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a b s t r a c t

We investigate the extraction of effective color features for a content-based image retrieval (CBIR)

application in dermatology. Effectiveness is measured by the rate of correct retrieval of images from four

color classes of skin lesions. We employ and compare two different methods to learn favorable feature

representations for this special application: limited rank matrix learning vector quantization (LiRaM LVQ)

and a Large Margin Nearest Neighbor (LMNN) approach. Both methods use labeled training data and

provide a discriminant linear transformation of the original features, potentially to a lower dimensional

space. The extracted color features are used to retrieve images from a database by a k-nearest neighbor

search. We perform a comparison of retrieval rates achieved with extracted and original features for

eight different standard color spaces. We achieved significant improvements in every examined color

space. The increase of the mean correct retrieval rate lies between 10% and 27% in the range of k¼1–25

retrieved images, and the correct retrieval rate lies between 84% and 64%. We present explicit

combinations of RGB and CIE-Lab color features corresponding to healthy and lesion skin. LiRaM LVQ

and the computationally more expensive LMNN give comparable results for large values of the method

parameter k of LMNN (kZ25) while LiRaM LVQ outperforms LMNN for smaller values of k. We conclude

that feature extraction by LiRaM LVQ leads to considerable improvement in color-based retrieval of

dermatologic images.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decades the availability of digital images produced by
scientific, educational, medical, industrial and other applications has
increased dramatically. Thus, the management of the expanding visual
information has become a challenging task. Since the 1990s Content
Based Image Retrieval (CBIR) is a rapidly advancing research area,
which uses visual content to search images from large databases
according to the user’s interest [36,23,21,12,22,26,41,17]. A typical
CBIR system extracts visual information from an image and converts it
internally to a multidimensional feature vector representation. For
retrieval, the dissimilarities (distances) between the feature vector of a
query image and the feature vectors of the images in the database are
computed. Then, the database images most similar to the query are
presented to the user. CBIR may especially be interesting in the field of
computer aided diagnostics when it is partly based on images. An
intelligent pre-selection of images with a trained system might help a
medical doctor to efficiently search for patients, who had problems
similar to the actual case.

The visual content of an image can be described by color,
texture, shape or spatial relationship. A good visual content
descriptor should be insensitive to the specific imaging process,
e.g. invariant under changes of illumination. The prevalent visual
content for image retrieval is color. Frequently used color descrip-
tors are color moments, histograms, coherence vectors and corre-
lograms [33,24]. Before a color descriptor can be selected, the
underlying color space has to be specified.

There are many different color spaces available, which may be
beneficial in different application domains. The color representa-
tions most commonly used in electronic systems are RGB and
CIE-XYZ. CIE-XYZ and the related CIE-Lab and CIE-Luv are designed
to match human perception. In [40] the authors argue, that
normalized TSL (Tint, Saturation, Lightness) is superior to other
color spaces for skin modeling with a unimodal Gaussian joint
probability density function. The color space YCrCb is adjusted for
efficient image compression, but the transformation simplicity and
explicit separation of luminance and chrominance components
appear attractive for skin color modeling [25,46,9]. Surveys on
color spaces and their use can be found in [40,43]. We are not aware
of a general rule for the choice of the color space and the
representation might follow the users preference. So we decided
to investigate eight different color spaces, which are commonly
used and may be useful for the task at hand.
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Color is an important attribute for primary skin efflorescences
[3]. Color features have proven beneficial in many applications and
medical sciences, especially for the recognition of skin lesions
[14,40,43,38,34,19,37,25,46,18] or the classification of skin cancer
[28,44,1,16,10,42]. A dermatologist might be interested in pictures
of similar skin lesions in comparison to an actual case to verify the
diagnosis or confer with similar symptoms. This can be interpreted
as a problem of CBIR. The authors of [4] study the use of color
features and the effectiveness of different color spaces in this
context. They conclude that the representation of an image by the
difference in the average color of healthy and lesion skin gives
better results than the explicit use of the pair of colors. Fig. 1 shows
two example retrievals for a CBIR system in the field of skin lesion
comparison in dermatology. In [4], the best results were achieved
with the CIE-Lab color representation.

