositional symbols in p. This approach does not work in V since
there are infinitely many such interpretations. This chapter shows that it is enough to consider
the models in VU for a finite U , but that the size of U depends on the formula considered.

153

The contents of this chapter are as follows:

• Section 2 defines and formalizes V. It gives an example of paraconsistency in the logic.

• Section 3 defines and formalizes VU .

• Section 4 proves and formalizes that for any formula p there is a finite U such that if p is
valid in VU , it is also valid in V. This allows the question of validity in V to be solved by
a finite enumeration of interpretations.

• Section 5 proves and formalizes that if |U | = |W |, then VU and VW consider the same
formulas valid.

• Section 6 shows that, to answer the question of validity in V, one cannot fix a finite valued
VU once and for all because there exists a formula π|U | that is valid in this logic but not
in V. In other words, despite the result in Section 4, V is a different logic than any finite
valued VU .

The formalization in Sections 2 and 3 was written as part of my PhD studies and previously
presented in a book chapter [19] and a paper [20] by Villadsen and myself. The result in Section 4
had already been conjectured by Jensen and Villadsen [7], but was first proved and formalized as
part of my PhD studies as presented in the mentioned book chapter [19] and paper [20]. Likewise,
the result in Section 6 was conjectured by Villadsen and myself [20] and was first proved and
formalized as part of my PhD studies. It is presented in writing here for the first time except
for a brief mention in the abstract of a talk [11]. Thus, there are no previous informal proofs to
refer to for these results, and this chapter will therefore both present the formalization of these
results and their informal proofs. The full formalization is available online – 1500 lines of code
are already in an Archive of Formal Proofs entry by Villadsen and myself [13], and the 800 lines
corresponding to Sections 5 and 6 [12] will be added later. To make the chapter easier to read,
its notation is slightly different from the formalization.

2 A Paraconsistent Infinite-Valued Logic
The paraconsistent infinite-valued propositional logic V has two classical truth values, namely
true (•) and false (◦). These are called the determinate truth values. It also has countably many
different non-classical truth values (p, pp, ppp, . . .) [7]. These are called the inderterminate truth
values. This is represented as a datatype tv .

datatype tv = Det bool | Indet nat

Det True and Det False represent • and ◦ respectively, and constructor Indet maps each
natural number (0, 1, 2, . . .) to the corresponding indeterminate truth value (p, pp, ppp, . . .).

The propositional symbols of V are strings of a finite alphabet. Here, the symbols are denoted
as p, q, r, Interpretations are functions from propositional symbols into truth values. The
formulas of the logic are built from the propositional symbols and operators ¬, ∧, ⇔ and ↔
as well as a symbol for truth >. To make them distinguishable, the logical operators in the
paraconsistent logic are bold, while Isabelle/HOL’s logical operators are not (e.g. ¬, ∧, ∨, ←→).
⇔ represents equality whereas ¬, ∧ and ↔ are designed to be generalizations of their classical
counterparts. In the Isabelle/HOL formalization, the formulas are defined by a datatype fm, with
a constructor for atomic formulas consisting of propositional symbols and with constructors for
each of the operators.

154

In the semantics, Villadsen motivated the different cases by equalities of classical logic that
also hold in V [15]. These motivating equalities are shown to the right of their case:

eval i x = i x if x is a propositional symbol
eval i > = •

eval i (¬ p) =





• if eval i p = ◦ > ⇔ ¬ ⊥
◦ if eval i p = • ⊥ ⇔ ¬ >
eval i p otherwise

eval i (p ∧ q) =





eval i p if eval i p = eval i q p ⇔ p ∧ p

eval i q if eval i p = • q ⇔ > ∧ q

eval i p if eval i q = • p ⇔ p ∧ >
◦ otherwise

eval i (p⇔ q) =

{ • if eval i p = eval i q

◦ otherwise

eval i (p↔ q) =





• if eval i p = eval i q > ⇔ p↔ p

eval i q if eval i p = • q ⇔ > ↔ q

eval i p if eval i q = • p ⇔ p↔ >
eval i (¬ q) if eval i p = ◦ ¬q ⇔ ⊥ ↔ q

eval i (¬ p) if eval i q = ◦ ¬ p ⇔ p ↔ ⊥
◦ otherwise

Additionally, a number of derived operators are defined:

⊥ ≡ ¬ >
p ∨ q ≡ ¬ (¬ p ∧ ¬ q)
p ⇒ q ≡ p ⇔ (p ∧ q)
p → q ≡ p ↔ (p ∧ q)
2 p ≡ p ⇔ >

¬¬ p ≡ 2 (¬ p)
p ∧∧ q ≡ 2 (p ∧ q)
p ∨∨ q ≡ 2 (p ∨ q)
∆ p ≡ (2 p) ∨∨ (p ⇔ ⊥)
∇ p ≡ ¬¬ (∆ p)

Of special interest are 2, ∆ and ∇. 2 maps • to • and any other value to ◦. In other words
2 p states “p is true”. Similarly ∆ p states “p is determinate” and ∇ p states “p is indeterminate”.

