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Abstract

Solving systems of polynomial equations is a foundational problem in computational mathe-
matics, that has several applications in the sciences and engineering. A closely related problem,
also prevalent in applications, is that of optimizing polynomial functions subject to polyno-
mial constraints. In this thesis we propose novel methods for both of these tasks. By taking
advantage of the graphical and geometrical structure of the problem, our methods can achieve
higher efficiency, and we can also prove better guarantees.

Various problems in areas such as robotics, power systems, computer vision, cryptography,
and chemical reaction networks, can be modeled by systems of polynomial equations, and in
many cases the resulting systems have a simple sparsity structure. In the first part of this thesis
we represent this sparsity structure with a graph, and study the algorithmic and complexity
consequences of this graphical abstraction. Our main contribution is the introduction of a novel
data structure, chordal networks, that always preserves the underlying graphical structure of
the system. Remarkably, many interesting families of polynomial systems admit compact
chordal network representations (of size linear in the number of variables), even though the
number of components is exponentially large. Our methods outperform existing techniques
by orders of magnitude in applications from algebraic statistics and vector addition systems.

We then turn our attention to the study of graphical structure in the computation of ma-
trix permanents, a classical problem from computer science. We provide a novel algorithm
that requires ̃︀𝑂(𝑛 2𝜔) arithmetic operations, where 𝜔 is the treewidth of its bipartite adjacency
graph. We also investigate the complexity of some related problems, including mixed discrim-
inants, hyperdeterminants, and mixed volumes. Although seemingly unrelated to polynomial
systems, our results have natural implications on the complexity of solving sparse systems.

The second part of this thesis focuses on the problem of minimizing a polynomial function
subject to polynomial equality constraints. This problem captures many important appli-
cations, including Max-Cut, tensor low rank approximation, the triangulation problem, and
rotation synchronization. Although these problems are nonconvex, tractable semidefinite pro-
gramming (SDP) relaxations have been proposed. We introduce a methodology to derive more
efficient (smaller) relaxations, by leveraging the geometrical structure of the underlying vari-
ety. The main idea behind our method is to describe the variety with a generic set of samples,
instead of relying on an algebraic description. Our methods are particularly appealing for
varieties that are easy to sample from, such as 𝑆𝑂(𝑛), Grassmannians, or rank 𝑘 tensors. For
arbitrary varieties we can take advantage of the tools from numerical algebraic geometry.

Optimization problems from applications usually involve parameters (e.g., the data), and
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there is often a natural value of the parameters for which SDP relaxations solve the (polyno-
mial) problem exactly. The final contribution of this thesis is to establish sufficient conditions
(and quantitative bounds) under which SDP relaxations will continue to be exact as the pa-
rameter moves in a neighborhood of the original one. Our results can be used to show that
several statistical estimation problems are solved exactly by SDP relaxations in the low noise
regime. In particular, we prove this for the triangulation problem, rotation synchronization,
rank one tensor approximation, and weighted orthogonal Procrustes.

Thesis Supervisor: Pablo A. Parrilo
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

This thesis is concerned with computational aspects of multivariate polynomial equations, and

their applications in sciences and engineering. Specifically, we approach two basic problems

from computational mathematics: solving systems of polynomial equations, and optimizing

polynomial equations subject to polynomial constraints. Both of these problems arise across

sciences and engineering, in areas as diverse as robotics, power systems, computer vision,

cryptography, statistics, chemical reaction networks, dynamical systems, game theory, machine

learning. Although there is a plethora of algorithms and tools to approach these problems,

current techniques do not scale well as the number of variables grows. Consequently, solving

large scale problems arising in practice demands methods that can take account of the structure

of the problem. A central topic of this thesis is the study of special structure in systems

of polynomial equations and polynomial optimization problems, with emphasis on effective

methods. We explore how graphical and geometrical considerations may enable both faster

algorithms and better guarantees.

The first part of this thesis concerns the problem of finding complex solutions to systems

of polynomial equations. The solution set of such a system is known as an algebraic variety.

The history of algebraic varieties dates back to centuries, being the fundamental object of

study of algebraic geometry. Computational aspects of algebraic varieties have been explored

since the 1960s, and belong to the area of computational algebraic geometry [46, 47]. The

most basic problem of interest is the feasibility of a polynomial system, or equivalently, the

problem of deciding whether the associated (complex) variety is nonempty. Among the dif-
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ferent approaches for solving polynomial systems, Gröbner bases is the most widely used [46].

Although Gröbner bases methods are available in most computer algebra systems, their high

computational cost limits its applicability to systems with only tens of variables.

This thesis addresses polynomial system solving from a new angle. The key insight is that

systems coming from applications often have a simple sparsity structure. This holds, in partic-

ular, in applications such as power systems, sensor networks, and chemical reaction networks.

This sparsity structure can be represented with a graph that describes the interactions among

the variables. Although it is natural to expect that the complexity of solving the polynomial

system should depend on the underlying graphical structure, existing tecniques (e.g., Gröbner

bases) completely ignore it. In this thesis we propose new methods for solving polynomial

systems that exploit this graphical structure, as well as a novel data structure to represent the

associated variety.

The idea of using graphical structure in polynomial systems follows a general paradigm that

has has been successful in several other areas, including numerical linear algebra [111], discrete

and continuous optimization [136], graphical models [87] and constraint processing [50]. The

notions of chordality and treewidth prevail in all these areas, and they also play a fundamental

role in our treatment of polynomial systems. The relevance of chordality is already seen

in the special case of degree one polynomials, namely linear equations. It is well-known that

symmetric Gaussian elimination does not introduce nonzero entries in a sparse matrix precisely

when the adjacency graph of the matrix is chordal [111]. The case of arbitrary polynomial

systems is slightly more complex, and an interplay between graphical structure and geometric

properties of the variety will govern the complexity of our methods.

The study of structured polynomial systems is tightly connected to lattice polytopes [127].

In particular, the number of solutions of a polynomial system is always upper bounded by

a quantity known as the mixed volume of their associated Newton polytopes. Computing

such a bound is a crucial step in homotopy continuation methods [124]. We point out that

mixed volume encompasses the matrix permanent as a special instance, and consequently, it is

computationally hard in general. Our study of graphical structure in polynomial system thus

naturally leads to computing mixed volumes and permanents under appropriate graphical

structure. For the case of permanents, we provide a novel algorithm that takes ̃︀𝑂(𝑛 2𝜔)

arithmetic operations, where 𝜔 is the treewidth of the graph. This algorithm naturally extends
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to compute generalizations of the permanent to higher dimensional arrays. On the other hand,

we show that mixed volumes remain hard to compute when the treewidth is bounded. Our

results have natural complexity implications about solving sparse polynomial systems.

The second part of this thesis is devoted to polynomial optimization problems. Concretely,

we consider the problem of minimizing polynomial functions over real algebraic varieties. There

are two main kinds of methods used for such problems. The first class consists of general

nonlinear optimization methods [19] (e.g., gradient descend, Newton’s method) which, though

efficient, only converge to a local optima. The second class, tailored toward the polynomial

case, relies on a hierarchy of semidefinite programming (SDP) relaxations coming from the

sum-of-squares (SOS) method [105]. Our focus is in the latter class.

The SOS method, also known as Lasserre hierarchy, is a general approach to construct

SDP relaxations for polynomial optimization problems [22,85]. In its simplest form, the SOS

method attempts to find a certificate of the (global) nonnegativity of a polynomial. A natural

class of certificates to consider is based in rewriting the polynomial as a sum-of-squares (SOS).

The close connection between SOS polynomials and positive semidefinite (PSD) matrices leads

to a systematic procedure for certifying polynomial nonnegativity using SDP’s. The history

of nonnegativity and SOS dates back to Hilbert, but it was only in the past two decades

that their connections with optimization and SDP’s became apparent, and this is a subject

undergoing intense study. Even though the SOS method can be applied to arbitrary polynomial

optimization problems, the case in which only equality constraints are present (i.e., when the

feasible set is a variety) is rather special. The second part of this thesis studies how the

geometric structure of the underlying variety contributes both to more efficient methods and

to better guarantees on the quality of the relaxation.

The SOS method relies on writing polynomial functions as sum-of-squares. Importantly,

any algebraic variety has a natural equivalence relation that allows us to reduce the space of

functions we need to consider. Namely, we consider two polynomials equivalent if they take the

same values on the given variety. The space of equivalence classes is known as the coordinate

ring of the variety. Working modulo the coordinate ring has two well-known advantages: it

leads to a smaller SDP since the space of functions to consider is smaller, and the associated

relaxation is stronger since it takes into account the geometry of the variety. Despite the

desirability of coordinate ring relaxations, the only previously known method to derive them
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relied on Gröbner bases [104], and thus its practical applicability was rather limited. We

propose the first coordinate ring relaxation independent of Gröbner bases. Our main insight

is that having sufficiently many samples of the variety allows us to understand the structure

of its coordinate ring.

Finally, we consider the problem of finding the nearest point to an algebraic variety. This

problem arises, in particular, in statistical estimation problems for which the model is de-

fined by algebraic equations (e.g., the model consists of low rank matrices). Indeed, this class

encompasses estimation problems such as low rank tensor approximation, the triangulation

problem from computer vision, sensor network localization, camera resectioning, and approx-

imate GCD. We study the behavior of SOS relaxations in the low noise regime, i.e., in the

case where the point is sufficiently close to the variety. We establish sufficient conditions that

guarantee that the relaxation solves the problem exactly under low noise, as well as quantita-

tive bounds on the amount of noise tolerated by the relaxation. More generally, we analyze

the stability properties of SDP relaxations for parametrized polynomial optimization prob-

lems. Our methods, in particular, generalize previously known results about exactness of SDP

relaxations in camera triangulation [1] and rotation synchronization problems [112].

1.1 Outline and contributions

Chapter 2 introduces some tools from algebra and graph theory that are used throughout this

document. In particular, we recall notions such as algebraic variety, polynomial ideal, SOS

certificate, chordality, and treewidth. The remainder of the thesis is divided into two parts,

each containing two chapters.

Part I: Graphical structure and polynomial systems

Chapter 3

The main contribution of this chapter is the introduction of a new data structure to rep-

resent structured polynomial systems: chordal networks. Unlike traditional methods (e.g.,

Gröbner bases), chordal networks always preserve the underlying graphical structure of the

system. We provide an algorithm to compute chordal network representations for arbitrary

polynomial systems. Remarkably, for several interesting families of polynomial systems (with
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exponentially large Gröbner bases) the obtained chordal network has size proportional to the

number of variables. Chordal networks give a computationally convenient description of the

variety, that can be efficiently processed to compute properties such as dimension, cardinality,

equidimensional components, and radical ideal membership. Preliminary implementation of

our methods show orders of magnitude reduction against state-of-the-art algorithms in cases

from algebraic statistics and vector addition systems. This chapter is based on [41].

Chapter 4

Computing the permanent of a 𝑛×𝑛 matrix is a classical problem in computer science, known

to be #P-hard in general. Chapter 4 studies methods to efficiently compute the permanent of

matrices with structured sparsity. We also study some related quantities from convex geometry:

mixed discriminants, hyperdeterminants, and mixed volumes. Our results rely on describing

the sparsity structure of the matrix (or array) in terms of a graph, and exploiting the chordal

completions of this graph. Our method requires ̃︀𝑂(𝑛 2𝜔) operations to compute permanents,

where 𝜔 is the treewidth of the graph, and ̃︀𝑂(𝑛2 + 𝑛 3𝜔) operations for mixed discriminants

and hyperdeterminants. We further show that mixed volume computation remains hard for

bounded treewidth. This last result implies that solving polynomial systems of bounded

treewidth is also #P-hard in the generic case. This chapter is based on [38].

Part II: Polynomial optimization

Chapter 5

Consider the problem of minimizing a polynomial function over an algebraic variety. SDP

relaxations provide a tractable alternative for these nonconvex problems. This chapter intro-

duces a new methodology for obtaining such relaxations. Unlike previous techniques, which

rely on an algebraic description, we represent the variety with a generic set of complex samples.

This approach depends only on the geometry of the variety, avoiding representation issues such

as multiplicity and choice of generators. It also takes advantage of the coordinate ring struc-

ture to reduce the size of the corresponding SDP, and it is the first relaxation independent of

Gröbner bases that uses this structure. Our methods are particularly appealing for varieties

that are easy to sample from but for which the defining equations are complicated, such as
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𝑆𝑂(𝑛), Grassmannians, or rank 𝑘 tensors. For arbitrary varieties we can obtain the samples

by using the tools of numerical algebraic geometry. In this way we connect the areas of SOS

optimization and numerical algebraic geometry. This chapter is based on [42].

Chapter 6

Consider semidefinite programming (SDP) relaxations of parametrized polynomial optimiza-

tion problems. Often times in applications there is a natural value of the parameters for which

the relaxation will solve the problem exactly. Chapter 6 establishes conditions (and quanti-

tative bounds) under which the relaxation will continue to be exact as the parameter moves

in a neighborhood of the original one. Our framework captures several statistical estimation

problems, such as low rank approximation, camera triangulation, rotation synchronization, ap-

proximate matrix completion, and approximate GCD. In these applications, a solution is easy

under noiseless observations, and our results guarantee that the SDP relaxation will continue

to solve the problem in the low noise regime. This chapter is based on [37].

1.2 Notation

The following table summarizes some of the common notations used throughout this thesis.

polynomials

K[𝑥1, . . . , 𝑥𝑛] polynomials in variables 𝑥1, . . . , 𝑥𝑛 with coefficients in K
V(ℎ) zero set (variety) of a polynomial set ℎ
⟨ℎ⟩ ideal generated by a polynomial set ℎ√
𝐼 radical ideal of 𝐼

matrices

𝒮𝑛 space of 𝑛× 𝑛 real symmetic matrices
id𝑛 𝑛× 𝑛 identity matrix
𝐴 ≻ 𝐵 (𝐴 ⪰ 𝐵) 𝐴−𝐵 is positive (semi)definite
𝐴 ∙𝐵 trace inner product
‖𝐴‖, ‖𝐴‖𝐹 spectral norm, and Frobenius norm

other
|𝑆| cardinality of a set 𝑆
𝑆 = 𝑆1 ⊔ 𝑆2 𝑆 is the union of the disjoint sets 𝑆1 and 𝑆2̃︀𝑂(𝑓(𝑛) 2𝑔(𝜔)) same as 𝑂(𝑓(𝑛) 2𝑔(𝜔)), but ignores polynomial factors in 𝜔
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Chapter 2

Background

2.1 Algebraic preliminaries

2.1.1 Ideals and varieties

Let K be a field, and let K[𝑥] = K[𝑥0, . . . , 𝑥𝑛−1] be the ring of polynomials in 𝑛 variables with

coefficients in K. In applications we often focus in the case K = Q (rational numbers) and

the case K = R (reals numbers). Let K be the algebraic closure of K. For instance, K = C

(complex numbers) if either K = Q or R.

Consider a polynomial system 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑚} ⊆ K[𝑥]. We may associate two impor-

tant objects to such a system: one algebraic (ideal) and one geometric (variety). The generated

ideal of 𝐹 is

𝐼 = ⟨𝐹 ⟩ := {𝑟1𝑓1 + 𝑟2𝑓2 + · · ·+ 𝑟𝑚𝑓𝑚 : 𝑟𝑖 ∈ K[𝑥]} ,

and the variety or zero set of 𝐹 is

V = VK(𝐹 ) := {𝑥 ∈ K𝑛
: 𝑓(𝑥) = 0 for all 𝑓 ∈ 𝐹}.

Observe that VK(𝐹 ) = VK(⟨𝐹 ⟩).

Definition 2.1. A polynomial ideal is a set 𝐼 ⊆ K[𝑥] that is generated by some polynomial

system. Similarly, an algebraic variety V ⊆ K𝑛 is the zero set of some polynomial system.
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There is a nice interplay between ideals and varieties. In particular, the weak Hilbert’s

Nullstellensatz establishes that VK(𝐹 ) = ∅ (the system is infeasible) if and only if 1 ∈ ⟨𝐹 ⟩.

The complete correspondence between ideals and varieties is given by the strong Hilbert’s

Nullstellensatz, as stated below.

Definition 2.2. The vanishing ideal of a set 𝑆 ⊆ K𝑛 is

IK(𝑆) := {𝑓 ∈ K[𝑥] : 𝑓(𝑠) = 0 for all 𝑠 ∈ 𝑆}.

The radical of an ideal 𝐼 ⊆ K[𝑥] is the following ideal

√
𝐼 := {𝑝 ∈ K[𝑥] : 𝑓𝑘 ∈ 𝐼 for some integer 𝑘 ≥ 1}.

Theorem 2.1. (Nullstellensatz) Let 𝐼 ⊆ K[𝑥] be an ideal. Then

𝐼 ⊆ IK(VK(𝐼)) =
√
𝐼.

In other words,
√
𝐼 is the largest ideal that has the same zero set as 𝐼.

Remark 2.1. We say that 𝐼 is radical if
√
𝐼 = 𝐼. The Nullstellensatz implies a one-to-one

correspondence between radical ideals and varieties.

Finally, we recall that there is a canonical way to decompose an algebraic variety into

simpler sets. We say that a variety V ⊆ K𝑛 is irreducible if it is not the union of two proper

varieties. Any variety can be decomposed in a unique way in the form

V = V1 ∪ · · · ∪V𝑟, where V𝑖 is irreducible and V𝑖 ̸⊆ V𝑗 for 𝑖 ̸= 𝑗. (2.1)

The varieties V𝑖 are called the irreducible components of V.

Remark 2.2. The algebraic analog of of irreducible varieties are prime ideals. A prime ideal 𝐼

is one such that 𝑎𝑏 ∈ 𝐼 ⇐⇒ 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼.
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2.1.2 Solving polynomial systems

Many different problems in sciences and engineering can be stated as solving systems of poly-

nomial equations, in areas such as graph theory, robotics, computer vision, power networks,

cryptography, game theory, and chemistry. As an illustration, we now show how to pose the

𝑞-coloring problem in terms of polynomial systems.

Example 2.1 (Coloring ideal). Let 𝒢 = (𝑉,𝐸) be a graph. The proper 𝑞-colorings of 𝐺 are

in bijection with the solutions of the following system of equations (see e.g., [49]):

𝑥𝑞𝑖 − 1 = 0 𝑖 ∈ 𝑉 (2.2a)

𝑥𝑞−1
𝑖 + 𝑥𝑞−2

𝑖 𝑥𝑗 + · · ·+ 𝑥𝑖𝑥
𝑞−2
𝑗 + 𝑥𝑞−1

𝑗 = 0 𝑖𝑗 ∈ 𝐸 (2.2b)

Although “solving a system” might mean different things depending on the application, it

generally entails understanding the structure of the associated variety. Given a polynomial

system 𝐹 = {𝑓1, . . . , 𝑓𝑚} ⊆ K[𝑥], the most basic problem of interest is the following:

Feasibility. Determine if the variety of 𝐹 is nonempty, and if so compute a solution.

In some applications one requires further information about the underlying variety. Some

other problems of concern are:

Counting. Determine the number of solutions (it might be infinite).

Dimension. Determine the dimension of the variety.

Components. Describe the irreducible decomposition of the variety.

The field of computational algebraic geometry studies effective methods to answer all of these

questions. More generally, computational algebraic geometry concerns the problems of repre-

senting and manipulating algebraic varieties effectively on a computer.

There are a few different approaches for solving polynomial systems. We now briefly

describe three of the most commonly used methods.

Gröbner bases. This is a symbolic method introduced by Buchberger [30] in 1965. A Gröb-

ner bases of an ideal is a very special generating set, which generalizes the concept of a
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matrix in “reduced echelon form”. These special bases can be computed for any system

using sparse linear algebra. Gröbner bases were the first method proposed for solv-

ing polynomial systems. It continues to be the most commonly used technique, being

implemented in most computer algebra programs. The book [46] provides a very nice

introduction to this theory.

Triangular sets. This is also a symbolic method, introduced by Wu [149] in 1978. The start-

ing point for this theory is that any algebraic variety can be decomposed into “simpler”

varieties, that can be described by polynomial sets with “triangular form”. These meth-

ods are often used in conjunction with Gröbner bases for the computation of irreducible

decompositions. We will elaborate more on these methods in Chapter 3. Triangular

sets are implemented in Maple and Axiom, and also in Singular and Magma for the

zero-dimensional case.

Numerical algebraic geometry. This is a relatively recent numerical approach for solving

polynomial equations [124]. The basic idea is to form a homotopy between the original

system and an auxiliary system, for which the solutions are known, and then track the

solutions along this path. These methods are gaining popularity, thanks to features

such as being trivially parallelizable, and offering better numerical stability than sym-

bolic methods. There are different software implementations, including Bertini [13] and

PHCpack [137].

We point out that solving polynomial systems is NP-had, and all methods from above

scale exponentially in 𝑛, where 𝑛 is the number of variables. In the first part of this thesis

we propose a novel technique for solving polynomial systems that attempts to reduce this

complexity by taking into account the sparsity structure of the system. In particular, we show

that our method takes time 𝑂(𝑛) for several (well structured) families of polynomial systems.
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2.1.3 Polynomial optimization

Let us now fix the field K = R of real numbers. Given polynomials 𝑝, ℎ1, . . . , ℎ𝑚 ∈ R[𝑥],

consider the polynomial optimization problem

min
𝑥∈R𝑛

𝑝(𝑥)

ℎ𝑖(𝑥) = 0, for 𝑖 = 1, . . . ,𝑚.

Equivalently, we are minimizing 𝑝 over the real trace of an algebraic variety:

min
𝑥∈V∩R𝑛

𝑝(𝑥), where V := {𝑥 ∈ C𝑛 : ℎ𝑖(𝑥) = 0 for all ℎ𝑖}. (2.3)

Problem (2.3) captures many problems of interest, such as Max-Cut, maximum power

flow, the triangulation problem (computer vision), and tensor low rank approximation. Al-

though this optimization problem is computationally hard, semidefinite programming (SDP)

relaxations based on the sum-of-square (SOS) method provide a tractable alternative, that

has been successful in many different applications. In particular, it provides the best known

polynomial-time approximation algorithm for the Max-Cut problem [65]. We now proceed to

to describe it.

In its simplest form, the SOS method attemps to certify that a polynomial 𝐹 ∈ R[𝑥] is

globally nonnegative, i.e., whether 𝐹 (𝑥) ≥ 0 for all 𝑥. We say that 𝐹 (𝑥) is a sum-of-squares

(SOS) if it can be written in the form 𝐹 (𝑥) =
∑︀

𝑖 𝑓𝑖(𝑥)
2 for some 𝑓𝑖 ∈ R[𝑥]. The SOS method

relies on the trivial fact that SOS polynomials are nonnegative. Thanks to the following

proposition, determining whether a polynomial is SOS can be done efficiently with SDP.

Proposition 2.2 ( [105]). Let 𝐹 ∈ R[𝑥] be a polynomial of degree 2𝑑. Let 𝑢(𝑥) ∈ R[𝑥]𝑁 be

the vector containing all 𝑁 =
(︀
𝑛+𝑑
𝑑

)︀
monomials of degree at most 𝑑. Then 𝐹 (𝑥) is SOS if and

only there is a matrix 𝑄 ∈ 𝒮𝑁 such that

𝐹 (𝑥) = 𝑢(𝑥)𝑇𝑄𝑢(𝑥), 𝑄 ⪰ 0.

Coming back to optimization, consider the unconstrained minimization of a polynomial

𝑝(𝑥). Note that this is equivalent to finding the largest 𝛾 such that 𝑝(𝑥) − 𝛾 is nonnegative.
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Relaxing the nonnegativity constraint with an SOS condition we get

max
𝛾∈R𝑛

𝛾

𝑝(𝑥)− 𝛾 is SOS

By Proposition 2.2, the above problem is an SDP, and its solution 𝛾* is a valid lower bound on

𝑝(𝑥). SOS lower bounds tend to be very good in practice, being the true minimum in certain

applications [22,85]. Moreover, if the minimizer 𝑥* is unique and the dual solution of the SDP

is rank-one, then 𝑥* might be recovered from the SDP.

The constrained case of (2.3) is very similar. First observe that (2.3) is equivalent to the

following problem:

max
𝛾∈R𝑛

𝛾

𝑝(𝑥)− 𝛾 ≥ 0 for all 𝑥 ∈ V ∩ R𝑛

Although the nonnegativity constraint from above is complicated, it can be relaxed with a

suitable SOS condition. Assume that there exist polynomials 𝐹, 𝑔1, . . . , 𝑔𝑚 ∈ R[𝑥] such that

𝑝(𝑥)− 𝛾 = 𝐹 (𝑥) +
∑︁
𝑖

𝑔𝑖(𝑥)ℎ𝑖(𝑥), 𝐹 (𝑥) is SOS. (2.4)

Such a tuple (𝐹, 𝑔1, . . . , 𝑔𝑚) certifies the nonnegativity of 𝑝(𝑥) − 𝛾 on the variety. The SOS

relaxation of (2.3) is

max
𝛾∈R𝑛,𝐹,𝑔1,...,𝑔𝑚∈R[𝑥]

𝛾

𝑝(𝑥)− 𝛾 = 𝐹 (𝑥) +
∑︁
𝑖

𝑔𝑖(𝑥)ℎ𝑖(𝑥);

𝐹 (𝑥) is SOS

By restricting the degrees of 𝐹, 𝑔1ℎ1, . . . , 𝑔𝑚ℎ𝑚 to be at most 2𝑑, the above problem becomes

an SDP. As before, the solution 𝛾* of the SDP gives a lower bound on the actual value of (2.3).

The second part of this thesis focuses on the SOS method. We will show how to derive

more efficient relaxations by exploiting the geometry of the variety. We will also analyze the

quality of these relaxations for the case of nearest point problems (i.e., 𝑝(𝑥) = ‖𝑥− 𝜃‖2).
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2.2 Treewidth and chordality

The notion of treewidth is fundamental in many areas of computer science and applied mathe-

matics [26,50]. Intuitively, the treewidth is a measure of complexity of a graph, which quantifies

how close it is from being a tree. A graph has treewidth one if and only if it is a forest, i.e.,

a disjoint union of trees. The smaller the treewidth, the closer the graph is to a tree, and the

easier it is to solve certain problems on it. The following diagram summarizes the treewidth

of some simple graphs.

graph

treewidth

more complex

tree

1

cycle graph
𝐶𝑛

2

grid graph
𝑃√

𝑛 × 𝑃√
𝑛√

𝑛

compl. bipartite
𝐾𝑛/2, 𝑛/2

𝑛/2

compl. graph
𝐾𝑛

𝑛− 1

Remarkably, several hard combinatorial problems (e.g., independent set, clique number,

chromatic number) can be solved efficiently on graphs of bounded treewidth [26]. More pre-

cisely, many such problems can be solved via dynamic programming in time 𝑂(𝑛 2𝑂(𝜔)), where

𝜔 is the treewidth. We will see in the first part of this thesis that similar results can be

derived for certain polynomial systems, as well as for permanents of matrices. Unfortunately,

computing the treewidth of a graph is NP-hard [3]. Nevertheless, there are good heuristics

and approximation algorithms. See [27] for a comparison of some of these heuristics.

There are a few equivalent ways to define the treewidth 𝜔 of a graph 𝒢. Two of them are:

∙ 𝜔 + 1 is the smallest clique number of a chordal completion of 𝒢.

∙ 𝜔 is the smallest width of a tree decomposition of 𝒢.

We now proceed to explain the concepts of chordal completions and tree decompositions.

2.2.1 Chordal graphs and chordal completions

Chordal graphs have many equivalent characterizations. A good presentation is found in [21].

For our purposes, we use the following definition.

Definition 2.3. Let 𝐺 be a graph with vertices 𝑥0, . . . , 𝑥𝑛−1. An ordering of its vertices
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𝑥0 > 𝑥1 > · · · > 𝑥𝑛−1 is a perfect elimination ordering if for each 𝑥𝑙 the set

𝑋𝑙 := {𝑥𝑙} ∪ {𝑥𝑚 : 𝑥𝑚 is adjacent to 𝑥𝑙, 𝑥𝑚 < 𝑥𝑙} (2.5)

is such that the restriction 𝐺|𝑋𝑙
is a clique. A graph 𝐺 is chordal if it has a perfect elimination

ordering.

Remark 2.3. Observe that lower indices correspond to larger vertices.

Chordal graphs have many interesting properties. For instance, they have at most 𝑛

maximal cliques, given that any clique is contained in some 𝑋𝑙. Note that trees are chordal

graphs, since by successively pruning a leaf from the tree we get a perfect elimination ordering.

We can always find a perfect elimination ordering of a chordal graph in linear time [111].

Definition 2.4. Let 𝒢 be an arbitrary graph. We say that 𝐺 is a chordal completion of 𝒢 if

it is chordal and 𝒢 is a subgraph of 𝐺. The clique number of 𝐺 is the size of its largest clique.

The treewidth of 𝒢 is the minimum clique number of 𝐺 (minus one) among all possible chordal

completions.

Observe that given any ordering 𝑥0 > · · · > 𝑥𝑛−1 of the vertices of 𝒢, there is a natural

chordal completion 𝐺, i.e. we add edges to 𝒢 in such a way that each 𝐺|𝑋𝑙
is a clique. In

general, we want to find a chordal completion with a small clique number. However, there

are 𝑛! possible orderings of the vertices and thus finding the best chordal completion is not

simple. Indeed, computing the treewidth is NP-hard [3].

(a) Chordal completion (b) Elimination tree

Figure 2-1: Left: 10-vertex graph (blue/solid) and a chordal completion (green/dashed).
Right: Elimination tree of the chordal completion.
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Example 2.2. Let 𝒢 be the blue/solid graph in Figure 2-1a. This graph is not chordal but if

we add the six green/dashed edges shown in the figure we obtain a chordal completion 𝐺. In

fact, the ordering 𝑥0 > · · · > 𝑥9 is a perfect elimination ordering of the chordal completion.

The clique number of 𝐺 is four and the treewidth of 𝒢 is three.

Given a chordal graph 𝐺 with some perfect elimination ordering, there is an associated

tree that will be very helpful in our discussion.

Definition 2.5. Let 𝐺 be an ordered graph with vertices 𝑥0 > · · · > 𝑥𝑛−1. The elimination

tree of 𝐺 is the following directed spanning tree: for each 𝑙 there is an arc from 𝑥𝑙 towards the

largest 𝑥𝑝 that is adjacent to 𝑥𝑙 and 𝑥𝑝 < 𝑥𝑙. We will say that 𝑥𝑝 is the parent of 𝑥𝑙 and 𝑥𝑙 is

a child of 𝑥𝑝. Note that the elimination tree is rooted at 𝑥𝑛−1.

Figure 2-1b shows an example of the elimination tree. We now present a simple property

of the elimination tree of a chordal graph.

Lemma 2.3. Let 𝐺 be a chordal graph, let 𝑥𝑙 be some vertex and let 𝑥𝑝 be its parent in the

elimination tree 𝑇 . Then 𝑋𝑙 ∖ {𝑥𝑙} ⊆ 𝑋𝑝, where 𝑋𝑖 is as in eq. (2.5).

Proof. Let 𝑌 := 𝑋𝑙 ∖ {𝑥𝑙}. Note that 𝑌 is a clique, whose largest variable is 𝑥𝑝. Since 𝑋𝑝 is

the unique largest clique satisfying such property, we must have 𝑌 ⊆ 𝑋𝑝.

2.2.2 Tree decompositions

Definition 2.6. Let 𝒢 be a graph with vertex set 𝑋. A tree decomposition of 𝒢 is a pair

(𝑇, 𝜒), where 𝑇 is a rooted tree and 𝜒 : 𝑇 → {0, 1}𝑋 assigns some 𝜒(𝑡) ⊆ 𝑋 to each node 𝑡 of

𝑇 , that satisfies the following conditions.

(i) The union of {𝜒(𝑡)}𝑡∈𝑇 is the whole vertex set 𝑋.

(ii) For every edge (𝑥𝑖, 𝑥𝑗) of 𝒢, there exists some node 𝑡 of 𝑇 with 𝑥𝑖, 𝑥𝑗 ∈ 𝜒(𝑡).

(iii) For every 𝑥𝑖 ∈ 𝑋 the set {𝑡 : 𝑥𝑖 ∈ 𝜒(𝑡)} forms a subtree of 𝑇 .