Since the difference of two color values is a special case of a linear
transformation, the question arises whether better results can be
achieved by more general linear transformations. Of course, it is
possible that the use of a combination of a cyclic distance measure in
the case of color spaces containing a ‘‘hue’’-descriptor might lead to
superior results. We will address this interesting questions in further
studies. One well known technique to achieve a linear projection of
feature vectors to a subspace which minimizes the overlap between
different classes is Linear Discriminant Analysis (LDA) [13]. In this
paper we employed and compared two different recent techniques,
which are able to find discriminant feature transformations based on a
supervised training procedure. The Large Margin Nearest Neighbor
(LMNN) [45] approach has the advantage that it is based on a convex
cost function, so it returns the global optimum for the current
configuration of training data and parameters, based on the kNN
approach. The Limited Rank Matrix Learning Vector Quantization
(LiRaM LVQ) [29,30,8,32] on the other hand follows a stochastic
gradient descent procedure and may get stuck in local minima. On the
other hand, it has the advantage of low computational costs. It is a
prototype-based method, in which the decision boundary is defined by
the Voronoi cells of prototypes following the large margin principle
[11]. Both algorithms are available in general form and turned out to be
effective classifiers in many applications. In our real world example
application of CBIR in dermatology, the LiRaM LVQ approach turned
out to be quite robust concerning the initialization and parameter
setting. With comparably low computational costs it leads to similar or
better results than the LMNN approach with optimal parameter
setting on most color spaces discovered. We improve the correct
retrieval rate in CBIR of dermatological images significantly by
applying adaptive linear transformations.

The main aim of this work is to demonstrate in terms of a real
world example, that an adaptive, i.e. data driven transformation of
original color features can improve the retrieval performance of a
CBIR system significantly. We concentrate on the performance
enhancement achieved by using the most basic, easy and fast
acquirable set of important features for the problem at hand, i.e.
color information only.

In Section 2 we explain the real world data set, the feature
extraction process, we present and discuss the methods we use to

determine optimal transformations of color features and their use
in the CBIR system. In Section 3 we present results and conclude in
Section 4.

2. Methodology

An illustration of the Methodology is shown in Fig. 2.

2.1. Data set and feature extraction

We analyze images from a database maintained at the Depart-
ment of Dermatology of the University of Groningen. At the time of
this study it consisted of 47,621 images from 11,361 patient
sessions, the number of images grows by about 5000 per year.
Clinical images are obtained under standard light conditions and do
not require further calibration. A subset of 211 images was
provided and manually labeled by a dermatologist, who assigned
each image to one of four classes of lesions. For better readability
we refer to these classes as ‘‘red’’, ‘‘white’’, ‘‘blue’’ and ‘‘brown’’
(Fig. 3). These terms correspond to the relative tint of lesions which
appear reddish, blue, brownish or hypopigmented on the back-
ground of the surrounding healthy skin. We consider a data set with
82, 46, 29 and 54 samples, respectively, which amounts to a total of
211 images.

Of course there are more characteristics then just color which
identify the kind of skin lesion, e.g. the shape. The consideration of
other types of features will be addressed in future work, here we
concentrate on the quality the most basic set of features is able to
achieve. In this particular problem color seems to be a suitable
indicator for the skin lesion classes. The complete data set also
contains other skin lesions, but in this study we restrict ourselves to
the consideration of the above mentioned classes. Here, emphasis
is not on the classification performance itself. It serves as a basis for
improving the retrieval system and the supervised training yields a
suitable distance measure. Further studies should address addi-
tional features, more general skin lesion classes and the handling of
unknown classes.

The original images were not pre-processed. For each image a
region of lesion and a region of healthy skin are manually selected
and for each of them the average color values are computed (see
Fig. 4). Hence, the extracted data contains three color components
for each of the two regions, resulting in a six-dimensional (6D)
feature vector. As a normalization step we perform a z-score-
transformation resulting in zero mean and unit variance features.
This normalization is reasonable in the RGB color space and linear
domains. In case of cyclic descriptors, like the ‘‘hue’’, this might not
be appropriate. The combination of cyclic distances and linear
dissimilarities and their normalization concerning this specific task
will be addressed in future studies. Nevertheless, for the sake of
comparison and completeness we show the results on different
color spaces under the same conditions.