The other operators can be divided in two groups – general operators (¬, ∧, ∨ and ↔) and
purely determinate operators (¬¬, ∧∧, ∨∨ and ⇔). The general operators behave as expected
on determinate values, and this behavior is generalized to indeterminate values. Consider for
example the truth table for ∨:

155

∨ • ◦ p pp
• • • • •
◦ • ◦ p pp
p • p p •
pp • pp • pp

The purely determinate operators also behave as expected on determinate values, and their
behavior generalizes to indeterminate values – however this time in such a way that they always
return a determinate truth value. Consider for example the truth table for ∨∨:

∨∨ • ◦ p pp
• • • • •
◦ • ◦ ◦ ◦
p • ◦ ◦ •
pp • ◦ • ◦

Validity is defined in the usual way, i.e. a formula is valid if it is true in all interpretations.

definition valid :: “ fm ⇒ bool”
where
“ valid p ≡ ∀ i . eval i p = •”

As a simple example of paraconsistency, consider the formula (p ∧ (¬ p)) ⇒ q. This formula
is not valid since it has e.g. the counter-model mapping p to p and q to ◦.

3 Paraconsistent Finite-Valued Logics
For any set U of indeterminate truth values, the logic VU is defined as follows: VU is defined in
the same way as V, except that it has a different notion of interpretations. An interpretation in
VU is a function from propositional symbols to the set {•, ◦} ∪ U instead of to the type of all
truth values.

A function domain constructs {•, ◦} ∪ U from a set of natural numbers:

definition domain :: “ nat set ⇒ tv set”
where
“ domain U ≡ {Det True, Det False} ∪ Indet ‘ U”

Here, Indet ‘ U denotes the image of Indet on U . Notice that in the formalization, U is
a set of natural numbers rather than a set of indeterminate values. This is only because it is
less tedious to write {0, 1, 2} than {Indet 0, Indet 1, Indet 2} and because being able to write
domain {Indet 0, •} is rather pointless since • is added by domain anyway. For the same reasons,
I will from now on also write e.g. V{0,1,2} rather than V{Indet 0, Indet 1, Indet 2}. The function is
called domain because in the higher-order version of V one can use the truth values as the domain
of discourse.

The notion of being valid in VU is formalized. The expression range i denotes the function
range of i.

definition valid_in :: “ nat set ⇒ fm ⇒ bool”
where
“ valid_in U p ≡ ∀ i . range i ⊆ domain U −→ eval i p = •”

156

It is clear that validity in V implies validity in any VU .

theorem valid_valid_in: assumes “ valid p” shows “ valid_in U p”

Proof. If p is valid in V, it is true in all interpretations and thus in particular those with the
desired range. Therefore p is valid in VU .

The set U can be finite or infinite. The former case in particular will be of interest in the
following sections.

4 A Reduction from Validity in V to Validity in VU

When U is finite, one can find out if a formula is valid by considering all the different cases of what
an interpretation might map the formula’s propositional symbols to. As an example, consider
the formula (p ∧ (¬ p)) → q in the logic V∅, which corresponds to classical propositional logic.

proposition “ valid_in ∅ ((p ∧ (¬ p)) → q)”
unfolding valid_in_def

proof (rule; rule)
fix i :: “ id ⇒ tv”
assume “ range i ⊆ domain ∅”
then have

“ i p ∈ {•, ◦}”
“ i q ∈ {•, ◦}”

unfolding domain_def
by auto

then show “ eval i ((p ∧ (¬ p)) → q) = •”
by (cases “ i p”; cases “ i q”) auto

qed

For V this approach does not work, since there are infinitely many truth values. This section
overcomes the problem by showing that there exists a finite subset of the interpretations in VU

that it is enough to enumerate. The idea is that looking at the semantics of V reveals that
there is a lot of symmetry between the indeterminate truth values p, pp, ppp, Specifically, the
indeterminate values are all different and can be told apart using ⇔, but none of them play any
special role compared with the others. Intuitively, this means that one just needs to consider
enough interpretations to ensure that one has considered all different possibilities of interpreting
the different pairs of propositional symbols as either different or equal indeterminate truth values.
Therefore it is only necessary to consider enough truth values to ensure that this is possible and
thus, for any formula p, it should be sufficient to consider all the interpretations in the logic VU ,
where |U | is at least the number of propositional symbols in p.

The first step towards proving this is to prove that interpretations that agree on the propo-
sitional symbols occurring in a formula also evaluate the formula to the same result.

lemma relevant_props: assumes “ ∀ s ∈ props p. i1 s = i2 s” shows “ eval i1 p = eval i2 p”

Proof. Follows by induction on the formula and the definitions of props and eval .

