204 research outputs found

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    UWB-Printed Rectangular-Based Monopole Antenna for Biological Tissue Analysis

    Get PDF
    This paper presents the design of a printed step-type monopole antenna for biological tissue analysis and medical imaging applications in the microwave frequency range. The design starts from a very simple and widely known rectangular monopole antenna, and different modifications to the antenna geometry are made in order to increase the bandwidth. The antenna dimensions are optimized by means of a parametric analysis of each dimension using a 3-D electromagnetic simulator based on the finite element method. The optimized antenna, with final dimensions of 40 36 mm2, is manufactured onto a low-cost FR4 (fiber glass epoxy) substrate. The characteristics of the antenna have been measured inside an anechoic chamber, obtaining an omnidirectional radiation pattern and a working frequency range between 2.7 GHz and 11.4 GHz, which covers the UWB frequencies and enables the use of the antenna in medical imaging applications. Finally, the behaviour of four of these antennas located around a realistic breast model, made with biocompatible materials, has been analysed with the electromagnetic simulator, obtaining good results and demonstrating the usefulness of the designed antenna in the proposed application

    COMPARISON OF A SIERPINSKI GASKET MONOPOLE ANTENNA TO BOW-TIE ANTENNAS BASED OFF THE FRACTAL ITERATIVE SHAPES

    Get PDF
    Antennas are an integral part of mobile devices. Recently, the demand for smaller phones has increased requiring smaller components within the device. This leads to problems with performance and limitations of RF systems within mobile devices including antennas which have been affected by the size thus affected frequency output. In this thesis, fractal theory will be utilized to compare the performance of the Sierpinski Gasket Monopole antenna to single band antennas to see if this is a viable substitute in mobile applications. By utilizing simulations and physical antennas, the performance will be observed at each frequency band and compared

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Radio frequency channel characterization for energy harvesting in factory environments

    Get PDF
    This thesis presents ambient energy data obtained from a measurement campaign carried out at an automobile plant. At the automobile plant, ambient light, ambient temperature and ambient radio frequency were measured during the day time over two days. The measurement results showed that ambient light generated the highest DC power. For plant and operation managers at the automobile plant, the measurement data can be used in system design considerations for future energy harvesting wireless sensor nodes at the plant. In addition, wideband measurements obtained from a machine workshop are presented in this thesis. The power delay profile of the wireless channel was obtained by using a frequency domain channel sounding technique. The measurements were compared with an equivalent ray tracing model in order to validate the suitability of the commercial propagation software used in this work. Furthermore, a novel technique for mathematically recreating the time dispersion created by factory inventory in a radio frequency channel is discussed. As a wireless receiver design parameter, delay spread characterizes the amplitude and phase response of the radio channel. In wireless sensor devices, this becomes paramount, as it determines the complexity of the receiver. In reality, it is sometimes difficult to obtain full detail floor plans of factories for deterministic modelling or carry out spot measurements during building construction. As a result, radio provision may be suboptimal. The method presented in this thesis is based on 3-D fractal geometry. By employing the fractal overlaying algorithm presented, metallic objects can be placed on a floor plan so as to obtain similar radio frequency channel effects. The environment created using the fractal approach was used to estimate the amount of energy a harvesting device can accumulate in a University machine workshop space

    Automatic RADAR Target Recognition System at THz Frequency Band. A Review

    Get PDF
    The development of technology for communication in the THz frequency band has seen rapid progress recently. Due to the wider bandwidth a THz frequency RADAR provides the possibility of higher precision imaging compared to conventional RADARs. A high resolution RADAR operating at THz frequency can be used for automatically detecting and segmenting concealed objects. Recent advancements in THz circuit integration have opened up a wide range of possibilities for on chip applications, like of security and surveillance. The development of various sources and detectors for generation and detection of THz frequency has been driven by other techniques such as spectroscopy, imaging and impulse ranging. One of the central vision of this type of security system aims at ambient intelligence: the computation and communication carried out intelligently. The need for higher mobility with limited size and power consumption has led to development of nanotechnology based THz generators. In addition to this some of the soft computing tools are used for detection of radar target automatically based on some algorithms named as ANN, RNN, Neuro-Fuzzy and Genetic algorithms. This review article includes UWB radar for THz signal, its characteristics and application, Nanotechnology for THz generation and issues related to ATR
    corecore