The sets 𝜒(𝑡) are usually referred to as bags. The width of the decomposition is the size of the

largest bag (minus one). The treewidth of 𝒢 can also be defined as the minimum width among

all possible tree decompositions.
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Example 2.3. Let 𝒢 be the blue/solid graph from Figure 2-1a. Figure 2-2 shows a tree

decomposition of 𝒢 (the conditions from above are easy to check). Note that the width of

the decomposition is 4 − 1 = 3. We will see that this tree decomposition arises from the

(green/dashed) chordal completion shown in Figure 2-1a.
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Figure 2-2: Tree decomposition of the blue/solid graph from Figure 2-1a.

A simple property of tree decompositions we will use later is that condition (ii) also holds

for any clique of the graph, as stated next.

Lemma 2.4. Let (𝑇, 𝜒) be a tree decomposition of 𝒢. Then for any clique 𝑌 of 𝒢 there is

some node 𝑡 of 𝑇 with 𝑌 ⊆ 𝜒(𝑡).

Proof. For each 𝑦 ∈ 𝑌 , let 𝑇𝑦 denote the subtree of all bags containing 𝑦. Let 𝑡𝑦 ∈ 𝑇𝑦 be the

closest node to the root and let 𝑑(𝑡𝑦) denote the distance from 𝑡𝑦 to the root. Observe that if

𝑑(𝑡𝑦) ≤ 𝑑(𝑡𝑦′) then 𝑡𝑦′ ∈ 𝑇𝑦 (otherwise, 𝑇𝑦 ∩ 𝑇𝑦′ = ∅ and the edge (𝑦, 𝑦′) would not belong to

any bag). Let 𝑡 ∈ {𝑡𝑦}𝑦∈𝑌 be the farthest away from the root, i.e., 𝑑(𝑡𝑦) ≤ 𝑑(𝑡) for all 𝑦 ∈ 𝑌 .

It follows that 𝑌 ⊆ 𝜒(𝑡).

We proceed to explain the relationship between chordal completions and tree decomposi-

tions. Given a chordal graph 𝐺, we can always construct a tree decomposition where the bags

𝜒(𝑡) correspond to cliques 𝑋𝑙 from (2.5).

Lemma 2.5 (Clique tree of a chordal graph). Let 𝐺 be a chordal graph with vertex set 𝑋 =

{𝑥0, . . . , 𝑥𝑛−1}, and let 𝑇 be its elimination tree. Let 𝜒 : 𝑇 → {0, 1}𝑋 be such that 𝜒(𝑥𝑙) := 𝑋𝑙,

where 𝑋𝑙 is the clique from (2.5). Then (𝑇, 𝜒) is a tree decomposition of 𝐺.
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Proof. Condition (i) follows from the fact that vertex 𝑥𝑖 belongs to clique 𝑋𝑖. Condition (ii)

follows by noticing that for each edge (𝑥𝑖, 𝑥𝑗) we have 𝑥𝑖, 𝑥𝑗 ∈ 𝑋𝑖 (assuming 𝑥𝑖 > 𝑥𝑗). It

remains to check condition (iii).

Consider a path 𝑥𝑖1—𝑥𝑖2—. . . —𝑥𝑖𝑘 of the elimination tree. We need to show that if a

vertex 𝑥𝑙 belongs to both cliques 𝑋𝑖1 and 𝑋𝑖𝑘 , then 𝑥𝑙 belongs to all the cliques in the path.

It suffices to show that 𝑥𝑙 lies in one of the cliques in the interior of the path, since we can

then repeat the same argument on a smaller subpath. It is easy to see that either 𝑥𝑖1 > 𝑥𝑖2 or

𝑥𝑖𝑘 > 𝑥𝑖𝑘−1
. Assume WLOG that 𝑥𝑖1 > 𝑥𝑖2 , which means that 𝑥𝑖2 is the parent of 𝑥𝑖1 . If we

show that 𝑥𝑙 ̸= 𝑥𝑖1 we would be done, since by Lemma 2.3 we would have 𝑥𝑙 ∈ 𝑋𝑖1∖{𝑥𝑖1} ⊆ 𝑋𝑖2 .

Assume by contradiction that 𝑥𝑙 = 𝑥𝑖1 . Since 𝑥𝑖1 ∈ 𝑋𝑖𝑘 then 𝑥𝑖1 < 𝑥𝑖𝑘 , and moreover, 𝑥𝑖1 is

an ancestor of 𝑥𝑖𝑘 . This means that 𝑥𝑖1 is the parent of 𝑥𝑖2 , which is a contradiction.

Remark 2.4. (Chordal completions ⇐⇒ tree decompositions) Let 𝒢 be an arbitrary graph,

and let 𝐺 be a chordal completion. Let (𝑇, 𝜒) be the tree decomposition of 𝐺 from above, and

observe that (𝑇, 𝜒) is also a tree decomposition of 𝒢. Therefore, any chordal completion of 𝒢

gives rise to a tree decomposition. Conversely, any tree decomposition (𝑇, 𝜒) of 𝒢 can be used

construct a chordal completion, simply by connecting the vertices in each of the bags 𝜒(𝑡).
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Part I

Polynomial systems and graphical

structure
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Chapter 3

Chordal networks of polynomial ideals

The sparsity structure of a polynomial system is often described by a graph that captures the

interactions among the variables. This chapter proposes a novel representation of polynomial

systems, chordal networks, which takes advantage of this graphical structure. The content of

this chapter is based on [41].

3.1 Introduction

Systems of polynomial equations can be used to model a large variety of applications, and

in most cases the resulting systems have a particular sparsity structure. We can describe

this sparsity structure using a graph. A natural question that arises is whether this graphical

structure can be effectively used to solve the system. Unfortunately, existing techniques such as

Gröbner bases destroy this graphical structure. Consequently, polynomial systems with simple

structure may have overly complicated Gröbner bases (see Example 3.1). In this chapter

we introduce a new method for solving polynomial systems and a new data structure for

representing the associated varieties, that aim to exploit the underlying graphical structure.

We call this data structure chordal networks.

Chordal networks describe a decomposition of the polynomial system into simpler (trian-

gular) polynomial sets. This decomposition gives quite a rich description of the underlying

variety. In particular, chordal networks can be efficiently used to compute dimension, cardi-

nality, equidimensional components and also to test radical ideal membership. Remarkably,

several families of polynomial systems (with exponentially large Gröbner bases) admit a com-
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pact chordal network representation, of size proportional to the number of variables. We will

shortly present some motivational examples after setting up the main terminology.

Throughout this chapter we work in the polynomial ring K[𝑋] = K[𝑥0, 𝑥1, . . . , 𝑥𝑛−1] over

some field K. We fix once and for all the ordering of the variables 𝑥0 > 𝑥1 > · · · > 𝑥𝑛−1
1.

We consider a system of polynomials 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑚}. There is a natural graph 𝒢(𝐹 ),

with vertex set 𝑋 = {𝑥0, . . . , 𝑥𝑛−1}, that abstracts the sparsity structure of 𝐹 . The graph is

given by cliques: for each 𝑓𝑖 we add a clique in all its variables. Equivalently, there is an edge

between 𝑥𝑖 and 𝑥𝑗 if and only if there is some polynomial in 𝐹 that contains both variables.

We will consider throughout this chapter a chordal completion 𝐺 of the graph 𝒢(𝐹 ), and we

will assume that 𝑥0 > · · · > 𝑥𝑛−1 is a perfect elimination ordering of 𝐺 (see Definition 2.3).

Definition 3.1. Let 𝐹 ⊆ K[𝑋] be a polynomial system and let 𝐺 be a chordal graph. We

say that 𝐹 is supported on 𝐺 if 𝐺 is a chordal completion of 𝒢(𝐹 ), i.e., 𝐺 ⊇ 𝒢(𝐹 ).

Some motivating examples

The notions of chordality and treewidth are ubiquitous in applied mathematics and computer

science. In particular, several hard combinatorial problems can be solved efficiently on graphs

of small treewidth by using some type of recursion (or dynamic program) [26]. We will see

that this recursive nature is also present in several polynomial systems of small treewidth. We

now illustrate this with three simple examples.

Example 3.1 (Coloring a cycle graph). Graph coloring is a classical NP-complete problem

that can be solved efficiently on graphs of small treewidth. We consider the cycle graph 𝐶𝑛

with vertices 0, 1, . . . , 𝑛 − 1, whose treewidth is two. Coloring 𝐶𝑛 is particularly simple by

proceeding in a recursive manner: color vertex 𝑛 − 1 arbitrarily and then subsequently color

vertex 𝑖 avoiding the color of 𝑖+ 1 and possibly 𝑛− 1.

We saw in Example 2.1 how to pose the 𝑞-coloring problem as a system of polynomial

equations. Let 𝐹𝑛,𝑞 denote the polynomial system (2.2) for the case of the cycle graph 𝐶𝑛.

Given that coloring the cycle graph is so easy, it should be possible to solve these equations

efficiently. However, if we compute a Gröbner basis the result is not so simple. In particular,

for the case of 𝐹9,3 one of these polynomials has 81 terms (with both lex and grevlex order).
1Observe that smaller indices correspond to larger variables.
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This is a consequence of the fact that Gröbner bases destroy the graphical structure of the

equations.

𝑥20 + 𝑥0𝑥8 + 𝑥28 𝑥0 + 𝑥1 + 𝑥8

𝑥1 − 𝑥8 𝑥21 + 𝑥1𝑥8 + 𝑥28𝑥1 + 𝑥2 + 𝑥8

𝑥22 + 𝑥2𝑥8 + 𝑥28 𝑥2 + 𝑥3 + 𝑥8 𝑥2 − 𝑥8

𝑥3 − 𝑥8 𝑥23 + 𝑥3𝑥8 + 𝑥28𝑥3 + 𝑥4 + 𝑥8

𝑥24 + 𝑥4𝑥8 + 𝑥28 𝑥4 + 𝑥5 + 𝑥8 𝑥4 − 𝑥8

𝑥5 − 𝑥8 𝑥25 + 𝑥5𝑥8 + 𝑥28𝑥5 + 𝑥6 + 𝑥8

𝑥6 + 𝑥7 + 𝑥8 𝑥6 − 𝑥8

𝑥27 + 𝑥7𝑥8 + 𝑥28

𝑥38 − 1

0

1

2

3

4

5

6

7

8

Figure 3-1: Chordal network for the 3-chromatic ideal of a cycle

Nonetheless, one may hope to give a simple representation of the above polynomials that

takes into account their recursive nature. Indeed, a triangular decomposition of these equations

is presented in Figure 3-1 for the case of 𝐹9,3, and the pattern is very similar for arbitrary

values of 𝑛, 𝑞. The decomposition represented is:

V(𝐹9,3) =
⋃︁
𝑇

V(𝑇 )

where the union is over all maximal directed paths in the diagram of Figure 3-1. One path is

𝑇 = {𝑥0 + 𝑥1 + 𝑥8, 𝑥
2
1 + 𝑥1𝑥8 + 𝑥28, 𝑥2 − 𝑥8, 𝑥

2
3 + 𝑥3𝑥8 + 𝑥28, 𝑥4 − 𝑥8,

𝑥25 + 𝑥5𝑥8 + 𝑥28, 𝑥6 − 𝑥8, 𝑥
2
7 + 𝑥7𝑥8 + 𝑥28, 𝑥

3
8 − 1}.

Recall that a set of polynomials is triangular if the largest variables of these polynomials are all

distinct, and observe that all maximal paths 𝑇 are triangular. Note that the total number of

triangular sets is 21, and in general we get the (𝑛− 1)-th Fibonacci number. Even though the

size of the triangular decomposition grows rapidly, it admits a very compact representation

(linear in 𝑛) and the reason is precisely the recursive nature of the equations. Indeed, the

39



diagram of Figure 3-1 is constructed in a very similar way as we construct colorings: choose

𝑥8 arbitrarily, then for each 𝑥𝑖 choose it based on the values of 𝑥𝑖+1 and 𝑥8.

Example 3.2 (Vertex covers of a tree). We now consider the problem of finding minimum

vertex coverings of a graph. Recall that a subset 𝑆 of vertices is a cover if any edge is incident

to at least one element in 𝑆. Since the complement of a vertex cover is an independent set,

computing a minimum vertex cover is NP-complete. Nevertheless, when the graph is a tree

the minimal vertex covers have a very special structure. Indeed, we can construct such a cover

recursively, starting from the root, as follows. For the root node, we can decide whether to

include it in the cover or not. If we include it, we can delete the root and then recurse on each

of its children. Otherwise, we need to include in the cover all of its children, so we can delete

them all, and then recurse.

0𝑥0
0𝑥1

0𝑥2
0 𝑥3

0 𝑥4
0 𝑥5

0 𝑥6

0𝑥7

0 𝑥8

0𝑥9

0
1

2
3

4
5

6

7

8

9

Figure 3-2: Chordal network for the edge ideal of a tree.

The minimal vertex covers of a graph 𝒢 = (𝑉,𝐸) are in correspondence with the irreducible

components of its edge ideal 𝐼(𝒢) := ⟨𝑥𝑖𝑥𝑗 : 𝑖𝑗 ∈ 𝐸⟩ (see e.g., [139, Prop 7.2.3]). Therefore, the

irreducible components of the edge ideal of a tree always have a very simple structure (although

there might be exponentially many). For instance, the diagram in Figure 3-2 represents the

components for the case of a simple 10-vertex tree. Here the components are given by the

possible choices of one node from each of the (purple) boxes so that these nodes are connected

(e.g., 𝑇 = {0, 0, 0, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 0, 𝑥8, 0}). Note that there are 24 + 1 = 17 components.

Example 3.3 (Adjacent minors). Let 𝑋 be a 2 × 𝑛 matrix of indeterminates, and consider

the polynomial set 𝐹𝑛 given by its adjacent minors, i.e.,

𝑋 :=
(︀ 𝑥0 𝑥2 ··· 𝑥2𝑛−2
𝑥1 𝑥3 ··· 𝑥2𝑛−1

)︀
, 𝐹𝑛 := {𝑥2𝑖𝑥2𝑖+3 − 𝑥2𝑖+1𝑥2𝑖+2 : 0 ≤ 𝑖 < 𝑛− 1}.

40



The corresponding ideal has been studied in e.g., [53,70]. Figure 3-3 shows the graph associated

to this system. We are interested in describing the irreducible components of V(𝐹𝑛).

𝑥0𝑥3 − 𝑥1𝑥20

𝑥2𝑥5 − 𝑥3𝑥4 0𝑥2, 𝑥3

𝑥4𝑥7 − 𝑥5𝑥60 𝑥4, 𝑥5

𝑥6𝑥9 − 𝑥7𝑥8 0𝑥6, 𝑥7

𝑥8𝑥11 − 𝑥9𝑥100 𝑥8, 𝑥9

𝑥10𝑥13 − 𝑥11𝑥12 0𝑥10, 𝑥11

𝑥12𝑥15 − 𝑥13𝑥14 𝑥12, 𝑥13

0

01

23

45

67

89

10,11

12,13

14,15

Figure 3-3: Chordal network for the ideal of adjacent minors

As in Example 3.1, there is a simple recursive procedure to produce points on V(𝐹𝑛): we

choose the values of the last column of the matrix arbitrarily, and then for column 𝑖 we either

choose it arbitrarily, in case that column 𝑖+1 is zero, or we scale column 𝑖+1 if it is nonzero.

This procedure is actually describing the irreducible components of the variety. In this way,

the irreducible components admit a compact description, which is shown in Figure 3-3. Again,

the components are given by the maximal directed paths (e.g., 𝑇 = {0, 𝑥2, 𝑥3, 0, 𝑥6, 𝑥7, 𝑥8𝑥11−

𝑥9𝑥10, 0, 𝑥12, 𝑥13, 0}) and its cardinality is the 𝑛-th Fibonacci number.

Contributions

The examples from above show how certain polynomial systems with tree-like structure admit

a compact chordal network representation. The aim of this chapter is to develop a general

framework to systematically understand and compute chordal networks. We also study how

to effectively use chordal networks to solve different problems from computational algebraic

geometry. A major difficulty is that exponentially many triangular sets may appear (e.g., the

Fibonacci number in Example 3.1).

This chapter presents the following contributions:

∙ We introduce the notion of chordal networks, a novel representation of polynomial
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ideals aimed toward exploiting structured sparsity.

∙ We develop the chordal triangularization method (Algorithm 1) to compute such

chordal network representation. Its correctness is established in Theorems 3.1 and 3.19.

∙ We show that several families of polynomial systems admit a “small” chordal network

representation, of size 𝑂(𝑛). This is true for certain zero-dimensional ideals (Re-

mark 3.6), all monomial ideals (Theorem 3.18) and certain binomial/determinantal

ideals (Section 3.7.3), although in general this cannot be guaranteed (Remark 3.7).

∙ We show how to effectively use chordal networks to compute several properties of

the underlying variety. In particular, the cardinality (Section 3.4.2), dimension and

top-dimensional component (Section 3.5.2) can be computed in linear time. In some

interesting cases we can also describe the irreducible components.

∙ We present a Monte Carlo algorithm to test radical ideal membership (Algorithm 3).

We show in Theorem 3.12 that the complexity is linear when the given polynomial

preserves some of the graphical structure of the system.

We point out that all the methods presented in this chapter are available in the Macaulay2

package Chordal [40].

Structure of this chapter

The organization of this chapter is as follows. In Section 3.2 we formalize the notion of

chordal network. We then proceed to explain our methods, initially only for a restricted class

of zero-dimensional problems (Sections 3.3 and 3.4), then for the case of monomial ideals

(Section 3.5), and finally considering the fully general case (Section 3.6). We conclude the

chapter in Section 3.7 with numerical examples of our methods.

The reason for presenting our results in this stepwise manner, is that the general case

requires highly technical concepts from the theory of triangular sets. Indeed, we encourage

the reader unfamiliar with triangular sets to omit Section 3.6 in the first read. On the other

hand, by first specializing our methods to the zero-dimensional and monomial cases we can

introduce them all in a transparent manner. Importantly, the basic structure of the chordal

triangularization algorithm, presented in Section 3.3, remains the same for the general case.
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Similarly, our algorithms that use chordal networks to compute properties of the variety (e.g.,

cardinality, dimension), introduced in Sections 3.4 and 3.5, also extend in a natural way.

Related work

The development of chordal networks can be seen as a continuation of our earlier work [36,39],

and we refer the reader to these documents for a detailed survey of the relevant literature

on graphical structure in computational algebraic geometry. For this reason, below we only

discuss related work in the context of triangular sets, and point out the main differences

between this chapter and [36,39].

This chapter improves upon [36, 39] in two main areas. Firstly, chordal networks provide

a much richer description of the variety than the elimination ideals obtained by chordal elim-

ination. For instance, the elimination ideals of the equations from Example 3.3 are trivial,

but its chordal network representation reveals its irreducible components. In addition, neither

the dimension, cardinality nor radical ideal membership can be directly computed from the

elimination ideals (we need a Gröbner basis). Secondly, we show how to compute chordal

network representations for arbitrary polynomial systems (in characteristic zero). In contrast,

chordal elimination only computes the elimination ideals under certain assumptions.

There is a broad literature studying triangular decompositions of ideals [5, 78, 88, 95, 143].

However, past work has not considered the case of sparse polynomial systems. Among the

many existing triangular decomposition algorithms, Wang’s elimination methods are particu-

larly relevant to us [143,144]. Although seemingly unnoticed by Wang, most of his algorithms

preserve the chordal structure of the system. As a consequence, we have experimentally seen

that his methods are more efficient than those based on regular chains [89,95] for the examples

considered in this chapter.

As opposed to previous work, we emphasize chordal networks as our central object of study,

rather than the explicit triangular decomposition obtained. This is a key distinction since for

several families of ideals the size of the chordal network is linear even though the corresponding

triangular decomposition has exponential size (see the examples from above). In addition, our

methods deliberately treat triangular decompositions as a black box algorithm, allowing us

to use either Lazard’s LexTriangular algorithm [88] for the zero-dimensional case or Wang’s
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RegSer algorithm [142] for the positive-dimensional case.

3.2 Chordal networks

We proceed to formalize the concept of chordal networks. We will use the concepts of chordal

graph and elimination tree introduced in Section 2.2.1.

Definition 3.2. Let 𝐺 be a chordal graph with vertex set 𝑋 = {𝑥0, . . . , 𝑥𝑛−1}, and let 𝑋𝑙 be

as in eq. (2.5). A 𝐺-chordal network is a directed graph 𝒩 , whose nodes are polynomial sets

in K[𝑋], such that:

∙ (nodes supported on cliques) each node 𝐹𝑙 of 𝒩 is given a rank 𝑙 = rk(𝐹𝑙), with

0 ≤ 𝑙 < 𝑛, such that 𝐹𝑙 ⊆ K[𝑋𝑙].

∙ (arcs follow elimination tree) if (𝐹𝑙, 𝐹𝑝) is an arc of 𝒩 then (𝑙, 𝑝) is an arc of the

elimination tree of 𝐺, where 𝑙 = rk(𝐹𝑙), 𝑝 = rk(𝐹𝑝).

A chordal network is triangular if each node consists of a single polynomial 𝑓 , and either 𝑓 = 0

or its largest variable is 𝑥rk(𝑓).

There is one parameter of a chordal network that will determine the complexity of some of

our methods. The width of a chordal network, denoted as 𝑊 , is the largest number of nodes

of any given rank. Note that the number of nodes in the network is at most 𝑛𝑊 , and the

number of arcs is at most (𝑛− 1)𝑊 2.

We can represent chordal networks using the diagrams we have shown throughout the

chapter. Since the structure of a chordal network resembles the elimination tree (second item

in the definition), we usually show the elimination tree to the left of the network.

Example 3.4. Let 𝒢 be the blue/solid graph from Figure 2-1a, and let 𝐺 be the green/dashed

chordal completion. Figure 3-4 shows a 𝐺-chordal network of width 5, that represents the

4-colorings of graph 𝒢 (Equation (2.2)). The elimination tree of 𝐺 is shown to the left of

the diagram. Note that this network is triangular, and thus all its nodes consist of a single

polynomial. For instance, two of its nodes are 𝑓5 = 𝑥5+𝑥7+𝑥8+𝑥9 and 𝑓6 = 𝑥6−𝑥7. Nodes

are grouped in blue rectangular boxes according to their rank. In particular, 𝑓5 has rank 5

and 𝑓6 rank 6, and indeed 𝑓5 ∈ K[𝑋5] = K[𝑥5, 𝑥7, 𝑥8, 𝑥9] and 𝑓6 ∈ K[𝑋6] = K[𝑥6, 𝑥7, 𝑥8, 𝑥9].
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𝑔(𝑎, 𝑏, 𝑐) := 𝑎2 + 𝑏2 + 𝑐2 + 𝑎𝑏+ 𝑏𝑐+ 𝑐𝑎

𝑥30 + 𝑥20𝑥7 + 𝑥0𝑥
2
7 + 𝑥37 𝑔(𝑥0, 𝑥6, 𝑥7)

𝑥31 + 𝑥21𝑥9 + 𝑥1𝑥
2
9 + 𝑥39 𝑔(𝑥1, 𝑥4, 𝑥9)

𝑥32 + 𝑥22𝑥5 + 𝑥2𝑥
2
5 + 𝑥35 𝑔(𝑥2, 𝑥3, 𝑥5)

𝑥3 − 𝑥5 𝑔(𝑥3, 𝑥7, 𝑥8)𝑥3 + 𝑥5 + 𝑥7 + 𝑥8
𝑥4 − 𝑥9 𝑔(𝑥4, 𝑥8, 𝑥9)𝑥4 + 𝑥5 + 𝑥8 + 𝑥9

𝑔(𝑥5, 𝑥8, 𝑥9) 𝑥5 + 𝑥7 + 𝑥8 + 𝑥9 𝑥5 − 𝑥9𝑥5 − 𝑥7 𝑥5 − 𝑥9
𝑥6 − 𝑥7 𝑔(𝑥6, 𝑥8, 𝑥9) 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9

𝑥7 − 𝑥9 𝑔(𝑥7, 𝑥8, 𝑥9)

𝑥38 + 𝑥28𝑥9 + 𝑥8𝑥
2
9 + 𝑥39

𝑥49 − 1

0

1

2

3

4

5

6

7

8

9

Figure 3-4: 𝐺-chordal network, where𝐺 is the chordal graph from Figure 2-1a. The elimination
tree of 𝐺 is shown on the left.

Example 3.5. Let 𝒢 be the 9-cycle with vertices 𝑥0, . . . , 𝑥8. Let 𝐺 be the chordal completion

obtained by connecting vertex 𝑥8 to all the others. Figure 3-1 shows a triangular 𝐺-chordal

network. The elimination tree, shown to the left of the network, is the path 𝑥0 → · · · → 𝑥8.

Remark 3.1. Sometimes we collapse certain ranks to make the diagram visually simpler. In

particular, in Figure 3-3 we collapse the ranks 2𝑖, 2𝑖+ 1 into a single group.

As suggested by the examples in the introduction, a triangular chordal network gives a de-

composition of the polynomial ideal into triangular sets. Each such triangular set corresponds

to a chain of the network, as defined next.

Definition 3.3. Let 𝒩 be a 𝐺-chordal network. A chain of 𝒩 is a tuple of nodes 𝐶 =

(𝐹0, 𝐹1, . . . , 𝐹𝑛−1) such that:

∙ rk(𝐹𝑙) = 𝑙 for each 𝑙.

∙ if 𝑥𝑝 is the parent of 𝑥𝑙, then (𝐹𝑙, 𝐹𝑝) is an arc of 𝒩 .
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Example 3.6. The chordal network from Figure 3-4 has 21 chains, one of which is:

𝐶 = (𝑥20 + 𝑥0𝑥6 + 𝑥0𝑥7 + 𝑥26 + 𝑥6𝑥7 + 𝑥27, 𝑥
3
1 + 𝑥21𝑥9 + 𝑥1𝑥

2
9 + 𝑥39, 𝑥

3
2 + 𝑥22𝑥5 + 𝑥2𝑥

2
5 + 𝑥35,

𝑥3 − 𝑥5, 𝑥4 − 𝑥9, 𝑥
2
5 + 𝑥5𝑥8 + 𝑥5𝑥9 + 𝑥28 + 𝑥8𝑥9 + 𝑥29,

𝑥26 + 𝑥6𝑥8 + 𝑥6𝑥9 + 𝑥28 + 𝑥8𝑥9 + 𝑥29, 𝑥7 − 𝑥9, 𝑥
3
8 + 𝑥28𝑥9 + 𝑥8𝑥

2
9 + 𝑥39, 𝑥

4
9 − 1).

Binary Decision Diagrams

Although motivated from a different perspective and with quite distinct goals, throughout the

development of this work we realized the intriguing similarities between chordal networks and

a class of data structures used in computer science known as ordered binary decision diagrams

(OBDD) [2, 29,82,148].

A binary decision diagram (BDD) is a data structure that can be used to represent Boolean

(binary) functions in terms of a directed acyclic graph. They can be interpreted as a binary

analogue of a straight-line program, where the nodes are associated with variables and the

outgoing edges of a node correspond to the possible values of that variable. A particularly

important subclass are the ordered BDDs (or OBDDs), where the branching occurs according

to a specific fixed variable ordering. Under a mild condition (reducibility) this representation

can be made unique, and thus every Boolean function has a canonical OBDD representation.

OBDDs can be effectively used for further manipulation (e.g., decide satisfiability, count sat-

isfying assignments, compute logical operations). Interestingly, several important functions

have a compact OBDD representation. A further variation, zero-suppressed BDDs (ZBDDs),

can be used to efficiently represent subsets of the hypercube {0, 1}𝑛 and to manipulate them

(e.g., intersections, sampling, linear optimization).

Chordal networks can be thought of as a wide generalization of OBDDs/ZBDDs to ar-

bitrary algebraic varieties over general fields (instead of finite sets in (F2)
𝑛). Like chordal

networks, an OBDD corresponds to a certain directed graph, but where the nodes are vari-

ables (𝑥0, 𝑥1, . . .) instead of polynomial sets. We will see in Section 3.5 that for the specific

case of monomial ideals, the associated chordal networks also have this form. Since one of our

main goals is to preserve graphical structure for efficient computation, in this document we

define chordal networks only for systems that are structured according to some chordal graph.

In addition, for computational purposes we do not insist on uniqueness of the representation
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(although it might be possible to make them canonical after further processing).

The practical impact of data structures like BDDs and OBDDs over the past three decades

has been very significant, as they have enabled breakthrough results in many areas of computer

science including model checking, formal verification and logic synthesis. We hope that chordal

networks will make possible similar advances in computational algebraic geometry. The con-

nections between BDDs and chordal networks run much deeper, and we plan to further explore

them in the future.

3.3 The chordally zero-dimensional case

In this section we present our main methods to compute triangular chordal networks, although

focused on a restricted type of zero-dimensional problems. This restriction is for simplicity

only; we will see that our methods naturally extend to arbitrary ideals. Concretely, we consider

the following family of polynomial sets.

Definition 3.4 (Chordally zero-dimensional).Let 𝐹 ⊆ K[𝑋] be supported on a chordal

graph 𝐺. We say that 𝐹 is chordally zero-dimensional, if for each maximal clique 𝑋𝑙 of

graph 𝐺 the ideal ⟨𝐹 ∩K[𝑋𝑙]⟩ is zero-dimensional.

Note that the 𝑞-coloring equations in (2.2) are chordally zero-dimensional. As in Exam-

ple 3.1, chordally zero-dimensional problems always have simple chordal network representa-

tions.

Remark 3.2 (The geometric picture). There is a nice geometric interpretation behind the

chordally zero-dimensional condition. Denoting 𝑉𝑙 the variety of 𝐹 ∩ K[𝑋𝑙], the condition is

that each 𝑉𝑙 is finite. Note now that 𝜋𝑋𝑙
(V(𝐹 )) ⊆ 𝑉𝑙, where 𝜋𝑋𝑙

denotes the projection onto

the coordinates of 𝑋𝑙. Thus, independent of the size of V(𝐹 ), the chordally zero-dimensional

condition allows us to bound the size of its projections onto each 𝑋𝑙. More generally, although

not elaborated in this document, our methods are expected to perform well on any 𝐹 (possibly

positive-dimensional) for which the projections 𝜋𝑋𝑙
(V(𝐹 )) are well-behaved.
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3.3.1 Triangular sets

We now recall the basic concepts of triangular sets for the case of zero-dimensional ideals,

following [88]. We delay the exposition of the positive-dimensional case to Section 3.6.

Definition 3.5. Let 𝑓 ∈ K[𝑋] ∖ K be a non-constant polynomial. The main variable of 𝑓 ,

denoted mvar(𝑓), is the greatest variable appearing in 𝑓 . The initial of 𝑓 , denoted init(𝑓),

is the leading coefficient of 𝑓 when viewed as a univariate polynomial in mvar(𝑓). A zero-

dimensional triangular set is a collection of non-constant polynomials 𝑇 = {𝑡0, . . . , 𝑡𝑛−1} such

that mvar(𝑡𝑖) = 𝑥𝑖 and init(𝑡𝑖) = 1 for each 𝑖.

Most of the analysis done in this chapter will work over an arbitrary field K. For some

results we require the field to contain sufficiently many elements, so we might need to consider

a field extension. We denote by K the algebraic closure of K. For a polynomial set 𝐹 , we let

V(𝐹 ) ⊆ K𝑛 be its variety. Note that for a zero-dimensional triangular set 𝑇 , we always have

|V(𝑇 )| ≤ deg(𝑇 ) :=
∏︁
𝑡∈𝑇

mdeg(𝑡), (3.1)

where mdeg(𝑡) := deg(𝑡,mvar(𝑡)) denotes the degree on the main variable. Furthermore, the

above is an equality if we count multiplicities.

For a triangular set 𝑇 , let ⟨𝑇 ⟩ denote the generated ideal. It is easy to see that a zero-

dimensional triangular set is a lexicographic Gröbner basis of ⟨𝑇 ⟩. In particular, we can test

ideal membership by taking normal form. We also denote as elim𝑝(𝑇 ) := 𝑇 ∩K[𝑥𝑝, 𝑥𝑝+1, . . .]

the subset of 𝑇 restricted to variables less or equal than 𝑥𝑝. Note that elim𝑝(𝑇 ) generates the

elimination ideal of ⟨𝑇 ⟩ because of the elimination property of lexicographic Gröbner bases.