The next step is to consider an interpretation i in V and see that it behaves the same as a
corresponding interpretation in VU . The idea is that i can be changed to an interpretation in
VU by applying a function from nat into U to the indeterminate values that the interpretation
returns.

157

Given a function f of type nat ⇒ nat and an interpretation, its application f x to a truth
value x is defined as

f x =

{
x if x is determinate
Indet (f n) if x = Indet n

A function can also be applied to an interpretation:

f i = λs. f (i s)

If f is an injection, then applying f to the result or to the interpretation gives the same result
when evaluating a formula.

lemma eval_change: assumes “ inj f” shows “ eval (f i) p = f (eval i p)”

Proof. The proof is by induction on p. For each logical symbol, consider the different cases of
what the subformulas evaluate to under i as specified in the semantics. Consider for instance the
semantics’ “otherwise”-case for p↔ q. Here, it is the case that eval i p 6= eval i q and that there
exists a natural number n such that eval i p = Indet n and some m such that eval i q = Indet m.
Hence Indet n 6= Indet m and therefore n 6= m. Since f is injective, also f n 6= f m and
Indet (f n) 6= Indet (f m). The induction hypotheses are eval (f i) p = f (eval i p) and
eval (f i) q = f (eval i q). Consider the first one. Here it is the case that eval (f i) p =
f (eval i p) = f (Indet n) = Indet (f n). Likewise from the second it follows that eval (f i) q =
f (eval i q) = f (Indet m) = Indet (f m). This implies that eval (f i) p 6= eval (f i) q. Then, by
the semantics, it follows that eval (f i) (p ↔ q) = ◦ = f ◦ = f (eval i (p ↔ q)). And this part
of the proof is done. This was just one out of the 17 cases in the semantics. For the rest I refer
to the formalization.

Writing out all 17 cases would be tedious and checking all of them by hand requires discipline.
Therefore, there is always the danger of overlooking a needed argument, because one case looked
similar to another but really was not. Formalization enforces this discipline.

Now it is time to prove that if there are at least as many indeterminate truth values in U as
the number of propositional symbols in p, then the validity of p in VU implies the validity of p
in V. The lemma is expressed using Isabelle/HOL’s card function, which for finite sets returns
their cardinality and for infinite sets returns 0.

theorem valid_in_valid : assumes “ card U ≥ card (props p)” and “ valid_in U p” shows “ valid p”

Proof. p is proved valid by fixing an arbitrary interpretation i: First, obtain an injection f of
type nat ⇒ nat such that f maps any value in i ‘ (props p) to a value in domain U . This is
possible because |domain U | ≥ |props p|.

Now define the following interpretation:

i′ s =

{
(f i) s if s ∈ props p

• otherwise

From the properties of f and definition of i′ it follows that range i′ ⊆ domain U and then by the
validity of p in U it follows that eval i′ p = •. Furthermore, i′ and f i coincide on all symbols in
p, and therefore, by the lemma relevant_props, it also follows that eval (f i) p = •. Now from
eval_change follows that f (eval i p) = •. By definition of the application of a nat ⇒ nat to a
truth-value it is the case that eval i p = •. Thus any interpretation evaluates to • and therefore
the formula is valid.

158

theorem valid_iff_valid_in:
assumes “ card U ≥ card (props p)”
shows “ valid p ←→ valid_in U p”

Proof. Follows from valid_valid_in and valid_in_valid.

5 Sets of Equal Cardinality Define the Same Logic
Recall that while the indeterminate values are all different and can be told apart using ⇔, none
of them play any special role compared to the others. Therefore one would expect VU and VW to
be the same when U and W have the same cardinality. In the same way, consider what happens
when |U | < |W |. In this case one can think of VU as being VW with some truth values, and thus
interpretations, removed. Removing interpretations only makes it easier for a formula to be valid
and thus any formula that is valid in VW should also be valid in VU .

Isabelle/HOL defines inj_on such that inj_on f A expresses that f is an injection from A
into the return type of f . In order to be able to talk about one set having smaller cardinality
than another, it is useful to also define the notion of an injection from a set into another set.

definition inj_from_to :: “ (′a ⇒ ′b) ⇒ ′a set ⇒ ′b set ⇒ bool” where
“ inj_from_to f X Y ≡ inj_on f X ∧ f ‘ X ⊆ Y”

The lemma eval_change is generalized from the type nat to sets of nats.

lemma eval_change_inj_on:
assumes “ inj_on f U”
assumes “ range i ⊆ domain U”
shows “ eval (f i) p = f (eval i p)”

Proof. The proof is analogous to that of eval_change.