Fig. 1. Two example retrievals of the 11 most similar images for a given query image. The first image in a row is the query image, followed by the images returned from the

retrieval system [4]. The green tick marks images with the same class label like the query.
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2.2. Feature transformation obtained by LiRaM LVQ

In order to obtain discriminative representations of the data we
use supervised machine learning. Specifically, we employ limited
rank matrix learning vector quantization (LiRaM LVQ), a recently
introduced method which adapts a similarity or distance measure
in the course of learning [6,8,32]. It is an extension of Generalized
LVQ (GLVQ), which is a prototype based classification algorithm
and a modification of Kohonen’s heuristic LVQ [20]. These methods
aim at the quantization of the data space in form of a finite number
of prototypes defined in the same feature space as the data. At the
end of the learning process the prototypes may be interpreted as
typical representatives of the given classes. These methods exhibit,
among other things, the advantage of easy interpretation, imple-
mentation and model flexibility. Recently, a number of extensions
has been introduced. GLVQ updates prototypes by means of
gradient descent with respect to a heuristically motivated cost
function suggested by Sato and Yamada [27]:

fC ¼
X

i

FðmÞ ¼
X

i

F
dL

J �dL
K

dL
J þdL

K

 !
: ð1Þ

Here, F is a monotonic function, e.g. the logistic function or the
identity FðxÞ ¼ x which we will consider throughout the following.

Fig. 3. Example images of the four skin lesion classes taken from [4].

Fig. 2. Methodology overview for the proposed CBIR system.

Fig. 4. Feature extraction (taken from [4]): a representative region of healthy skin

(green framed) and lesion skin (red framed) were manually selected. The average

colors of these two regions are combined in a six-dimensional feature vector.
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Generalized Matrix LVQ (GMLVQ) takes into account the impor-
tance of single features as well as pairwise correlations between
them by means of a full matrix L of relevances [29,30]. In addition,
LiRaM LVQ limits the rank of the relevance matrix to obtain
transformations into a low-dimensional space [6,8]. Training is
based on examples of the form ðni,yiÞARN

� f1, . . . ,Cg, where N is
the dimension of feature vectors and C is the number of classes (in
our case, N¼6 and C¼4). At least C prototypes, which are chosen as
typical representatives of the respective classes, are characterized
by their location in feature space wiARN and the respective class
label cðwiÞAf1, . . . ,Cg. Given a parameterized distance measure
dLðw,nÞAR, the classification is performed according to a ‘‘winner
takes all’’ or ‘‘nearest prototype’’ scheme: A data point nARN is
assigned to the class label cðwiÞ of the closest prototype i with
dLðwi,nÞrdLðwj,nÞ8ja i.

Learning is an iterative procedure which presents a single
example at a time (step) and moves prototypes closer to (away
from) data points representing the same (a different) class. In every
step also the distance measure is modified, usually with a different
(smaller) learning rate [30]. It is parameterized by an adaptive
matrix LARN�N , which can account for correlations between
different features:

dLðw,nÞ ¼ ðn�wÞ>Lðn�wÞ: ð2Þ

This can be seen as a generalization of the well known Euclidean
distance including mixing of attributes. Since the matrix L is
assumed to be positive (semi-) definite, the measure corresponds
to the (squared) Euclidean distance in an appropriately trans-
formed space: L¼O>O and, hence, dLðw,nÞ ¼ ½Oðn�wÞ�2. In [8,32]
the formalism has been extended to the use of rectangular matrices
O, which define transformations from the original N-dimensional
feature space to RM with MrN. The corresponding algorithm is
referred to as LiRaM LVQ.

In order to formulate stochastic gradient descent with respect to
the objective function (1) we compute the derivatives

@dL
L

@wL
¼�2O>Oðn�wLÞ ¼�2Lðn�wLÞ, ð3Þ

gþ ¼ @m
@dL

J

¼
2dL

K

ðdL
J þdL

K Þ
2

, ð4Þ

and

g� ¼ @m
@dL

K

¼
�2dL

J

ðdL
J þdL

K Þ
2
: ð5Þ

Here, LAfJ,Kg and the index J (K) refers to the closest correct
(wrong) prototype wJ (wK ).

For the closest correct prototype wJ and closest wrong proto-
type wK one obtains an update of the form

wnew
J ¼wJþa1 � gþ � 2Lðn�wJÞ, ð6Þ

wnew
K ¼wKþa1 � g� � 2Lðn�wK Þ: ð7Þ

The corresponding matrix update reads

@dL
L

@Omn
¼ 2½Oðn�wLÞ�m � ðxn�wL,nÞ,

@m
@Omn

¼ gþ
@dL

J

@Omn
þg�

@dL
K

@Omn

 !
,

Onew
mn ¼Omn�a2 �

@m
@Omn

: ð8Þ

Detailed information about the algorithm, parameters, running
time and complexity can be found, for example in [11,2,30,7].

The algorithm is designed for classification tasks, but it also
delivers a discriminant dissimilarity measure and transformation
for the specific data domain, which we use in the CBIR system
to enhance its performance. We determine a discriminative
three-dimensional representation of the data by applying LiRaM
LVQ supervised training. We chose the target dimension three in
order to compare directly with previous work [4] and because we
are dealing with color representations, which are usually described
in three dimensions. A further advantage of this choice is, that a
visualization of the data set is also possible.