Notation. 𝑆 = 𝑆1 ⊔ 𝑆2 denotes a disjoint union, i.e., 𝑆 = 𝑆1 ∪ 𝑆2 and 𝑆1 ∩ 𝑆2 = ∅.

Definition 3.6. Let 𝐼 ⊆ K[𝑋] be a zero-dimensional ideal. A triangular decomposition of 𝐼

is a collection 𝒯 of triangular sets, such that V(𝐼) =
⨆︀

𝑇∈𝒯 V(𝑇 ). We say that 𝒯 is squarefree

if each 𝑇 ∈ 𝒯 generates a radical ideal. We say that 𝒯 is irreducible if each 𝑇 ∈ 𝒯 generates

a prime ideal (or equivalently, a maximal ideal).

Lazard proposed algorithms to compute a triangular decomposition from a Gröbner ba-

sis [88]. He also showed how to post-process it to make it squarefree/irreducible.

48



Remark 3.3. As explained in [88], there might be several distinct triangular decompositions

of an ideal, but there are simple ways to pass from one description to another.

3.3.2 Chordal triangularization

We proceed to explain how to compute a triangular chordal network representation of a poly-

nomial set 𝐹 . We will start with a particular (induced) chordal network that is modified step

after step to make it triangular.

Definition 3.7. Let 𝐹 ⊆ K[𝑋] be supported on a chordal graph 𝐺. The induced 𝐺-chordal

network has a unique node of rank 𝑘, namely 𝐹𝑘 := 𝐹 ∩ K[𝑋𝑘], and its arcs are the same as

in the elimination tree, i.e., (𝐹𝑙, 𝐹𝑝) is an arc if 𝑥𝑝 is the parent of 𝑥𝑙.

We will sequentially perform two types of operations to the induced chordal network.

Triangulate(𝐹𝑙) Let 𝒯 be a triangular decomposition of a node 𝐹𝑙 of the network. Replace

node 𝐹𝑙 with one node for each triangular set in 𝒯 . Any node which was previously

connected to 𝐹𝑙 is then connected to each of the new nodes.

Eliminate(𝑇 ) Let 𝑇 be a rank 𝑙 node and let 𝑥𝑝 be the parent of 𝑥𝑙. Let 𝑇𝑝 := elim𝑝(𝑇 ) and

𝑇𝑙 := 𝑇 ∖ 𝑇𝑝. For each arc (𝑇, 𝐹𝑝) we create a new rank 𝑝 node 𝐹 ′
𝑝 := 𝐹𝑝 ∪ 𝑇𝑝, and we

substitute arc (𝑇, 𝐹𝑝) with (𝑇, 𝐹 ′
𝑝). Then, we copy all arcs coming out of 𝐹𝑝 to 𝐹 ′

𝑝 (while

keeping the old arcs). Next, we replace the content of node 𝑇 with the polynomial set 𝑇𝑙.

The operations are performed in rounds: in the 𝑙-th round we triangulate/eliminate all rank 𝑙

nodes. After each round, we may reduce the network with the following additional operations.

MergeIn(𝑙) Merge any two rank 𝑙 nodes 𝐹𝑙, 𝐹
′
𝑙 if they define the same ideal, and they have

the same sets of incoming arcs.

MergeOut(𝑙) Merge any two rank 𝑙 nodes 𝐹𝑙, 𝐹
′
𝑙 if they define the same ideal, and they have

the same sets of outgoing arcs.

Example 3.7. Consider the polynomial set 𝐹 = {𝑥30−𝑥0, 𝑥0𝑥2−𝑥2, 𝑥1−𝑥2, 𝑥22−𝑥2, 𝑥2𝑥23−𝑥3},

whose associated graph is the star graph (𝑥2 is connected to 𝑥0, 𝑥1, 𝑥3). Figure 3-5 illustrates
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𝑥30 − 𝑥0, 𝑥0𝑥2 − 𝑥2, 𝑥
2
2 − 𝑥2

𝑥1 − 𝑥2, 𝑥
2
2 − 𝑥2

𝑥22 − 𝑥2, 𝑥2𝑥
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0
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==⇒
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2
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2
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elim
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2
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2
3 − 𝑥3, 𝑥2 𝑥22 − 𝑥2, 𝑥2𝑥

2
3 − 𝑥3, 𝑥2 − 1

0

elim
==⇒

𝑥30 − 𝑥0 𝑥0 − 1

𝑥1 − 𝑥2
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2
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2
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0
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3

Figure 3-5: Chordal triangularization from Example 3.7.

a sequence of operations (triangulation, elimination and merge) performed on its induced

chordal network. The chordal network obtained has three chains:

(𝑥30 − 𝑥0, 𝑥1 − 𝑥2, 𝑥2, 𝑥3), (𝑥0 − 1, 𝑥1 − 𝑥2, 𝑥2 − 1, 𝑥3), (𝑥0 − 1, 𝑥1 − 𝑥2, 𝑥2 − 1, 𝑥3 − 1).

These chains give triangular decomposition of 𝐹 .

Algorithm 1 presents the chordal triangularization method. The input consists of a poly-

nomial set 𝐹 ⊆ K[𝑋] and a chordal graph 𝐺. As in the above example, the output of the

algorithm is always a triangular chordal network, and it encodes a triangular decomposition

of the given polynomial set 𝐹 .

3.3.3 Algorithm analysis

The objective of this section is to prove that, when the input 𝐹 is chordally zero-dimensional

(Definition 3.4), Algorithm 1 produces a 𝐺-chordal network, whose chains give a triangular

decomposition of 𝐹 . As described below, the chordally zero-dimensional assumption is only
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Algorithm 1 Chordal Triangularization
Input: Polynomial set 𝐹 ⊆ K[𝑋] supported on a chordal graph 𝐺
Output: Triangular 𝐺-chordal network 𝒩 such that V(𝒩 ) = V(𝐹 )
1: procedure ChordalNet(𝐹,𝐺)
2: 𝒩 := induced 𝐺-chordal network of 𝐹
3: for 𝑙 = 0 : 𝑛− 1 do
4: for 𝐹𝑙 node of 𝒩 of rank 𝑙 do
5: Triangulate(𝐹𝑙)
6: MergeOut(𝑙)
7: if 𝑙 < 𝑛− 1 then
8: 𝑥𝑝 := parent of 𝑥𝑙
9: for 𝑇 node of 𝒩 of rank 𝑙 do

10: Eliminate(𝑇 )
11: MergeOut(𝑝)
12: MergeIn(𝑙)
13: return 𝒩

needed in order for the algorithm to be well-defined (recall that up to this point we have only

defined triangular decompositions of zero-dimensional systems). Later in the chapter we will

see how to extend Algorithm 1 to arbitrary ideals.

Definition 3.8. Let 𝒩 be a chordal network, and let 𝐶 = (𝐹0, . . . , 𝐹𝑛−1) be a chain. The

variety of the chain is V(𝐶) := V(𝐹0 ∪ · · · ∪𝐹𝑛−1). The variety V(𝒩 ) of the chordal network

is the union of V(𝐶) over all chains 𝐶.

Theorem 3.1. Let 𝐹 ⊆ K[𝑋], supported on chordal graph 𝐺, be chordally zero-dimensional.

Then the output is a 𝐺-chordal network whose chains give a triangular decomposition of 𝐹 .

We will split the proof of Theorem 3.1 into several lemmas. We first show that the algorithm

is well-defined, i.e., we only perform triangulation operations (line 5) on nodes 𝐹𝑙 that define

zero-dimensional ideals.

Lemma 3.2. Let 𝐹 ⊆ K[𝑋] be chordally zero-dimensional. Then in Algorithm 1 every trian-

gulation operation is performed on a zero-dimensional ideal.

Proof. See Section 3.8.1.

We now show that the chordal structure is preserved during the algorithm.
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Lemma 3.3. Let 𝒩 be a 𝐺-chordal network. Then the result of performing a triangulation

or elimination operation is also a 𝐺-chordal network.

Proof. Consider first a triangulation operation. Note that if 𝐹𝑙 ⊆ K[𝑋𝑙] then each 𝑇 in a

triangular decomposition is also in K[𝑋𝑙]. Consider now an elimination operation. Let 𝑇 ⊆

K[𝑋𝑙] and 𝐹𝑝 ⊆ K[𝑋𝑝] be two adjacent nodes. Using Lemma 2.3, elim𝑝(𝑇 ) ⊆ K[𝑋𝑙 ∖ {𝑥𝑙}] ⊆

K[𝑋𝑝]. Thus, the new node 𝐹 ′
𝑝 := 𝐹𝑝 ∪ elim𝑝(𝑇 ) ⊆ K[𝑋𝑝]. It is clear that for both operations

the layered structure of 𝒩 is preserved (i.e., arcs follow the elimination tree).

We next show that the chains of the output network are triangular sets.

Lemma 3.4. The output of Algorithm 1 is a triangular 𝐺-chordal network.

Proof. Let 𝑇 ⊆ K[𝑋𝑙] be a rank 𝑙 node for which we will perform an elimination operation.

Note that 𝑇 must be triangular as we previously performed a triangulation operation. There-

fore, there is a unique polynomial 𝑓 ∈ 𝑇 with mvar(𝑓) = 𝑥𝑙. When we perform the elimination

operation this is the only polynomial of 𝑇 we keep, which concludes the proof.

Finally, we show that the variety is preserved during the algorithm.

Lemma 3.5. Let 𝒩 be the output of Algorithm 1. Then V(𝒩 ) = V(𝐹 ), and moreover, any

two chains of 𝒩 have disjoint varieties.

Proof. Let us show that the variety is preserved when we perform triangulation, elimination

and merge operations. Firstly, note that a merge operation does not change set of chains of the

network, so the variety is preserved. Consider now the case of a triangulation operation. Let

𝒩 be a chordal network and let 𝐹 be one of its nodes. Let 𝒯 be a triangular decomposition

of 𝐹 , and let 𝒩 ′ be the chordal network obtained after replacing 𝐹 with 𝒯 . Let 𝐶 be a chain

of 𝒩 containing 𝐹 , and let 𝐶 ′ = 𝐶 ∖ {𝐹}. Then

V(𝐶) = V(𝐶 ′) ∩V(𝐹 ) = V(𝐶 ′) ∩ (
⨆︁
𝑇∈𝒯

V(𝑇 )) =
⨆︁
𝑇∈𝒯

V(𝐶 ′) ∩V(𝑇 ) =
⨆︁
𝑇∈𝒯

V(𝐶 ′ ∪ {𝑇}).

Note that 𝐶 ′ ∪ {𝑇} is a chain of 𝒩 ′. Moreover, all chains of 𝒩 ′ that contain one of the nodes

of 𝒯 have this form. Thus, the triangulation step indeed preserves the variety.
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Finally, consider the case of an elimination operation. Let 𝑇 ⊆ K[𝑋𝑙] be a node, let (𝑇, 𝐹𝑝)

be an arc and let 𝐹 ′
𝑝 = 𝐹𝑝∪ elim𝑝(𝑇 ), 𝑇𝑙 = 𝑇 ∖ elim𝑝(𝑇 ). Let 𝒩 ′ be the network obtained after

an elimination step on 𝑇 . It is clear that

V(𝑇 ∪ 𝐹𝑝) = V(𝑇𝑙 ∪ elim𝑝(𝑇 ) ∪ 𝐹𝑝) = V(𝑇𝑙 ∪ 𝐹 ′
𝑝).

Since a chain in 𝒩 containing 𝑇, 𝐹𝑝 turns into a chain in 𝒩 ′ containing 𝑇𝑙, 𝐹 ′
𝑝, we conclude

that the elimination step also preserves the variety.

Proof of Theorem 3.1. We already proved the theorem, since we showed that: the algorithm

is well-defined (Lemma 3.2), chordal structure is preserved (Lemma 3.3) and the chains in the

output are triangular sets (Lemma 3.4) that decompose the given variety (Lemma 3.5).

3.3.4 Radical and irreducible decompositions

We just showed that Algorithm 1 can compute chordal network representations of some zero-

dimensional problems. However, we sometimes require additional properties of the chordal

network. In particular, in Section 3.4 we will need squarefree representations, i.e., such that

any chain generates a radical ideal. As shown next, we can obtain such representations by

making one change in Algorithm 1: whenever we perform a triangulation operation, we should

produce a squarefree decomposition.

Proposition 3.6. Assume that all triangular decompositions computed in Algorithm 1 are

squarefree. Then any chain of the output network generates a radical ideal.

Proof. See Section 3.8.1

Instead of radicality, we could further ask for an irreducible representation, i.e., such

that any chain generates a prime ideal. The obvious modification to make is to require all

triangulation operations to produce irreducible decompositions. Unfortunately, this does not

always work. Indeed, we can find irreducible univariate polynomials 𝑓 ⊆ K[𝑥0], 𝑔 ⊆ K[𝑥1]

such that ⟨𝑓, 𝑔⟩ ⊆ K[𝑥0, 𝑥1] is not prime (e.g., 𝑓 = 𝑥20 + 1, 𝑔 = 𝑥21 + 1).

Nonetheless, there is an advantage of maintaining prime ideals through the algorithm: it

gives a simple bound on the size of the triangular network computed, as shown next. This

bound will be used when analyzing the complexity of the algorithm.
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Lemma 3.7. Assume that all triangular decompositions computed in Algorithm 1 are irre-

ducible. Then the number of rank 𝑙 nodes in the output is at most |V(𝐹 ∩K[𝑋𝑙])|.

Proof. Let us see that there are at most |V(𝐹 ∩K[𝑋𝑙])| rank 𝑙 nodes after the merge operation

from line 6. First note that when we perform this operation any rank 𝑙 node has an outgoing

arc to all rank 𝑝 nodes (where 𝑥𝑝 is the parent of 𝑥𝑙). Therefore, this operation merges any

two rank 𝑙 nodes that define the same ideal. Since these ideals are all maximal, then for any

two distinct nodes 𝑇𝑙, 𝑇 ′
𝑙 we must have V(𝑇𝑙) ∩V(𝑇 ′

𝑙 ) = ∅. Also note that both V(𝑇𝑙),V(𝑇 ′
𝑙 )

are subsets of V(𝐹 ∩K[𝑋𝑙]). The lemma follows.

Remark 3.4. There are other ways to achieve the above bound that do not require computing

irreducible decompositions. For instance, we can force the varieties V(𝑇𝑙),V(𝑇 ′
𝑙 ) to be disjoint

by using ideal saturation.

3.3.5 Complexity

We proceed to estimate the cost of Algorithm 1 in the chordally zero-dimensional case. We

will show that the complexity2 is 𝑂(𝑛 𝑞𝑂(𝜔)), where 𝜔 is the treewidth (or clique number) of

the graph, and 𝑞 is a certain degree bound on the polynomials that we formalize below. In

particular, when the treewidth 𝜔 is bounded the complexity is linear in 𝑛 and polynomial in

the degree bound 𝑞.

Definition 3.9 (𝑞-domination). We say that a polynomial set 𝐹𝑙 ⊆ K[𝑋𝑙] is 𝑞-dominated if

for each 𝑥𝑖 ∈ 𝑋𝑙 there is some 𝑓 ∈ 𝐹𝑙 such that mvar(𝑓) = 𝑥𝑖, init(𝑓) = 1 and deg(𝑓, 𝑥𝑖) ≤ 𝑞.

Let 𝐹 ⊆ K[𝑋] be supported on a chordal graph 𝐺. We say that 𝐹 is chordally 𝑞-dominated

if 𝐹 ∩K[𝑋𝑙] is 𝑞-dominated for each maximal clique 𝑋𝑙 of graph 𝐺.

Example 3.8. The coloring equations in eq. (2.2) are chordally 𝑞-dominated since the equa-

tions 𝑥𝑞𝑖 − 1 are present. Another important example is the case of finite fields F𝑞, since if we

include the equations 𝑥𝑞𝑖 − 𝑥𝑖, as is often done, the problem becomes chordally 𝑞-dominated.

Remark 3.5. Observe that if 𝐹 is chordally 𝑞-dominated then it is also chordally zero-dimensional.

Conversely, if 𝐹 is chordally zero-dimensional then we can apply a simple transformation to

2 Here the complexity is measured in terms of the number of field operations.
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make it chordally 𝑞-dominated (for some 𝑞). Concretely, for each maximal clique 𝑋𝑙 we can

enlarge 𝐹 with a Gröbner basis of 𝐹 ∩K[𝑋𝑙].

We note that we also used the 𝑞-dominated condition in [36,39] to analyze the complexity

of chordal elimination. The importance of this condition is that it allows us to easily bound

the complexity of computing Gröbner bases or triangular decompositions, as stated next.

Proposition 3.8. For any 𝑞-dominated polynomial set on 𝑘 variables, the complexity of com-

puting Gröbner bases and (squarefree/irreducible) triangular decompositions is 𝑞𝑂(𝑘).

Proof. See Section 3.8.1.

The above proposition gives us the cost of the triangulation operations. However, we need

to ensure that these operations are indeed performed on a 𝑞-dominated ideal, as shown next.

Lemma 3.9. Let 𝐹 ⊆ K[𝑋] be chordally 𝑞-dominated. Then in Algorithm 1 any triangulation

operation is performed on a 𝑞-dominated ideal.

Proof. The proof is analogous to the one of Lemma 3.2.

We are ready to estimate the complexity of chordal triangularization. For the analysis

we assume that the merge operation from line 6 (resp. line 11) is performed simultaneously

with the triangulation (resp. elimination) operations, i.e., as soon as we create a new node we

compare it with the previous nodes of the same rank to check if it is repeated.

Lemma 3.10. Let 𝐹 ⊆ K[𝑋] be chordally 𝑞-dominated. Assume that all triangular decompo-

sitions computed in Algorithm 1 are irreducible. Then throughout the algorithm the width of

the network is always bounded by 𝑞𝜔, independent of the number of variables.

Proof. This is a consequence of Lemma 3.7. See Section 3.8.1.

Remark 3.6 (Chordal network of linear size). It follows from the lemma that for fixed 𝑞, 𝜔, any

chordally 𝑞-dominated 𝐹 ⊆ K[𝑋] of treewidth 𝜔 has a chordal network representation with

𝑂(𝑛) nodes.

Theorem 3.11. Let 𝐹 ⊆ K[𝑋] be chordally 𝑞-dominated. The complexity of chordal trian-

gularization is 𝑂(𝑛𝑊𝑞𝑂(𝜔)), where 𝑊 is a bound on the width of the network throughout the

algorithm. If all triangulation operations are irreducible, the complexity is 𝑂(𝑛 𝑞𝑂(𝜔)).
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Proof. From Proposition 3.8 and Lemma 3.9 we know that each triangulation operation takes

𝑞𝑂(𝜔), and thus the cost of all triangulations is 𝑂(𝑛𝑊𝑞𝑂(𝜔)). The cost of the elimination

operations is negligible. As for the merging operations, we can efficiently verify if a new node

is repeated by using a hash table. Thus, the cost of the merging operation is also negligible.

Finally, if all triangulation operations are irreducible, then𝑊 ≤ 𝑞𝑘 because of Lemma 3.10.

Remark 3.7 (Beyond chordally zero-dimensional). We will later see that, after a suitable

redefinition of the triangulation step, Algorithm 1 can also be applied to arbitrary ideals.

Nonetheless, the complexity bounds from above do depend on the special structure of the

chordally zero-dimensional case. Indeed, solving polynomial equations of treewidth one is NP-

hard [39, Ex 1.1], and counting their number of solutions is ♯P-hard even in the generic case

for treewidth two (see Corollary 4.25). As a consequence, chordal triangularization will not

always run in polynomial time. When using Algorithm 1 in such hard instances we may end

up with very high degree polynomials or with a very large number of nodes.

3.4 Computing with chordal networks

Triangular decompositions are one of the most common tools in computational algebraic ge-

ometry. The reason is that there are many good algorithms to compute them, and that they

can be used to derive several properties of the underlying variety. However, as seen in Exam-

ple 3.1, the size of the decomposition obtained might be extremely large (exponential) even

for very simple cases. Chordal networks can provide a compact representation for these large

decompositions. We will see how to effectively use the data structure of chordal networks to

compute several properties of the variety.

Let 𝐼 = ⟨𝐹 ⟩ be a zero-dimensional ideal. We consider the following problems.

Elimination Describe the projection of V(𝐼) onto the last 𝑛− 𝑙 coordinates.

Zero count Determine the number of solutions, i.e., the cardinality of V(𝐼).

Sampling Sample random points from V(𝐼) uniformly.

Radical membership Determine if a polynomial ℎ ∈ K[𝑋] vanishes on V(𝐼), or equiva-

lently, determine if ℎ ∈
√
𝐼.
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In this section we will develop efficient algorithms for the above problems, given a squarefree

chordal network 𝒩 (with possibly exponentially many chains). Recall that such network can

be obtained as explained in Proposition 3.6. We will see that the first three problems can be

solved relatively easily. The radical membership problem is more complicated, and most of

this section will be dedicated to it. We note that the algorithms for elimination and radical

membership will naturally extend to the positive-dimensional case.

3.4.1 Elimination

The elimination problem is particularly simple, thanks to the elimination property of lexico-

graphic Gröbner bases. For an arbitrary chordal network 𝒩 , let 𝒩≥𝑙 denote the subset of 𝒩

consisting of nodes of rank 𝑘 with 𝑘 ≥ 𝑙. Then 𝒩≥𝑙 is a chordal network representation of the

projection of V(𝐼) onto the last 𝑛− 𝑙 coordinates.

3.4.2 Counting solutions

We want to determine |V(𝒩 )| for a squarefree chordal network 𝒩 . Recall from Equation (3.1)

that |V(𝑇 )| = deg(𝑇 ) for a squarefree triangular set 𝑇 . Therefore, we just need to compute

the sum of deg(𝐶) over all chains 𝐶 of the network. We can do this efficiently via dynamic

programming, as explained in the following example.

Example 3.9 (Zero count). Let us determine |V(𝒩 )| for the chordal network from Figure 3-4,

which corresponds to counting 4-colorings for the blue/solid graph from Figure 2-1a. For a

rank 𝑙 node 𝑓𝑙 of the network, let its weight 𝑤(𝑓𝑙) be its degree in 𝑥𝑙. Then we just need to

compute
∑︀

𝐶

∏︀
𝑓𝑙∈𝐶 𝑤(𝑓𝑙) where the sum is over all chains of the network. We can do this

efficiently by successively eliminating the nodes of the network.

Let us first eliminate the nodes of rank 0. Let 𝑓𝑎0 , 𝑓 𝑏0 be the two nodes of rank 0, with

weights 𝑤(𝑓𝑎0 ) = 3, 𝑤(𝑓 𝑏0) = 2. Let 𝑓𝑎6 , 𝑓 𝑏6 , 𝑓 𝑐6 be the nodes of rank 6, with weights 𝑤(𝑓𝑎6 ) =

𝑤(𝑓 𝑐6) = 1, 𝑤(𝑓 𝑏6) = 2. Note that any chain containing 𝑓𝑎6 must also contain 𝑓𝑎0 . Therefore,

we can remove the arc (𝑓𝑎0 , 𝑓
𝑎
6 ) and update the weight 𝑤(𝑓𝑎6 ) = 1 × 3. Similarly, any chain

containing 𝑓 𝑏6 (or 𝑓 𝑐6) must contain also 𝑓 𝑏0 . So we may delete the arcs (𝑓 𝑏0 , 𝑓
𝑏
6) and (𝑓 𝑏0 , 𝑓

𝑐
6)

and update the weights 𝑤(𝑓 𝑏6) = 2 × 2, 𝑤(𝑓 𝑐6) = 1 × 2. By doing this, we have disconnected,

or eliminated, all nodes of rank 0. Continuing this procedure, the final weights obtained for
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each rank are shown below. The number of solutions is the last number computed: 10968.

rk(0) → [3, 2], rk(1) → [3, 2], rk(2) → [3, 2], rk(3) → [3, 2, 4],

rk(4) → [3, 2, 4], rk(5) → [50, 25, 20, 20, 16], rk(6) → [3, 4, 2],

rk(7) → [264, 650], rk(8) → [2742], rk(9) → [10968].

Algorithm 2 Count solutions
Input: Chordal network 𝒩 (triangular, squarefree)
Output: Cardinality of V(𝒩 )
1: procedure ZeroCount(𝒩 )
2: for 𝑓 node of 𝒩 do
3: 𝑤(𝑓) := (mdeg(𝑓) if 𝑥rk(𝑓) is a leaf else 0)

4: for 𝑙 = 0 : 𝑛− 1 do
5: for (𝑓𝑙, 𝑓𝑝) arc of 𝒩 with rk(𝑓𝑙) = 𝑙 do
6: 𝑤(𝑓𝑝) := 𝑤(𝑓𝑝) + 𝑤(𝑓𝑙)mdeg(𝑓𝑝)

7: return sum of 𝑤(𝑓𝑛−1) over all nodes of rank 𝑛− 1

Algorithm 2 generalizes the above example to arbitrary chordal networks. The complexity

is 𝑂(𝑛𝑊 2), since we perform one operation for each arc of the network.

3.4.3 Sampling solutions

Uniformly sampling solutions can be done quite easily, by using the partial root counts com-

puted in Algorithm 2. Instead of giving a formal description we simply illustrate the procedure

with an example.

Example 3.10 (Sampling). Consider again the chordal network of Figure 3-4. We want to

uniformly sample a point (𝑥̂0, . . . , 𝑥̂9) from its variety, and we follow a bottom up strategy.

Let us first choose the value 𝑥̂9. Since there is a unique rank 9 node 𝑓9 = 𝑥49 − 1, then

𝑥̂9 must be one of its four roots. Note that each of those roots extend to 2742 solutions (a

fourth of the total number of solutions). Therefore, 𝑥̂9 should be equally likely to be any

of these roots. Given the value of 𝑥̂9, we can now set 𝑥̂8 to be any of the three roots of

𝑓8 = 𝑥38 + 𝑥28𝑥9 + 𝑥8𝑥
2
9 + 𝑥39, each equally likely. Consider now the two rank 7 nodes 𝑓𝑎7 , 𝑓 𝑏7

of degrees 1 and 2. Note that 𝑥̂7 should be either a root of 𝑓𝑎7 or a root of 𝑓 𝑏7 (for the given

values of 𝑥̂8, 𝑥̂9). In order to sample uniformly, we need to know the number of solutions that
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each of those values extend to. From Example 3.9 we know that 𝑓𝑎7 leads to 264 points on the

variety, and 𝑓 𝑏7 leads to 650. Therefore, we can decide which of them to use based on those

weights. Assuming we choose 𝑓 𝑏7 , we can now set 𝑥̂7 to be any of its two roots, each equally

likely. It is clear how to continue.

3.4.4 Radical membership

In the radical ideal membership problem we want to check whether ℎ ∈ K[𝑋] vanishes on

V(𝒩 ). This is equivalent to determining whether for each chain 𝐶 of 𝒩 the normal form

ℎ𝐶 := ℎ mod 𝐶 is identically zero. We will propose a Monte Carlo algorithm to efficiently test

this property (without iterating over all chains) under certain structural assumptions on the

polynomial ℎ. Our main result is the following.

Theorem 3.12 (Radical membership). Let 𝐹 ⊆ K[𝑋] be chordally 𝑞-dominated. Let 𝒩 be

a chordal network representation of 𝐹 of width 𝑊 . Let ℎ be a polynomial that decomposes

as ℎ =
∑︀

𝑙 ℎ𝑙 with ℎ𝑙 ⊆ K[𝑋𝑙]. There is a Monte Carlo algorithm that determines whether ℎ

vanishes on V(𝐹 ) in ̃︀𝑂(𝑛𝑊𝑞2𝜔 +𝑛𝑊 2𝑞𝜔). Here the notation ̃︀𝑂 ignores polynomial factors in

the clique number 𝜔.

Remark 3.8. The theorem is restricted to polynomials ℎ that preserve some of the structure

of the graph 𝐺, although they may involve all the variables in the ring K[𝑋] (as opposed to

the polynomials of the chordal network). The above mentioned Monte Carlo algorithm also

works for other types of polynomials ℎ, but we do not prove complexity bounds for them.

We point out that the above complexity result is far from trivial. To justify this claim we

can show that a simple variation of the radical membership problem is NP-hard under very

mild assumptions.

Example 3.11 (Zero divisor problem). Consider the zero divisor problem: determine if a

polynomial ℎ ∈ K[𝑋] vanishes on at least one point of V(𝐼). Also consider the NP-complete

subset sum problem: decide if a set of integers 𝐴 = {𝑎0, . . . , 𝑎𝑛−1} contains a subset whose sum

is some given value 𝑆. We can reduce it to the zero divisor problem by considering the ideal

𝐼 := ⟨𝑥𝑖(𝑥𝑖 − 𝑎𝑖) : 0 ≤ 𝑖 < 𝑛⟩ and the polynomial ℎ :=
∑︀

𝑖 𝑥𝑖 − 𝑆. Note that the associated

graph is the completely disconnected graph (𝜔 = 1) and thus its induced chordal network is

already triangular (𝑊 = 1, 𝑞 = 2).

59



We proceed to derive our radical ideal membership test. We will initially assume that

the variables of ℎ are all contained in a path of the elimination tree. Later, we will extend

the algorithm to polynomials ℎ that decompose into multiple paths of the elimination tree.

Finally, we will prove the complexity bound from Theorem 3.12.

Membership on a path

Consider the case where the elimination tree of the graph 𝐺 is a path (i.e., it has only one

leaf). Alternatively, we can assume that all the variables of ℎ are contained in a path of

the elimination tree. As before, let ℎ𝐶 := ℎ mod 𝐶 denote the normal form with respect to

chain 𝐶. Our radical ideal membership test is based on two simple ideas. Firstly, we will

check whether the polynomial 𝐻(𝑋) :=
∑︀

𝐶 𝑟𝐶 ℎ𝐶(𝑋) is identically zero, for some random

coefficients 𝑟𝐶 ∈ K. Clearly, for sufficiently generic values of 𝑟𝐶 , the polynomial 𝐻(𝑋) will

be zero if and only if each ℎ𝐶 is zero. The second idea is that we evaluate 𝐻(𝑋) in some

random points 𝑥̂𝑖 ∈ K. Thus, we just need to check whether the scalar 𝐻(𝑋̂) ∈ K is zero. We

illustrate how the algorithm works through the following example.

Example 3.12 (Radical membership). Consider again the chordal network of Figure 3-4.

Let us verify that the polynomial ℎ(𝑥) from Figure 3-6 vanishes on its variety. We need to

show that the reduction (normal form) of ℎ by each chain of the network is zero. As in the

case of counting solutions, we will achieve this by successively eliminating nodes. Note that

the variables of ℎ are {𝑥0, 𝑥6, 𝑥7, 𝑥8, 𝑥9}, which correspond to a path of the elimination tree.

Thus, we restrict ourselves to the part of the network given by these variables, as shown in

Figure 3-6.

Let us start by processing the two nodes of rank 0. We have to compute the reduction

of ℎ(𝑥) modulo each of these nodes. Afterwards, we will substitute 𝑥0 in these reduced

polynomials with a random value on K; in this case we choose 𝑥̂0 = 1. Let ℎ𝑎0, ℎ𝑏0 be the

polynomials obtained after the reduction and substitution, as shown in Figure 3-6. These two

polynomials will be sent to the adjacent rank 6 nodes.

Consider now a rank 𝑝 node 𝑓𝑝 that receives certain polynomials from its adjacent rank 𝑙

nodes. We now perform a random linear combination of these incoming polynomials, then we

reduce this linear combination modulo 𝑓𝑝, and lastly we substitute 𝑥𝑝 with a random value 𝑥̂𝑝.
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ℎ(𝑥) = 𝑥20𝑥6 − 𝑥20𝑥7 − 𝑥0𝑥6𝑥8 − 𝑥0𝑥6𝑥9 − 𝑥0𝑥
2
7 − 𝑥0𝑥

2
8 − 𝑥0𝑥8𝑥9 − 𝑥0𝑥

2
9 + 𝑥6𝑥8𝑥9 − 𝑥37 + 𝑥28𝑥9 + 𝑥8𝑥

2
9

𝑥30 + 𝑥20𝑥7 + 𝑥0𝑥
2
7 + 𝑥37 𝑥20 + 𝑥0𝑥6 + 𝑥0𝑥7 + 𝑥26 + 𝑥6𝑥7 + 𝑥27

𝑥6 − 𝑥7 𝑥26 + 𝑥6𝑥8 + 𝑥6𝑥9 + 𝑥28 + 𝑥8𝑥9 + 𝑥29 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9

𝑥7 − 𝑥9 𝑥27 + 𝑥7𝑥8 + 𝑥7𝑥9 + 𝑥28 + 𝑥8𝑥9 + 𝑥29

𝑥38 + 𝑥28𝑥9 + 𝑥8𝑥
2
9 + 𝑥39

𝑥49 − 1

ℎ(𝑥) ℎ(𝑥)

1 · ℎ𝑎0 1 · ℎ𝑏0 1 · ℎ𝑏0

1
2 · ℎ𝑎61 · ℎ𝑏6

1
2 · ℎ𝑐6

1
2 · ℎ𝑎7 1

2 · ℎ𝑏7

1 · ℎ8

ℎ9 = 0

0

6

7

8

9

Figure 3-6: Sketch of the radical ideal membership test from Example 3.12.