This is enough to prove the following lemma:

lemma inj_from_to_valid_in:
assumes “ inj_from_to f W U”
assumes “ valid_in U p”
shows “ valid_in W p”

Proof. The plan is to fix an arbitrary interpretation in VW and prove that it makes p true. First,
realize that range (f i) ⊆ domain U ; this follows from the fact that for any x it is the case that
(f i) x = f (i x) and here the application of i will give an element in domain W and then the
application of f will give an element in domain U . Therefore eval (f i) p = • by the validity of p
in VU . Then use eval_change_inj_on to get that f (eval i p) = • and then from the definition
of the application of f to a truth value that eval i p = •.

It is now time to prove that if U and W have equal cardinality, they define the same logic.

lemma bij_betw_valid_in:
assumes “ bij_betw f U W”
shows “ valid_in U p ←→ valid_in W p”

Proof. f is an injection from U into W . f− is an injection from W into U . The lemma therefore
follows from inj_from_to_valid_in.

159

6 The Difference Between V and VU for a Finite U
Section 4 showed that the question of the validity of p in V can be reduced to the question of its
validity in V{0..<|prop p|}, where {n..<m} = {k | n ≤ k < m} for any n and m. This section shows
that this does not mean that V collapses to a finite valued VU . The approach is to demonstrate
a formula that is true in V0..n but false in V. The formula is denoted the pigeonhole formula.
For n = 3 the pigeonhole formula π3 is

π3 = ∇x0∧∧∇x1∧∧∇x2 ⇒ (x0⇔x1)∨∨(x0⇔x2)∨∨(x0⇔x1).

I.e. it states that, assuming that x0, x1 and x2 refer to indeterminate values, two of them will be
the same. This is of course not true in an interpretation where they map to three different values,
but if one only considers two indeterminate values there are no such interpretations. Therefore
the formula is not valid in general but it is valid in V{p, pp}. Propositions x0 and x1 and x2 can be
thought of as pigeons and the values p and pp as pigeon holes.

In order to define the formula for any n, first define the conjunction and disjunction of a list
of formulas:

[∧∧]p1,...,pn
= p1∧∧ · · ·∧∧pn

[∨∨]p1,...,pn
= p1∨∨ · · ·∨∨pn

Extend ∇to a symbol that characterizes lists of indeterminate values:

[∇]p1,...,pn
= [∧∧]∇p1,...,∇pn

Given two sets S1 and S2, the concept of their cartesian product S1 × S2 is well known. Their
off-diagonal product is defined as

S1 ×off-diag S2 = {(s1, s2) ∈ S1 × S2 | s1 6= s2}

Isabelle/HOL offers the function List.product of type ′a list ⇒ ′a list ⇒ (′a × ′a) list, which
implements the cartesian product on lists representing sets. From this the list off-diagonal product
is defined:

L1 ×off-diag L2 = filter (λ(x, y). x 6= y) (List .product L1L2)

The list off-diagonal product is used to introduce equivalence existence, which given a list of
formulas expresses that two of the formulas in the list are equivalent.

[∃=]p1,...,pn
= [∨∨][=]((p1, . . . , pn)×off-diag (p1, . . . , pn))

where
[=](p11,p12),...,(pn1,pn2) = p11⇔p12, . . . , pn1⇔pn2

Let x0, x1, x2, ... be a sequence of different variables. These will form the pigeon holes. Implication,
∇, equivalence existence and the pigeon holes are combined to form the pigeonhole formula:

πn = [∇]x0,··· ,xn−1
⇒[∃=]x0,··· ,xn−1

160

6.1 πn is not valid in V
In order to prove that the pigeonhole formula is not valid, a counter-model for it is demon-
strated. This counter-model is in V{0..<n} and is thus also a counter-model for the validity of the
pigeonhole formula in V{0..<n}. The counter-model for pigeonhole formula number n is

cn(y) =

{
Indet i if y = xi and i < n

• otherwise

In order to prove that it indeed is a counter-model of the pigeonhole formula, a number of
lemmas are introduced that characterize the semantics of the formula’s components:

lemma cla_false_Imp:
assumes “ eval i a = •”
assumes “ eval i b = ◦”
shows “ eval i (a ⇒ b) = ◦”

Proof. Follows directly from the involved definitions.

lemma eval_CON :
“ eval i ([∧∧] ps) = Det (∀ p ∈ set ps. eval i p = •)”

Proof. Note that set ps denotes the set of members in the list ps. The lemma follows by induction
on ps from the involved definitions.

lemma eval_DIS :
“ eval i ([∨∨] ps) = Det (∃ p ∈ set ps. eval i p = •)”

Proof. Follows by induction on ps from the involved definitions.

lemma eval_ExiEql :
“ eval i ([∃=] ps) = Det (∃ (p1, p2)∈(set ps ×off-diag set ps). eval i p1 = eval i p2)”

Proof. Follows from the definition of [∃=], the definition of ×off-diag and eval_DIS .

is_indet t is defined to be true iff t is indeterminate. Likewise is_det t is true iff t is determinate.

lemma eval_Nab: “ eval i (∇ p) = Det (is_indet (eval i p))”

Proof. Follows directly from the involved definitions.

lemma eval_NAB :
“ eval i ([∇] ps) = Det (∀ p ∈ set ps. is_indet (eval i p))”

Proof. Follows from the definition of [∇], eval_CON and eval_Nab.