Furthermore it is possible to learn local metrics in different
areas of the feature space. To this end, local matricesOl are attached
to the prototypes wl in the supervised training process (see [8] for
details). We refer to this modification as localized LiRaM LVQ. The
distance measure changes in this case to

dLl ðwl,nÞ ¼ ðwl�nÞ>Llðwl�nÞ, ð9Þ

with adaptive local, symmetric and positive semi-definite matrices
Ll corresponding to piecewise quadratic decision boundaries.
Positive semi-definite-ness and symmetry can again be guaranteed
by decomposing Ll ¼O>l Ol with OlARM�N with MrN, so that the
data is transformed locally byOl according to the classification task.
In this way the rank of the matrixLl is limited by M, which also may
vary for different l. Regularization schemes can be used to force the
system to ensure a rank of M [31].

2.3. LiRaM LVQ settings

The results of the LiRaM LVQ algorithm display a dependence on
the initial state of the matrix O in the training. Hence, we present
results on average over several random initial configurations. For
the training we employ the following cross validation procedure:
The data set is split in ten disjoint subsets with approximately the
same composition of classes. The union of nine subsets is used to
determine the transformation matrix O for the vectors of the
remaining subset. In this way, the matrix O which is applied to a
given feature vector from the set is obtained without using that
feature vector. This procedure is repeated ten times, once for every
possible selection of the subset for which O is determined. In
addition we repeat each training process for ten different random
initializations of the LiRaM LVQ algorithm, resulting in 100 runs.

We start the matrix learning after tM¼50 of altogether 500
epochs and apply a learning rate schedule which has proven
advantageous in many implementations of relevance learning
[2,15,30]. It is of the form

a1ðtÞ ¼
astart

1

1þðt�1ÞDa1
, a2ðtÞ ¼

astart
2

1þðt�tMÞDa2
: ð10Þ

Here, t corresponds to the current epoch, i.e. sweep through the set
of training data, and astart

1 and astart
2 denote the initial learning rates

for the prototypes and the matrix learning. In our experiments we
choseastart

1 ¼ 0:01,Da1 ¼Da2 ¼ 0:0001 andastart
2 ¼ 0:001, we do not

perform an optimization of these parameters concerning the
retrieval rates. In our experiments we use four prototypes (one
per class) and their initial positions wiðt¼ 0Þ are determined as the
mean over a random selection of 1/3 of the available feature vectors
in class cðwiÞ with small random deviation. Hence, prototypes are
initially close to the class-conditional means in the training data,
but with small deviations due to the random sampling. This has the
advantage that in the case of more prototypes it is ensured that they
are not initialized on exactly the same position. Relevance initi-
alization is done by generating independent uniform random
numbers OijA ½�1,1� and subsequent normalization, such thatX

i

Lii ¼
X
mn

O2
mn ¼ 1: ð11Þ
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Performing independent runs with random initialization and
subsequent normalization prevents that single features are favored
by unlucky initialization. In the experiments we consider matrices
OAR3�6, which transform the original six-dimensional feature
vector into a three-dimensional space. More dimensions do not
increase the performance significantly, but using less than three
caused decreasing retrieval rates. Furthermore, with three dimen-
sions we can directly compare to earlier experiments.

The localized LiRaM LVQ is trained under the same conditions
and learning rate schedules, but four matrices Ol are adapted
together with their associated prototypes wl in the supervised
training process.

For each subset Ds, s¼1,y,10, of the data set X we perform 10
runs over random initializations i¼1,y,10. For every image xn with
n¼1,y, 211 from the data set we compute the correct retrieval rate
by means of the k nearest neighbors within X\fxng. Therefore, we
apply for each initialization i the transformation Osi or Osi

l in the
localized version, which was learned without the samples xADs,
and obtain a retrieval rate rn

i for the query xnADs. Thus we get for
every initialization i a mean retrieval rate r i

¼ 1
211

P211
n ¼ 1 ri

n. As an
overall estimate of the performance we determine the total mean
rate r¼ 1

10

P10
i r i. The variability with respect to initialization is

quantified by the standard deviation

sinit ¼
1

9

X10

i ¼ 1

ðr i
�rÞ2

 !1=2

: ð12Þ

In order to quantify the variation of the data set we evaluate the
mean retrieval rate of every image rn ¼

1
10

P10
i ¼ 1 ri

n and the corre-
sponding standard error of mean (SEM)

edata ¼
1

210

X211

n ¼ 1

ðrn�rÞ2
 !1=2

� 211�1=2: ð13Þ

With the original features there is no training process involved and
edata in Eq. (13) is computed simultaneously with the retrieval rate
rn of every image replacing rn.