For this example the linear combination will be an average, and the random points 𝑥̂𝑝 will be

one. Figure 3-6 indicates the polynomials received and output by each node. For instance, ℎ8

is obtained by reducing 1
2(ℎ

𝑎
7 + ℎ𝑏7) modulo 𝑓8 = 𝑥38 + 𝑥28𝑥9 + 𝑥8𝑥

2
9 + 𝑥39 and then plugging in

𝑥̂8 = 1. The polynomials obtained with this procedure are shown below. Note that the last

polynomial computed is zero, agreeing with the fact that ℎ(𝑥) vanishes on the variety.

ℎ𝑎
0 = 𝑥6𝑥8𝑥9 − 𝑥6𝑥8 − 𝑥6𝑥9 + 𝑥6 − 𝑥3

7 − 𝑥2
7 − 𝑥7 + 𝑥2

8𝑥9 − 𝑥2
8 + 𝑥8𝑥

2
9 − 𝑥8𝑥9 − 𝑥2

9

ℎ𝑏
0 = −𝑥3

6 − 𝑥2
6 + 𝑥6𝑥8𝑥9 − 𝑥6𝑥8 − 𝑥6𝑥9 + 𝑥2

8𝑥9 − 𝑥2
8 + 𝑥8𝑥

2
9 − 𝑥8𝑥9 − 𝑥2

9

ℎ𝑎
6 = −𝑥3

7 − 𝑥2
7 + 𝑥7𝑥8𝑥9 − 𝑥7𝑥8 − 𝑥7𝑥9 + 𝑥2

8𝑥9 − 𝑥2
8 + 𝑥8𝑥

2
9 − 𝑥8𝑥9 − 𝑥2

9

ℎ𝑏
6 = −𝑥3

8 − 𝑥2
8𝑥9 − 𝑥8𝑥

2
9 − 𝑥3

9

ℎ𝑐
6 = 𝑥3

7 + 𝑥2
7(3𝑥8 + 3𝑥9 − 1) + 𝑥7(3𝑥

2
8 + 5𝑥8𝑥9 − 𝑥8 + 3𝑥2

9 − 𝑥9) + 𝑥3
8 + 3𝑥2

8𝑥9 − 𝑥2
8 + 3𝑥8𝑥

2
9 − 𝑥8𝑥9 + 𝑥3

9 − 𝑥2
9

ℎ𝑎
7 = ℎ𝑏

7 = −𝑥3
8 − 𝑥2

8𝑥9 − 𝑥8𝑥
2
9 − 𝑥3

9

ℎ8 = ℎ9 = 0

Algorithm 3 generalizes the procedure from the above example. Observe that each node 𝑓𝑙

of the network has an associated polynomial 𝐻(𝑓𝑙), which is first reduced modulo 𝑓𝑙, then we

substitute the value 𝑥̂𝑙 and finally we pass this polynomial to the adjacent nodes. Also note

that that we choose one random scalar 𝑥̂𝑙 for each variable, and one random scalar 𝑟𝑙𝑝 for each

arc of the network.
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Algorithm 3 Radical ideal membership
Input: Chordal network 𝒩 (triangular, squarefree) and polynomial ℎ(𝑥) such that all its

variables are contained in a path of the elimination tree.
Output: True, if ℎ vanishes on V(𝒩 ). False, otherwise.
1: procedure RIdealMembership(𝒩 , ℎ)
2: 𝑥𝑚 := mvar(ℎ)
3: for 𝑓 node of 𝒩 do
4: 𝐻(𝑓) := (ℎ if rk(𝑓) = 𝑚 else 0)

5: for 𝑙 = 0 : 𝑛− 1 do
6: 𝑥̂𝑙 := random scalar
7: for 𝑓𝑙 node of 𝒩 of rank 𝑙 do
8: 𝐻(𝑓𝑙) := 𝐻(𝑓𝑙) mod 𝑓𝑙
9: plug in 𝑥̂𝑙 in 𝐻(𝑓𝑙)

10: for (𝑓𝑙, 𝑓𝑝) arc of 𝒩 do
11: 𝑟𝑙𝑝 := random scalar
12: 𝐻(𝑓𝑝) := 𝐻(𝑓𝑝) + 𝑟𝑙𝑝𝐻(𝑓𝑙)

13: return (True if 𝐻(𝑓𝑛−1) = 0 for all rank 𝑛− 1 nodes else False)

Correctness

We proceed to show the correctness of Algorithm 3. We will need a preliminary lemma and

some new notation. For any 𝑙, let 𝑋 𝑙 denote the subtree of the elimination tree consisting of

𝑥𝑙 and all its descendants (e.g., 𝑋𝑛−1 consists of all variables). For a rank 𝑙 node 𝑓𝑙 of the

network, we will say that an 𝑓𝑙-subchain 𝐶𝑙 is the subset of a chain 𝐶, with 𝑓𝑙 ∈ 𝐶, restricted

to nodes of rank 𝑖 for some 𝑥𝑖 ∈ 𝑋 𝑙.

Lemma 3.13. Let 𝒩 be a chordal network whose elimination tree is a path, and let ℎ ∈ K[𝑋].

Let 𝑓𝑙 be a rank 𝑙 node of 𝒩 . In Algorithm 3, the final value of 𝐻(𝑓𝑙) is given by plugging in

the values 𝑥̂1𝑥̂2, . . . , 𝑥̂𝑙 in the polynomial

∑︁
𝐶𝑙

𝑟𝐶𝑙
ℎ mod 𝐶𝑙,

where the sum is over all 𝑓𝑙-subchains 𝐶𝑙, and where 𝑟𝐶𝑙
denotes the product of the random

scalars 𝑟𝑖𝑗 along the subchain 𝐶𝑙.

Proof. See Section 3.8.2.

Theorem 3.14. Let 𝒩 be a chordal network, triangular and squarefree, and let 𝑞 be a bound
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on the main degrees of its nodes. Let ℎ ∈ K[𝑋] be such that all its variables are contained in

a path of the elimination tree. Algorithm 3 behaves as follows:

∙ if ℎ vanishes on V(𝒩 ), it always returns “True”.

∙ if not, it returns “False” with probability at least 1/2, assuming that the random scalars

𝑟𝑙𝑝, 𝑥𝑙 are chosen (i.i.d. uniform) from some set 𝑆 ⊆ K with |𝑆| ≥ 2𝑛𝑞.

Proof. Denoting ℎ𝐶 := ℎ mod 𝐶, Lemma 3.13 tells us that Algorithm 3 checks whether∑︀
𝐶 𝑟𝐶ℎ𝐶(𝑋̂) = 0, where 𝑟𝐶 is the product of all scalars 𝑟𝑙𝑝 along the chain 𝐶. If ℎ van-

ishes on V(𝒩 ), then each ℎ𝐶 is zero and thus the algorithm returns “True”. Assume now

that ℎ does not vanish on V(𝒩 ), and thus at least one ℎ𝐶 is nonzero. Let 𝑅 be the set of

all random scalars 𝑟𝑙𝑝 used in the algorithm, which we now see as variables. Consider the

polynomial

𝐻(𝑋,𝑅) :=
∑︁
𝐶

𝑟𝐶(𝑅)ℎ𝐶(𝑋),

and note that it is nonzero. Observe that the degree of 𝐻(𝑋,𝑅) is at most 𝑛𝑞, since deg(𝑟𝐶) ≤

𝑛 and deg(ℎ𝐶) ≤ 𝑛(𝑞 − 1). Using the Schwartz-Zippel lemma (see e.g., [140, §6.9]), the

probability that 𝐻 evaluates to zero for random values 𝑟𝑙𝑝, 𝑥̂𝑙 ∈ 𝑆 is at most 𝑛𝑞/|𝑆| ≤ 1/2.

Remark 3.9. The above theorem requires that K contains sufficiently many elements. If nec-

essary, we may consider a field extension L ⊇ K and perform all computations over L[𝑋].

Combining multiple paths

We now extend Algorithm 3 to work for other polynomials ℎ. Specifically, we assume that the

polynomial can be written as ℎ =
∑︀

𝑖 ℎ𝑖 where the variables of each ℎ𝑖 belong to a path of the

elimination tree. We let 𝑥𝑚𝑖 := mvar(ℎ𝑖) denote the main variables, and we can assume that

they are all distinct. We only need to make two simple modifications to Algorithm 3.

(i) Previously, we initialized the algorithm with nonzero values in a single rank (see line 4).

We now initialize the algorithm in multiple ranks: 𝐻(𝑓𝑚𝑖) = ℎ𝑖 if rk(𝑓𝑚𝑖) = 𝑚𝑖.

(ii) When combining the incoming polynomials to a node 𝑓𝑝, we now take a random affine

combination (i.e.,
∑︀

𝑙 𝑟𝑙𝑝𝐻(𝑓𝑙) for some scalars 𝑟𝑙𝑝 such that
∑︀

𝑙 𝑟𝑙𝑝 = 1). Note that
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in the example from Figure 3-6 we took the average of the incoming nodes, so this

condition is satisfied.

The first modification is quite natural given the decomposition of the polynomial ℎ. The

second item is less intuitive, but it is simply a normalization to ensure that all polynomials ℎ𝑖

are scaled in the same manner. The correctness of this modified algorithm follows from the

fact that Lemma 3.13 remains valid, as shown next.

Lemma 3.15. Let 𝒩 be a chordal network and let ℎ =
∑︀

𝑖 ℎ𝑖 ∈ K[𝑋] be such that the variables

of each ℎ𝑖 are contained in a path of the elimination tree. With the above modifications to

Algorithm 3, the final value of 𝐻(𝑓𝑙) is as stated in Lemma 3.13.

Proof. See Section 3.8.2.

Remark 3.10. Note that any ℎ can be written as ℎ =
∑︀𝑛−1

𝑖=0 ℎ𝑖, where ℎ𝑖 corresponds to the

terms with main variable 𝑥𝑖. Even when the elimination tree is a path, it is usually more

efficient to decompose it in this manner and use Algorithm 3 with the above modifications.

Complexity

We finally proceed to prove the complexity bound from Theorem 3.12. We restrict ourselves

to polynomials ℎ that preserve the sparsity structure given by the chordal graph 𝐺. More

precisely, we assume that the variables of each of the terms of ℎ correspond to a clique of 𝐺, or

equivalently, that ℎ =
∑︀

𝑙 ℎ𝑙 for some ℎ𝑙 ∈ K[𝑋𝑙]. Naturally, we will use Algorithm 3 with the

two modifications from above. The key idea to notice is that Algorithm 3 preserves chordality,

as stated next.

Lemma 3.16. Assume that in Algorithm 3 the initial values of 𝐻(𝑓𝑙) are such that 𝐻(𝑓𝑙) ⊆

K[𝑋𝑙] (where rk(𝑓𝑙) = 𝑙). Then the same condition is satisfied throughout the algorithm.

Proof. The update rule used in Algorithm 3 is of the form 𝐻(𝑓𝑝) := 𝐻(𝑓𝑝) + 𝑟𝑙𝑝𝜑𝑙(ℎ̃𝑙) for

some ℎ̃𝑙 ∈ K[𝑋𝑙], where 𝜑𝑙 denotes the functional that plugs in 𝑥̂𝑙. Using Lemma 2.3, we have

𝜑𝑙(ℎ̃𝑙) ⊆ K[𝑋𝑙 ∖ {𝑥𝑙}] ⊆ K[𝑋𝑝]. The result follows.

Proof of Theorem 3.12. We consider Algorithm 3 with the modifications (i) and (ii) from

above. Note that the 𝑞-dominated condition allows us to bound the degrees of all polynomials
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computed in Algorithm 3. Furthermore, since chordality is preserved (Lemma 3.16), then all

polynomials will have at most 𝑞𝜔 terms. The complexity of the algorithm is determined by the

cost of polynomial divisions and polynomial additions. Polynomial addition takes linear time

in the number of terms, and it is performed once for each arc of the network. Thus, their total

cost is 𝑂(𝑛𝑊 2𝑞𝜔). As for polynomial division, ℎ mod 𝑓 can be obtained in 𝑂(|ℎ| |𝑓 | log |𝑓 |),

where | · | denotes the number of terms [99]. Their total cost is ̃︀𝑂(𝑛𝑊𝑞2𝜔), since there is one

operation per node of the network.

3.5 Monomial ideals

We already showed how to compute chordal network representations of some zero-dimensional

ideals. Before proceeding to the general case, we will consider the special class of monomial

ideals. Recall that an ideal is monomial if it is generated by monomials. Monomial ideals

might have positive-dimension, but their special structure makes their analysis particularly

simple. As in Example 3.2, we will see that any monomial ideal admits a compact chordal

network representation. We will also show how such chordal network can be effectively used

to compute its dimension, its equidimensional components, and its irreducible components.

These methods will be later generalized to arbitrary polynomial ideals.

3.5.1 Chordal triangularization

Algorithm 1 will be exactly the same for monomial ideals as in the zero-dimensional case.

The only difference is that for the triangulation operations we need to specify the type of

decomposition used, as explained now.

We will say that a set of monomials 𝑇 is triangular if it consists of variables, i.e., 𝑇 =

{𝑥𝑖1 , . . . , 𝑥𝑖𝑚}. It is well known that a monomial ideal is prime if and only if it is generated by

variables. It is also known that the minimal primes of a monomial ideal are also monomial. It

follows that any monomial ideal 𝐼 decomposes as V(𝐼) =
⋃︀

𝑇 V(𝑇 ), where the union is over

some triangular monomial sets 𝑇 .

By using the above decomposition in each triangulation operation, chordal triangulariza-

tion can now be applied to monomial ideals, as established in the proposition below. We point

out that even though this decomposition seems quite different from the one of Section 3.3.1,
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both are special instances of more general theory that will be discussed in Section 3.6.1.

Proposition 3.17. Let 𝐹 be a set of monomials supported on a chordal graph 𝐺. Algorithm 1

computes a 𝐺-chordal network, whose chains give a triangular decomposition of 𝐹 .

Proof. Proving that the variety is preserved in the algorithm is essentially the same as for the

chordally zero-dimensional case (Lemma 3.5). It is straightforward to see that the chains of

the output are triangular (i.e., they consist of variables).

Example 3.13. Consider the ideal 𝐼 = ⟨𝑥0𝑥1, 𝑥0𝑥2, 𝑥0𝑥3, 𝑥1𝑥2, 𝑥1𝑥4, 𝑥2𝑥5, 𝑥3𝑥4, 𝑥3𝑥5, 𝑥4𝑥5⟩.

The result of chordal triangularization is shown to the left of Figure 3-7.

0 𝑥0

𝑥1 0 𝑥1

𝑥2 𝑥2 𝑥2 0

𝑥3𝑥3 0

0𝑥4 𝑥4

𝑥50

0

1

2

3

4

5

top
===⇒
dim

0 𝑥0

𝑥1 0 𝑥1

𝑥2 𝑥2 𝑥2 0

𝑥3𝑥3 0

0𝑥4 𝑥4

𝑥50

0

1

2

3

4

5

Figure 3-7: Chordal network from Example 3.13, and its top-dimensional part.

As in the chordally zero-dimensional case, we can also prove that the complexity is linear

in 𝑛 when the treewidth is bounded.

Theorem 3.18. Let 𝐹 be a set of monomials supported on a chordal graph 𝐺 of clique num-

ber 𝜔. Then 𝐹 can be represented by a triangular chordal network with at most 𝑛 2𝜔 nodes,

which can be computed in time 𝑂(𝑛 2𝑂(𝜔)).

Proof. Note that after the 𝑙-th triangulation round we will have at most 2𝜔 rank 𝑙 nodes,

since the triangular monomial sets in K[𝑋𝑙] are in bijection with the subsets of 𝑋𝑙. A similar

argument proves that the width of the network is bounded by 2𝜔 after an elimination round,

and thus throughout the algorithm. The cost of computing a triangular decomposition in K[𝑋𝑙]

is polynomial in 2|𝑋𝑙|, since we can simply enumerate over all possible triangular monomial

sets. Thus, the cost of all triangulation operations is 𝑂(𝑛𝑊 2𝑂(𝜔)) = 𝑂(𝑛 2𝑂(𝜔)). The cost of

the elimination and merging operations is negligible.
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3.5.2 Computing with chordal networks

Let 𝒩 be a chordal network representation of a monomial ideal 𝐼. We will show how to

effectively use 𝒩 to solve the following problems:

Dimension Determine the dimension of 𝐼.

Top-dimensional part Describe the top-dimensional part of V(𝐼).

Irreducible components Determine the minimal primes of 𝐼.

The above problems can be shown to be hard in general by using the correspondence between

minimal vertex covers of a graph and the irreducible components of its edge ideal (see Exam-

ple 3.2). We will see that, given the chordal network, the first two problems can be solved in

linear time with a dynamic program. The third one is much more complicated, since we need

to enumerate over all chains of the network to verify if they are minimal. In order to do this

efficiently, we will need to address the following problems.

Dimension count Classify the number of chains 𝐶 of 𝒩 according to its dimension.

Isolate dimension 𝑑 Enumerate all chains 𝐶 of 𝒩 such that dim(V(𝐶)) = 𝑑.

We proceed to solve each of the problems from above. To simplify the exposition, we will

assume for this section that the elimination tree is a path, but it is not difficult to see that all

these methods will work for arbitrary chordal networks.

Dimension

Let us see that it is quite easy to compute the dimension of V(𝒩 ). Since the variety V(𝑇 ) of

a triangular monomial set is a linear space, its dimension is dim(V(𝑇 )) = 𝑛− |𝑇 |. Therefore,

dim(V(𝒩 )) = 𝑛−min𝐶 |𝐶|, where the minimum is taken over all chains of the network. Note

that we ignore the zero entries of 𝐶. In particular, for the network in Figure 3-7 we have

dim(V(𝒩 )) = 6− 4 = 2.

We reduced the problem to computing the smallest cardinality of a chain of 𝒩 . This can

be done using a simple dynamic program, which is quite similar to the one in Algorithm 2. For

each node 𝑓𝑙 we save the value ℓ(𝑓𝑙) corresponding to the length of the shortest chain up to
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level 𝑙. For an arc (𝑓𝑙, 𝑓𝑝) with 𝑓𝑝 ̸= 0, the update rule is simply ℓ(𝑓𝑝) := min(ℓ(𝑓𝑝), 1+ ℓ(𝑓𝑙)).

It follows that we can compute in linear time the dimension of V(𝒩 ).

Top-dimensional part

We can get a chordal network 𝒩top describing its top-dimensional part by modifying the

procedure that computes the dimension. Indeed, assume that for some arc (𝑓𝑙, 𝑓𝑝) we have

ℓ(𝑓𝑝) < 1+ ℓ(𝑓𝑙) and thus the update ℓ(𝑓𝑝) := min(ℓ(𝑓𝑝), 1+ ℓ(𝑓𝑙)) is not needed. This means

that the arc (𝑓𝑙, 𝑓𝑝) is unnecessary for the top-dimensional component. By pruning the arcs

of 𝒩 in such manner we obtain the wanted network 𝒩top .

Example 3.14. Let 𝒩 be the network on the left of Figure 3-7. Note that 𝒩 has 9 chains, two

of them are 𝐶1 = (𝑥1, 𝑥2, 𝑥3, 𝑥5), 𝐶2 = (𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥5), of dimensions 2 and 1. By pruning

some arcs, we obtain its highest dimensional part 𝒩top , shown to the right of Figure 3-7. This

network 𝒩top only has 6 chains; note that 𝐶2 is not one of them. In this case neither of the

chains removed was minimal (e.g., 𝐶2 ) 𝐶1), so that V(𝒩 ) = V(𝒩top). Thus, both 𝒩 and

𝒩top are valid chordal network representations of the ideal from Example 3.13, although the

latter is preferred since all its chains are minimal. Similarly, the network from Figure 3-2 was

obtained by using chordal triangularization and then computing its highest dimensional part.

Irreducible components

Chordal triangularization can also aid in computing the minimal primes of an ideal (geometri-

cally, the irreducible components). In the monomial case, any chain of 𝒩 defines a prime ideal,

and thus we only need to determine which chains are minimal with respect to containment.

In some cases it is enough to prune certain arcs of the network (e.g., Figure 3-7), but this is

not always possible.

Unfortunately, we do not know a better procedure than simply iterating over all chains

of the network checking for minimality. Nonetheless, we can make this method much more

effective by proceeding in order of decreasing dimension. This simple procedure is particularly

efficient when we are only interested in the minimal primes of high dimension, as will be seen

in Section 3.7.1. In the remaining of the section we will explain how to enumerate the chains

by decreasing dimension (this is precisely the dimension isolation problem).
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Dimension count

Classifying the number of chains according to its dimension can be done with a very similar

dynamic program as for computing the dimension. As discussed above, the dimension of a

chain is simply given by its cardinality. For a rank 𝑙 node 𝑓𝑙 of the network and for any

0 ≤ 𝑘 ≤ 𝑙 + 1, let 𝑐𝑘(𝑓𝑙) denote the number of chains of the network (up to level 𝑙) with

cardinality exactly 𝑘. Then for an arc (𝑓𝑙, 𝑓𝑝) with 𝑓𝑝 ̸= 0 the update rule is simply 𝑐𝑘(𝑓𝑝) :=

𝑐𝑘(𝑓𝑝) + 𝑐𝑘−1(𝑓𝑙).

Dimension isolation

For simplicity of exposition we only describe how to produce one chain 𝐶 of dimension 𝑑, but

it is straightforward to then generate all of them. As in Example 3.10, we follow a bottom up

strategy, successively adding nodes to the chain. We first need to choose a rank 𝑛 − 1 node

𝑓𝑛−1 that belongs to at least one chain of dimension 𝑑. Using the values 𝑐𝑘(𝑓𝑙) from above,

we can choose any 𝑓𝑛−1 for which 𝑐𝑛−𝑑(𝑓𝑛−1) ≥ 1. Assuming that we chose some 𝑓𝑛−1 ̸= 0,

we now need to find an adjacent rank 𝑛− 2 node 𝑓𝑛−2 such that 𝑐𝑛−𝑑−1(𝑓𝑛−2) ≥ 1. It is clear

how to continue.

3.6 The general case

We finally proceed to compute chordal network representations of arbitrary polynomial ideals.

We will also see how the different chordal network algorithms developed earlier (e.g., radical

ideal membership, isolating the top-dimensional component) have a natural extension to this

general setting.

3.6.1 Regular chains

The theory of triangular sets for positive-dimensional varieties is more involved; we refer

to [73,143] for an introduction. We now present the concept of regular chains, which is at the

center of this theory.

A set of polynomials 𝑇 ⊆ K[𝑋] ∖ K is a triangular set if its elements have distinct main

variables. Let ℎ be the product of the initials (Definition 3.5) of the polynomials in 𝑇 . The
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geometric object associated to 𝑇 is the quasi-component

W(𝑇 ) := V(𝑇 ) ∖V(ℎ) ⊆ K𝑛
.

The attached algebraic object is the saturated ideal

sat(𝑇 ) := ⟨𝑇 ⟩ : ℎ∞ = {𝑓 ∈ K[𝑋] : ℎ𝑁𝑓 ∈ ⟨𝑇 ⟩ for some 𝑁 ∈ N}.

Note that V(sat(𝑇 )) = W(𝑇 ), where the closure is in the Zariski topology.

Polynomial pseudo-division is a basic operation in triangular sets. Let 𝑓, 𝑔 be polynomials

of degrees 𝑑, 𝑒 in 𝑥 := mvar(𝑔). The basic idea is to see 𝑓, 𝑔 as univariate polynomials in 𝑥 (with

coefficients in K[𝑋 ∖ {𝑥}]), and in order that we can always divide 𝑓 by 𝑔, we first multiply

by some power of init(𝑔). Formally, the pseudo-remainder of 𝑓 by 𝑔 is prem(𝑓, 𝑔) := 𝑓 if

𝑑 < 𝑒, and otherwise prem(𝑓, 𝑔) := init(𝑔)𝑑−𝑒+1𝑓 mod (𝑔). Pseudo-division can be extended

to triangular sets in the natural way. The pseudo-remainder of 𝑓 by 𝑇 = {𝑡1, . . . , 𝑡𝑘}, where

mvar(𝑡1) > · · · > mvar(𝑡𝑘), is

prem(𝑓, 𝑇 ) = prem(· · · (prem(𝑓, 𝑡1) · · · , 𝑡𝑘).

Definition 3.10. A regular chain is a triangular set 𝑇 such that for any polynomial 𝑓

𝑓 ∈ sat(𝑇 ) ⇐⇒ prem(𝑓, 𝑇 ) = 0.

Remark 3.11. Note that a zero-dimensional triangular set (Definition 3.5) is a regular chain,

since pseudo-reduction coincides with Gröbner bases reduction.

Regular chains have very nice algorithmic properties. In particular, they are always con-

sistent (i.e., W(𝑇 ) ̸= 0), and furthermore dim(W(𝑇 )) = 𝑛− |𝑇 |. Table 3.1 summarizes some

of these properties, comparing them with Gröbner bases.

Definition 3.11. A triangular decomposition of a polynomial set 𝐹 is a collection 𝒯 of regular

chains, such that V(𝐹 ) =
⋃︀

𝑇∈𝒯 W(𝑇 ).

Remark 3.12. There is a weaker notion of decomposition that is commonly used: 𝒯 is a

Kalkbrener triangular decomposition if V(𝐹 ) =
⋃︀

𝑇∈𝒯 W(𝑇 ).
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Table 3.1: Gröbner bases vs. regular chains

Gröbner basis (𝒢) Regular chain (𝑇 )

Geometric object V(𝒢) W(𝑇 )
Algebraic object ⟨𝒢⟩ sat(𝑇 )

Feasible if 1 /∈ 𝒢 always
Ideal membership Remainder = 0 PseudoRemainder = 0

Dimension from Hilbert series 𝑛− |𝑇 |
Elimination ideal 𝒢lex ∩K[𝑥𝑙, . . . , 𝑥𝑛−1] 𝑇 ∩K[𝑥𝑙, . . . , 𝑥𝑛−1]

Example 3.15. Let 𝐹 = {𝑥0𝑥3 − 𝑥1𝑥2, 𝑥2𝑥5 − 𝑥3𝑥4, 𝑥4𝑥7 − 𝑥5𝑥6} consist of the adjacent

minors of a 2× 4 matrix. It can be decomposed into 8 regular chains:

(𝑥0𝑥3 − 𝑥1𝑥2, 𝑥2𝑥5 − 𝑥3𝑥4, 𝑥4𝑥7 − 𝑥5𝑥6), (𝑥0𝑥3 − 𝑥1𝑥2, 𝑥4, 𝑥5), (𝑥2, 𝑥3, 𝑥4𝑥7 − 𝑥5𝑥6),

(𝑥1, 𝑥3, 𝑥4, 𝑥5), (𝑥1, 𝑥3, 𝑥5, 𝑥7), (𝑥2, 𝑥3, 𝑥5, 𝑥7), (𝑥2, 𝑥3, 𝑥6, 𝑥7), (𝑥0𝑥3 − 𝑥1𝑥2, 𝑥2𝑥5 − 𝑥3𝑥4, 𝑥6, 𝑥7).

Note that the first three triangular sets (first line) have dimension 8 − 3 = 5. Observe that

the quasi-components W(𝑇 ) of these three sets do not cover the points for which 𝑥3 = 𝑥7 = 0,

which is why we need the remaining five sets. However, these three triangular sets alone give

a Kalkbrener decomposition of the variety.

3.6.2 Regular systems

In the study of triangular sets, it is useful to consider systems of polynomials containing both

equations {𝑓𝑖(𝑥) = 0}𝑖 and inequations {ℎ𝑗(𝑥) ̸= 0}𝑗 . Following the notation of [143], we

say that a polynomial system F = (𝐹,𝐻) is a pair of polynomial sets 𝐹,𝐻 ⊆ K[𝑋], and its

associated geometric object is the quasi-variety

Z(F) := {𝑥 ∈ K𝑛
: 𝑓(𝑥) = 0 for 𝑓 ∈ 𝐹, ℎ(𝑥) ̸= 0 for ℎ ∈ 𝐻}.

For instance, the quasi-component W(𝑇 ) of a triangular set is the quasi-variety of the poly-

nomial system (𝑇, init(𝑇 )), where init(𝑇 ) is the set of initials of 𝑇 .

For a polynomial system F = (𝐹,𝐻) we denote by elim𝑝(F) the polynomial system

(elim𝑝(𝐹 ), elim𝑝(𝐻)). We also denote by F1+F2 the concatenation of two polynomial systems,

i.e, (𝐹1, 𝐻1) + (𝐹2, 𝐻2) := (𝐹1 ∪ 𝐹2, 𝐻1 ∪𝐻2).

Definition 3.12. A regular system is a pair T = (𝑇,𝑈) such that 𝑇 is triangular and for any
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0 ≤ 𝑘 < 𝑛:

(i) either 𝑇 ⟨𝑘⟩ = ∅ or 𝑈 ⟨𝑘⟩ = ∅, where the superscript ⟨𝑘⟩ denotes the polynomials with

main variable 𝑥𝑘.

(ii) init(𝑓)(𝑥̂𝑘+1) ̸= 0 for any 𝑓 ∈ 𝑇 ⟨𝑘⟩ ∪ 𝑈 ⟨𝑘⟩ and 𝑥̂𝑘+1 ∈ Z(elim𝑘+1(T)) ⊆ K𝑛−𝑘−1.

A regular system is squarefree if the polynomials 𝑓(𝑥𝑘, 𝑥̂𝑘+1) ⊆ K[𝑥𝑘] are squarefree for any

𝑓 ∈ 𝑇 ⟨𝑘⟩ ∪ 𝑈 ⟨𝑘⟩ and any 𝑥̂𝑘+1 ∈ Z(elim𝑘+1(T)) ⊆ K𝑛−𝑘−1.

For a regular system (𝑇,𝑈) the set 𝑇 is a regular chain, and conversely, for a regular chain

𝑇 there is some 𝑈 such that (𝑇,𝑈) is a regular system [142]. Wang showed how to decompose

any polynomial system in characteristic zero into (squarefree) regular systems [142,143].

Definition 3.13. A triangular decomposition of a polynomial system F is a collection 𝒯 of

regular systems, such that Z(F) =
⋃︀

T∈𝒯 Z(T).

Remark 3.13 (Binomial ideals). Consider a polynomial system F = (𝐹,𝑈) such that 𝐹 consists

of binomials (two terms) and 𝐻 = {𝑥𝑖1 , . . . , 𝑥𝑖𝑚} consists of variables. We can decompose F

into regular systems T = (𝑇,𝑈) that preserve the binomial structure. Assume first that

𝐻 = {𝑥0, . . . , 𝑥𝑛−1} contains all variables. Equivalently, we are looking for the zero set of 𝐹

on the torus (K ∖ {0})𝑛. It is well known that 𝐹 can be converted to (binomial) triangular

form 𝑇 by computing the Hermite normal form of the matrix of exponents [128, §3.2], and the

inequations 𝑈 correspond to the non-pivot variables. For an arbitrary 𝐻, we can enumerate

over the choices of nonzero variables.

3.6.3 Chordal triangularization

Algorithm 1 extends to the positive-dimensional case in the natural way, although with one

important difference: the nodes of the chordal network will be polynomial systems, i.e., pairs

of polynomial sets. We now describe the modifications of the main steps of the algorithm:

Initialization The nodes of the induced 𝐺-chordal network are now of the form F𝑙 = (𝐹𝑙, 𝐻𝑙),

where 𝐹𝑙 = 𝐹 ∩K[𝑋𝑙] and 𝐻𝑙 = ∅.

