259,237 research outputs found

    Rotor fault classification technique and precision analysis with kernel principal component analysis and multi-support vector machines

    Get PDF
    To solve the diagnosis problem of fault classification for aero-engine vibration over standard during test, a fault diagnosis classification approach based on kernel principal component analysis (KPCA) feature extraction and multi-support vector machines (SVM) is proposed, which extracted the feature of testing cell standard fault samples through exhausting the capability of nonlinear feature extraction of KPCA. By computing inner product kernel functions of original feature space, the vibration signal of rotor is transformed from principal low dimensional feature space to high dimensional feature spaces by this nonlinear map. Then, the nonlinear principal components of original low dimensional space are obtained by performing PCA on the high dimensional feature spaces. During muti-SVM training period, as eigenvectors, the nonlinear principal components are separated into training set and test set, and penalty parameter and kernel function parameter are optimized by adopting genetic optimization algorithm. A high classification accuracy of training set and test set is sustained and over-fitting and under-fitting are avoided. Experiment results indicate that this method has good performance in distinguishing different aero-engine fault mode, and is suitable for fault recognition of a high speed rotor

    Exploration of Feature Selection Techniques in Machine Learning Models on HPTLC Images for Rule Extraction

    Get PDF
    Research related to Biology often utilizes machine learning models that are ultimately uninterpretable by the researcher. It would be helpful if researchers could leverage the same computing power but instead gain specific insight into decision-making to gain a deeper understanding of their domain knowledge. This paper seeks to select features and derive rules from a machine learning classification problem in biochemistry. The specific point of interest is five species of Glycyrrhiza, or Licorice, and the ability to classify them using High-Performance Thin Layer Chromatography (HPTLC) images. These images were taken using HPTLC methods under varying conditions to provide eight unique views of each species. Each view contains 24 samples with varying counts of the individual species. There are a few techniques applied for feature selection and rule extraction. The first two are based on methods recently pioneered and presented as “Binary Encoding of Random Forests” and “Rule Extraction using Sparse Encoding” (Liu 2012). In addition, an independently developed technique called “Interval Extraction and Consolidation” was applied, which was conceptualized due to the particular nature of the dataset. Altogether, these techniques used in consort with standard machine learning models could narrow a feature space from around one-thousand candidates to only ten. These ten most critical features were then used to derive a set of rules for the classification of the five species of licorice. Regarding feature selection, compared to standard model parameter optimization, the Binary Encoding of Random Forests performed similarly, if not much better, in reducing the feature space in almost all cases. Additionally, the application of Interval Extraction and Consolidation excelled in further simplifying the reduced feature space, often by another factor of five to ten. The selected features were then used for relatively simple rule extraction using decision trees, allowing for a more interpretable model

    On the non-local geometry of turbulence

    Get PDF
    A multi-scale methodology for the study of the non-local geometry of eddy structures in turbulence is developed. Starting from a given three-dimensional field, this consists of three main steps: extraction, characterization and classification of structures. The extraction step is done in two stages. First, a multi-scale decomposition based on the curvelet transform is applied to the full three-dimensional field, resulting in a finite set of component three-dimensional fields, one per scale. Second, by iso-contouring each component field at one or more iso-contour levels, a set of closed iso-surfaces is obtained that represents the structures at that scale. The characterization stage is based on the joint probability density function (p.d.f.), in terms of area coverage on each individual iso-surface, of two differential-geometry properties, the shape index and curvedness, plus the stretching parameter, a dimensionless global invariant of the surface. Taken together, this defines the geometrical signature of the iso-surface. The classification step is based on the construction of a finite set of parameters, obtained from algebraic functions of moments of the joint p.d.f. of each structure, that specify its location as a point in a multi-dimensional ‘feature space’. At each scale the set of points in feature space represents all structures at that scale, for the specified iso-contour value. This then allows the application, to the set, of clustering techniques that search for groups of structures with a common geometry. Results are presented of a first application of this technique to a passive scalar field obtained from 5123 direct numerical simulation of scalar mixing by forced, isotropic turbulence (Reλ = 265). These show transition, with decreasing scale, from blob-like structures in the larger scales to blob- and tube-like structures with small or moderate stretching in the inertial range of scales, and then toward tube and, predominantly, sheet-like structures with high level of stretching in the dissipation range of scales. Implications of these results for the dynamical behaviour of passive scalar stirring and mixing by turbulence are discussed