With this one can prove that the pigeonhole formula is false under the cn counter-model.

lemma interp_of_id_pigeonhole_fm_False: “ eval cn πn = ◦”

Proof. The lemma cla_false_Imp states that an implication can be proved false by proving its
antecedent true and conclusion false. Start by proving the antecedent true: The antecedent is
[∇]x0,...,xn−1

, and this means that all the variables in x0, . . . , xn−1 should refer to indeterminate
values, which indeed they do by the definition of cn. The conclusion [∃=]x0,...,xn−1

is proved
false using eval_ExiEql, which reduces the problem to proving that no pair of different symbols
among x0, . . . , xn−1 evaluate to the same. That follows from how cn is defined.

161

From this follows that the pigeonhole formula is not valid:

theorem not_valid_pigeonhole_fm: “ ¬ valid πn”

Proof. Follows from interp_of_id_pigeonhole_fm_False.

It follows that the pigeonhole formula is not valid in U{0..<n}:

theorem not_valid_in_n_pigeonhole_fm: “ ¬ valid_in {0 ..<n} πn”

Proof. From cn’s definition follows that range cn ⊆ domain {0..<n}. It follows that πn is not valid
in U{0..<n} by interp_of _id_pigeonhole_fm_False and the definition of validity in U{0..<n}

6.2 πn is valid in V{0..<m} for m < n

In order to prove that πn is valid in V{0..<m} for m < n, a new lemma on the semantics of an
implication is needed:

lemma cla_imp_I :
assumes “ is_det (eval i a)”
assumes “ is_det (eval i b)”
assumes “ eval i a = • =⇒ eval i b = •”
shows “ eval i (a ⇒ b) = •”

Proof. Not surprisingly, it follows directly from the involved definitions.

∇ and [∃=] returning determinate values is also needed.

lemma is_det_NAB : “ is_det (eval i ([∇] ps))”

Proof. The lemma follows from eval_NAB .

lemma is_det_ExiEql : “ is_det (eval i ([∃=] ps))”

Proof. The lemma follows from eval_ExiEql .

Moreover the pigeonhole principle is needed. This theorem is part of the Isabelle libraries in
the following formulation:

lemma pigeonhole: “ card A > card (f ‘ A) =⇒ ¬ inj_on f A”

It states that if the image of f on A is of smaller cardinality than A, then f cannot be an
injection. From this follows a more specific formulation of the principle, which will be applied:

lemma pigeon_hole_nat_set :
assumes “ f ‘ {0 ..<n} ⊆ {0 ..<m}”
assumes “ m < (n :: nat)”
shows “ ∃ j1∈{0 ..<n}. ∃ j2∈{0 ..<n}. j1 6= j2 ∧ f j1 = f j2”

Proof. From the assumptions follows that card {0..<n} > card {0..<m} ≥ card (f ‘ {0..<n}).
Therefore pigeonhole is applicable and the conclusion follows immediately.

The pigeonhole formula will evaluate to true in any interpretation with truth values in V{0..m}
where m < n− 1:

162

lemma eval_true_in_lt_n_pigeonhole_fm:
assumes “ m < n”
assumes “ range i ⊆ domain {0 ..<m}”
shows “ eval i πn = •”

Proof. Apply cla_imp_I to break down the conclusion. The two first assumptions of cla_imp_I
follow from is_det_NAB and is_det_ExiEql, and then what remains is to prove that the an-
tecedent of πn implies the conclusion of πn. Therefore, assume that the antecedent, [∇]x0,...,xn−1

,
evaluates to true. From this and eval_NAB follows that x0, . . . , xn−1 all evaluate to indetermi-
nate values. This, together with the fact that the range of i is domain {0..<m}, means that i
must map any xl where l ∈ {0..<n} to Indet k for some k ∈ {0..<m}. Therefore, by pigeon-
hole_nat_set there are j1 < n and j2 < n such that xj1 and xj2 are different but i evaluates
them to the same value. This is by eval_ExiEql exactly what is required for the conclusion
[∃=]x0,...,xn−1

to evaluate to true.

Therefore the pigeonhole formula must be valid in V{0..<m}.

theorem valid_in_lt_n_pigeonhole_fm:
assumes “ m<n”
shows “ valid_in {0 ..<m} (pigeonhole_fm n)”

Proof. Follows immediately from eval_true_in_lt_n_pigeonhole_fm.