Triangulation For a node F𝑙 we decompose it into regular systems T and we replace F𝑙 with

a node for each of them.
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Elimination Let F𝑙 be the rank 𝑙 node we will eliminate, and let F𝑝 be an adjacent rank 𝑝

node. Then we create a rank 𝑝 node F′
𝑝 := F𝑝 + elim𝑝(F𝑙).

Termination After all triangulation/elimination operations, we may remove the inequations

from the nodes of the network, i.e., replace F = (𝐹,𝐻) with 𝐹 .

𝑥0𝑥3 − 𝑥1𝑥2

𝑥2𝑥5 − 𝑥3𝑥4

𝑥4𝑥7 − 𝑥5𝑥6

tria
==⇒
elim

𝑥0𝑥3 − 𝑥1𝑥2𝑥1 0

𝑥2𝑥5 − 𝑥3𝑥4/𝑥3𝑥2𝑥5, 𝑥3 𝑥2, 𝑥3

𝑥4𝑥7 − 𝑥5𝑥6

tria
==⇒
elim

𝑥0𝑥3 − 𝑥1𝑥2𝑥1 0

𝑥2𝑥5 − 𝑥3𝑥4/𝑥30/𝑥3 𝑥2, 𝑥3𝑥3

𝑥4𝑥7 − 𝑥5𝑥6/𝑥5𝑥4, 𝑥5 𝑥4𝑥7 − 𝑥5𝑥6𝑥4𝑥7, 𝑥5

tria
==⇒

𝑥0𝑥3 − 𝑥1𝑥2𝑥1 0

𝑥2𝑥5 − 𝑥3𝑥4/𝑥30/𝑥3 𝑥2, 𝑥3𝑥3

𝑥4𝑥7 − 𝑥5𝑥6/𝑥5𝑥7 𝑥6, 𝑥7/𝑥5𝑥4, 𝑥5 𝑥4𝑥7 − 𝑥5𝑥6/𝑥7 𝑥5, 𝑥7 𝑥6, 𝑥7

term
==⇒

𝑥0𝑥3 − 𝑥1𝑥2𝑥1 0

𝑥2𝑥5 − 𝑥3𝑥40 𝑥2, 𝑥3𝑥3

𝑥4𝑥7 − 𝑥5𝑥6 𝑥6, 𝑥7𝑥4, 𝑥5 𝑥5, 𝑥7

01

23

4-7

Figure 3-8: Chordal triangularization from Example 3.16.

Example 3.16. Figure 3-8 illustrates the chordal triangularization algorithm for the poly-

nomial set 𝐹 from Example 3.15. The nodes of the chordal network are polynomial systems

F = (𝐹,𝐻), which we represent in the figure as (𝐹/𝐻). Note that in the termination step,

after all triangulation/elimination operations, we remove the inequations to simplify the net-

work. The final network has 8 chains, which coincide with the triangular decomposition from

Example 3.15.

We can now compute chordal network representations of arbitrary systems.

Theorem 3.19. Let 𝐹 ⊆ K[𝑋] be supported on a chordal graph 𝐺. With the above modifica-

tions, Algorithm 1 computes a 𝐺-chordal network 𝒩 , whose chains give a triangular decom-

position of 𝐹 . Furthermore, this decomposition is squarefree if all triangulation operations are

squarefree.

Proof. See Section 3.8.3.

Remark 3.14. We have noticed that chordal triangularization is quite efficient for binomial

ideals. Remark 3.13 partly explains this observation. However, we do not yet know whether

it will always run in polynomial time when the treewidth is bounded.
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3.6.4 Computing with chordal networks

We just showed how to compute chordal network representations of arbitrary polynomial

systems. We now explain how to extend the chordal network algorithms from Section 3.4 and

Section 3.5.2 to the general case.

Elimination

Since regular chains possess the same elimination property as lexicographic Gröbner bases,

the approach from Section 3.4.1 works in the same way.

Radical ideal membership

Algorithm 3 extends to the positive-dimensional case simply by replacing polynomial divi-

sion with pseudo-division. Note that we require a squarefree chordal network, which can be

computed as explained in Theorem 3.19.

Dimension and equidimensional components

The dimension of a regular chain 𝑇 is 𝑛 − |𝑇 |, which is the same as for the monomial case.

Thus, we can compute the dimension as in Section 3.5.2. Similarly, we can compute a chordal

network describing the highest dimensional component, and also isolate any given dimension

of the network.

𝑥0𝑥3 − 𝑥1𝑥2 0

𝑥2𝑥5 − 𝑥3𝑥40 𝑥2, 𝑥3

𝑥4𝑥7 − 𝑥5𝑥6𝑥4, 𝑥5

01

23

4-7

Figure 3-9: Top-dimensional part of the chordal network from Figure 3-8.

Example 3.17. Figure 3-9 shows the highest dimensional part of the chordal network from

Figure 3-8. This network only has 3 chains, which give a Kalkbrener decomposition of the

variety (see Example 3.15). Likewise, the chordal network from Figure 3-3 gives a Kalkbrener

triangular decomposition of the ideal of adjacent minors of a 2× 7 matrix.
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Irreducible components

Unlike the monomial case, the chains of an arbitrary chordal network 𝒩 will not necessarily

define prime ideals (see Section 3.3.4). However, in some interesting cases it will be the case,

thanks to the following well known property.

Theorem 3.20. Let 𝑇 = {𝑡1, . . . , 𝑡𝑘} be a regular chain. Assume that mdeg(𝑡𝑖) = 1 for

1 ≤ 𝑖 < 𝑘 and that 𝑡𝑘 is an irreducible polynomial. Then sat(𝑇 ) is a prime ideal.

Proof. This follows from [143, Thm 6.2.14].

In particular, note that all chains of the chordal network from Figure 3-3 are of this form.

We will see in Section 3.7.3 that the same holds for other families of ideals. Assume now that

all chains of the network define a prime ideal. A plausible strategy to compute all minimal

primes (or only the high dimensional ones) is as follows:

(i) Iterate over all chains 𝑇 of the network in order of decreasing dimension.

(ii) For a chain 𝐶, and a minimal prime 𝐼 ′ previously found, determine whether 𝐼 ′ ⊆ sat(𝐶)

by checking whether prem(𝑓, 𝐶) = 0 for each generator 𝑓 of 𝐼 ′.

(iii) If 𝐼 := sat(𝐶) does not contain any previously found prime, compute generators for 𝐼

by using Gröbner bases. We have a new minimal prime.

3.7 Examples

We conclude this chapter by exhibiting some examples of our methods. We implemented our

algorithms in Sage [125] using Maple’s library Epsilon [144] for triangular decompositions,

and Singular [51] for Gröbner bases. The experiments are performed on an i7 PC with

3.40GHz, 15.6 GB RAM, running Ubuntu 14.04.

3.7.1 Commuting birth and death ideal

We consider the binomial ideal 𝐼𝑛1,...,𝑛𝑘 from [58]. This ideal models a generalization of the

one-dimensional birth-death Markov process to higher dimensional grids. In [58] it is given

a parametrization of its top-dimensional component, as well as the primary decomposition
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of some small cases. In [77] Kahle uses his Macaulay2 package Binomials, specialized in

binomial ideals, to compute primary decompositions of larger examples. We now show how

our methods can greatly surpass Kahle’s methods in computing the irreducible decomposition

when the treewidth is small.

We focus on the case of a two dimensional grid:

𝐼𝑛1,𝑛2 = ⟨𝑈𝑖,𝑗𝑅𝑖,𝑗+1 −𝑅𝑖,𝑗𝑈𝑖+1,𝑗 , 𝐷𝑖,𝑗+1𝑅𝑖,𝑗 −𝑅𝑖,𝑗+1𝐷𝑖+1,𝑗+1,

𝐷𝑖+1,𝑗+1𝐿𝑖+1,𝑗 − 𝐿𝑖+1,𝑗+1𝐷𝑖,𝑗+1, 𝑈𝑖+1,𝑗𝐿𝑖+1,𝑗+1 − 𝐿𝑖+1,𝑗𝑈𝑖,𝑗⟩ 0≤𝑖<𝑛1, 0≤𝑗<𝑛2 .

We let the parameter 𝑛1 take values between 1 to 100, while 𝑛2 is either 1 or 2. Table 3.2 shows

the time used by Algorithm 1 for different values of 𝑛1, 𝑛2. Observe that, for small values of 𝑛2,

our methods can handle very high values of 𝑛1 thanks to our use of chordality. For comparison,

we note that even for the case 𝑛1 = 10, 𝑛2 = 1 Singular’s Gröbner basis algorithm (grevlex

order) did not terminate within 20 hours of computation. Similarly, neither Epsilon [144] nor

RegularChains [89] were able to compute a triangular decomposition of 𝐼10,1 within 20 hours.

Table 3.2: Time required by chordal triangularization on ideals 𝐼𝑛1,𝑛2 . No other software we
tried [51,77,89,144] can solve these problems.

𝑛1 20 40 60 80 100

𝑛2 = 1 0:00:45 0:02:16 0:04:03 0:06:28 0:09:13
𝑛2 = 2 0:36:07 1:59:24 3:30:33 6:15:25 9:00:52

We now consider the computation of the irreducible components of the ideal 𝐼𝑛1,1. We

follow the strategy described after Theorem 3.20, using Sage’s default algorithm to compute

saturations. Table 3.3 compares this strategy (including the time of Algorithm 1) with the

algorithm from Binomials [77]. It can be seen that our method is more efficient. In particular,

for the ideal 𝐼7,1 Kahle’s algorithm did not finish within 60 hours of computation.

Table 3.3: Irreducible components of the ideals 𝐼𝑛1,1.

𝑛1 1 2 3 4 5 6 7

#components 3 11 40 139 466 1528 4953

time ChordalNet 0:00:00 0:00:01 0:00:04 0:00:13 0:02:01 0:37:35 12:22:19
Binomials 0:00:00 0:00:00 0:00:01 0:00:12 0:03:00 4:15:36 -

Comparing Table 3.2 with Table 3.3 it is apparent that computing a triangular chordal
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network representation is considerably simpler than computing the irreducible components.

Nonetheless, if we are only interested in the high dimensional components the complexity can

be significantly improved. Indeed, in Table 3.4 we can see how we can very efficiently compute

all components of the seven highest dimensions.

Table 3.4: High dimensional irreducible components of the ideals 𝐼𝑛1,1.

Highest 5 dimensions Highest 7 dimensions

𝑛1 20 40 60 80 100 10 20 30 40

#comps 404 684 964 1244 1524 2442 5372 8702 12432
time 0:01:07 0:04:54 0:15:12 0:41:52 1:34:05 0:05:02 0:41:41 3:03:29 9:53:09

3.7.2 Lattice walks

We now show a simple application of our radical membership test. We consider the lattice

reachability problem from [53] (see also [83]). Given a set of vectors ℬ ⊆ Z𝑛, construct a graph

with vertex set N𝑛 in which 𝑢, 𝑣 ∈ N𝑛 are adjacent if 𝑢 − 𝑣 ∈ ±ℬ. The problem is to decide

whether two vectors 𝑠, 𝑡 ∈ N𝑛 are in the same connected component of the graph. This problem

is equivalent to an ideal membership problem for certain binomial ideal 𝐼ℬ [53]. Therefore,

our radical membership test can be used to prove that 𝑠, 𝑡 are not in the same connected

component (but it may fail to prove the converse). We consider the following sample problem.

1
2

34

5
3

2

52

3 1

2 3

4
5

×2

×2

×2

×2

Figure 3-10: Illustration of the card problem using 5 decks.

Problem. There are 𝑛 card decks organized on a circle. Given any four consecutive decks we

are allowed to move the cards as follows: we may take one card from each of the inner decks

and place them in the outer decks (one in each), or we may take one card from the outer decks

and place them on the inner decks. Initially the number of cards in the decks are 1, 2, . . . , 𝑛.

Is it possible to reach a state where the number of cards in the decks is reversed 3 (i.e., the 𝑖-th

deck has 𝑛− 𝑖+ 1 cards)?
3A combinatorial argument proves that this is only possible if all prime divisors of 𝑛 are at least 5. However,
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The above problem is equivalent to determining whether 𝑓𝑛 ∈ 𝐼𝑛, where

𝑓𝑛 := 𝑥0𝑥
2
1𝑥

3
2 · · ·𝑥𝑛𝑛−1 − 𝑥𝑛0𝑥

𝑛−1
1 · · ·𝑥𝑛−1, 𝐼𝑛 := {𝑥𝑖𝑥𝑖+3 − 𝑥𝑖+1𝑥𝑖+2 : 0 ≤ 𝑖 < 𝑛},

and where the indices are taken modulo 𝑛. Table 3.5 compares our method against Singular’s

Gröbner basis (grevlex order) and Epsilon’s triangular decomposition. Even though the ideal

𝐼𝑛 is not radical, in all experiments performed we obtained the right answer. Note that the

complexity of our method is almost linear. This contrasts with the exponential growth of both

Singular and Epsilon, which did not terminate within 20 hours for the cases 𝑛 = 30 and

𝑛 = 45. We do not include timings for Binomials and RegularChains since they are both

slower than Singular and Epsilon.

Table 3.5: Time (seconds) to test (radical) ideal membership on the ideals 𝐼𝑛.

𝑛 5 10 15 20 25 30 35 40 45 50 55

ChordalNet 0.7 3.0 8.5 14.3 21.8 29.8 37.7 48.2 62.3 70.6 84.8
Singular 0.0 0.0 0.2 17.9 1036.2 - - - - - -
Epsilon 0.1 0.2 0.4 2.0 54.4 160.1 5141.9 17510.1 - - -

Test result true false false false true false true false false false true

3.7.3 Finite state diagram representation

One of the first motivations in this chapter was the very nice chordal network representation

of the irreducible components of the ideal of adjacent minors of a 2 × 𝑛 matrix. We will see

now that similar chordal network representations exist for other determinantal ideals.

First, notice that the chordal network in Figure 3-3 has a simple pattern. Indeed, there are

three types of nodes 𝐴𝑖 = {𝑥2𝑖𝑥2𝑖+3 − 𝑥2𝑖+1𝑥2𝑖+2}, 𝐵𝑖 = {0}, 𝐶𝑖 = {𝑥2𝑖, 𝑥2𝑖+1}, and we have

some valid transitions: 𝐴𝑖 → {𝐴𝑖+1, 𝐵𝑖+1}, 𝐵𝑖 → {𝐶𝑖+1}, 𝐶𝑖 → {𝐴𝑖+1, 𝐵𝑖+1}. This transition

pattern is represented in the state diagram shown in Figure 3-11a. Following the convention

from automata theory, we mark the initial states with an incoming arrow and the terminal

states with a double line.

We can also consider the ideal of 3×3 adjacent minors of a 3×𝑛matrix. As seen in Figure 3-

11b, a very similar pattern arises. In order to make sense of such diagram let us think of how

this argument does not generalize to other choices of the final state (e.g., we cannot reach a state where the
number of cards is 2, 1, 3, 4, 5, . . . , 𝑛 for any 𝑛).
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⃒⃒ 𝑥2𝑖 𝑥2𝑖+2
𝑥2𝑖+1 𝑥2𝑖+3

⃒⃒
0 𝑥2𝑖, 𝑥2𝑖+1

(a) 2× 𝑛 matrix

⃒⃒⃒ 𝑥3𝑖 𝑥3𝑖+3 𝑥3𝑖+6
𝑥3𝑖+1 𝑥3𝑖+4 𝑥3𝑖+7
𝑥3𝑖+2 𝑥3𝑖+5 𝑥3𝑖+8

⃒⃒⃒
0

0
0

⃒⃒ 𝑥3𝑖 𝑥3𝑖+3
𝑥3𝑖+2 𝑥3𝑖+5

⃒⃒
,
⃒⃒ 𝑥3𝑖+1 𝑥3𝑖+4
𝑥3𝑖+2 𝑥3𝑖+5

⃒⃒

𝑥3𝑖, 𝑥3𝑖+1, 𝑥3𝑖+2

(b) 3× 𝑛 matrix

Figure 3-11: State diagrams for ideals of adjacent minors of a matrix.

to generate a 3 × 𝑛 matrix satisfying all these minor constraints. Let 𝑣1, . . . , 𝑣𝑛 ∈ K3 denote

the column vectors. Given 𝑣𝑖+1, 𝑣𝑖+2 we can generate 𝑣𝑖 as follows: it can be the zero vector,

or it can be a multiple of 𝑣𝑖+1, or it can be a linear combination of 𝑣𝑖+1, 𝑣𝑖+2. These three

choices correspond to the three main states shown in the diagram. Note now that if 𝑣𝑖 is the

zero vector then we can ignore it when we generate 𝑣𝑖−1 and 𝑣𝑖−2. This is why in order to

reach the state (𝑥3𝑖, 𝑥3𝑖+1, 𝑥3𝑖+2) we have two pass two trivial states. Similarly, if 𝑣𝑖 is parallel

to 𝑣𝑖+1 then we can ignore 𝑣𝑖+1 when we generate 𝑣𝑖−1.

It is easy to see that the above reasoning generalizes if we consider the adjacent minors of

a 𝑘×𝑛 matrix. Therefore, for any fixed 𝑘, the ideal of adjacent minors of a 𝑘×𝑛 minors has a

finite state diagram representation (and thus it has a chordal network representation of linear

size). Since the nodes of the network are given by minors, then all chains of the network are of

the form of Theorem 3.20. Thus, the decomposition obtained is into irreducible components.

⃒⃒ 𝑥2𝑖 𝑥2𝑛−2
𝑥2𝑖+1 𝑥2𝑛−1

⃒⃒

⃒⃒ 𝑥2𝑖 𝑥2𝑖+2
𝑥2𝑖+1 𝑥2𝑖+3

⃒⃒ ⃒⃒ 𝑥2𝑖 𝑥2𝑖+2
𝑥2𝑖+1 𝑥2𝑖+3

⃒⃒
0

𝑥2𝑖, 𝑥2𝑖+1 𝑥2𝑖, 𝑥2𝑖+1

0

⃒⃒ 𝑥2𝑖 𝑥2𝑖+2
𝑥2𝑖+1 𝑥2𝑖+3

⃒⃒
0

𝑥2𝑖, 𝑥2𝑖+1

Figure 3-12: State diagram for the ideal of cyclically adjacent minors of a 2× 𝑛 matrix.

Many other families of ideals admit a simple state diagram representation. For instance,

the ideal generated by the 𝑛 cyclically adjacent minors of a 2 × 𝑛 matrix (see Figure 3-12).

Interestingly, this chordal network has two equidimensional components. Similarly, the ideal
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of (cyclically) adjacent permanental minors has a finite state diagram representation. We can

also easily provide families of zero-dimensional problems with such property (e.g., Figure 3-1),

since they often admit a chordal network of linear size (Remark 3.6). A similar reasoning

applies for monomial ideals. It is natural to ask for further examples of this behaviour.

Question. Characterize interesting families of ideals (parametrized by 𝑛) whose triangular

decomposition admits a finite state diagram representation (and thus have a chordal network

representation of size 𝑂(𝑛)).

Remark 3.15. The class of binomial edge ideals [70] is a natural starting point for this question,

given that it generalizes both the ideal of adjacent minors (Figure 3-11a) and cyclically adjacent

minors (Figure 3-12) of a 2× 𝑛 matrix.

3.8 Additional proofs

3.8.1 Proofs from Section 3.3

Proof of Lemma 3.2. Let 𝑚 < 𝑛 be such that 𝑋𝑚 is a maximal clique, and consider a rank 𝑚

node 𝐹𝑚 ⊆ K[𝑋𝑚] to which we will apply a triangulation operation. Also let 𝐹 ′
𝑚 := 𝐹 ∩K[𝑋𝑚]

be the unique initial node of rank 𝑚. By assumption, 𝐹 ′
𝑚 is zero-dimensional. Note that when

we create a new node of rank 𝑚 in an elimination operation, we copy the equations from a

previous rank 𝑚 node. In particular, we must have that 𝐹 ′
𝑚 ⊆ 𝐹𝑚, and therefore 𝐹𝑚 is also

zero-dimensional. This proves the lemma for this case.

Consider now some 𝑝 < 𝑛 such that 𝑋𝑝 is not maximal, which means that 𝑥𝑝 is not a

leaf of the elimination tree. Since 𝑋𝑝 is not maximal, there is a child 𝑥𝑙 of 𝑥𝑝 such that

𝑋𝑙 = 𝑋𝑝 ∪ {𝑥𝑙}. By induction, we may assume that the lemma holds for all nodes of rank 𝑙.

Consider a rank 𝑝 node 𝐹𝑝 ⊆ K[𝑋𝑝] that we want to triangulate, and let 𝐹𝑙 of rank 𝑙 be

adjacent to 𝐹𝑝. Let 𝐹 ′
𝑙 be the same rank 𝑙 node, but before the 𝑙-th elimination round. By

induction, 𝐹 ′
𝑙 ⊆ K[𝑋𝑙] is zero-dimensional. Therefore, elim𝑝(𝐹

′
𝑙 ) ⊆ K[𝑋𝑙 ∖ {𝑥𝑙}] = K[𝑋𝑝] is

also zero-dimensional, and as elim𝑝(𝐹
′
𝑙 ) ⊆ 𝐹𝑝, we conclude that 𝐹𝑝 is zero-dimensional.

Lemma 3.21. Let 𝑋1, 𝑋2 ⊆ 𝑋 and let 𝐼1 ⊆ K[𝑋1], 𝐼2 ⊆ K[𝑋2] be radical zero-dimensional

ideals. Then 𝐼1 + 𝐼2 ⊆ K[𝑋1 ∪𝑋2] is also radical and zero-dimensional.
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Proof. This is a direct consequence of the following known fact (see e.g., [128, Thm 2.2]): an

ideal 𝐼 ⊆ K[𝑋] is radical and zero-dimensional if and only if for any 𝑥𝑖 ∈ 𝑋 there is a nonzero

squarefree polynomial 𝑓 ∈ 𝐼 ∩K[𝑥𝑖].

Proof of Proposition 3.6. For any 𝑙, let 𝑋 𝑙 denote the subtree of the elimination tree consisting

of 𝑥𝑙 and all its descendants. For a chordal network 𝒩 , we will say that an 𝑙-subchain 𝐶𝑙 is

the subset of a chain 𝐶 restricted to nodes with rank 𝑖 for some 𝑥𝑖 ∈ 𝑋 𝑙. Note that any chain

is also a (𝑛− 1)-chain. Thus, it suffices to show that every 𝑙-subchain is radical after the 𝑙-th

triangulation round in Algorithm 1, and we proceed to show it by induction.

If 𝑥𝑙 is a leaf in the elimination tree, then any 𝑙-subchain is just the output of a triangulation

operation and thus it is radical. Assume that the result holds for all 𝑙 < 𝑝. Let 𝑇𝑝 be a rank

𝑝 node obtained after the 𝑝-th triangulation round. Let 𝐶 be a 𝑝-subchain containing 𝑇𝑝;

we want to show that ⟨𝐶⟩ is radical. Let 𝑥𝑙1 , . . . , 𝑥𝑙𝑘 be the children of 𝑥𝑝. For each 𝑙𝑗 , let

𝐶𝑙𝑗 be the 𝑙𝑗-subchain obtained by restricting 𝐶 to ranks in 𝑋 𝑙𝑗 . Also let 𝐶 ′
𝑙𝑗

be the same

𝑙𝑗-subchain, but before the 𝑙𝑗-th elimination round. Observe that

⟨𝐶⟩ = ⟨𝑇𝑝⟩+
∑︁
𝑗

⟨𝐶 ′
𝑙𝑗
⟩.

Note that ⟨𝑇𝑝⟩ is zero-dimensional and radical, and by induction the same holds for each ⟨𝐶 ′
𝑙𝑗
⟩.

It follows from Lemma 3.21 that ⟨𝐶⟩ is radical.

Proof of Proposition 3.8. It was shown in [64] that the complexity of Buchberger’s algorithm

is 𝑞𝑂(𝑘) if the equations 𝑥𝑞𝑖 − 𝑥𝑖 are present, and the same analysis works for any 𝑞-dominated

ideal. Given a Gröbner basis, the LexTriangular algorithm [88] computes a triangular decom-

position in time 𝐷𝑂(1), where 𝐷 ≤ 𝑞𝑘 is the number of standard monomials. For irreducible

(or squarefree) decompositions, we can reduce the problem to the univariate case by using a

rational univariate representation [113] (here we need that K contains sufficiently many ele-

ments). This representation can also be obtained in 𝐷𝑂(1). Since the complexity of univariate

(squarefree) factorization [79] is polynomial in the degree (𝐷), the result follows.

Proof of Lemma 3.10. Let us see that the result holds after each triangulation and elimination

round. We showed in Lemma 3.7 that after the 𝑙-th triangulation round all rank 𝑙 nodes have
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disjoint varieties, and thus there are at most |V(𝐹 ∩K[𝑋𝑙])| ≤ 𝑞𝜔 of them. Consider now the

𝑙-th elimination round, and let us see that all the resulting rank 𝑝 nodes (𝑥𝑝 parent of 𝑥𝑙) also

have disjoint varieties, and thus the same bound holds.

Assume by induction that all rank 𝑝 nodes have disjoint varieties before the 𝑙-th elimination

round. Let 𝐹𝑝 be a rank 𝑝 node (before the elimination) and let 𝑇1, . . . , 𝑇𝑘 be its adjacent

rank 𝑙 nodes. We just need to show that the new rank 𝑝 nodes 𝐹𝑝∪elim𝑝(𝑇1), . . . , 𝐹𝑝∪elim𝑝(𝑇𝑘)

have disjoint varieties (or are the same). By assumption, each 𝑇𝑖 ⊆ K[𝑋𝑙] defines a maximal

(or prime) ideal, and thus elim𝑝(𝑇𝑖) ⊆ K[𝑋𝑙 ∖ {𝑥𝑙}] also defines a maximal ideal. Therefore,

V(elim𝑝(𝑇𝑖)),V(elim𝑝(𝑇𝑗)) are either equal or disjoint, and it follows that the same holds for

V(𝐹𝑝 ∪ elim𝑝(𝑇𝑖)),V(𝐹𝑝 ∪ elim𝑝(𝑇𝑗)).

3.8.2 Proofs from Section 3.4

Lemma 3.22. Let L be a ring and let 𝑓 ∈ L[𝑦] be a monic univariate polynomial. Let

𝜑 : L[𝑦] → L[𝑦] be an endomorphism such that 𝜑(𝑓) = 𝑓 and deg(𝜑(ℎ)) ≤ deg(ℎ) for any

ℎ ∈ L[𝑦]. Then 𝜑(ℎ mod 𝑓) = 𝜑(ℎ) mod 𝑓 , for any ℎ ∈ L[𝑦].

Proof. Consider the Euclidean division ℎ = 𝑞𝑓 + 𝑟, where 𝑞, 𝑟 ∈ L[𝑦] and deg(𝑟) < deg(𝑓).

Then 𝜑(ℎ) = 𝜑(𝑞)𝑓 + 𝜑(𝑟) and deg(𝜑(𝑟)) ≤ deg(𝑟) < deg(𝑓), so this is the Euclidean division

of 𝜑(ℎ). It follows that 𝜑(ℎ mod 𝑓) = 𝜑(𝑟) = 𝜑(ℎ) mod 𝑓 .

Proof of Lemma 3.13. We proceed by induction on 𝑙. The base case, 𝑙 = 0, is clear. Assume

now that the lemma holds for some 𝑙, and let us prove it for 𝑝 := 𝑙 + 1. Let 𝑓𝑝 be a rank 𝑝

node and let 𝑓𝑙,1, 𝑓𝑙,2, . . . , 𝑓𝑙,𝑘 be its adjacent rank 𝑙 nodes. Let us denote as 𝜑𝑙 the functional

that plugs in the values 𝑥̂0, . . . , 𝑥̂𝑙. By induction, we know that

𝐻(𝑓𝑙,𝑖) = 𝜑𝑙(
∑︁
𝐶𝑙,𝑖

𝑟𝐶𝑙,𝑖
ℎ mod 𝐶𝑙,𝑖)

where the sum is over all 𝑓𝑙,𝑖-subchains 𝐶𝑙,𝑖. Note that the algorithm sets

𝐻(𝑓𝑝) = 𝜑𝑝(
∑︁
𝑖

𝑟𝑙,𝑖𝐻(𝑓𝑙,𝑖) mod 𝑓𝑝),
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where 𝜑𝑝 is the functional that plugs in the value 𝑥̂𝑝. Therefore,

𝐻(𝑓𝑝) = 𝜑𝑝(
∑︁
𝑖

𝑟𝑙,𝑖𝜑𝑙(
∑︁
𝐶𝑙,𝑖

𝑟𝐶𝑙,𝑖
ℎ mod 𝐶𝑙,𝑖) mod 𝑓𝑝) = 𝜑𝑝(𝜑𝑙(

∑︁
𝑖

∑︁
𝐶𝑙,𝑖

𝑟𝑙,𝑖𝑟𝐶𝑙,𝑖
ℎ mod 𝐶𝑙,𝑖) mod 𝑓𝑝).

Since any 𝑓𝑝-subchain is of the form 𝐶𝑝 = 𝐶𝑙,𝑖 ∪ {𝑓𝑝} for some 𝑖, we can rewrite

𝐻(𝑓𝑝) = 𝜑𝑝(𝜑𝑙(
∑︁
𝐶𝑝

𝑟𝐶𝑝ℎ mod 𝐶 ′
𝑝) mod 𝑓𝑝),

where the sum is over all 𝑓𝑝-subchains 𝐶𝑝, and where 𝐶 ′
𝑝 := 𝐶𝑝 ∖ {𝑓𝑝}. To complete the proof

we just need to see that 𝜑𝑙 commutes with mod𝑓𝑝. This follows from Lemma 3.22 by setting

𝑦 = 𝑥𝑝 and L = K[𝑋 ∖ {𝑥𝑝}].

Proof of Lemma 3.15. Let 𝑥𝑚𝑖 denote the main variable of ℎ𝑖, which is one of the ranks where

the algorithm is initialized. It is enough to prove the lemma for ranks 𝑙 where the paths (in

the elimination tree) starting from different 𝑥𝑚𝑖 first meet. Thus, we restrict ourselves to some

𝑚1, . . . ,𝑚𝑘 such that their respective paths all meet at rank 𝑙. More precisely, we assume that

𝑋 𝑙
𝑚𝑖

∩𝑋 𝑙
𝑚𝑗

= {𝑥𝑙} for 𝑖 ̸= 𝑗, where 𝑋 𝑙
𝑚𝑖

denotes the path in the elimination tree connecting

𝑥𝑚𝑖 to 𝑥𝑙.

By applying Lemma 3.13 to each ℎ𝑖, it follows that the final value of 𝐻(𝑓𝑙) is given by

plugging in the values of 𝑥̂1, 𝑥̂2, . . . , 𝑥̂𝑙 in the polynomial

∑︁
𝑖

∑︁
𝐶𝑖

𝑟𝐶𝑖ℎ𝑖 mod 𝐶𝑖,

where 𝐶𝑖 is an 𝑓𝑙-subchain restricted to the path 𝑋 𝑙
𝑚𝑖

. Let 𝐶 =
⋃︀

𝑖𝐶𝑖 be the 𝑓𝑙-subchain

obtained by combining them. We want to show that the above expression is equal to

∑︁
𝐶

𝑟𝐶(ℎ1 + · · ·+ ℎ𝑘) mod 𝐶.

Note now that ℎ𝑖 does not involve any variable in 𝑋 𝑙
𝑚𝑗

for 𝑗 ̸= 𝑖. Thus, ℎ𝑖 mod 𝐶 = ℎ𝑖 mod 𝐶𝑖.

Observe that 𝑋 𝑙
𝑚𝑖
, 𝑋 𝑙

𝑚𝑗
have no common arcs since they only meet at level 𝑙, and thus 𝑟𝐶 =
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∏︀
𝑖 𝑟𝐶𝑖 . Denoting ℎ𝐶𝑖 := ℎ𝑖 mod 𝐶𝑖, the problem reduces to proving the following equality:

∑︁
𝑖

∑︁
𝐶𝑖

𝑟𝐶𝑖ℎ𝐶𝑖 =
∑︁
𝐶

𝑟𝐶1𝑟𝐶2 · · · 𝑟𝐶𝑘
(ℎ𝐶1 + ℎ𝐶2 + · · ·+ ℎ𝐶𝑘

). (3.2)

In order to prove eq. (3.2), let us look at the right hand side as a polynomial in variables

ℎ𝐶1 , . . . , ℎ𝐶𝑘
. Note that the coefficient of ℎ𝐶1 in such polynomial is

∑︁
𝐶⊇𝐶1

𝑟𝐶1𝑟𝐶2 · · · 𝑟𝐶𝑘
= 𝑟𝐶1

𝑘∏︁
𝑖=2

(
∑︁
𝐶𝑖

𝑟𝐶𝑖)

and we want to show that this expression reduces to 𝑟𝐶1 . Recall that the scalar coefficients

𝑟𝐶𝑖 are normalized (this was the second modification made to Algorithm 3). It follows that∑︀
𝐶𝑖
𝑟𝐶𝑖 = 1 for all 𝑖, and thus eq. (3.2) holds.

