4 research outputs found

    The Bus Goes Wireless: Routing-Free Data Collection with QoS Guarantees in Sensor Networks

    Get PDF
    Abstract—We present the low-power wireless bus (LWB), a new communication paradigm for QoS-aware data collection in lowpower sensor networks. The LWB maps all communication onto network floods by using Glossy, an efficient flooding architecture for wireless sensor networks. Therefore, unlike current solutions, the LWB requires no information of the network topology, and inherently supports networks with mobile nodes and multiple data sinks. A LWB prototype implemented in Contiki guarantees bounded end-to-end communication delay and duplicate-free, inorder packet delivery—key QoS requirements in many control and mission-critical applications. Experiments on two testbeds demonstrate that the LWB prototype outperforms state-of-theart data collection and link layer protocols, in terms of reliability and energy efficiency. For instance, we measure an average radio duty cycle of 1.69 % and an overall data yield of 99.97 % in a typical data collection scenario with 85 sensor nodes on Twist. I

    A Survey on Facilities for Experimental Internet of Things Research

    Get PDF
    International audienceThe initial vision of the Internet of Things (IoT) was of a world in which all physical objects are tagged and uniquelly identified by RFID transponders. However, the concept has grown into multiple dimensions, encompassing sensor networks able to provide real-world intelligence and goal-oriented collaboration of distributed smart objects via local networks or global interconnections such as the Internet. Despite significant technological advances, difficulties associated with the evaluation of IoT solutions under realistic conditions, in real world experimental deployments still hamper their maturation and significant roll out. In this article we identify requirements for the next generation of the IoT experimental facilities. While providing a taxonomy, we also survey currently available research testbeds, identify existing gaps and suggest new directions based on experience from recent efforts in this field

    Code offloading in opportunistic computing

    Get PDF
    With the advent of cloud computing, applications are no longer tied to a single device, but they can be migrated to a high-performance machine located in a distant data center. The key advantage is the enhancement of performance and consequently, the users experience. This activity is commonly referred computational offloading and it has been strenuously investigated in the past years. The natural candidate for computational offloading is the cloud, but recent results point out the hidden costs of cloud reliance in terms of latency and energy; Cuervo et. al. illustrates the limitations on cloud-based computational offloading based on WANs latency times. The dissertation confirms the results of Cuervo et. al. and illustrates more use cases where the cloud may not be the right choice. This dissertation addresses the following question: is it possible to build a novel approach for offloading the computation that overcomes the limitations of the state-of-the-art? In other words, is it possible to create a computational offloading solution that is able to use local resources when the Cloud is not usable, and remove the strong bond with the local infrastructure? To this extent, I propose a novel paradigm for computation offloading named anyrun computing, whose goal is to use any piece of higher-end hardware (locally or remotely accessible) to offloading a portion of the application. With anyrun computing I removed the boundaries that tie the solution to an infrastructure by adding locally available devices to augment the chances to succeed in offloading. To achieve the goals of the dissertation it is fundamental to have a clear view of all the steps that take part in the offloading process. To this extent, I firstly provided a categorization of such activities combined with their interactions and assessed the impact on the system. The outcome of the analysis is the mapping to the problem to a combinatorial optimization problem that is notoriously known to be NP-Hard. There are a set of well-known approaches to solving such kind of problems, but in this scenario, they cannot be used because they require a global view that can be only maintained by a centralized infrastructure. Thus, local solutions are needed. Moving further, to empirically tackle the anyrun computing paradigm, I propose the anyrun computing framework (ARC), a novel software framework whose objective is to decide whether to offload or not to any resource-rich device willing to lend assistance is advantageous compared to local execution with respect to a rich array of performance dimensions. The core of ARC is the nference nodel which receives a rich set of information about the available remote devices from the SCAMPI opportunistic computing framework developed within the European project SCAMPI, and employs the information to profile a given device, in other words, it decides whether offloading is advantageous compared to local execution, i.e. whether it can reduce the local footprint compared to local execution in the dimensions of interest (CPU and RAM usage, execution time, and energy consumption). To empirically evaluate ARC I presented a set of experimental results on the cloud, cloudlet, and opportunistic domain. In the cloud domain, I used the state of the art in cloud solutions over a set of significant benchmark problems and with three WANs access technologies (i.e. 3G, 4G, and high-speed WAN). The main outcome is that the cloud is an appealing solution for a wide variety of problems, but there is a set of circumstances where the cloud performs poorly. Moreover, I have empirically shown the limitations of cloud-based approaches, specifically, In some circumstances, problems with high transmission costs tend to perform poorly, unless they have high computational needs. The second part of the evaluation is done in opportunistic/cloudlet scenarios where I used my custom-made testbed to compare ARC and MAUI, the state of the art in computation offloading. To this extent, I have performed two distinct experiments: the first with a cloudlet environment and the second with an opportunistic environment. The key outcome is that ARC virtually matches the performances of MAUI (in terms of energy savings) in cloudlet environment, but it improves them by a 50% to 60% in the opportunistic domain

    The FlockLab testbed architecture

    No full text
    A vital factor for a successful deployment of sensor nodes is testing of all system aspects in a realistic setup. This work presents a testbed architecture which allows for detailed monitoring and stimulation of a wireless sensor node. In particular, time-accurate state extraction and power measurements are provided in a distributed, yet synchronized context. The FlockLab testbed architecture provides a distributed lab instrument, where detailed observations of every sensor node enable thorough testing. Software services allow for formulating testcases and reliable test data collection
    corecore