There are many other finite sets than {0..<m}. It is therefore desirable to extend the theorem to
claim that πn is valid in any VU where |U | < n. This can be done using the result from Section
5:

theorem valid_in_pigeonhole_fm_n_gt_card :
assumes “ finite U”
assumes “ card U < n”
shows “ valid_in U (pigeonhole_fm n)”

Proof. Follows from valid_in_lt_n_pigeonhole_fm and bij_betw_valid_in

6.3 V is different from VU where U is finite
The previous subsection demonstrated that πn is valid in e.g. VU where |U | = n but not in V.
Therefore the logics are different:

theorem extend : “ valid 6= valid_in U” if “ finite U”

Proof. Follows from valid_in_pigeonhole_fm_n_gt_card and not_valid_pigeonhole_fm.

This can be seen as a justification of the infinitely many values in the logic – they cannot once
and for all be replaced by a finite subset. The reduction in Section 4 only worked because there
the size of U depended on the considered formula.

163

7 Discussion and Related Work
My previous paper with Villadsen [20] contains a thorough discussion of related work giving an
overview of various many-valued logics that have been formalized in Isabelle/HOL. I will refrain
from repeating the section here and mention again only the most pertinent works namely by
Marcos [9] and Steen and Benzmüller [14]. Marcos developed an ML program that can generate
proof tactics; these tactics implement tableaux that can prove theorems in various finitely many-
valued logics. Steen and Benzmüller defined a shallow embedding of the many-valued SIXTEEN
logic into classical HOL. This means that one can take a formula in SIXTEEN, translate it to
classical HOL using their embedding and then try to prove it using a theorem prover for HOL.
Benzmüller and Woltzenlogel Paleo [5] used the same approach to embed several higher-order
modal logics and also showed the approach applied to a sketch of a paraconsistent logic. Several
other logics have been embedded in HOL in this way, including conditional logics by Benzmüller,
Gabbay, Genovese and Rispoli [2], quantified multimodal logics by Benzmüller and Paulson [3],
first-order nominal logic by Steen and Wisniewski [21] and free logic by Benzmüller and Scott
[4]. In contrast, the formalization in this chapter is a deep embedding of a logic and formalizes
semantics rather than defining a tableau or a translation.

A noteworthy characteristic of the present formalization is that all proofs were built from the
ground up in the proof assistant – it was not based on any preexisting proofs. Proof assistants
make it very clear when a proof is finished, and one does not have to reread it over and over to
see if everything adds up. Furthermore, in the development I tried out different definitions of the
implication used in the pigeon-formula and the proof assistant was very helpful in checking that
the changes did not break any proofs. Proof assistants of course ensure correctness of proofs.
Many times I stated lemmas and proved them directly in the proof assistant. Other times the
insurance of correctness was a hindrance in that on the way to a correct proof it was helpful
to state lemmas that were “mostly correct” and whose expressions “mostly type checked”, i.e. I
abstracted away from some of the details. This was often better done on a piece of paper than in
the proof assistant. However, after this process was done, it was definitely worth returning to the
proof assistant to see if the “mostly correct” proof held up to the challenge of being formalized
and thus turned into a correct proof.

The propositional fragment of a paraconsistent infinite-valued higher-order logic has now
been formalized. An obvious next step would be to formalize the whole paraconsistent higher-
order logic. The basis of such an endeavor could be the formalizations of HOL Light in HOL
Light and HOL4 by respectively Harrison [6] and Kumar et al. [8]. The challenge is to give a
semantics to the language. In the formalization in HOL4 this is done by abstractly specifying set
theory in HOL. The same specification could be used for giving a semantics to the paraconsistent
higher-order logic.

8 Conclusion
This chapter formalizes Villadsen’s paraconsistent infinite-valued logic V and the |U |-valued
logics VU as well as proves and formalizes several meta-theorems of the logic. One meta-theorem
shows that, for any formula, the question of its validity in V can be reduced to the question of its
validity in VU for a large enough finite U . The other meta-theorems, not previously presented,
characterize how the number of truth-values affect truths of the logic. One of them shows that
when |U | = |W | then VU has the same truths as VW . Another shows that for any finite U it
is the case that V and VU are different logics. The theory was developed in parallel with its
formalization. This illustrates that proof assistants can be used as tools, not only for formalizing
established results, but also for developing new results – in this case the meta-theory of a logic.

164

Acknowledgements

Jørgen Villadsen, Jasmin Christian Blanchette and John Bruntse Larsen provided valuable feed-
back on the chapter and the formalization. Thanks to Freek Wiedijk for discussions.

References
[1] S. Akama, editor. Towards Paraconsistent Engineering, volume 110 of Intelligent Systems

Reference Library. Springer, 2016.

[2] C. Benzmüller, D. Gabbay, V. Genovese, and D. Rispoli. Embedding and automating condi-
tional logics in classical higher-order logic. Annals of Mathematics and Artificial Intelligence,
66(1):257–271, 2012.

[3] C. Benzmüller and L. C. Paulson. Quantified multimodal logics in simple type theory. Logica
Universalis, 7(1):7–20, 2013.