3.8.3 Proofs from Section 3.6

Proof of Theorem 3.19. We have to show that: chordality is preserved, the variety is preserved,

and the chains in the output are regular systems. The proofs of first two statements are

essentially the same as for the chordally zero-dimensional case (Lemma 3.3 and Lemma 3.5).

It only remains to show that the chains of the output are regular systems. Proving that the

chains are squarefree is very similar, so we skip it.

Let 𝑋 𝑙 denote the subtree of the elimination tree consisting of 𝑥𝑙 and its descendants. We

say that an 𝑙-subchain is the subset of a chain given by nodes of rank 𝑖 for some 𝑥𝑖 ∈ 𝑋 𝑙.

We will show by induction on 𝑙 that after the 𝑙-th triangulation round every 𝑙-subchain is a

regular system. The base case is clear. Assume that the result holds for all 𝑙 < 𝑝. Let T𝑝 be

a rank 𝑝 node obtained after the 𝑝-th triangulation round. Let C be a 𝑝-subchain containing

T𝑝; we want to show that it is a regular system. It is easy to see that C is triangular and that

condition (i) from Definition 3.12 is satisfied. We just need to check condition (ii).

Let 𝑓 ∈ C be a rank 𝑘 polynomial; we want to show that init(𝑓)(𝑥̂𝑘+1) ̸= 0 for any

𝑥̂𝑘+1 ∈ Z(elim𝑘+1(C)). First consider the case that 𝑘 ≥ 𝑝, which means that 𝑓 ∈ T𝑝. The

result follows from the fact that T𝑝 is a regular system. Assume now that 𝑘 < 𝑝, in which case

there must be a child 𝑥𝑙 of 𝑥𝑝 such that 𝑥𝑘 ∈ 𝑋 𝑙. This means that 𝑓 belongs to an 𝑙-subchain

C𝑙, which is a subset of C. Let C′
𝑙 be the same 𝑙-subchain, but before the 𝑙-th elimination round.

84



By induction, we know that C′
𝑙 is a regular system, and thus init(𝑓)(𝑥̂𝑘+1) ̸= 0 for any 𝑥̂𝑘+1 ∈

Z(elim𝑘+1(C
′
𝑙)). The result follows by noticing that Z(elim𝑘+1(C)) ⊆ Z(elim𝑘+1(C

′
𝑙)).
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Chapter 4

Graphical structure in permanents

and related problems

This chapter presents an efficient algorithm to compute permanents of matrices with structured

sparsity. We also study some higher dimensional generalizations, such as mixed discriminants,

hyperdeterminants, and mixed volumes. The content of this chapter is based on [38].

4.1 Introduction

The permanent of a 𝑛× 𝑛 matrix 𝑀 is defined as

Perm(𝑀) :=
∑︁
𝜋

𝑛∏︁
𝑖=1

𝑀𝑖,𝜋(𝑖)

where the sum is over all permutations 𝜋 of the numbers 1, . . . , 𝑛. Computing the permanent

is #P-hard [134], which means that it is unlikely that it can be done efficiently for arbitrary

matrices. As a consequence, research on this problem tends to fall into two categories: algo-

rithms to approximate the permanent, and exact algorithms that assume some structure of

the matrix. The contributions of this chapter lie in the second category. We further study

related problems in structured higher dimensional arrays, such as mixed discriminants, hyper-

determinants and mixed volumes.

The sparsity pattern of a matrix 𝑀 can be seen as the bipartite adjacency matrix of some

bipartite graph 𝐺. This bipartite graph fully encodes the structure of the matrix. We assume
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here that the treewidth 𝜔 of 𝐺 is small (constant or logarithmic in 𝑛). We show an algorithm

to compute Perm(𝑀) in ̃︀𝑂(𝑛 2𝜔) arithmetic operations. In this thesis, the notation ̃︀𝑂 ignores

polynomial factors in 𝜔. We note that the algorithm can be used over any commutative ring.

The permanent of a matrix can be generalized in several ways. In particular, given a list

of 𝑛 matrices of size 𝑛 × 𝑛, its mixed discriminant generalizes both the permanent and the

determinant [8,68]. Our algorithm for the permanent extends in a natural way to compute the

mixed discriminant. The natural structure to represent the sparsity pattern in this case is a

tripartite (i.e., 3-colorable) graph. The running time of the resulting algorithm is ̃︀𝑂(𝑛2+𝑛 3𝜔),

where 𝜔 is the treewidth of such graph. More generally, our methods extend to generalized

determinants/permanents on tensors. A special case of interest is the multidimensional per-

manent [6,55,132]. Another interesting case is the first Cayley hyperdeterminant, also known

as Pascal determinant, which is the simplest generalization of the determinant to higher di-

mensions [9, 32, 94]. Note that unlike the determinant, the hyperdeterminant is #P-hard, in

particular because it contains mixed discriminants as a special case [68, 72].

Given a set of 𝑛 polytopes in R𝑛, its mixed volume provides a geometric generalization of

the permanent and the determinant [120]. We focus on the special case of the mixed volume

of 𝑛 zonotopes. Although there is no “natural” graph to represent the structure of a set of

zonotopes, we associate to it a bipartite graph that, when the mixed volume restricts to a

permanent, corresponds to the matrix graph described above. This allows us to give a simple

application for mixed volumes of zonotopes with few nonparallel edges. Nevertheless, we

show that mixed volumes remain hard to compute when the treewidth is bounded. The close

connection between sparse polynomial systems and lattice polytopes allows us to conclude

that solving generic systems of bounded treewidth is also computationally hard.

The diagram of Figure 4-1 summarizes the scope of the chapter. It presents the main

problems we consider, illustrating the relationships among them. Concretely, an arrow from

𝐴 to 𝐵 indicates that 𝐵 is a special instance of 𝐴. It also divides the problems according to

its difficulty, with and without bounded treewidth assumptions. In this chapter we start from

the simplest problems, i.e., permanents and determinants of matrices, moving upwards in the

diagram.

The document is structured as follows. In Section 4.2 we present three graph abstractions

of a sparse matrix. Among these graphs is the bipartite graph 𝐺 described above, and a

88



Det Perm

MDisc MVol

HDet

matrix matrix

n matrices n zonotopes

tensor
MVol

n polytopes

Easy (small ω)

Hard
Hard (small ω)Easy

(known)

(this paper)

Figure 4-1: Diagram describing the complexity relations of computing: determinants, perma-
nents, mixed discriminants, hyperdeterminants and mixed volumes.

projection 𝐺𝑋 onto the column set. In Section 4.3 we present a decomposition method,

Algorithm 4, that computes the permanent based on the graph 𝐺𝑋 . We first use graph

𝐺𝑋 because the decomposition algorithm is easier to explain in this case. In Section 4.4

we extend this method to work with the bipartite graph 𝐺, as shown in Algorithm 5. We

provide a Matlab implementation of this algorithm. In Section 4.5 we discuss the case of

mixed discriminants, presenting a decomposition method for it. We also treat the case of

generalized determinants/permanents on tensors. Finally, in Section 4.6 we discuss the case

of mixed volumes of zonotopes.

Related work

Permanents

The best known to date method for exactly computing the permanent of a general matrix

was given by Ryser and its complexity is 𝑂(𝑛 2𝑛) [114]. There are two main research trends

on permanent computation: approximation algorithms and exact algorithms for structured

matrices. We briefly discuss related work in both of them. Tree decomposition algorithms,

which belong to the second group, will be presented afterwards.

We first mention some work on approximation schemes. For arbitrary matrices, Gurvits

gave a randomized polynomial time approximation, with error proportional to the operator

norm raised to the power 𝑛 [68]. For nonnegative matrices there is a vast literature, see

e.g., [141] and the references therein. Most remarkably, Jerrum et al. gave a fully polynomial

randomized approximation scheme (FPRAS) [75]. Recent work studies approximation schemes
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based on belief propagation, also for nonnegative matrices [141,147].

As for exact algorithms for structured matrices, different types of structure have been

explored in the literature. Fisher, Kasteleyn and Temperley gave a polynomial time algorithm

for matrices whose associated bipartite graph is planar [80, 130]. Barvinok showed that the

permanent is tractable when the rank is bounded [10]. The case of 0/1 circulant matrices

has also been considered [98], as well as sparse 0/1 Toeplitz matrices [44]. Schwartz showed a

𝑂(log(𝑛)26𝑤) algorithm for certain band, Toeplitz matrices, where 𝑤 is the bandwidth [121].

Temme and Wocjan showed a 𝑂(𝑛 23𝑤
2
) algorithm for a special type of band matrices [129].

Note that for arbitrary band matrices our algorithm is ̃︀𝑂(𝑛 22𝑤).

Permanents and treewidth

Tree decomposition methods for permanent computation have been considered. Courcelle et al.

first showed that the permanent can be computed efficiently if the treewidth is bounded [45],

although their methods, based on the Feferman-Vaught-Shelah Theorem, do not lead to an

implementable algorithm. Later work of Flarup et al. gives a 𝑂(𝑛 2𝑂(𝜔2)) algorithm [62]. This

algorithm is extended in [96] to a wider class of matrices. Note the strong dependency on the

treewidth. Furthermore, the graph abstraction used in the above methods, which is not the

bipartite graph 𝐺, has two inconvenient features: its treewidth can be significantly larger than

the one of 𝐺 (see Example 4.1) and it is dependent on the specific order of the columns of the

matrix (see Remark 4.2).

Closer to this chapter is the work of van Rooij et al. [135]. They gave a ̃︀𝑂(𝑛 2𝜔) decom-

position algorithm for counting perfect matchings in a graph. Counting perfect matchings is

closely related to the permanent, and one could derive from their proof an analogous, but

different, method for calculating the permanent. Our algorithm could be seen as a variant of

such method that is easier to extend to the higher dimensional problems we consider.

Mixed discriminants, mixed volumes, tensors

The higher dimensional problems we study generalize the permanent of a matrix, and thus are

#P-hard in general. As for the permanent, there are two natural relaxations: approximation

algorithms and exact algorithms under special structure. Approximation algorithms have
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been considered for mixed discriminants [11,68], mixed volumes [11,56] and multidimensional

permanents [12]. As for exact algorithms under special structure, we are only aware of Gurvits’

tractability result for mixed discriminants and the 4-hyperdeterminant under some bounded

rank assumptions [68].

To our knowledge this is the first work that studies tree decomposition methods for mixed

discriminants, mixed volumes and generalized determinants/permanents on tensors. Related

to this is a recent log-space algorithm for computing determinants under bounded treewidth

assumptions [7]. Also related is the problem of partitioning a low treewidth graph into 𝑘-

cliques, which is considered in [135].

4.2 Graph representations of a sparse matrix

The sparsity structure of a matrix, i.e., its pattern of nonzero entries, can be described in terms

of a graph. We consider here three possible graph abstractions of such sparsity structure, and

we compare their treewidths. We will use the characterization of treewidth in terms of tree

decompositions (see Definition 2.6).

Let 𝑀 be a 𝑛 × 𝑛 matrix. We will index the rows with a set 𝐴 = {𝑎1, . . . , 𝑎𝑛} and the

columns with a set 𝑋 = {𝑥1, . . . , 𝑥𝑛}. We use subindices to index the coordinates of 𝑀 , i.e.,

𝑀𝑎,𝑥 denotes the entry in the 𝑎-th row and 𝑥-th column. Similarly, let 𝑀𝑎 be the 𝑎-th row of

𝑀 . We now present two (undirected) graphs that are usually associated to a sparse matrix.

Definition 4.1 (Bipartite graph). Let 𝑀 be a 𝑛 × 𝑛 matrix, let 𝐴 denote its set of rows,

and let 𝑋 denote its set of columns. The bipartite graph of 𝑀 , denoted as 𝐺(𝑀), has vertices

𝐴 ∪𝑋, and there is an edge (𝑎, 𝑥) if 𝑀𝑎,𝑥 is nonzero.

Definition 4.2. (Symmetrized graph) Let 𝑀 be a 𝑛× 𝑛 matrix, let 𝐴 denote its set of rows,

and let 𝑋 denote its set of columns. The symmetrized graph of 𝑀 , denoted as 𝐺𝑠(𝑀), has

vertices 1, . . . , 𝑛 and has an edge (𝑖, 𝑗) if 𝑀𝑎𝑖,𝑥𝑗 ̸= 0 or 𝑀𝑎𝑗 ,𝑥𝑖 ̸= 0.

Remark 4.1. Note that 𝐺𝑠(𝑀) is the adjacency graph of the symmetric matrix 𝑀 + 𝑀𝑇 ,

assuming no terms cancel out.

Remark 4.2 (Permutation invariance). Note that the permanent of a matrix is invariant under

independent row and column permutations. The bipartite graph 𝐺 preserves this invariance.
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On the other hand, the symmetrized graph 𝐺𝑠 is only invariant under simultaneous row and

column permutations.

The bipartite graph 𝐺 is our main object of study in this chapter. Let 𝜔 := tw(𝐺) be the

treewidth of 𝐺 and 𝜔𝑠 := tw(𝐺𝑠) the one of 𝐺𝑠. Tree decomposition methods based on graph

𝐺𝑠 have been studied before [7, 45, 62, 96]. We claim that graph 𝐺 is a better abstraction for

the purpose of permanent computation. In particular, 𝐺 preserves the permutation invariance

of the permanent as stated above. Furthermore, 𝜔𝑠 can be much larger than 𝜔 as shown in

the following example.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑎1 0 1 0 2 0 0 0 0 0
𝑎2 0 0 1 0 2 0 0 0 0
𝑎3 0 0 3 0 0 2 0 0 0
𝑎4 0 0 0 0 1 0 2 0 0
𝑎5 0 0 0 0 0 1 0 2 0
𝑎6 0 3 0 0 0 0 0 0 2
𝑎7 0 0 0 0 0 0 3 1 0
𝑎8 0 0 0 3 0 0 0 0 1
𝑎9 3 0 0 0 0 0 0 0 0

Figure 4-2: Graph abstractions of a matrix: bipartite graph 𝐺, symmetrized graph 𝐺𝑠 and
column graph 𝐺𝑋 .

Example 4.1 (Two nonzero entries per row). Let 𝑀 be a matrix with at most two nonzero

entries per row. We claim that for all nontrivial cases the bipartite graph 𝐺 has treewidth

𝜔 ≤ 2. Let 𝐺0 be a connected component, and let 𝑛0 be its number of row vertices. In order

for 𝐺0 to have a perfect matching, it must have as many row vertices as column vertices.

Note also that 𝐺0 has at most 2𝑛0 edges because the row degrees are at most 2. Then 𝐺0 is

a connected graph with 2𝑛0 vertices and at most 2𝑛0 edges, so it has at most one cycle. It

follows that 𝜔 ≤ 2.

On the other hand, we will see that 𝜔𝑠 is unbounded. Let 𝑛 = 𝑚2 and consider the matrix

𝑀 whose nonzero entries are

𝑀𝑎𝑖, 𝑥𝑖+1 = 1, if 𝑖/𝑚 /∈ Z, 𝑀𝑎(𝑚−𝑖+1)𝑚, 𝑥𝑖 = 3, if 𝑖 ≤ 𝑚,

𝑀𝑎𝑖, 𝑥𝑖+𝑚 = 2, if 𝑖 ≤ 𝑛−𝑚, 𝑀𝑎𝑛−𝑖, 𝑥𝑖𝑚+1 = 3, if 𝑖 < 𝑚.
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The graph 𝐺𝑠 contains the grid graph, and thus 𝜔𝑠 ≥
√
𝑛. The case 𝑛 = 9 is shown in

Figure 4-2.

The following example shows that the treewidth of 𝐺 is always better than the treewidth

of 𝐺𝑠.

Example 4.2 (𝐺 is “better” than 𝐺𝑠). Let’s see that given a tree decomposition of 𝐺𝑠 of width

𝜔𝑠 we can form a tree decomposition of 𝐺 of width 2𝜔𝑠. Let (𝑇, 𝜄) be a tree decomposition of

𝐺𝑠, where 𝜄(𝑡) ⊆ {1, . . . , 𝑛}. Let 𝜇 : 𝑇 → {0, 1}𝐴∪𝑋 , be such that 𝜇(𝑡) = {𝑎𝑖 : 𝑖 ∈ 𝜄(𝑡)} ∪ {𝑥𝑖 :

𝑖 ∈ 𝜄(𝑡)}. Then (𝑇, 𝜇) is a decomposition of 𝐺 of width 2𝜔𝑠. On the contrary, for a fixed 𝜔

the treewidth of 𝐺𝑠 is unbounded as seen in Example 4.1.

We now introduce a third graph 𝐺𝑋 that we can associate to matrix 𝑀 .

Definition 4.3. (Column graph) Let 𝑀 be a 𝑛×𝑛 matrix, let 𝐴 denote its set of rows and let

𝑋 denote its set of columns. For any 𝑎 ∈ 𝐴 let 𝑋(𝑎) denote the set of nonzero components of

row 𝑀𝑎. The column graph 𝐺𝑋(𝑀) has 𝑋 as its vertex set, and for each 𝑎 ∈ 𝐴 we put a clique

in 𝑋(𝑎). Equivalently, there is an edge (𝑥𝑖, 𝑥𝑗) if there is some 𝑎 ∈ 𝐴 such that 𝑥𝑖, 𝑥𝑗 ∈ 𝑋(𝑎).

Graph 𝐺𝑋 can be seen as a projection of 𝐺 onto the column set 𝑋. The reason why we

consider this graph is that we can give a very simple algorithm for the permanent based on

it. We present this algorithm in Section 4.3, and then extend it to 𝐺 in Section 4.4. We now

show that 𝜔 ≤ 𝜔𝑋 + 1, where 𝜔𝑋 := tw(𝐺𝑋).

Example 4.3 (𝐺 is “better” than 𝐺𝑋). Let (𝑇, 𝜒) be a tree decomposition of 𝐺𝑋 of width

𝜔𝑋 . For each row 𝑎 ∈ 𝐴 we associate to it a unique node 𝑡 ∈ 𝑇 such that 𝑋(𝑎) ⊆ 𝜒(𝑡).

This assignment can be made because of Lemma 2.4. For some 𝑡 ∈ 𝑇 , let 𝑎𝑡1, 𝑎𝑡2, . . . , 𝑎𝑡𝑘 be

all rows that are assigned to 𝑡. Let’s replace node 𝑡 of 𝑇 with a path 𝑡1, 𝑡2 . . . , 𝑡𝑘, and let

𝜇(𝑡𝑗) = 𝜒(𝑡)∪{𝑎𝑡𝑗} for 𝑗 = 1, . . . , 𝑘. The nodes previously connected to 𝑡 can be linked to any

of the new nodes. By doing this for every 𝑡 ∈ 𝑇 , we obtain a tree decomposition (𝑇, 𝜇) of 𝐺

of width 𝜔𝑋 + 1.

On the other hand, for a fixed 𝜔 the treewidth of 𝐺𝑋 is unbounded. For instance, consider
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the matrix 𝑀 whose only nonzero entries are: 𝑀𝑎𝑖,𝑥𝑖 = 1 (diagonal) and 𝑀𝑎1,𝑥𝑖 = 1 (first

row) for all 𝑖. In this case 𝐺𝑋 is the complete graph (𝜔𝑋 = 𝑛− 1) and 𝐺 is a tree (𝜔 = 1).

Given a matrix 𝑀 (or a family of matrices) we can use any of the three graph abstractions

presented to represent its sparsity structure. If any of these graphs has small treewidth then

the methods of this chapter allow to compute its permanent efficiently. In particular, this is

the case for matrices with band (or cyclic band) structure, as explained now.

Example 4.4 (Band structure). A matrix 𝑀 is banded if 𝑀𝑎𝑖,𝑥𝑗 = 0 whenever 𝑖 − 𝑗 > 𝑤1

or 𝑗 − 𝑖 > 𝑤2, for some parameters 𝑤1, 𝑤2 ∈ Z>0. In the associated column graph 𝐺𝑋 each

vertex 𝑥𝑖 is connected to the following 𝑘 := 𝑤1 +𝑤2 vertices 𝑥𝑖+1, . . . , 𝑥𝑖+𝑘. This is a chordal

graph known as the 𝑘-path and its treewidth is 𝜔𝑋 = 𝑘 (the size of the largest cliques minus

one). It follows that for the corresponding bipartite graph 𝜔 ≤ 𝑤1 + 𝑤2 + 1.

Similarly, we say that a matrix 𝑀 is cyclically banded if 𝑀𝑎𝑖,𝑥𝑗 = 0 whenever 𝑛 − 𝑤2 >

𝑖− 𝑗 > 𝑤1 or 𝑛−𝑤1 > 𝑗 − 𝑖 > 𝑤2. In this case, the column graph 𝐺𝑋 is a circulant graph in

which every vertex is connected to the following/previous 𝑘 := 𝑤1+𝑤2 vertices in a cyclic way.

It can be seen that the treewidth of such graph is 𝜔𝑋 = 2𝑘. Therefore, 𝜔 ≤ 2𝑤1 + 2𝑤2 + 1.

To conclude, we point out that treewidth is a natural measure of complexity to consider,

which is well understood both in theory and practice. In particular, for an arbitrary graph 𝐺

(corresponding to some matrix) and for a fixed 𝑘 we can test in linear time whether 𝜔 ≤ 𝑘, and

if so find a tree decomposition [24]. In addition, many interesting families of graphs have small

treewidth [25], such as: series-parallel graphs, outerplanar graphs, Halin graphs, Apollonian

networks, and certain recursive families of graphs. By interpreting any of such graphs as a

matrix, using any of the three graph abstractions, we obtain a family of matrices with low

treewidth.

Example 4.5 (Halin structure). Consider a planar graph that consists of a tree together with

a cycle around some of its leaves. This is a Halin-like graph, and its treewidth can be shown to

be 3 in the same way as in [25, Theorem 85]. Let’s interpret such graph as the bipartite graph

of some matrix. As seen in Figure 4-3, this matrix has a simple structure: by connecting the

nonzero entries that share a row or a column, the matrix decomposes into a tree and a cycle,

such that any entry in the cycle is in the same row/column of exactly one entry of the tree.
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𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6
𝑎7
𝑎8

2 1 2

1 1 1

1 1

2 1 2

1 1 1 1 1

2 2 1

1

2 2 1

Figure 4-3: Structured matrix (zeros are not shown) and its bipartite graph.

4.3 Column decompositions

Notation. 𝑌 = 𝑌1 ⊔ 𝑌2 denotes a set partition, i.e., 𝑌 = 𝑌1 ∪ 𝑌2 and 𝑌1 ∩ 𝑌2 = ∅.

In this section, we develop an algorithm to compute the permanent based on a tree de-

composition of the column graph 𝐺𝑋 (see Definition 4.3). For this section only, we denote the

treewidth of 𝐺𝑋 by 𝜔 . We will show that we can compute Perm(𝑀) in ̃︀𝑂(𝑛 4𝜔). Recall that

the notation ̃︀𝑂 ignores polynomial factors in 𝜔.

As before, 𝐴 denotes the row set and 𝑋 the column set. We use subindices to index

the coordinates of 𝑀 , i.e., 𝑀𝑎,𝑥 denotes the element in row 𝑎 and column 𝑥. The following

example illustrates the methodology we follow.

𝑀 =

⎛⎜⎜⎜⎜⎝
𝑀𝑎1,𝑥1 0 𝑀𝑎1,𝑥3 𝑀𝑎1,𝑥4 0
𝑀𝑎2,𝑥1 0 𝑀𝑎2,𝑥3 𝑀𝑎2,𝑥4 0

0 𝑀𝑎3,𝑥2 𝑀𝑎3,𝑥3 𝑀𝑎3,𝑥4 0
0 𝑀𝑎4,𝑥2 𝑀𝑎4,𝑥3 0 𝑀𝑎4,𝑥5

0 𝑀𝑎5,𝑥2 𝑀𝑎5,𝑥3 0 𝑀𝑎5,𝑥5

⎞⎟⎟⎟⎟⎠
Figure 4-4: Matrix 𝑀 , its column graph 𝐺𝑋 and a tree decomposition 𝑇 .

Example 4.6. Consider the 5 × 5 matrix 𝑀 of Figure 4-4 and the following partition of its

rows:

𝐴 = {𝑎1, 𝑎2} ⊔ {𝑎3} ⊔ {𝑎4, 𝑎5}.
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There is a simple expansion of Perm(𝑀) in terms of this partition:

Perm(𝑀) = Perm

⎛⎝𝑀𝑎1,𝑥1 𝑀𝑎1,𝑥3

𝑀𝑎2,𝑥1 𝑀𝑎2,𝑥3

⎞⎠Perm
(︁
𝑀𝑎3,𝑥4

)︁
Perm

⎛⎝𝑀𝑎4,𝑥2 𝑀𝑎4,𝑥5

𝑀𝑎5,𝑥2 𝑀𝑎5,𝑥5

⎞⎠
+ Perm

⎛⎝𝑀𝑎1,𝑥1 𝑀𝑎1,𝑥4

𝑀𝑎2,𝑥1 𝑀𝑎2,𝑥4

⎞⎠Perm
(︁
𝑀𝑎3,𝑥3

)︁
Perm

⎛⎝𝑀𝑎4,𝑥2 𝑀𝑎4,𝑥5

𝑀𝑎5,𝑥2 𝑀𝑎5,𝑥5

⎞⎠
+ Perm

⎛⎝𝑀𝑎1,𝑥1 𝑀𝑎1,𝑥4

𝑀𝑎2,𝑥1 𝑀𝑎2,𝑥4

⎞⎠Perm
(︁
𝑀𝑎3,𝑥2

)︁
Perm

⎛⎝𝑀𝑎4,𝑥3 𝑀𝑎4,𝑥5

𝑀𝑎5,𝑥3 𝑀𝑎5,𝑥5

⎞⎠ .

This expansion implies that to compute Perm(𝑀) we just need to evaluate two 2 × 2 per-

manents corresponding to {𝑎1, 𝑎2}, three 1 × 1 permanents corresponding to {𝑎3}, and two

2× 2 permanents corresponding to {𝑎4, 𝑎5}. This requires only 14 multiplications, compared

to 4 × 5! = 480 multiplications using the definition. The reason why this formula exists is

because the column graph 𝐺𝑋 of matrix 𝑀 has a simple tree decomposition, which is shown

in Figure 4-4.

As in the example above, we can always obtain an expansion of Perm(𝑀) using a tree

decomposition of graph 𝐺𝑋 . By carefully evaluating this formula we will obtain a dynamic

programming method to compute Perm(𝑀).

4.3.1 Partial permanent

In our notation, the permanent of 𝑀 can be expressed as

Perm(𝑀) =
∑︁
𝜋

∏︁
𝑎∈𝐴

𝑀𝑎,𝜋(𝑎)

where the sum is over all bijections 𝜋 : 𝐴→ 𝑋. For a given row 𝑎, let 𝑋(𝑎) denote the column

coordinates where it is nonzero. We will refer to a bijection 𝜋 as a matching if 𝜋(𝑎) ∈ 𝑋(𝑎),

i.e., 𝑀𝑎,𝜋(𝑎) ̸= 0, for all 𝑎 ∈ 𝐴. Then we can restrict the above sum to be over all matchings.

We consider a tree decomposition (𝑇, 𝜒) of the column graph 𝐺𝑋 . Note that by construc-

tion of 𝐺𝑋 then 𝑋(𝑎) is a clique for any 𝑎 ∈ 𝐴. Thus, Lemma 2.4 says that we can assign

each row 𝑎 ∈ 𝐴 to some node 𝑡, such that 𝑋(𝑎) ⊆ 𝜒(𝑡). From now, we fix an assignment of

each 𝑎 to a unique node. Let 𝐴𝑡 denote the rows that are assigned to node 𝑡. Thus, we have
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the partition 𝐴 =
⨆︀

𝑡∈𝑇 𝐴𝑡.

Let 𝑇𝑡 be the subtree of 𝑇 rooted in a node 𝑡. Let 𝜒(𝑇𝑡) be the union of 𝜒(𝑡′) over all

𝑡′ ∈ 𝑇𝑡, and similarly let 𝐴𝑇𝑡 be the union of 𝐴𝑡′ over all 𝑡′ ∈ 𝑇𝑡. For instance, for the root

node we have 𝐴𝑇root = 𝐴 and 𝜒(𝑇root) = 𝑋.

For a fixed matrix 𝑀 and some sets 𝐷 ⊆ 𝐴 and 𝑌 ⊆ 𝑋 we denote

perm(𝐷,𝑌 ) :=
∑︁
𝜋

∏︁
𝑎∈𝐷

𝑀𝑎,𝜋(𝑎) (4.1)

where the sum is over all matchings 𝜋 : 𝐷 → 𝑌 . Equivalently, it is the permanent of the

submatrix of 𝑀 corresponding to such rows and columns. Clearly, this only makes sense if

|𝐷| = |𝑌 |, and otherwise we can define perm(𝐷,𝑌 ) = 0. We refer to perm(𝐷,𝑌 ) as a partial

permanent.

4.3.2 Decomposition algorithm for the permanent

Algorithm 4 presents our dynamic programming method to compute Perm(𝑀). We will

explain and derive this algorithm in the following sections. For each node 𝑡 of the tree, the

algorithm computes a table 𝑃𝑡 indexed by subsets 𝑌 of 𝜒(𝑡). It starts from the leaves of the

tree and recursively computes the tables of all nodes following a topological ordering. The

permanent of 𝑀 is found in the table corresponding to the root.

Algorithm 4 has two main routines:

∙ For any node 𝑡, SubPerms computes a table 𝑄𝑡 with the permanents of all submatrices

corresponding to 𝑡. (See Section 4.3.3).

∙ EvalRecursion computes table 𝑃𝑡 of an internal node 𝑡, by combining table 𝑄𝑡 with

the tables 𝑃𝑐1 , . . . , 𝑃𝑐𝑘 of the node’s children. (See Section 4.3.4).

The values 𝑃𝑡(𝑌 ) that we compute correspond to a partial permanent of the matrix, as we

explain now. Consider the collection

𝑆 := {𝑌 : 𝜒(𝑇𝑡) ∖ 𝜒(𝑡) ⊆ 𝑌 ⊆ 𝜒(𝑇𝑡)}.

Observe that 𝑌 ∈ 𝑆 is completely determined by 𝑌 ∩𝜒(𝑡). Therefore, if we let 𝑌 := 𝑌 ∩𝜒(𝑡),

97



Algorithm 4 Permanent with column decomposition

Input: Matrix 𝑀 and tree decomposition (𝑇, 𝜒) of column graph 𝐺𝑋(𝑀)
Output: Permanent of 𝑀
1: procedure ColsPerm(𝑀,𝑇, 𝜒)
2: assign each 𝑎 ∈ 𝐴 to some 𝑡 with 𝑋(𝑎) ⊆ 𝜒(𝑡)
3: order := topological ordering of 𝑇 starting from its leaves
4: for 𝑡 in order do
5: 𝑄𝑡 := SubPerms(𝑡,𝑀)
6: if 𝑡 is a leaf then
7: 𝑃𝑡 := 𝑄𝑡

8: else
9: 𝑐1, . . . , 𝑐𝑘 := children of 𝑡

10: 𝑃𝑡 :=EvalRecursion(𝑡, 𝑄𝑡, 𝑃𝑐1 , . . . , 𝑃𝑐𝑘)
11: return 𝑃root(𝜒(root))

12: procedure SubPerms(𝑡,𝑀)
13: 𝐴𝑡 := rows assigned to node 𝑡
14: 𝑄𝑡(𝑌 ) := perm(𝐴𝑡, 𝑌 ) for all 𝑌 ⊆ 𝜒(𝑡)

15: procedure EvalRecursion(𝑡, 𝑄𝑡, 𝑃𝑐1 , . . . , 𝑃𝑐𝑘)
16: for 𝑐𝑗 child of 𝑡 do
17: Δ𝑗 := 𝜒(𝑐𝑗) ∖ 𝜒(𝑡), Λ𝑗 := 𝜒(𝑐𝑗) ∩ 𝜒(𝑡)
18: 𝑄𝑐𝑗 (𝑌 ) := 𝑃𝑐𝑗 (𝑌 ∪Δ𝑗) for all 𝑌 ⊆ Λ𝑗

19: 𝑃𝑡 := SubsetConvolution(𝑄𝑡, 𝑄𝑐1 , . . . , 𝑄𝑐𝑘)
20: procedure SubsetConvolution(𝑃0, 𝑃1, . . . , 𝑃𝑘)
21: 𝑃 (𝑌 ) :=

∑︁
𝑌0⊔···⊔𝑌𝑘=𝑌

𝑃0(𝑌0)𝑃1(𝑌1) · · ·𝑃𝑘(𝑌𝑘)
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there is a one to one correspondence between 𝑆, and the collection 𝑆 := {𝑌 : 𝑌 ⊆ 𝜒(𝑡)}. Then

the partial permanents that we are interested in are

𝑃𝑡(𝑌 ) := perm(𝐴𝑇𝑡 , 𝑌 ) = perm(𝐴𝑇𝑡 , 𝑌 ∪ (𝜒(𝑇𝑡) ∖ 𝜒(𝑡))).

