11 research outputs found

    Author index for volumes 101–200

    Get PDF

    Permanental Point Processes on Real Tori

    Get PDF
    The main motivation for this thesis is to study real Monge-Amp\ue8re equations. These are fully nonlinear differential equations that arise in differential geometry. They lie at the heart of optimal transport and, as such, are related to probability theory, statistics, geometrical inequalities, fluid dynamics and diffusion equations. In this thesis we set up and study a thermodynamic formalism for a certain type of Monge-Amp\ue8re equations on real tori. We define a family of permanental point processes and show that their asymptotic behavior (when the number of particlestends infinity) is governed by Monge-Amp\ue8re equations

    Permanental Point Processes on Real Tori

    Get PDF
    The main motivation for this thesis is to study real Monge-Amp\ue8re equations. These are fully nonlinear differential equations that arise in differential geometry. They lie at the heart of optimal transport and, as such, are related to probability theory, statistics, geometrical inequalities, fluid dynamics and diffusion equations. In this thesis we set up and study a thermodynamic formalism for a certain type of Monge-Amp\ue8re equations on real tori. We define a family of permanental point processes and show that their asymptotic behavior (when the number of particlestends infinity) is governed by Monge-Amp\ue8re equations

    Polynomial systems : graphical structure, geometry, and applications

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 199-208).Solving systems of polynomial equations is a foundational problem in computational mathematics, that has several applications in the sciences and engineering. A closely related problem, also prevalent in applications, is that of optimizing polynomial functions subject to polynomial constraints. In this thesis we propose novel methods for both of these tasks. By taking advantage of the graphical and geometrical structure of the problem, our methods can achieve higher efficiency, and we can also prove better guarantees. Various problems in areas such as robotics, power systems, computer vision, cryptography, and chemical reaction networks, can be modeled by systems of polynomial equations, and in many cases the resulting systems have a simple sparsity structure. In the first part of this thesis we represent this sparsity structure with a graph, and study the algorithmic and complexity consequences of this graphical abstraction. Our main contribution is the introduction of a novel data structure, chordal networks, that always preserves the underlying graphical structure of the system. Remarkably, many interesting families of polynomial systems admit compact chordal network representations (of size linear in the number of variables), even though the number of components is exponentially large. Our methods outperform existing techniques by orders of magnitude in applications from algebraic statistics and vector addition systems. We then turn our attention to the study of graphical structure in the computation of matrix permanents, a classical problem from computer science. We provide a novel algorithm that requires Õ(n 2[superscript w]) arithmetic operations, where [superscript w] is the treewidth of its bipartite adjacency graph. We also investigate the complexity of some related problems, including mixed discriminants, hyperdeterminants, and mixed volumes. Although seemingly unrelated to polynomial systems, our results have natural implications on the complexity of solving sparse systems. The second part of this thesis focuses on the problem of minimizing a polynomial function subject to polynomial equality constraints. This problem captures many important applications, including Max-Cut, tensor low rank approximation, the triangulation problem, and rotation synchronization. Although these problems are nonconvex, tractable semidefinite programming (SDP) relaxations have been proposed. We introduce a methodology to derive more efficient (smaller) relaxations, by leveraging the geometrical structure of the underlying variety. The main idea behind our method is to describe the variety with a generic set of samples, instead of relying on an algebraic description. Our methods are particularly appealing for varieties that are easy to sample from, such as SO(n), Grassmannians, or rank k tensors. For arbitrary varieties we can take advantage of the tools from numerical algebraic geometry. Optimization problems from applications usually involve parameters (e.g., the data), and there is often a natural value of the parameters for which SDP relaxations solve the (polynomial) problem exactly. The final contribution of this thesis is to establish sufficient conditions (and quantitative bounds) under which SDP relaxations will continue to be exact as the parameter moves in a neighborhood of the original one. Our results can be used to show that several statistical estimation problems are solved exactly by SDP relaxations in the low noise regime. In particular, we prove this for the triangulation problem, rotation synchronization, rank one tensor approximation, and weighted orthogonal Procrustes.by Diego Cifuentes.Ph. D

    Chiral Random Matrix Theory: Generalizations and Applications

    Get PDF
    Kieburg M. Chiral Random Matrix Theory: Generalizations and Applications. Bielefeld: Fakultät für Physik; 2015

    Learning, Large Scale Inference, and Temporal Modeling of Determinantal Point Processes

    Get PDF
    Determinantal Point Processes (DPPs) are random point processes well-suited for modelling repulsion. In discrete settings, DPPs are a natural model for subset selection problems where diversity is desired. For example, they can be used to select relevant but diverse sets of text or image search results. Among many remarkable properties, they offer tractable algorithms for exact inference, including computing marginals, computing certain conditional probabilities, and sampling. In this thesis, we provide four main contributions that enable DPPs to be used in more general settings. First, we develop algorithms to sample from approximate discrete DPPs in settings where we need to select a diverse subset from a large amount of items. Second, we extend this idea to continuous spaces where we develop approximate algorithms to sample from continuous DPPs, yielding a method to select point configurations that tend to be overly-dispersed. Our third contribution is in developing robust algorithms to learn the parameters of the DPP kernels, which is previously thought to be a difficult, open problem. Finally, we develop a temporal extension for discrete DPPs, where we model sequences of subsets that are not only marginally diverse but also diverse across time

    Annales Mathematicae et Informaticae (45.)

    Get PDF

    New Algorithmic Paradigms for Discrete Problems using Dynamical Systems and Polynomials

    Get PDF
    Optimization is a fundamental tool in modern science. Numerous important tasks in biology, economy, physics and computer science can be cast as optimization problems. Consider the example of machine learning: recent advances have shown that even the most sophisticated tasks involving decision making, can be reduced to solving certain optimization problems. These advances however, bring several new challenges to the field of algorithm design. The first of them is related to the ever-growing size of instances, these optimization problems need to be solved for. In practice, this forces the algorithms for these problems to run in time linear or nearly linear in their input size. The second challenge is related to the emergence of new, harder and harder problems which need to be dealt with. These problems are in most cases considered computationally intractable because of complexity barriers such as NP completeness, or because of non-convexity. Therefore, efficiently computable relaxations for these problems are typically desired. The material of this thesis is divided into two parts. In the first part we attempt to address the first challenge. The recent tremendous progress in developing fast algorithm for such fundamental problems as maximum flow or linear programming, demonstrate the power of continuous techniques and tools such as electrical flows, fast Laplacian solvers and interior point methods. In this thesis we study new algorithms of this type based on continuous dynamical systems inspired by the study of a slime mold Physarum polycephalum. We perform a rigorous mathematical analysis of these dynamical systems and extract from them new, fast algorithms for problems such as minimum cost flow, linear programming and basis pursuit. In the second part of the thesis we develop new tools to approach the second challenge. Towards this, we study a very general form of discrete optimization problems and its extension to sampling and counting, capturing a host of important problems such as counting matchings in graphs, computing permanents of matrices or sampling from constrained determinantal point processes. We present a very general framework, based on polynomials, for dealing with these problems computationally. It is based, roughly, on encoding the problem structure in a multivariate polynomial and then recovering the solution by means of certain continuous relaxations. This leads to several questions on how to reason about such relaxations and how to compute them. We resolve them by relating certain analytic properties of the arising polynomials, such as the location of their roots or convexity, to the combinatorial structure of the underlying problem. We believe that the ideas and mathematical techniques developed in this thesis are only a beginning and they will inspire more work on the use of dynamical systems and polynomials in the design of fast algorithms
    corecore