[4] C. Benzmüller and D. Scott. Automating free logic in Isabelle/HOL. In G.-M. Greuel,
T. Koch, P. Paule, and A. Sommese, editors, International Conference on Mathematical
Software (ICMS), volume 9725 of LNCS, pages 43–50. Springer, 2016.

[5] C. Benzmüller and B. Woltzenlogel Paleo. Higher-order modal logics: Automation and
applications. In W. Faber and A. Paschke, editors, Reasoning Web (RW), volume 9203 of
LNCS, pages 32–74. Springer, 2015.

[6] J. Harrison. Towards self-verification of HOL Light. In U. Furbach and N. Shankar, editors,
International Joint Conference on Automated Reasoning (IJCAR), volume 4130 of LNCS,
pages 177–191. Springer, 2006.

[7] A. S. Jensen and J. Villadsen. Paraconsistent computational logic. In P. Blackburn, K. F.
Jørgensen, N. Jones, and E. Palmgren, editors, 8th Scandinavian Logic Symposium: Ab-
stracts, pages 59–61. Roskilde University, 2012.

[8] R. Kumar, R. Arthan, M. O. Myreen, and S. Owens. Self-formalisation of higher-order logic:
Semantics, soundness, and a verified implementation. Journal of Automated Reasoning,
56(3):221–259, 2016.

[9] J. Marcos. Automatic generation of proof tactics for finite-valued logics. In I. Mackie and
A. Martins Moreira, editors, Tenth International Workshop on Rule-Based Programming,
Proceedings, volume 21 of Electronic Proceedings in Theoretical Computer Science, pages
91–98. Open Publishing Association, 2010.

[10] G. Priest, K. Tanaka, and Z. Weber. Paraconsistent logic. In E. N. Zalta, editor, Stan-
ford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, sum-
mer 2018 edition, 2018. https://plato.stanford.edu/archives/sum2018/entries/
logic-paraconsistent/.

[11] A. Schlichtkrull. Formalization of a paraconsistent infinite-valued logic (short abstract). Au-
tomated Reasoning in Quantified Non-Classical Logics – 3rd International Workshop – Pro-
gram, 2018. https://easychair.org/smart-program/FLoC2018/ARQNL-program.html.

[12] A. Schlichtkrull and J. Villadsen. IsaFoL: Paraconsistency. https://bitbucket.org/
isafol/isafol/src/master/Paraconsistency/.

165

https://plato.stanford.edu/archives/sum2018/entries/logic-paraconsistent/
https://plato.stanford.edu/archives/sum2018/entries/logic-paraconsistent/
https://easychair.org/smart-program/FLoC2018/ARQNL-program.html
https://bitbucket.org/isafol/isafol/src/master/Paraconsistency/
https://bitbucket.org/isafol/isafol/src/master/Paraconsistency/

[13] A. Schlichtkrull and J. Villadsen. Paraconsistency. Archive of Formal Proofs, Dec. 2016.
http://isa-afp.org/entries/Paraconsistency.html, Formal proof development.

[14] A. Steen and C. Benzmüller. Sweet SIXTEEN: Automation via embedding into classical
higher-order logic. Logic and Logical Philosophy, 25(4):535–554, 2016.

[15] J. Villadsen. Combinators for paraconsistent attitudes. In P. de Groote, G. Morrill, and
C. Retoré, editors, Logical Aspects of Computational Linguistics (LACL), volume 2099 of
LNCS, pages 261–278. Springer, 2001.

[16] J. Villadsen. Paraconsistent assertions. In G. Lindemann, J. Denzinger, I. J. Timm, and
R. Unland, editors, Multi-Agent System Technologies (MATES), volume 3187 of LNCS,
pages 99–113, 2004.

[17] J. Villadsen. A paraconsistent higher order logic. In B. Buchberger and J. A. Campbell,
editors, Artificial Intelligence and Symbolic Computation (AISC), volume 3249 of LNCS,
pages 38–51. Springer, 2004.

[18] J. Villadsen. Supra-logic: Using transfinite type theory with type variables for paracon-
sistency. Logical Approaches to Paraconsistency, Journal of Applied Non-Classical Logics,
15(1):45–58, 2005.

[19] J. Villadsen and A. Schlichtkrull. Formalization of Many-Valued Logics. In H. Christiansen,
M. Jiménez-López, R. Loukanova, and L. Moss, editors, Partiality and Underspecification in
Information, Languages, and Knowledge, chapter 7. Cambridge Scholars Publishing, 2017.

[20] J. Villadsen and A. Schlichtkrull. Formalizing a paraconsistent logic in the Isabelle proof
assistant. In A. Hameurlain, J. Küng, R. Wagner, and H. Decker, editors, Transactions
on Large-Scale Data- and Knowledge-Centered Systems (TLDKS), volume 10620 of LNCS,
pages 92–122. Springer, 2017.