The reason why we index table 𝑃𝑡 with 𝑌 instead of 𝑌 , is that in this way it becomes clearer

that the recursion formula is actually a subset convolution.

Observe that the permanent of 𝑀 is indeed computed in Algorithm 4, as for the root node

we have 𝑃root(𝜒(root)) = perm(𝐴,𝑋) = Perm(𝑀). Also note that for a leaf node we have

𝑃𝑡(𝑌 ) = perm(𝐴𝑡, 𝑌 ) = 𝑄𝑡(𝑌 ).

Example 4.7. Consider the matrix 𝑀 and tree decomposition 𝑇 of Figure 4-4. Let 𝑡1, 𝑡2, 𝑡3

be the nodes of 𝑇 , where the central node 𝑡2 is the root. We show the tables computed by

Algorithm 4. The tables 𝑄𝑡 with the permanents of all submatrices are:

𝑄𝑡1({𝑥, 𝑦}) = perm({𝑎1, 𝑎2}, {𝑥, 𝑦}), for 𝑥, 𝑦 ∈ 𝜒(𝑡1) = {𝑥1, 𝑥3, 𝑥4}

𝑄𝑡3({𝑥, 𝑦}) = perm({𝑎4, 𝑎5}, {𝑥, 𝑦}), for 𝑥, 𝑦 ∈ 𝜒(𝑡3) = {𝑥2, 𝑥3, 𝑥5}

𝑄𝑡2({𝑥}) = perm({𝑎3}, {𝑥}), for 𝑥 ∈ 𝜒(𝑡2) = {𝑥2, 𝑥3, 𝑥4}

We now show the final tables 𝑃𝑡 for each node. For the leaves 𝑡1, 𝑡3 we have 𝑃𝑡1 = 𝑄𝑡1 ,

𝑃𝑡3 = 𝑄𝑡3 . As for the root 𝑡2, the recursion is:

𝑃𝑡2({𝑥2, 𝑥3, 𝑥4}) = 𝑄𝑡2({𝑥4})𝑃𝑡1({𝑥1, 𝑥3})𝑃𝑡3({𝑥2, 𝑥5})+

𝑄𝑡2({𝑥3})𝑃𝑡1({𝑥1, 𝑥4})𝑃𝑡3({𝑥2, 𝑥5}) +𝑄𝑡2({𝑥2})𝑃𝑡1({𝑥1, 𝑥4})𝑃𝑡3({𝑥3, 𝑥5}).

Note that this recursion matches the permanent expansion in Example 4.6.

In the following sections we explain the two main routines of Algorithm 4, i.e., SubPerms

and EvalRecursion, obtaining complexity bounds for them.

4.3.3 Permanent of all submatrices

Let𝑀0 be a rectangular matrix with row set 𝐴0 and column set𝑋0. As a part of our algorithm,

which can be seen as the base case, we require a good method to compute the permanents of
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all submatrices of 𝑀0. In other words, we want to obtain the partial permanents perm(𝐷,𝑌 )

for all pairs (𝐷,𝑌 ). We can do this in a very simple way using an expansion by minors. The

following lemma explains such procedure and gives its running time.

Lemma 4.1. Let 𝑀0 be a matrix of dimensions 𝑛1 × 𝑛2. Let 𝐴0 denote its row set, 𝑋0 its

column set and let 𝑆 = {(𝐷,𝑌 ) ⊆ 𝐴0 ×𝑋0 : |𝐷| = |𝑌 |}. We can compute perm(𝐷,𝑌 ) for all

(𝐷,𝑌 ) ∈ 𝑆 in 𝑂(𝑛2𝑚𝑎𝑥 2
𝑛1+𝑛2), where 𝑛𝑚𝑎𝑥 = max{𝑛1, 𝑛2}.

Proof. Let 𝑆𝑖 = {(𝐷,𝑌 ) : |𝐷| = |𝑌 | = 𝑖} for 1 ≤ 𝑖 ≤ min{𝑛1, 𝑛2}. We use an expansion by

minors to compute perm(𝐷,𝑌 ) for (𝐷,𝑌 ) ∈ 𝑆𝑖, using the values of 𝑆𝑖−1. Let 𝑎0 be the first

element in 𝐷, then

perm(𝐷,𝑌 ) =
∑︁
𝑥∈𝑌

𝑀𝑎0,𝑥 perm(𝐷 ∖ 𝑎0, 𝑌 ∖ 𝑥).

Thus, for each (𝐷,𝑌 ), we loop over at most 𝑛2 elements, and for each we need 𝑂(𝑛𝑚𝑎𝑥) to

find the sets 𝐷 ∖ 𝑎0 and 𝑌 ∖ 𝑥. The result follows.

4.3.4 Recursion formula

The heart of Algorithm 4 is given by the recursion formula used, i.e., the procedure to obtain

table 𝑃𝑡 of node 𝑡 from the tables of its children. This recursion formula is given in the

following lemma.

Lemma 4.2. Let 𝑀 be a matrix with associated column graph 𝐺𝑋 . Let (𝑇, 𝜒) be a tree

decomposition of 𝐺𝑋 . Let 𝑡 be an internal node of 𝑇 , and let 𝑌 be such that

𝜒(𝑇𝑡) ∖ 𝜒(𝑡) ⊆ 𝑌 ⊆ 𝜒(𝑇𝑡), |𝑌 | = |𝐴𝑇𝑡 | (4.2)

Let 𝑐1, . . . , 𝑐𝑘 be the children of 𝑡. Then

perm(𝐴𝑇𝑡 , 𝑌 ) =
∑︁
𝒴

perm(𝐴𝑡, 𝑌𝑡)

𝑘∏︁
𝑗=1

perm(𝐴𝑇𝑐𝑗
, 𝑌𝑐𝑗 ) (4.3)
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where perm(·, ·) is as in (4.1) and the sum is over all 𝒴 = (𝑌𝑡, 𝑌𝑐1 , . . . , 𝑌𝑐𝑘) such that:

𝑌 = 𝑌𝑡 ⊔ (𝑌𝑐1 ⊔ · · · ⊔ 𝑌𝑐𝑘) (4.4a)

𝜒(𝑇𝑐𝑗 ) ∖ 𝜒(𝑡) ⊆ 𝑌𝑐𝑗 ⊆ 𝜒(𝑇𝑐𝑗 ) 𝑌𝑡 ⊆ 𝜒(𝑡). (4.4b)

Proof. Observe that 𝐴𝑇𝑡 can be partitioned as

𝐴𝑇𝑡 = 𝐴𝑡 ⊔ (𝐴𝑇𝑐1
⊔ · · · ⊔𝐴𝑇𝑐𝑘

).

Let 𝜋 : 𝐴𝑇𝑡 → 𝑌 be a matching. Let 𝑐 be a child of 𝑡 and let 𝜋𝑐 : 𝐴𝑇𝑐 → 𝑌 be the restriction

of 𝜋 to 𝐴𝑇𝑐 . Let 𝑌𝑡 := 𝜋(𝐴𝑡) ⊆ 𝜒(𝑡) be the range of 𝜋 restricted to 𝐴𝑡, and let 𝑌𝑐 be the range

of 𝜋𝑐. As 𝜋 is injective, then equation (4.4a) holds. Observe also that 𝑌𝑐 := 𝜋(𝐴𝑇𝑐) ⊆ 𝜒(𝑇𝑐).

Note now that if 𝑥 ∈ 𝜒(𝑇𝑐) ∖ 𝜒(𝑡), then it is in the range of 𝜋. However, as 𝑥 /∈ 𝜒(𝑡) then

𝑥 /∈ 𝜒(𝑇𝑐′) for any other child 𝑐′ (using condition (iii) of Definition 2.6), and thus 𝑥 has to be

in the range of 𝜋𝑐. Thus, the range of 𝜋𝑐, i.e., 𝑌𝑐, contains 𝜒(𝑇𝑐) ∖ 𝜒(𝑡).

Therefore, for any matching 𝜋 : 𝐴𝑇𝑡 → 𝑌 and for any child 𝑐, 𝜋 induces a matching from

𝐴𝑇𝑐 to some 𝑌𝑐 that satisfy equations (4.4). On the other hand, given 𝑌𝑡, 𝑌𝑐1 , . . . satisfying (4.4)

and matchings 𝜋𝑡, 𝜋𝑐1 , . . . on 𝐴𝑡, 𝐴𝑇𝑐1
, . . . with such ranges, we can merge them into a function

on 𝐴𝑇𝑡 . Observe that (4.4) ensures that the ranges of these matchings are disjoint and their

union is 𝑌 . We conclude that

perm(𝐴𝑇𝑡 , 𝑌 ) =
∑︁

𝜋:𝐴𝑇𝑡→𝑌

∏︁
𝑎

𝑀𝑎,𝜋(𝑎)

=
∑︁
𝒴

∑︁
𝜋𝑡:𝐴𝑡→𝑌𝑡
𝜋𝑐:𝐴𝑇𝑐→𝑌𝑐

(︃∏︁
𝑎𝑡

𝑀𝑎𝑡,𝜋𝑡(𝑎𝑡)

)︃∏︁
𝑐𝑗

(︃∏︁
𝑎𝑐

𝑀𝑎𝑐,𝜋𝑐𝑗 (𝑎𝑐)

)︃

=
∑︁
𝒴

perm(𝐴𝑡, 𝑌𝑡)
∏︁
𝑐𝑗

perm(𝐴𝑇𝑐𝑗
, 𝑌𝑐𝑗 ).

At first sight, the recursion of equation (4.3) looks difficult to evaluate. It turns out

that this formula is a subset convolution and thus it can be computed efficiently using the

algorithm from [20], as explained in the following lemma. We follow this approach in method
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EvalRecursion of Algorithm 4.

Lemma 4.3. Given the values of the partial permanents perm(𝐴𝑡, 𝑌𝑡) and perm(𝐴𝑇𝑐𝑗
, 𝑌𝑐𝑗 ),

we can evaluate equation (4.3) for all 𝑌 satisfying (4.2) in ̃︀𝑂(𝑘 2𝜔).

Proof. Let 𝑌 := 𝑌 ∩ 𝜒(𝑡), 𝑌𝑡 := 𝑌𝑡, 𝑌𝑐𝑗 := 𝑌𝑐𝑗 ∩ 𝜒(𝑡), and let

Δ𝑡 := 𝜒(𝑇𝑡) ∖ 𝜒(𝑡) Δ𝑐𝑗 := 𝜒(𝑇𝑐𝑗 ) ∖ 𝜒(𝑡)

𝑃𝑡(𝑌 ) := perm(𝐴𝑇𝑡 , 𝑌 ∪Δ𝑡), 𝑄𝑡(𝑌𝑡) := perm(𝐴𝑡, 𝑌𝑡), 𝑄𝑐𝑗 (𝑌𝑐𝑗 ) := perm(𝐴𝑇𝑐𝑗
, 𝑌𝑐𝑗 ∪Δ𝑐𝑗 )

Then equation (4.3) can be rewritten as

𝑃𝑡(𝑌 ) =
∑︁

𝑌𝑡⊔𝑌𝑐1⊔···⊔𝑌𝑐𝑘
=𝑌

𝑄𝑡(𝑌𝑡)

𝑘∏︁
𝑗=1

𝑄𝑐𝑗 (𝑌𝑐𝑗 ) (4.5)

where 𝑌𝑡 ⊆ 𝜒(𝑡) and 𝑌𝑐𝑗 ⊆ 𝜒(𝑐𝑗)∩𝜒(𝑡). Equation (4.5) is a subset convolution over the subsets

of 𝜒(𝑡). Therefore, it can be evaluated in 𝑂(𝑘𝑤2 2𝑤), where 𝑤 := |𝜒(𝑡)|, using the algorithm

from [20].

The following theorem gives the running time of Algorithm 4, proving that we can efficiently

compute the permanent given a tree decomposition of 𝐺𝑋 of small width.

Theorem 4.4. Let 𝑀 be a matrix with associated column graph 𝐺𝑋 . Let (𝑇, 𝜒) be a tree

decomposition of 𝐺𝑋 of width 𝜔. Then we can compute Perm(𝑀) in ̃︀𝑂(𝑛 4𝜔).

Proof. Let 𝑡 be some node in 𝑇 . We compute perm(𝐴𝑇𝑡 , 𝑌 ) for every 𝑌 satisfying (4.2). In

particular, we will obtain Perm(𝐴) = perm(𝐴𝑇root , 𝜒(𝑇root)). We will show that for each 𝑡 we

can compute perm(𝐴𝑇𝑡 , 𝑌 ) for all 𝑌 in ̃︀𝑂((𝑘𝑡 +1)4𝜔), where 𝑘𝑡 is the number of children of 𝑡.

Note that
∑︀

𝑡 𝑘𝑡 is the number of nodes of tree 𝑇 . As the tree has 𝑂(𝑛) nodes, the total cost

is then ̃︀𝑂(𝑛 4𝜔), as wanted.

The base case is when 𝑡 is a leaf of 𝑇 , so that 𝐴𝑇𝑡 = 𝐴𝑡 and 𝜒(𝑇𝑡) = 𝜒(𝑡). Let 𝑀0 be

the submatrix of 𝑀 with rows 𝐴𝑡 and columns 𝜒(𝑡). Then all we have to do is to obtain the

permanent of some submatrices of 𝑀0. Observe that |𝐴𝑡| ≤ |𝜒(𝑡)| ≤ 𝜔, as otherwise there is

no 𝑌 satisfying (4.2). Thus, we can do this in ̃︀𝑂(22𝜔) using Lemma 4.1.
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Assume now that 𝑡 is an internal node of 𝑇 with 𝑘𝑡 children and let 𝑌 that satisfies (4.2).

Then equation (4.3) tells us how to find perm(𝐴𝑇𝑡 , 𝑌 ). Lemma 4.3 says that we can evaluate

the formula in ̃︀𝑂(𝑘𝑡 2
𝜔), assuming we know the values of the terms in the recursion. Note

that we already found perm(𝐴𝑇𝑐 , 𝑌𝑐) for all children and that we can find perm(𝐴𝑡, 𝑌𝑡) for all

possible 𝑌𝑡 in ̃︀𝑂(22𝜔) in the same way as for the base case. Thus, it takes ̃︀𝑂(4𝜔 + 𝑘𝑡 2
𝜔) =̃︀𝑂((𝑘𝑡 + 1)4𝜔) to compute perm(𝐴𝑇𝑡 , 𝑌 ) for all 𝑌 .

Remark 4.3. The factor ̃︀𝑂(4𝜔) can be improved, but we omit this as for the approach of

Section 4.4, based on the bipartite graph, the bound will be ̃︀𝑂(𝑛 2𝜔).

4.3.5 Computing the determinant

Given the similarity between permanent and determinant, it should be possible to find an

analogous algorithm for the determinant. We will derive such algorithm in this section. Ironi-

cally, this algorithm is slower than the one for the permanent. The reason is that the approach

we follow does not take advantage of linear algebra: we loop over all permutations (carefully)

and then compute its sign. We remark that our algorithm does not use divisions and thus can

be applied in any commutative ring. The ideas from this section will be used in Section 4.5

to derive a decomposition algorithm for the mixed discriminant.

Example 4.8. Consider again the matrix 𝑀 of Figure 4-4, and observe that a similar expan-

sion holds for the determinant:

Det(𝑀) = Det

⎛⎝𝑀𝑎1,𝑥1 𝑀𝑎1,𝑥3

𝑀𝑎2,𝑥1 𝑀𝑎2,𝑥3

⎞⎠Det
(︁
𝑀𝑎3,𝑥4

)︁
Det

⎛⎝𝑀𝑎4,𝑥2 𝑀𝑎4,𝑥5

𝑀𝑎5,𝑥2 𝑀𝑎5,𝑥5

⎞⎠
−Det

⎛⎝𝑀𝑎1,𝑥1 𝑀𝑎1,𝑥4

𝑀𝑎2,𝑥1 𝑀𝑎2,𝑥4

⎞⎠Det
(︁
𝑀𝑎3,𝑥3

)︁
Det

⎛⎝𝑀𝑎4,𝑥2 𝑀𝑎4,𝑥5

𝑀𝑎5,𝑥2 𝑀𝑎5,𝑥5

⎞⎠
+Det

⎛⎝𝑀𝑎1,𝑥1 𝑀𝑎1,𝑥4

𝑀𝑎2,𝑥1 𝑀𝑎2,𝑥4

⎞⎠Det
(︁
𝑀𝑎3,𝑥2

)︁
Det

⎛⎝𝑀𝑎4,𝑥3 𝑀𝑎4,𝑥5

𝑀𝑎5,𝑥3 𝑀𝑎5,𝑥5

⎞⎠ .

As suggested in the above formula, the recursion used to compute the permanent can also be

used to compute the determinant, by appropriately selecting the signs.

We recall now the definition of the parity function, and we extend it to ordered partitions.
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Definition 4.4. Let 𝐷, 𝑌 be ordered sets of the same size. For a bijection 𝜋 : 𝐷 → 𝑌 we

define its sign or parity as sgn(𝜋) := (−1)𝑁(𝜋), where 𝑁(𝜋) is its number of inversions:

𝑁(𝜋) :=
⃒⃒
{(𝑎, 𝑎′) ∈ 𝐷2 : 𝑎 < 𝑎′, 𝜋(𝑎) > 𝜋(𝑎′)}

⃒⃒
.

Let 𝒴 = (𝑌1, . . . , 𝑌𝑘) be an ordered partition of 𝑌 , i.e., 𝑌 = 𝑌1 ⊔ · · · ⊔ 𝑌𝑘. We define its sign

to be sgn(𝒴) := (−1)𝑁(𝒴), where 𝑁(𝒴) is:

𝑁(𝒴) := |{(𝑦𝑖, 𝑦𝑗) : 𝑦𝑖 ∈ 𝑌𝑖, 𝑦𝑗 ∈ 𝑌𝑗 , 𝑖 < 𝑗, 𝑦𝑖 > 𝑦𝑗}| .

Equivalently, we can associate to 𝒴 a permutation 𝜋𝒴 : {1, 2, . . . , |𝑌 |} → 𝑌 that consists of

blocks: we put first 𝑌1 (sorted), then 𝑌2 (sorted), and so on. Then sgn(𝒴) = sgn(𝜋𝒴).

From the definition above it is clear that we can obtain the sign of a permutation in 𝑂(𝑛2)

by counting the number of inversions. However, it is well known that we can find it in 𝑂(𝑛)

by counting its cycles.

For a matrix 𝑀 , there is a natural order for its row set 𝐴 and column set 𝑋, namely from

top to bottom and from left to right. We recall the definition of the determinant:

Det(𝑀) =
∑︁
𝜋

sgn(𝜋)
∏︁
𝑎∈𝐴

𝑀𝑎,𝜋(𝑎)

where the sum is over all bijections 𝜋 : 𝐴→ 𝑋. Similarly, for a fixed matrix 𝑀 and for some

𝐷 ⊆ 𝐴 and 𝑌 ⊆ 𝑋 we define the partial determinants:

det(𝐷,𝑌 ) :=
∑︁
𝜋

sgn(𝜋)
∏︁
𝑎∈𝐷

𝑀𝑎,𝜋(𝑎) (4.6)

where the sum is over all bijections 𝜋 : 𝐷 → 𝑌 . Note that Det(𝑀) = det(𝐴,𝑋).

We now provide a recursion formula similar to the one in Lemma 4.2. We need one lemma

before.

Lemma 4.5. Let 𝐷, 𝑌 be ordered sets, and let 𝜋 : 𝐷 → 𝑌 be a bijection, which we view as a

subset of 𝐷 × 𝑌 . Let 𝒟 = (𝐷1, . . . , 𝐷𝑘) and 𝒴 = (𝑌1, . . . , 𝑌𝑘) be partitions of 𝐷 and 𝑌 . Let
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𝜋 = 𝜋1 ⊔ · · · ⊔ 𝜋𝑘 be a decomposition with 𝜋𝑗 ⊆ 𝐷𝑗 × 𝑌𝑗. Then

sgn(𝜋) = sgn(𝒟)sgn(𝒴)
𝑘∏︁

𝑗=1

sgn(𝜋𝑗).

Proof. It follows from the multiplicativity of the sign function.

Lemma 4.6. Under the same conditions of Lemma 4.2, then

det(𝐴𝑇𝑡 , 𝑌 ) = sgn(𝒟)
∑︁
𝒴

sgn(𝒴)det(𝐴𝑡, 𝑌𝑡)
𝑘∏︁

𝑗=1

det(𝐴𝑇𝑐𝑗
, 𝑌𝑐𝑗 ) (4.7)

where det(·, ·) is as in (4.6) the sum is over all 𝒴 = (𝑌𝑠, 𝑌𝑐1 , . . . , 𝑌𝑐𝑘) satisfying (4.4), 𝒟 =

(𝐴𝑡, 𝐴𝑇𝑐1
, . . . , 𝐴𝑇𝑐𝑘

) and sgn(·) is as in Definition 4.4.

Proof. The proof is basically the same as the one of Lemma 4.2. The only difference is that

we have the additional factor sgn(𝜋), but it factors because of Lemma 4.5.

Despite the resemblance between equations (4.3) and (4.7), the latter is not a subset

convolution because of the sign factors. Therefore, we cannot use the algorithm from [20] in

this case. We now show to the complexity analysis.

Lemma 4.7. Given the values of the partial determinants det(𝐴𝑡, 𝑌𝑡) and det(𝐴𝑇𝑐𝑗
, 𝑌𝑐𝑗 ), we

can evaluate equation (4.7) for all 𝑌 satisfying (4.2) in ̃︀𝑂(𝑘(𝑛+ 3𝜔)).

Proof. We will first express equation (4.7) in a similar format as formula (4.5) of Lemma 4.3.

To simplify the notation, let 𝒴 =: (𝑌0, 𝑌1, . . . , 𝑌𝑘). For each 𝑗 let 𝑌 𝑗
0 = 𝑌0 ∪ 𝑌1 ∪ · · · ∪ 𝑌𝑗 , and

observe that sgn(𝒴) =
∏︀

𝑗 sgn(𝑌
𝑗−1
0 , 𝑌𝑗). Then equation (4.7) can be rewritten as:

𝐷(𝑌 ) = sgn(𝒟)
∑︁

𝑌0⊔···⊔𝑌𝑘=𝑌

𝑘∏︁
𝑗=0

𝑆𝑗(𝑌
𝑗−1
0 , 𝑌𝑗)𝐷𝑗(𝑌𝑗)
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where 𝑌0, . . . , 𝑌𝑘 ⊆ 𝜒(𝑡) and

Δ := 𝜒(𝑇𝑡) ∖ 𝜒(𝑡) Δ0 := ∅ Δ𝑗 := 𝜒(𝑇𝑐𝑗 ) ∖ 𝜒(𝑡)

𝐷(𝑌 ) := det(𝐴𝑇𝑡 , 𝑌 ∪Δ), 𝐷0(𝑌0) := det(𝐴𝑡, 𝑌0 ∪Δ0), 𝐷𝑗(𝑌𝑗) := det(𝐴𝑇𝑐𝑗
, 𝑌𝑗 ∪Δ𝑗)

𝑌 𝑗
0 = 𝑌0 ∪ · · · ∪ 𝑌𝑗 Δ𝑗

0 := Δ0 ∪ · · · ∪Δ𝑗

𝑆𝑗(𝑌
𝑗−1
0 , 𝑌𝑗) := sgn(𝑌 𝑗−1

0 ∪Δ𝑗−1
0 , 𝑌𝑗 ∪Δ𝑗)

For each 0 ≤ 𝑙 ≤ 𝑘, and for each 𝑌 𝑙
0 ⊆ 𝜒(𝑡), let

𝐷𝑙
0(𝑌

𝑙
0 ) = sgn(𝒟)

∑︁
𝑌0⊔···⊔𝑌𝑙=𝑌 𝑙

0

𝑙∏︁
𝑗=0

𝑆𝑗(𝑌
𝑗−1
0 , 𝑌𝑗)𝐷𝑗(𝑌𝑗)

Note that 𝐷𝑘
0(𝑌 ) = 𝐷(𝑌 ), and thus it is enough to compute 𝐷𝑙

0 for all 𝑙. We can do this

recursively, observing that 𝐷0
0(𝑌 ) = sgn(𝒟)𝐷0(𝑌 ) and

𝐷𝑙+1
0 (𝑌 𝑙+1

0 ) =
∑︁

𝑌 𝑙
0⊔𝑌𝑙+1=𝑌 𝑙+1

0

𝑆𝑙+1(𝑌
𝑙
0 , 𝑌𝑙+1)𝐷

𝑙
0(𝑌

𝑙
0 )𝐷𝑙+1(𝑌𝑙+1) (4.8)

We reduced the problem to evaluating the above formula, and we will show that for each

𝑙 we can do this in ̃︀𝑂(𝑛+3𝜔). Assume for now that the signs 𝑆𝑙+1(𝑌
𝑙
0 , 𝑌𝑙+1) are known. Then

for each 𝑌 𝑙+1
0 of cardinality 𝑖, we can evaluate (4.8) in 𝑂(2𝑖). Thus, for all 𝑌 𝑙+1

0 we require

𝑂(
∑︀

𝑖

(︀
𝑤
𝑖

)︀
2𝑖) = 𝑂(3𝑤), where 𝑤 = |𝜒(𝑡)|. We will see that after a precomputation that takes̃︀𝑂(𝑛), we can obtain 𝑆𝑙+1(𝑌

𝑙
0 , 𝑌𝑙+1) in ̃︀𝑂(1), which will complete the proof.

Observe that

𝑆𝑙+1(𝑌
𝑙
0 , 𝑌𝑙+1) = sgn(𝑌 𝑙

0 , 𝑌𝑙+1) sgn(𝑌
𝑙
0 ,Δ𝑙+1) sgn(Δ

𝑙
0, 𝑌𝑙+1) sgn(Δ

𝑙
0,Δ𝑙+1).

Note that the last factor does not depend on the partition and it can be precomputed in 𝑂(𝑛).

Also note that the first factor can be computed in 𝑂(𝜔) = ̃︀𝑂(1), so we can ignore it. We are

left with the second and third factor.

For each 𝑥 ∈ 𝜒(𝑡), let

𝑁
Δ𝑙+1
𝑥 = |{𝑦 ∈ Δ𝑙+1 : 𝑥 > 𝑦}| .
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We can precompute 𝑁Δ𝑙+1
𝑥 for all 𝑥 in 𝑂(𝜔𝑛) = ̃︀𝑂(𝑛). Note that sgn(𝑌 𝑙

0 ,Δ𝑙+1) = (−1)𝑁 where

𝑁 =
∑︀

𝑥∈𝑌 𝑙
0
𝑁

Δ𝑙+1
𝑥 . Thus, after the precomputation, we can obtain this factor in 𝑂(𝜔) = ̃︀𝑂(1).

A similar procedure can be done for sgn(Δ𝑙
0, 𝑌𝑙+1).

Theorem 4.8. Let 𝑀 be a matrix with associated column graph 𝐺𝑋 . Let (𝑇, 𝜒) be a tree

decomposition of 𝐺𝑋 of width 𝜔. Then we can compute Det(𝑀) in ̃︀𝑂(𝑛2 + 𝑛 4𝜔).

Proof. There are two changes with respect to the proof of Theorem 4.4. First, in the base case

we need to compute the determinant of all submatrices of 𝑀0. Using an expansion by minors

as in the proof of Lemma 4.1, we can do this in ̃︀𝑂(4𝜔), i.e., the same as for the permanent.

Second, for the recursion formula we use Lemma 4.7. This increases the time per node from̃︀𝑂(𝑘𝑡 2
𝜔) to ̃︀𝑂(𝑘𝑡(𝑛+ 3𝜔)). Therefore, the overall cost is ̃︀𝑂(𝑛2 + 𝑛 4𝜔).

We conclude this section by presenting an open question. Given the resemblance in the

definition of the permanent and the determinant it is not surprising that they can be computed

using very similar tree decomposition methods. The immanant of a matrix is another closely

related notion:

Imm𝜆(𝑀) :=
∑︁
𝜋

𝜒𝜆(𝜋)
∏︁
𝑎∈𝐴

𝑀𝑎,𝜋(𝑎)

where the sum is over all bijections 𝜋 : 𝐴 → 𝑋, and 𝜒𝜆 is an irreducible character of the

symmetric group. The immanant reduces to the permanent when 𝜒𝜆 is the trivial character,

and it reduces to the determinant when 𝜒𝜆 is the sign character. The computational complexity

of immanants has been analyzed in e.g., [31]. A natural question that arises is whether a tree

decomposition method can be used to compute them. We remark that the recursion in (4.7)

does not hold for the immanant as 𝜒𝜆 is not necessarily multiplicative.

Question. Given a matrix 𝑀 of bounded treewidth, can we compute Imm𝜆(𝑀) in polynomial

time? In particular, can this be done if either the height or the width of the Young diagram is

bounded?
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4.4 Bipartite decompositions

In the previous section we showed a decomposition method based on the column graph 𝐺𝑋 .

We showed that we can compute the permanent in ̃︀𝑂(𝑛 4𝜔𝑋 ), where 𝜔𝑋 is the treewidth of

𝐺𝑋 . In this section we will extend this decomposition method to work with the bipartite

graph 𝐺 (see Definition 4.1). We will show that we can compute the permanent in ̃︀𝑂(𝑛 2𝜔),

where 𝜔 is the treewidth of 𝐺. A Matlab implementation of our algorithm is available in

www.mit.edu/~diegcif.

Let 𝐺 be the bipartite graph of 𝑀 . As in the previous sections, we index the rows with a

set 𝐴 and the columns with 𝑋. We now rephrase the definition of a tree decomposition of 𝐺. A

bipartite decomposition of 𝐺 is a tuple (𝑇, 𝛼, 𝜒), where 𝑇 is a rooted tree and 𝛼 : 𝑇 → {0, 1}𝐴,

𝜒 : 𝑇 → {0, 1}𝑋 assign some 𝛼(𝑡) ⊆ 𝐴 and 𝜒(𝑡) ⊆ 𝑋 to each node 𝑡 of 𝑇 , that satisfies the

following conditions.

i-1. The union of {𝛼(𝑡)}𝑡∈𝑇 is the whole row set 𝐴.

i-2. The union of {𝜒(𝑡)}𝑡∈𝑇 is the whole column set 𝑋.

ii. For every edge (𝑎, 𝑥) of 𝐺 there exists a node 𝑡 of 𝑇 with 𝑎 ∈ 𝛼(𝑡), 𝑥 ∈ 𝜒(𝑡).

iii-1. For every 𝑎 ∈ 𝐴 the set {𝑡 : 𝑎 ∈ 𝛼(𝑡)} forms a subtree of 𝑇 .

iii-2. For every 𝑥 ∈ 𝑋 the set {𝑡 : 𝑥 ∈ 𝜒(𝑡)} forms a subtree of 𝑇 .

The width 𝜔 of the decomposition is the largest of |𝛼(𝑡)|+ |𝜒(𝑡)| among all nodes 𝑡. Note that

the above literals are consistent with the ones in Definition 2.6.