2.4. Feature transformation obtained by LMNN

The k nearest neighbor (kNN) algorithm is a simple and intuitive
method which classifies a novel feature vector by a majority vote
among its k nearest neighbors in the training set. Thus, its
performance depends crucially on the metric used for the identi-
fication of the neighbors. The Large Margin Nearest Neighbor
(LMNN) [45] algorithm extends the kNN rule by an adaptive
distance measure. The aim of the training process is that a
predefined numberk of nearest neighbors (called target neighbors)
belongs to the same class like the example data with high
probability. Simultaneously, samples of different classes should
be separated by a large margin. The corresponding optimization
problem is convex and the global optimum can be found by means
of semi-definite programming [45]. The computational effort
depends crucially on the parameter k. The LMNN algorithm
provides a discriminative distance measure for the kNN classifier
corresponding to dCðni,njÞ ¼ ðni�njÞ

>Cðni�njÞ. Here, the matrix
CARM�N denotes the counterpart of O in LiRaM LVQ.

The training procedure has two steps. The first step identifies a
set of k similarly labeled target neighbors for each input ni. The
second step adapts the Mahalanobis distance metric so that these
target neighbors are closer to ni than differently labeled inputs. The
semidefinite optimization in LMNN classification arises from an
objective function which balances two terms. The first term
penalizes large distances between inputs and their target neigh-
bors. The second term penalizes small distances between differ-
ently labeled inputs. The terms in the objective function can be

specified with further notation. Let yijAf0,1g indicate whether the
inputs ni and nj have the same class label. The notation j*i indicates
that nj is a target neighbor of ni. Also, let xijlZ0 denote the amount
by which a differently labeled input nl invades the perimeter
around input ni defined by its target neighbor nj. The Mahalanobis
distance metric C is obtained by solving the semidefinite program
shown in Table 1. The constant m defines the trade-off between the
two terms in the objective function. The constraints of type (a) favor
inputs ni closer to their k target neighbors nj then to any other
differently labeled input nl. When differently labeled nl invade the
local neighborhood a positive slack variable xijl is generated. This is
penalized in the second term of the objective function. Constraints
of type (b) enforce non-negativity of the slack variables and
constraint (c) enforces positive semi-definiteness of C. Noting that
the squared Mahalanobis distances are linear in the matrix C, the
above optimization is easily recognized as a semidefinite problem.

The results presented in the following section were produced
with the first code available at www.cse.wustl.edu/�kilian/code/
code.html (last visited September 2010) [45] using default para-
meters except for the number of target neighborsk, which varies in
our experiments from 1 to 25 and the initial matrix CAR3�6 with
elements randomly drawn from the interval [�1,1]. For a fair
comparison, LMNN and LiRam LVQ are applied to the same subsets
Ds of training data and performance is evaluated on the same
footing.

2.5. Canonical representations

Note that the transformation matrix O obtained by LiRaM LVQ
and C in LMNN are not uniquely determined: For instance, the
distance measure is invariant under rotations in the feature space.
Thus, the training process can yield different transformation
matricesO depending on the (random) initialization of the training
process. We identify uniquely defined transformations Ô and Ĉ by
decomposing L¼O>O and U¼C>C in a canonical way: we
determine the eigenvectors v1,v2, . . . ,vM corresponding to the M

(ordered) non-zero eigenvalues of L or U, l14l2Z � � �ZlM and
define Ô or Ĉ as follows:

Ĉ,Ô ¼ ð½
ffiffiffiffiffi
l1

p
v1,

ffiffiffiffiffi
l2

p
v2, . . . ,

ffiffiffiffiffiffiffi
lM

p
vM�Þ

>ARM�N : ð14Þ

This canonical representation does not alter the retrieval system
and it allows direct comparison of the transformations Ô and Ĉ.

It is not obvious how to extend the LMNN scheme for a
comparison with the use of local matrices Ol like in the LiRaM
LVQ. We will discuss the localized matrices in terms of the achieved
retrieval performance and show the mean canonical representations.