[21] M. Wisniewski and A. Steen. Embedding of quantified higher-order nominal modal logic
into classical higher-order logic. In C. Benzmüller and J. Otten, editors, ARQNL 2014. Au-
tomated Reasoning in Quantified Non-Classical Logics, volume 33 of EPiC Series in Com-
puting, pages 59–64. EasyChair, 2015.

166

http://isa-afp.org/entries/Paraconsistency.html

Thesis Appendix:
Changes to Published Papers

Chapter 1:
Formalization of the Resolution Calculus for First-Order Logic

The chapter was published as a paper by me in a special issue of “Journal of Automated
Reasoning” on “Milestones in Interactive Theorem Proving” [1]. The references have been put in
alphabetic order.

Chapter 2:
Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover

The chapter’s content is the technical report extending the paper “Formalizing Bachmair and
Ganzinger’s Ordered Resolution Prover” by Blanchette, Traytel, Waldmann and myself that was
published in the Proceedings of the 9th International Joint Conference on Automated Reasoning
(IJCAR 2018) [2]. The extension consists of more thorough explanations and an appendix listing,
for reference, the errors and imprecisions our formalization revealed in the chapter on “Resolution
Theorem Proving” by Bachmair and Ganzinger.

Chapter 3:
A Verified Automatic Prover Based on Ordered Resolution

The chapter is a draft paper written by Blanchette, Traytel and myself [3]. The paper is
submitted, but not published as of the submission of this thesis.

Chapter 4:
NaDeA: A Natural Deduction Assistant with a Formalization in Isabelle

The chapter was published as a paper by Jensen, Villadsen and myself in a special issue of
the “IfCoLog Journal of Logics and their Applications” on “Tools for Teaching Logic” [4].

The following changes were made:
• The expression “ ∃p. OK p [] for p” is corrected to “ ∃p. OK p [] ” in section 5.6.
• The name “Andreas Halkjær” is corrected to “Andreas Halkjær From” in the references.

Chapter 5:
Programming and Verifying a Declarative First-Order Prover in Isabelle/HOL

The chapter was published as a paper by Jensen, Larsen, Villadsen and myself in a special
issue of “AI Communications” on “Automated Reasoning” [5]. No changes have been made.

Chapter 6:
Formalized Meta-Theory of a Paraconsistent Logic

The chapter is a draft paper written by me [6]. The paper is submitted, but not published as
of the submission of this thesis.

167

Changes Made in November 2018

Introduction
On page 8 the occurrence of the word “uncountably” is corrected to “countably”.

Chapter 1:
Formalization of the Resolution Calculus for First-Order Logic

On page 38 the occurrence of the word “uncountably” is corrected to “countably”.

Chapter 3:
A Verified Automatic Prover Based on Ordered Resolution

On page 87, an occurrence of the word “not” is corrected to “nor”.
On page 92, in the definition of wit, the expression LCons x (pick R x y ++ wit R xs) is

corrected to LCons x (pick R x y ++ wit R (LCons y ys)).

References

[1] A. Schlichtkrull. Formalization of the resolution calculus for first-order logic. Journal of
Automated Reasoning, 61(4):455–484, 2018.

[2] A. Schlichtkrull, J. C. Blanchette, D. Traytel, and U. Waldmann. Formalizing Bachmair
and Ganzinger’s ordered resolution prover. In D. Galmiche, S. Schulz, and R. Sebastiani,
editors, International Joint Conference on Automated Reasoning (IJCAR), pages 89–107.
Springer, 2018. Extended in technical report: http://matryoshka.gforge.inria.fr/pubs/
rp_report.pdf.

[3] A. Schlichtkrull, J. C. Blanchette, and D. Traytel. A verified automatic prover based on
ordered resolution. 2018. Submitted.

[4] J. Villadsen, A. B. Jensen, and A. Schlichtkrull. NaDeA: A natural deduction assistant with a
formalization in Isabelle. IfCoLog Journal of Logics and their Applications, 4(1):55–82, 2017.

[5] A. B. Jensen, J. B. Larsen, A. Schlichtkrull, and J. Villadsen. Programming and verifying a
declarative first-order prover in Isabelle/HOL. AI Communications, 31(3):281–299, 2018.

[6] A. Schlichtkrull. Formalized meta-theory of a paraconsistent logic. 2018. Submitted.

168

http://matryoshka.gforge.inria.fr/pubs/rp_report.pdf
http://matryoshka.gforge.inria.fr/pubs/rp_report.pdf

	Introduction
	1 Formalization of the Resolution Calculus for First-Order Logic
	2 Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover
	3 A Verified Automatic Prover Based on Ordered Resolution
	4 NaDeA: A Natural Deduction Assistant with a Formalization in Isabelle
	5 Programming and Verifying a Declarative First-Order Prover in Isabelle/HOL
	6 Formalized Meta-Theory of a Paraconsistent Logic
	7 Thesis Appendix: Changes to Published Papers

