2,992,550 research outputs found

    The LAB@FUTURE Project - Moving Towards the Future of E-Learning

    Get PDF
    This paper presents Lab@Future, an advanced e-learning platform that uses novel Information and Communication Technologies to support and expand laboratory teaching practices. For this purpose, Lab@Future uses real and computer-generated objects that are interfaced using mechatronic systems, augmented reality, mobile technologies and 3D multi user environments. The main aim is to develop and demonstrate technological support for practical experiments in the following focused subjects namely: Fluid Dynamics - Science subject in Germany, Geometry - Mathematics subject in Austria, History and Environmental Awareness – Arts and Humanities subjects in Greece and Slovenia. In order to pedagogically enhance the design and functional aspects of this e-learning technology, we are investigating the dialogical operationalisation of learning theories so as to leverage our understanding of teaching and learning practices in the targeted context of deployment

    Machine Learning and the Future of Realism

    Get PDF
    The preceding three decades have seen the emergence, rise, and proliferation of machine learning (ML). From half-recognised beginnings in perceptrons, neural nets, and decision trees, algorithms that extract correlations (that is, patterns) from a set of data points have broken free from their origin in computational cognition to embrace all forms of problem solving, from voice recognition to medical diagnosis to automated scientific research and driverless cars, and it is now widely opined that the real industrial revolution lies less in mobile phone and similar than in the maturation and universal application of ML. Among the consequences just might be the triumph of anti-realism over realism

    The snowflake effect: the future of mashups and learning

    Get PDF
    Emerging technologies for learning report - Article exploring web mashups and their potential for educatio

    Learning fast: broadband and the future of education

    Get PDF
    Educational institutions have always had a central place in the online age. Before the advent of high-speed broadband, other communications technologies and services also played a big role in education.  University researchers were among the first Australian users of what became known as the Internet. When the domain name system was deployed in the mid-1980s, the .au domain was delegated to Robert Elz at the University of Melbourne. When the Australian Vice-Chancellor’s Committee decided to set up a national communications network to support research, Geoff Huston transferred to its payroll from ANU to work as technical manager for AARNet, whose current chief executive, Chris Hancock, is interviewed by Liz Fell in this issue. When a 56 kbps ARPANET link with Australia was made by NASA and the University of Hawaii via Intelsat in June 1989, the connection was established in Elz’s University of Melbourne laboratory. (Clarke 2004: 31) In earlier times, the postal service made learning-at-a-distance possible by ‘correspondence’, particularly in remote areas of Australia. Advances in radio communications made it easier and the interactivity more immediate. Television sets and later video cassette and DVD players and recorders made it more visual. The telephone provided a tool of communication for teachers and learners; the best of them understood that most people were both at different times. Then simple low bandwidth tools like email and web browsing provided new ways for students, teachers and their institutions to communicate and distribute and share information. Learning management systems like Blackboard have been widely deployed through the education sector. Information that was once housed in libraries is now available online and social media platforms are providing new ways for students to collaborate. Ubiquitous, faster broadband and mobile access via smartphones and tablets promise further transformations. &nbsp

    The learning technologies of the future: technologies that learn?

    Get PDF
    Higher Education Institutions (HEIs) operate in a borderless and complex environment, abundant in potentially useful information. The Creating Academic Learning Futures (CALF) research project, carried out in partnership by the University of Leicester and University College Falmouth in the UK, involves the development of approaches and tools for structuring and filtering information, in order to facilitate institutional decision-making in participative and creative ways. One of the aims of the CALF project is to involve students in creating and exploring a variety of plausible ‘alternative futures’ for learning and teaching technologies in higher education. This paper discusses some of the issues that are emerging in the course of the research process and presents ideas for the future, grounded in and emergent from ‘student voices’ from the CALF research project. Students expected the technologies of the near future to enable them to become co-creators in their own education processes. The future scenarios imagined the rise of learning technologies which instead of becoming outdated with use, become more valuable as more user-generated content is invested, technologies which are truly learning in that they learn about their users and constantly morph/adapt to their users’ needs. Finally, increasing virtualisation was a recurrent theme across most student-generated scenarios. The paper concludes with a discussion of some of the strengths and limitations of using technologies for involving students in creative activities for generating future scenarios for higher education. The technologies used by the project enabled collaborative creative thinking across a broader spectrum of possibilities about the relationship between the present and the future of higher education

    The future of technology enhanced active learning – a roadmap

    Get PDF
    The notion of active learning refers to the active involvement of learner in the learning process, capturing ideas of learning-by-doing and the fact that active participation and knowledge construction leads to deeper and more sustained learning. Interactivity, in particular learnercontent interaction, is a central aspect of technology-enhanced active learning. In this roadmap, the pedagogical background is discussed, the essential dimensions of technology-enhanced active learning systems are outlined and the factors that are expected to influence these systems currently and in the future are identified. A central aim is to address this promising field from a best practices perspective, clarifying central issues and formulating an agenda for future developments in the form of a roadmap
    corecore