2.6. Retrieval test

As a performance measure for CBIR we use the average correct
retrieval rate, also referred to as precision. It is defined as the
percentage of k nearest neighbors that belong to the same category
as a query image. We determine for each image its k nearest
neighbors in the entire data set using the Euclidean distance
measure. For comparison, we do this both in the original feature
space n and in the transformed feature space ~n ¼ Ln with LAfO,Cg.
Note that in our evaluation for a given query image, the

Table 1
Semidefinite optimization problem in LMNN.

Minimize
P

j*i½dCðni ,njÞþm
P

lð1�yilxijlÞ�

subject to:

(a) dCðni ,nlÞ�dCðni ,njÞZ1�xijl

(b) xijl Z0

(c) Ck0
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transformation matrices O, C and Ol have been determined from
subsets which do not contain the query.

Using the localized LiRaM LVQ approach the training process
optimizes l localized transformations Ol corresponding to the
classification task. We involve this information by projecting every
feature vector n with the transformation Ol corresponding to the
nearest prototype wl with dLl ðwl,nÞodLk ðwk,nÞ8lak resulting in
local linear projections for different areas of the feature space.

Section 3 presents and compares the resulting retrieval rates as
average over all images. Furthermore, the standard error of the
performance with the actual query image and its dependence on
the initialization of LiRaM LVQ are discussed.

2.7. Color spaces

We explore the retrieval rates for eight different color repre-
sentations separately. The different color spaces vary, as already
mentioned, with respect to their usefulness in different applica-
tions. Possible motivations for the choice of a particular color space
are summarized in Table 2.

Despite the potential difficulty rising from the cyclic representa-
tion of the ‘‘Hue’’ component of the TSL color space and its relatives
HSV and HSL, for completeness, we investigate its behavior for our
application task in terms of one example, namely TSL.

3. Results

3.1. Retrieval rate

In this Section we summarize the retrieval results for the
different color representations using transformed features from
LMNN, global and localized LiRaM LVQ. We compare them with
those obtained in the original feature spaces and with the
difference features from [4] obtained with the transformation A:

A¼

�1 0 0 1 0 0

0 �1 0 0 1 0

0 0 �1 0 0 1

0
B@

1
CA: ð15Þ

The overall mean rates r obtained with LiRaM LVQ andOAR3�6 are
displayed in Fig. 5 for each color space as a function of the number k,
i.e. the number of pictures the CBIR system returns to the user. The
best correct retrieval rates for this algorithm are achieved with
the color spaces YCrCb (82.3%), CIE-Lab (82.2%), CIE-Lch (81.1%),
CIE-Luv (81.0%) and RGB (80.7%) where the numbers correspond to
the example case k¼11. All other color representations yield by far
lower performances with rates between 68.7% and 75.0%. We chose
the example case of 11 returned images for the quantitative
analysis to be able to compare to earlier studies [4] and because
it seems a reasonable large number suggested by the doctor. Of
course the system is able to return as many similar images as the
data base contains and the user wishes to see.

Fig. 6 shows a comparison of the correct retrieval rates based on
the original features (red lines), the difference features from [4] (green

lines) and the transformed data (blue and black lines) as a function of
the neighborhood size k of the retrieval system. The gray shaded areas
mark the SEM edata, while the blue shaded area corresponds to sinit of
the LiRaM LVQ. Note that the latter is, of course, absent in the results
based on original features and difference features, as no training
process is involved and also absent in the results coming from LMNN,
because it finds the global optimum for a given parameter set,
independent of the initial state. The variation due to initialization
of the localized LiRaM LVQ is not displayed; it is comparable to the
variation in the global version. We set the parameter k of the LMNN
approach equal to the neighborhood k of the retrieval system and, in
addition, we consider k¼ 25. The latter is close to the size of the
smallest class in the data set, ‘‘blue’’ (c), with 29 examples. Fork¼ 25
the retrieval performances of LMNN and LiRaM LVQ are comparable
which is also reflected in the fact that the obtained matrices Ô and Ĉ
are very similar, cf. Figs. 7 and 8. Smaller values for k reduce the
computational effort of the optimization at the expense of
performance.

Localized LiRaM LVQ achieves the best correct retrieval rate for
the most suitable color spaces: Lab and YCrCb. However, the
performance boost compared to the other methods is only moder-
ate. In TSL, localized LiRaM LVQ is even outperformed by the simpler
techniques based on global measures. These findings suggest that
the latter already extract the most important information from the
original color features. Furthermore, TSL is cyclic represented by the
angle of color components, which may cause instabilities for naive
distance computation. We suggest the performance drop of the

Table 2
Color representations.

