977,565 research outputs found

    The Future of Programming

    Get PDF
    Nowadays digital literacies are one of the requirements to employees in various areas of human activities, where programming which belongs to computer sciences is seen as a bonus when applying for a job. Some predictions how programming will develop in future are given in this paper

    Unleashing Cable T.V., Leashing the FCC: Constitutional Limitations on Government Regulation of Pay Television

    Get PDF
    Article examines the Federal Communications Commission’s 1975 decision to prohibit cablecasters from showing certain types of programming, on the rationale that pay cablevision, through successful competitive bidding, would ‘siphon’ this programming away from broadcast television and deprive the general public of popular programming. Article discusses the history behind the decision, the court of appeals’ treatment of the FCC rules and the decision’s possible effect on future pay cable regulation

    Contemporary developments in teaching and learning introductory programming: Towards a research proposal

    Get PDF
    The teaching and learning of introductory programming in tertiary institutions is problematic. Failure rates are high and the inability of students to complete small programming tasks at the completion of introductory units is not unusual. The literature on teaching programming contains many examples of changes in teaching strategies and curricula that have been implemented in an effort to reduce failure rates. This paper analyses contemporary research into the area, and summarises developments in the teaching of introductory programming. It also focuses on areas for future research which will potentially lead to improvements in both the teaching and learning of introductory programming. A graphical representation of the issues from the literature that are covered in the document is provided in the introduction

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Implementing fault tolerant applications using reflective object-oriented programming

    Get PDF
    Abstract: Shows how reflection and object-oriented programming can be used to ease the implementation of classical fault tolerance mechanisms in distributed applications. When the underlying runtime system does not provide fault tolerance transparently, classical approaches to implementing fault tolerance mechanisms often imply mixing functional programming with non-functional programming (e.g. error processing mechanisms). The use of reflection improves the transparency of fault tolerance mechanisms to the programmer and more generally provides a clearer separation between functional and non-functional programming. The implementations of some classical replication techniques using a reflective approach are presented in detail and illustrated by several examples, which have been prototyped on a network of Unix workstations. Lessons learnt from our experiments are drawn and future work is discussed

    Encapsulation and Dynamic Modularity in the Pi-Calculus

    Get PDF
    We describe a process calculus featuring high level constructs for component-oriented programming in a distributed setting. We propose an extension of the higher-order pi-calculus intended to capture several important mechanisms related to component-based programming, such as dynamic update, reconfiguration and code migration. In this paper, we are primarily concerned with the possibility to build a distributed implementation of our calculus. Accordingly, we define a low-level calculus, that describes how the high-level constructs are implemented, as well as details of the data structures manipulated at runtime. We also discuss current and future directions of research in relation to our analysis of component-based programming
    corecore