    A method to extract the redshift distortions beta parameter in configuration space from minimal cosmological assumptions

    Full text link
    We present a method to extract the redshift-space distortions beta parameter in configuration space with a minimal set of cosmological assumptions. We show that a novel combination of the observed monopole and quadrupole correlation functions can remove efficiently the impact of mild non linearities and redshift errors. The method offers a series of convenient properties: it does not depend on the theoretical linear correlation function, the mean galaxy density is irrelevant, only convolutions are used, there is no explicit dependence on linear bias. Analyses based on dark matter N-body simulations and Fisher matrix demonstrate that errors of a few percent on beta are possible with a full sky, 1(Gpc/h)^3 survey centered at a redshift of unity and with negligible shot noise. We also find a baryonic feature in the normalized quadrupole in configuration space that should complicate the extraction of the growth parameter from the linear theory asymptote, but that does not have a major impact with our method.Comment: Version accepted on ApJ. Included test with N-body results. Conclusions unchanged. References added. 10 pages, 4 figure

    Learning effective color features for content based image retrieval in dermatology

    Get PDF
    We investigate the extraction of effective color features for a content-based image retrieval (CBIR) application in dermatology. Effectiveness is measured by the rate of correct retrieval of images from four color classes of skin lesions. We employ and compare two different methods to learn favorable feature representations for this special application: limited rank matrix learning vector quantization (LiRaM LVQ) and a Large Margin Nearest Neighbor (LMNN) approach. Both methods use labeled training data and provide a discriminant linear transformation of the original features, potentially to a lower dimensional space. The extracted color features are used to retrieve images from a database by a k-nearest neighbor search. We perform a comparison of retrieval rates achieved with extracted and original features for eight different standard color spaces. We achieved significant improvements in every examined color space. The increase of the mean correct retrieval rate lies between 10% and 27% in the range of k=1–25 retrieved images, and the correct retrieval rate lies between 84% and 64%. We present explicit combinations of RGB and CIE-Lab color features corresponding to healthy and lesion skin. LiRaM LVQ and the computationally more expensive LMNN give comparable results for large values of the method parameter Îș of LMNN (Îș≄25) while LiRaM LVQ outperforms LMNN for smaller values of Îș. We conclude that feature extraction by LiRaM LVQ leads to considerable improvement in color-based retrieval of dermatologic images

    Physics Beyond the Standard Model: Supersymmetry

    Get PDF
    This collection of studies on new physics at the LHC constitutes the report of the supersymmetry working group at the Workshop `Physics at TeV Colliders', Les Houches, France, 2007. They cover the wide spectrum of phenomenology in the LHC era, from alternative models and signatures to the extraction of relevant observables, the study of the MSSM parameter space and finally to the interplay of LHC observations with additional data expected on a similar time scale. The special feature of this collection is that while not each of the studies is explicitely performed together by theoretical and experimental LHC physicists, all of them were inspired by and discussed in this particular environment.Comment: SUSY workking group report: Les Houches 200

    Jumlah Transisi Pada Ciri Transisi Dalam Pengenalan Pola Tulisan Tangan Aksara Jawa Nglegeno Dengan Multiclass Support Vector Machines

    Get PDF
    Feature extraction is one of the most improtant step on characters recognition system. Transition features is one from many features used on characters recognition system. This paper report a research on handwritten basic Jawanesse characters recognition system to found the proper numbers of transitions used on transition features. To recognize the characters,the Multiclass Support Vector Machines were used. The Directed Acyclic Graph (DAG) SVM were used for multiclass classification strategy and to map each input vector to a higher dimention space, the Gaussian Radial Basis Function (RBF) kernel with parameter 1were used. It can be shown, for basicJawanesse characters recognition system, the optimal numbers of transitions used for transition features is 4 (a half of maximum numbers of transition on all patterns)
    • 

    corecore