Color space Chosen for

RGB Widespread use

Normalized RGB Invariance (under certain assumptions) to changes of surface orientation with respect to the light source [35]

TSL Successful application in skin detection [40]

CIE-XYZ Role as the basis for CIE-Lab and CIE-Luv

CIE-Lab Perceptual relevance and relation to melanin and hemoglobin [38]

CIE-Luv & CIE-Lch Perceptual relevance

YCrCb Simplicity and explicit separation of luminance and chrominance components [25,46] and popularity in skin detection applications [18]
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Fig. 5. Mean correct retrieval rates obtained with the LiRaM LVQ transformed data

as a function of the number k of retrieved images for eight color spaces.
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difference features in comparison to the use of the original features
is a consequence of the Hue representation in TSL and its relatives
HSL and HSU were we observed the same effect. However, the
adaptive distance is able to compensate for this effect and still yields
a boost of performance also in these color spaces.

In most of the color spaces, including RGB, the LiRaM LVQ result
is not very sensitive to initialization, as indicated by relatively small
standard deviations sinitr2%. The XYZ color representation dis-
play the largest dependence on initialization with sinit42:7%. The
variation with the data set is approximately the same in original
and transformed feature spaces. This variability is not an effect of
the LiRaM LVQ training but is characteristic of the data set itself.

In the case of the LMNN optimization, we observe that the use
of an adaptive transformation increases the mean retrieval rate
r significantly for all color spaces, for every choice of k and
appropriate k. The best results are obtained with CIE-Lab
(72%oro85%) and YCrCb (72%oro84%). It is interesting to
note that the popular RGB representation exhibits comparable
performance (70%oro82%) in the transformed feature space.

Thus, we achieve an improvement between 10% and 27% when
employing an adaptive linear transformation of features.

3.2. Recommended transformations

Here we inspect the favorable transformations of the feature
space as obtained by LiRaM LVQ and LMNN. We focus on RGB as the

by far most frequently used color space and on CIE-Lab because of
its excellent retrieval performance.

3.2.1. Global transformations

We observe that the obtained distance measure represented by
L depends only weakly on the initialization of LiRaM LVQ.
However, a continuum of matrices O satisfies O>O¼L and, in
this sense, the actual outcome O of the training process can vary
widely. Thus, the canonical representation of Ô is averaged over all
training runs. The mean transformation is explicitly given for RGB
in Eq. (16) and visualized in Fig. 7. The standard deviation
concerning the random initialization of each component lies
between 0.01 to 0.03 for ÔRGB. Each row of the matrix defines a
new feature as a linear combination of the original six features:

ÔRGB ¼

0:139 �0:192 0:093 �0:320 0:662 �0:469

0:127 �0:082 �0:112 �0:167 0:080 0:276

0:036 �0:064 0:108 �0:047 �0:063 �0:002

0
B@

1
CA:
ð16Þ

We observe, that the absolute weights corresponding to skin
lesions (columns 4,5,6) are typically 1–2 times larger than the
coefficients assigned to the healthy skin features (columns 1, 2, 3).
In general, the corresponding coefficients for lesion and healthy
skin features are of opposite sign. Hence, the transformed features
correspond to weighted differences of the lesion and healthy skin

Fig. 6. Comparison of correct retrieval rates in dependence on the number of nearest neighbors k for each color space. The red lines denote the mean retrieval rates on the

original feature space, the green line stands for the difference features from [4], whereas the blue and black lines shows the mean results on the transformed feature spaces. The

blue shaded areas indicates the standard deviation due to the random initializations in LiRaM LVQ.
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color values. Eq. (17) denotes explicitly the mean transformation
ÔLab for CIE-Lab; it is visualized in Fig. 8. The above discussed
properties of ORGB persist also in the transformation of CIE-Lab
feature vectors. The standard deviations for the mean transforma-
tion vary from 0.01 and 0.06 for the random initializations:

ÔLab ¼

�0:115 �0:225 0:140 0:358 0:606 �0:418

0:069 �0:120 �0:120 �0:200 0:231 0:164

�0:087 �0:063 0:011 0:109 �0:006 0:147

0
B@

1
CA:
ð17Þ

The resulting 3D visualizations of the data set with the mean
canonical transformations Ô using the RGB and LAB color repre-
sentation are shown in Fig. 9. It can be seen that the classes for
‘‘white’’, ‘‘red’’ and ‘‘brown’’ skin cancer build a nicely separable
data cloud respectively, whereas the class ‘‘blue’’ lays between the
others and overlaps. With more training samples especially of the
difficult class the data set might be even better separable by
supervised adaptive dissimilarity learning.

3.2.2. Local transformations

Also with the localized matrices the above discussed properties
persist. For the local feature transformation the prototypes are
necessary and define the area of the original feature space, where
their transformation is valid. So the samples are transformed with
the transformation attached to the nearest prototype wj:

x
�

¼Ojx with dLj ðwj,xÞ ¼min
k

dLk ðwk,xÞ: ð18Þ

The mean canonical representations of the local matrices for RGB
are shown in Fig. 10. Note that the definition in Eq. (18) is only valid
in the neighborhood of the corresponding prototype. At the borders
of the Voronoi cell of each prototype this definition may be
inappropriate. In general it is possible to combine the local linear
patches in a global nonlinear way by charting [6,5] or Local Linear
Coordination (LLC) [39]. It can be seen that some class-wise
transformations seems to be already well discriminating with
one or two features, for example the matrices for the ‘‘brown’’
and ‘‘red’’ class of skin lesions. However, for the class of white and
bluish appearing skin lesions also the third feature shows a
contribution to the transformation. It would have been possible
to have class-wise different target spaces for two and one dimen-
sion in respective transformations, but for reasons of consistency
and for comparison purpose we chose the target dimension to be
the same for every class.

In summary, our findings support the basic idea of using
differences of color features presented in [4]. We have shown,
however, that generalizing this concept by introducing adaptive
coefficients improves the retrieval performance significantly for
this supervised problem.

4. Summary and conclusion

In this paper show the usefulness of adaptive distances and
corresponding feature space transformations on an example real
world application. We observe that CBIR on color is a powerful tool
for analysis of dermatological image databases. Previously unno-
ticed color similarities may give new insight into the correlations

Fig. 8. Recommendation for the transformation in CIE-Lab: (top) multipliers that define the new features as linear combinations of the original features earned from LiRaM

LVQ and (left) multipliers earned from LMNN with k¼ 25.

Fig. 7. Recommendation for the transformation in RGB: (right) multipliers that define the new features as linear combinations of the original features earned from LiRaM LVQ

and (left) multipliers earned from LMNN with k¼ 25.
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between and within various skin diseases. We introduce discrimi-
native color descriptors which are obtained by LiRaM LVQ and
LMNN during supervised training, and we compare and evaluate

their performance for CBIR of dermatological images. Starting from
a 6D vector representation of images, we define three new features
as linear combinations of the original six color components of
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Fig. 10. Local matrices for RGB corresponding to one prototype of each class.
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healthy and lesion skin. The linear combinations are determined by
LiRaM LVQ in a training process which is guided by classification
performance and yields a discriminative representation of the
feature space. With new features we achieve considerable
improvement of retrieval results in all eight color spaces that we
studied. In the five best color spaces (YCrCb, CIE-Lab, CIE-Lch,
CIE-Luv and RGB) the increase of the correct retrieval rate is
between 10% and 27% in the range of k¼1–25 retrieved images
in comparison to earlier studies. We conclude that adaptive
dissimilarity learning is favorable independent of the choice of
the actual color space. The user may decide according to his
personal preference which color representation is most suitable.

The use of LMNN seems natural, since the retrieval is based on a
kNN approach. However, our investigation shows that the LiRaM
LVQ approach outperforms LMNN if the latter takes only a
relatively small number k of neighbors into account in the training
process. For larger k the obtained metric becomes very similar to
that of LiRaM LVQ and, consequently, the retrieval performances
are comparable. The computational effort for LiRaM LVQ training is
typically lower than that of the LMNN optimization which grows
withk. An important advantage of the LVQ approach is its potential
with respect to extensions. As shown, for example, local metrics
can be attached to the prototypes which are responsible for
different areas of the original feature space. In the most favorable
color spaces, localized LiRaM LVQ increased the retrieval rates even
further.

We conclude that LiRaM LVQ is an efficient technique for the
extraction of highly discriminative color features for CBIR of
dermatological images. With this approach, we obtain high mean
correct retrieval rates of between 84% for k¼1 and 79% for k¼25
retrieved images in the five best color spaces. For two of the color
spaces, RGB and CIE-Lab, we discuss in detail the canonical linear
transformations of the original six color components to three new
features and showed their superiority to recently introduced
approaches.

Obviously, several important extensions are possible. For
instance, the automatic detection of regions of interest or the
integration of shape information should be relevant in practical
applications. Forthcoming studies should address, among other
modifications, the use of extended original feature spaces which
include, for instance, shape information.
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