As before, we now present an example to illustrate the use of the bipartite graph for

computing the permanent.

Figure 4-5: Bipartite graph 𝐺 of the matrix from Figure 4-4, and a tree decomposition 𝑇 .
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Example 4.9. Consider again the matrix 𝑀 of Figure 4-4. Note that Perm(𝑀) can also be

expressed in the following form:

Perm(𝑀) = perm({𝑎1, 𝑎2}, {𝑥1, 𝑥4}) perm({𝑎3, 𝑎4, 𝑎5}, {𝑥2, 𝑥3, 𝑥5})

+ perm({𝑎1, 𝑎2, 𝑎3}, {𝑥1, 𝑥3, 𝑥4}) perm({𝑎4, 𝑎5}, {𝑥2, 𝑥5})

−𝑀𝑎3,𝑥3 perm({𝑎1, 𝑎2}, {𝑥1, 𝑥4}) perm({𝑎4, 𝑎5}, {𝑥2, 𝑥5})

perm({𝑎1, 𝑎2, 𝑎3}, {𝑥1, 𝑥3, 𝑥4}) =𝑀𝑎3,𝑥3
perm({𝑎1, 𝑎2}, {𝑥1, 𝑥4}) +𝑀𝑎3,𝑥4

perm({𝑎1, 𝑎2}, {𝑥1, 𝑥3})

perm({𝑎3, 𝑎4, 𝑎5}, {𝑥2, 𝑥3, 𝑥5}) =𝑀𝑎3,𝑥3
perm({𝑎4, 𝑎5}, {𝑥2, 𝑥5}) +𝑀𝑎3,𝑥2

perm({𝑎4, 𝑎5}, {𝑥3, 𝑥5})

To evaluate the above formula we need to compute four 2×2 permanents, and we need in total

16 multiplications. It turns out that this formula arises by considering the tree decomposition

of the bipartite graph shown in Figure 4-5.

4.4.1 Bipartite decomposition algorithm

Algorithm 5 presents our dynamic programming method to compute Perm(𝑀) using a bipar-

tite decomposition. As for Algorithm 4, for each node 𝑡 we compute a table 𝑃𝑡, following a

topological ordering of the tree. The permanent of 𝑀 is in the table corresponding to the

root. There are two main routines: SubPerm computes the permanents of all submatrices,

and EvalRecursion evaluates a recursion formula, which is slightly more complex than the

one of Algorithm 4.

As before, the values 𝑃𝑡(𝐷̄, 𝑌 ) computed correspond to a partial permanent of the matrix.

Consider the collection

𝑆 = {(𝐷,𝑌 ) : 𝛼(𝑇𝑡) ∖ 𝛼(𝑡) ⊆ 𝐷 ⊆ 𝛼(𝑇𝑡), 𝜒(𝑇𝑡) ∖ 𝜒(𝑡) ⊆ 𝑌 ⊆ 𝜒(𝑇𝑡)}.

Observe that (𝐷,𝑌 ) ∈ 𝑆 is completely determined by (𝐷 ∩ 𝛼(𝑡), 𝑌 ∩ 𝜒(𝑡)). Therefore, if we

let 𝐷̄ = 𝐷 ∩ 𝛼(𝑡), 𝑌 := 𝑌 ∩ 𝜒(𝑡), there is a one to one correspondence between 𝑆, and the

collection 𝑆 := {(𝐷̄, 𝑌 ) : 𝐷̄ ⊆ 𝛼(𝑡), 𝑌 ⊆ 𝜒(𝑡)}. The partial permanents that we are interested

in are

𝑃𝑡(𝐷̄, 𝑌 ) := perm(𝐷,𝑌 ) = perm(𝐷̄ ∪ (𝛼(𝑇𝑡) ∖ 𝛼(𝑡)), 𝑌 ∪ (𝜒(𝑇𝑡) ∖ 𝜒(𝑡))).
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Algorithm 5 Permanent with bipartite decomposition
Input: Matrix 𝑀 and tree decomposition (𝑇, 𝛼, 𝜒) of bipartite graph 𝐺(𝑀)
Output: Permanent of 𝑀
1: procedure BipartPerm(𝑀,𝑇, 𝛼, 𝜒)
2: order := topological ordering of 𝑇 starting from its leaves
3: for 𝑡 in order do
4: 𝑄𝑡 := SubPerms(𝑡,𝑀)
5: if 𝑡 is a leaf then
6: 𝑃𝑡 := 𝑄𝑡

7: else
8: 𝑐1, . . . , 𝑐𝑘 := children of 𝑡
9: 𝑃𝑡 :=EvalRecursion(𝑡, 𝑄𝑡, 𝑃𝑐1 , . . . , 𝑃𝑐𝑘)

10: return 𝑃root(𝛼(root), 𝜒(root))

11: procedure SubPerms(𝑡,𝑀)
12: 𝑄𝑡(𝐷̄, 𝑌 ) := perm(𝐷̄, 𝑌 ) for all 𝐷̄ ⊆ 𝛼(𝑡), 𝑌 ⊆ 𝜒(𝑡)

13: procedure EvalRecursion(𝑡, 𝑄𝑡, 𝑃𝑐1 , . . . , 𝑃𝑐𝑘)
14: for 𝑐𝑗 child of 𝑡 do
15: Δ𝛼

𝑗 := 𝛼(𝑐𝑗) ∖ 𝛼(𝑡), Λ𝛼
𝑗 := 𝛼(𝑐𝑗) ∩ 𝛼(𝑡)

16: Δ𝜒
𝑗 := 𝜒(𝑐𝑗) ∖ 𝜒(𝑡), Λ𝜒

𝑗 := 𝜒(𝑐𝑗) ∩ 𝜒(𝑡)
17: 𝑄𝑡𝑐𝑗 (𝐷̄, 𝑌 ) := (−1)|𝐷̄|𝑄𝑡(𝐷̄, 𝑌 ) for all 𝐷̄ ⊆ Λ𝛼

𝑗 , 𝑌 ⊆ Λ𝜒
𝑗

18: 𝑄𝑐𝑐𝑗 (𝐷̄, 𝑌 ) := 𝑃𝑐𝑗 (𝐷̄ ∪Δ𝛼
𝑗 , 𝑌 ∪Δ𝜒

𝑗 ) for all 𝐷̄ ⊆ Λ𝛼
𝑗 , 𝑌 ⊆ Λ𝜒

𝑗

19: 𝑃𝑡 := SubsetConvolution(𝑄𝑡, 𝑄𝑡𝑐1 , 𝑄𝑐𝑐1 , . . . , 𝑄𝑡𝑐𝑘 , 𝑄𝑐𝑐𝑘)
20: procedure SubsetConvolution(𝑃0, 𝑃1, . . . , 𝑃2𝑘)
21: 𝑃 (𝐷̄, 𝑌 ) :=

∑︁
𝐷̄0⊔···⊔𝐷̄2𝑘=𝐷̄
𝑌0⊔···⊔𝑌2𝑘=𝑌

𝑃0(𝐷̄0, 𝑌0)𝑃1(𝐷̄1, 𝑌1) · · ·𝑃2𝑘(𝐷̄2𝑘, 𝑌2𝑘)
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For the root node 𝑃root(𝛼(root), 𝜒(root)) = perm(𝐴,𝑋) = Perm(𝑀).

4.4.2 Recursion formula

The recursion formula that method EvalRecursion of Algorithm 5 evaluates is given in the

following lemma.

Lemma 4.9. Let 𝑀 be a matrix with associated bipartite graph 𝐺. Let (𝑇, 𝛼, 𝜒) be a bipartite

decomposition of 𝐺. Let 𝑡 be an internal node of 𝑇 , let 𝑇𝑡 ⊆ 𝑇 denote the subtree rooted in 𝑡,

and let 𝐷,𝑌 be such that

𝛼(𝑇𝑡) ∖ 𝛼(𝑡) ⊆ 𝐷 ⊆ 𝛼(𝑇𝑡), 𝜒(𝑇𝑡) ∖ 𝜒(𝑡) ⊆ 𝑌 ⊆ 𝜒(𝑇𝑡), |𝐷| = |𝑌 | (4.9)

Let 𝑡𝑐1 , . . . , 𝑡𝑐𝑘 be the children of 𝑡. Then

perm(𝐷,𝑌 ) =
∑︁
𝒟,𝒴

perm(𝐷𝑡, 𝑌𝑡)

𝑘∏︁
𝑗=1

(−1)|𝐷𝑡𝑐𝑗 |perm(𝐷𝑡𝑐𝑗 , 𝑌𝑡𝑐𝑗 )perm(𝐷𝑐𝑐𝑗 , 𝑌𝑐𝑐𝑗 ) (4.10)

where perm(·, ·) is as in (4.1) and the sum is over all 𝒟 = (𝐷𝑡, 𝐷𝑡𝑐1 , . . .), 𝒴 = (𝑌𝑡, 𝑌𝑡𝑐1 , . . .)

satisfying:

𝐷 = 𝐷𝑡 ⊔ (𝐷𝑡𝑐1 ⊔𝐷𝑐𝑐1 ⊔ · · · ⊔𝐷𝑡𝑐𝑘 ⊔𝐷𝑐𝑐𝑘)

𝑌 = 𝑌𝑡 ⊔ (𝑌𝑡𝑐1 ⊔ 𝑌𝑐𝑐1 ⊔ · · · ⊔ 𝑌𝑡𝑐𝑘 ⊔ 𝑌𝑐𝑐𝑘)

𝛼(𝑇𝑐𝑗 ) ∖ 𝛼(𝑡) ⊆ 𝐷𝑐𝑐𝑗 ⊆ 𝛼(𝑇𝑐𝑗 ) 𝐷𝑡 ⊆ 𝛼(𝑡) 𝐷𝑡𝑐𝑗 ⊆ 𝛼(𝑡) ∩ 𝛼(𝑡𝑐𝑗 )

𝜒(𝑇𝑐𝑗 ) ∖ 𝜒(𝑡) ⊆ 𝑌𝑐𝑐𝑗 ⊆ 𝜒(𝑇𝑐𝑗 ) 𝑌𝑡 ⊆ 𝜒(𝑡) 𝑌𝑡𝑐𝑗 ⊆ 𝜒(𝑡) ∩ 𝜒(𝑡𝑐𝑗 ).

To prove this lemma we need some additional notation. We view a bijection 𝜋 : 𝐷 → 𝑌

as a subset of 𝐷 × 𝑌 , by identifying it with the set {(𝑎, 𝜋(𝑎)) : 𝑎 ∈ 𝐷}. For a given node 𝑡

and for some 𝐷,𝑌 satisfying (4.9), we denote

perm*(𝐷,𝑌 ) :=
∑︁
𝜋

∏︁
𝑎∈𝐷

𝑀𝑎,𝜋(𝑎)
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where the sum is over all bijections 𝜋 : 𝐷 → 𝑌 such that

𝜋 ∩ (𝛼(𝑡)× 𝜒(𝑡)) = ∅. (4.11)

We now show a different recursion formula, which is closer to the one in Lemma 4.2.

Lemma 4.10. Following the same notation as above, the following equation holds:

perm(𝐷,𝑌 ) =
∑︁

𝑌𝑡,𝑌𝑐𝑗 ,𝐷𝑡,𝐷𝑐𝑗

perm(𝐷𝑡, 𝑌𝑡)

𝑘∏︁
𝑗=1

perm*(𝐷𝑐𝑗 , 𝑌𝑐𝑗 ) (4.12)

where the sum is over all 𝑌𝑡, 𝑌𝑐𝑗 , 𝐷𝑡, 𝐷𝑐𝑗 such that

𝐷 = 𝐷𝑡 ⊔ (𝐷𝑐1 ⊔ · · · ⊔𝐷𝑐𝑘) (4.13a)

𝑌 = 𝑌𝑡 ⊔ (𝑌𝑐1 ⊔ · · · ⊔ 𝑌𝑐𝑘) (4.13b)

𝛼(𝑇𝑐𝑗 ) ∖ 𝛼(𝑡) ⊆ 𝐷𝑐𝑗 ⊆ 𝛼(𝑇𝑐𝑗 ) 𝐷𝑡 ⊆ 𝛼(𝑡) (4.13c)

𝜒(𝑇𝑐𝑗 ) ∖ 𝜒(𝑡) ⊆ 𝑌𝑐𝑗 ⊆ 𝜒(𝑇𝑐𝑗 ) 𝑌𝑡 ⊆ 𝜒(𝑡). (4.13d)

Proof. Let 𝜋 : 𝐷 → 𝑌 be a matching, which we view as a subset of 𝐷 × 𝑌 . Note that

𝐷 = (𝐷 ∩ 𝛼(𝑡)) ⊔ (𝐷 ∩ 𝛼(𝑇𝑐1) ∖ 𝛼(𝑡)) ⊔ · · · ⊔ (𝐷 ∩ 𝛼(𝑇𝑐𝑘) ∖ 𝛼(𝑡))

𝑌 = (𝑌 ∩ 𝜒(𝑡)) ⊔ (𝑌 ∩ 𝜒(𝑇𝑐1) ∖ 𝜒(𝑡)) ⊔ · · · ⊔ (𝑌 ∩ 𝜒(𝑇𝑐𝑘) ∖ 𝜒(𝑡))

Let’s decompose 𝜋 in a similar way as above. Let 𝜋𝑡 be the submatching of 𝜋 with domain

contained in 𝐷∩𝛼(𝑡) and range contained in 𝑌 ∩𝜒(𝑡). Equivalently, 𝜋𝑡 = 𝜋∩(𝐷∩𝛼(𝑡))×(𝑌 ∩

𝜒(𝑡)). Observe that if some 𝑎 ∈ 𝐷 ∩ 𝛼(𝑡) is not in the domain of 𝜋𝑡, then 𝑎 ∈ 𝛼(𝑇𝑐), 𝜋(𝑎) ∈

𝜒(𝑇𝑐) for some child 𝑐. The reason is that by definition of tree decomposition, there must

be some node 𝑡𝑝 with 𝜋(𝑎) ∈ 𝜒(𝑡𝑝), 𝑎 ∈ 𝛼(𝑡𝑝). However, the assumption on 𝑎 says that

𝜋(𝑎) ∈ 𝜒(𝑇𝑡) ∖ 𝜒(𝑡) and thus we must have 𝑡𝑝 ∈ 𝑇𝑐 for some 𝑐. Similarly, if some 𝑥 ∈ 𝑌 ∩ 𝜒(𝑡)

is not in the range of 𝜋𝑡, then 𝑥 ∈ 𝜒(𝑇𝑐), 𝜋
−1(𝑥) ∈ 𝛼(𝑇𝑐) for some child 𝑐. In the same way,
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we have the following

𝜋(𝐷 ∩ 𝛼(𝑇𝑐) ∖ 𝛼(𝑡)) ⊆ 𝐷 ∩ 𝜒(𝑇𝑐)

𝜋−1(𝑌 ∩ 𝜒(𝑇𝑐) ∖ 𝜒(𝑡)) ⊆ 𝑌 ∩ 𝛼(𝑇𝑐)

The above paragraph implies that we can decompose

𝜋 = 𝜋𝑡 ⊔ 𝜋𝑐1 ⊔ · · · ⊔ 𝜋𝑐𝑘 (4.14)

in such a way that 𝜋𝑡 ⊆ (𝐷 ∩ 𝛼(𝑡)) × (𝑌 ∩ 𝜒(𝑡)) and for each child 𝑐 we have that 𝜋𝑐 ⊆

(𝐷 ∩ 𝛼(𝑇𝑐)) × (𝑌 ∩ 𝜒(𝑇𝑐)) and 𝜋𝑐 satisfies (4.11). Moreover, it is easy to see that such

decomposition is unique.

Let 𝑌𝑡 ⊆ 𝑌 ∩𝜒(𝑡) be the range of 𝜋𝑡 and let 𝑌𝑐 ⊆ 𝑌 ∩𝜒(𝑇𝑐) be the range of 𝜋𝑐. Analogously,

define 𝐷𝑡 ⊆ 𝐷∩𝛼(𝑡) and 𝐷𝑐 ⊆ 𝐷∩𝛼(𝑇𝑐) as the domains of 𝜋𝑡, 𝜋𝑐. Observe that 𝜒(𝑇𝑐)∖𝜒(𝑡) ⊆

𝑌𝑐, as if 𝑥 ∈ 𝜒(𝑇𝑐) ∖ 𝜒(𝑡) then (𝜋−1(𝑥), 𝑥) ∈ 𝜋𝑐 by construction, and thus 𝑥 ∈ 𝑌𝑐. Similarly,

𝜒(𝑇𝑐) ∖ 𝜒(𝑡) ⊆ 𝑌𝑐. Therefore, the equations (4.13) are satisfied.

Thus, for any matching 𝜋 ⊆ 𝐷 × 𝑌 there is a unique partition as in (4.14) such that the

ranges and domains 𝑌𝑡, 𝑌𝑐, 𝐷𝑡, 𝐷𝑐 satisfy (4.13). On the other hand, assume that 𝑌𝑡, 𝑌𝑐, 𝐷𝑡, 𝐷𝑐

satisfy (4.13), and we are given some matchings 𝜋𝑡, 𝜋𝑐 with these ranges and domains and such

that (4.11) holds. Then equations (4.13) tell us that we can merge them into a matching 𝜋

with domain 𝐷 and range 𝑌 . Condition (4.11) ensures we are not overcounting, as it implies

that decomposition (4.14) is unique. These remarks imply equation (4.12).

Remark 4.4. Let (𝑇𝑋 , 𝜒) be a tree decomposition of the column graph 𝐺𝑋 , and let (𝑇, 𝛼, 𝜒)

be the corresponding decomposition of the bipartite graph 𝐺 given in Example 4.3. In such

case, the above lemma reduces to Lemma 4.2.

We now derive the recursion formula in Lemma 4.9, which follows from the above lemma

by using inclusion-exclusion.
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Proof of Lemma 4.9. For a child 𝑐 of 𝑡, we will show that

perm*(𝐷𝑐, 𝑌𝑐) =
∑︁

𝐷𝑡𝑐⊔𝐷𝑐𝑐=𝐷𝑐
𝑌𝑡𝑐⊔𝑌𝑐𝑐=𝑌𝑐

𝐷𝑡𝑐⊆𝛼(𝑡),𝑌𝑡𝑐⊆𝜒(𝑡)

(−1)|𝐷𝑡𝑐|perm(𝐷𝑡𝑐, 𝑌𝑡𝑐)perm(𝐷𝑐𝑐, 𝑌𝑐𝑐). (4.15)

Combining equations (4.12) and (4.15) we obtain equation (4.10), concluding the proof.

Given a matching 𝜋𝑐 : 𝐷𝑐 → 𝑌𝑐, let 𝐼(𝜋𝑐) := 𝜋𝑐 ∩ (𝛼(𝑡) × 𝜒(𝑡)) and let 𝐼𝛼(𝜋𝑐) ⊆ 𝛼(𝑡),

𝐼𝜒(𝜋𝑐) ⊆ 𝜒(𝑡) be the domain and range of 𝐼(𝜋𝑐). For some 𝐷𝑡𝑐 ⊆ 𝐷𝑐 ∩ 𝛼(𝑡), 𝑌𝑡𝑐 ⊆ 𝑌𝑐 ∩ 𝜒(𝑡)

with |𝐷𝑡𝑐| = |𝑌𝑡𝑐|, let

perm*(𝐷𝑐, 𝑌𝑐;𝐷𝑡𝑐, 𝑌𝑡𝑐) :=
∑︁

𝜋𝑐:𝐷𝑐→𝑌𝑐
𝐼𝛼(𝜋𝑐)=𝐷𝑡𝑐

𝐼𝜒(𝜋𝑐)=𝑌𝑡𝑐

∏︁
𝑎

𝑀𝑎,𝜋𝑐(𝑎).

Note that perm*(𝐷𝑐, 𝑌𝑐) = perm*(𝐷𝑐, 𝑌𝑐; ∅, ∅). Observe now that given matchings 𝜋𝑡𝑐 : 𝐷𝑡𝑐 →

𝑌𝑡𝑐 and 𝜋𝑐𝑐 : 𝐷𝑐 ∖ 𝐷𝑡𝑐 → 𝑌𝑐 ∖ 𝑌𝑡𝑐, we can merge them into a matching 𝜋*𝑐 : 𝐷𝑐 → 𝑌𝑐 that

satisfies 𝐼𝛼(𝜋*𝑐 ) ⊇ 𝐷𝑡𝑐, 𝐼𝜒(𝜋*𝑐 ) ⊇ 𝑌𝑡𝑐. Therefore, we have the following equation

perm(𝐷𝑡𝑐, 𝑌𝑡𝑐) perm(𝐷𝑐 ∖𝐷𝑡𝑐, 𝑌𝑐 ∖ 𝑌𝑡𝑐) =
∑︁

𝐷*
𝑡𝑐⊇𝐷𝑡𝑐

𝑌 *
𝑡𝑐⊇𝑌𝑡𝑐

perm*(𝐷𝑐, 𝑌𝑐;𝐷
*
𝑡𝑐, 𝑌

*
𝑡𝑐).

Based on the above formula, we can now find perm*(𝐷𝑐, 𝑌𝑐) using inclusion-exclusion (or

Möbius inversion):

perm*(𝐷𝑐, 𝑌𝑐; ∅, ∅) =
∑︁
𝑖

∑︁
𝐷𝑡𝑐⊆𝐷𝑐∩𝛼(𝑡)
𝑌𝑡𝑐⊆𝑌𝑐∩𝜒(𝑡)
|𝐷𝑡𝑐|=|𝑌𝑡𝑐|=𝑖

(−1)𝑖perm(𝐷𝑡𝑐, 𝑌𝑡𝑐) perm(𝐷𝑐 ∖𝐷𝑡𝑐, 𝑌𝑐 ∖ 𝑌𝑡𝑐).

Rewriting the above equation leads to (4.15), as wanted.

4.4.3 Complexity analysis

We just derived the recursion formula (4.10) which is used in Algorithm 5. As in the proof of

Lemma 4.3, this formula is a subset convolution and thus it can be evaluated efficiently using

the algorithm from [20]. The overall running time of Algorithm 5 is stated now.
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Theorem 4.11. Let 𝑀 be a matrix with associated bipartite graph 𝐺. Let (𝑇, 𝛼, 𝜒) be a

bipartite decomposition of 𝐺 of width 𝜔. Then we can compute Perm(𝑀) in ̃︀𝑂(𝑛 2𝜔).

Proof. The proof is very similar to the one of Theorem 4.4. For each node 𝑡 ∈ 𝑇 , we will

compute perm(𝐷,𝑌 ) for every pair 𝐷,𝑌 that satisfies equation (4.9). We will show that

for each 𝑡 we can compute perm(𝐷,𝑌 ) for all such 𝐷,𝑌 in ̃︀𝑂((𝑘𝑡 + 1)2𝜔), where 𝑘𝑡 is the

number of children of 𝑡. Observe that for the root node 𝑡𝑟 we will compute Perm(𝑀) =

perm(𝛼(𝑇𝑟), 𝜒(𝑇𝑟)). This will conclude the proof.

The base case is when 𝑡 is a leaf of 𝑇 , so that 𝑇𝑡 = {𝑡}. Let 𝑀0 be the submatrix of 𝑀

with rows 𝛼(𝑡) and columns 𝜒(𝑡). We need to obtain the permanent of all submatrices of 𝑀0.

As |𝛼(𝑡)|+ |𝜒(𝑡)| ≤ 𝜔, we can do this in ̃︀𝑂(2𝜔) using Lemma 4.1.

Assume now that 𝑡 is an internal node of 𝑇 with 𝑘𝑡 children and let 𝐷,𝑌 that satisfy (4.9).

Then equation (4.10) tells us how to find perm(𝐷,𝑌 ). Similarly as in Lemma 4.3, we can

evaluate this formula in ̃︀𝑂(𝑘𝑡 2
𝜔), assuming we know the values of the terms in the recursion.

Note that we already found perm(𝐷𝑐𝑐, 𝑌𝑐𝑐) for all children in the recursion. We can find

perm(𝐷𝑡, 𝑌𝑡) for all 𝐷𝑡, 𝑌𝑡 in ̃︀𝑂(2𝜔) in the same way as for the base case, and this includes the

values perm(𝐷𝑡𝑐, 𝑌𝑡𝑐). Then, it takes ̃︀𝑂(2𝜔 + 𝑘𝑡 2
𝜔) = ̃︀𝑂((𝑘𝑡 + 1)2𝜔) to compute perm(𝐷,𝑌 )

for a all 𝐷,𝑌 .

Similarly as in Theorem 4.8, we can find an analogous algorithm for the determinant.

Theorem 4.12. Let 𝑀 be a matrix with associated bipartite graph 𝐺. Let (𝑇, 𝛼, 𝜒) be a

bipartite decomposition of 𝐺 of width 𝜔. Then we can compute Det(𝑀) in ̃︀𝑂(𝑛2 + 𝑛 3𝜔).

Proof. We just need to follow the steps of Section 4.3.5. For instance, the recursion is

det(𝐷,𝑌 ) =
∑︁
𝒟,𝒴

sgn(𝒟)sgn(𝒴)det(𝐷𝑡, 𝑌𝑡)
𝑘∏︁

𝑗=1

(−1)|𝐷𝑡𝑐𝑗 |det(𝐷𝑡𝑐𝑗 , 𝑌𝑡𝑐𝑗 )det(𝐷𝑐𝑐𝑗 , 𝑌𝑐𝑐𝑗 )

where 𝒴 = (𝑌𝑡, 𝑌𝑡𝑐, 𝑌𝑐𝑐),𝒟 = (𝐷𝑡, 𝐷𝑡𝑐, 𝐷𝑐𝑐). The complexity analysis is basically the same

as in the proof of Theorem 4.8. The base case can be done in ̃︀𝑂(2𝜔) using an expansion by

minors. The recursion can be evaluated in ̃︀𝑂(𝑘𝑡(𝑛+3𝜔)) in a similar way as in Lemma 4.7.
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4.5 Mixed discriminant and higher dimensions

The mixed discriminant of 𝑛 matrices is a common generalization of the permanent and the

determinant. As such, it is also hard to compute in the general case. We show now that the

techniques presented earlier generalize to compute mixed discriminants. Even more, we show

that this method extends to compute similar functions in higher dimensional tensors.

4.5.1 Mixed discriminant

Let 𝑀 be a list of 𝑛 matrices of size 𝑛 × 𝑛. Equivalently, we can think of 𝑀 as a 𝑛 × 𝑛 × 𝑛

array. We index the first coordinate with a set 𝐴, and the second and third coordinates with

sets 𝑋1, 𝑋2. The mixed discriminant of 𝑀 is given by

Disc(𝑀) :=
∑︁
𝜋1,𝜋2

sgn(𝜋1)sgn(𝜋2)
∏︁
𝑎∈𝐴

𝑀𝑎,𝜋1(𝑎),𝜋2(𝑎)

where the sum is over all bijections 𝜋1 : 𝐴 → 𝑋1 and 𝜋2 : 𝐴 → 𝑋2, and sgn is the parity

function. For 𝑎 ∈ 𝐴, let 𝑀𝑎 denote the 𝑛 × 𝑛 matrix obtained by fixing the first coordinate.

Observe that if 𝑀𝑎 = 𝑚 for some matrix 𝑚 and for all 𝑎 ∈ 𝐴, then Disc(𝑀) = 𝑛! Det(𝑚). In

the case that 𝑀𝑎 is diagonal for all 𝑎 ∈ 𝐴, then Disc(𝑀) = Perm(𝐷) where 𝐷 is the matrix

obtained by concatenating these diagonals. We refer to [8, 120] for a further discussion of

mixed discriminants.

Remark 4.5. The definition of mixed discriminant often assumes that {𝑀𝑎 : 𝑎 ∈ 𝐴} are

real symmetric matrices (although the above formula makes sense for any 𝑀) due to the

connections that arise in such case with several quantities of convex bodies [120]. In particular,

mixed discriminants of symmetric positive semidefinite matrices are closely tied to mixed

volumes of ellipsoids.

In the case of a 𝑛 × 𝑛 matrix, a bipartite graph was the natural structure to represent

its sparsity. Similarly, if we are given a sparse 𝑛 × 𝑛 × 𝑛 array 𝑀 , a natural structure is a

tripartite graph 𝐺, as follows. Let 𝐺 be the graph on 𝐴 ∪ 𝑋1 ∪ 𝑋2, where for each nonzero

entry 𝑀𝑎,𝑥1,𝑥2 we put a triangle {𝑎, 𝑥1, 𝑥2}.

We rephrase the definition of a tree decomposition of a tripartite graph 𝐺. A tripartite

decomposition of 𝐺 is a tuple (𝑇, 𝛼, 𝜒1, 𝜒2), where 𝑇 is a rooted tree, 𝛼 : 𝑇 → {0, 1}𝐴,
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𝜒1 : 𝑇 → {0, 1}𝑋1 and 𝜒2 : 𝑇 → {0, 1}𝑋2 , that satisfies the following conditions.

i. The union of {𝛼(𝑡)}𝑡∈𝑇 (resp. 𝜒1, 𝜒2) is the whole 𝐴 (resp. 𝑋1, 𝑋2).

ii. For every triangle (𝑎, 𝑥1, 𝑥2) in 𝐺 there is a 𝑡 with (𝑎, 𝑥1, 𝑥2) ∈ (𝛼× 𝜒1 × 𝜒2)(𝑡).

iii. For every 𝑎 ∈ 𝐴 (resp. 𝑋1, 𝑋2) the set {𝑡 : 𝑎 ∈ 𝛼(𝑡)} is a subtree of 𝑇 .

The width of the decomposition is the largest of |𝛼(𝑡)| +
⃒⃒
𝜒1(𝑡)

⃒⃒
+
⃒⃒
𝜒2(𝑡)

⃒⃒
among all nodes

𝑡. Note that the above literals are consistent with the ones in Definition 2.6. In particular,

observe that the second condition does not impose additional constraints due to Lemma 2.4.

We proceed to extend the previous results to the mixed discriminant. For some sets 𝐷 ⊆ 𝐴,

𝑌 1 ⊆ 𝑋1 and 𝑌 2 ⊆ 𝑋2 we denote

disc(𝐷,𝑌 1, 𝑌 2) :=
∑︁
𝜋1,𝜋2

sgn(𝜋1)sgn(𝜋2)
∏︁
𝑎∈𝐷

𝑀𝜋1(𝑎)𝜋2(𝑎) (4.16)

where the sum is over all bijections 𝜋1 : 𝐷 → 𝑌 1 and 𝜋2 : 𝐷 → 𝑌 2. This only makes sense if

|𝐷| =
⃒⃒
𝑌 1
⃒⃒
=
⃒⃒
𝑌 2
⃒⃒
, and otherwise we can define disc(𝐷,𝑌 1, 𝑌 2) = 0.

As for the case of the permanent, the dynamic program to compute Disc(𝑀) has two main

steps: computing the mixed discriminant of all subarrays of 𝑀 , and evaluating some recursion

formula. For the first step, it is easy to see that the approach from Lemma 4.1 extends, as we

show now.

Lemma 4.13. Let 𝑀0 be a 𝑛1 × 𝑛2 × 𝑛3 array. Let 𝐴0, 𝑋
1
0 , 𝑋

2
0 be its set of coordinates, and

let 𝑆 = {(𝐷,𝑌 1, 𝑌 2) ⊆ 𝐴0×𝑋1
0 ×𝑋2

0 : |𝐷| =
⃒⃒
𝑌 1
⃒⃒
=
⃒⃒
𝑌 2
⃒⃒
}. We can compute disc(𝐷,𝑌 1, 𝑌 2)

for all triples in 𝑆 in 𝑂(𝑛3𝑚𝑎𝑥 2
𝑛1+𝑛2+𝑛3), where 𝑛𝑚𝑎𝑥 = max{𝑛1, 𝑛2, 𝑛3}.

Proof. For 𝑖 = 1, 2, . . . ,min{𝑛1, 𝑛2, 𝑛3} let

𝑆𝑖 := {(𝐷,𝑌 1, 𝑌 2) ⊆ 𝐴0 ×𝑋1
0 ×𝑋2

0 : |𝐷| =
⃒⃒
𝑌 1
⃒⃒
=
⃒⃒
𝑌 2
⃒⃒
= 𝑖}.

We can find disc(𝐷,𝑌 1, 𝑌 2) for all (𝐷,𝑌 1, 𝑌 2) ∈ 𝑆𝑖 using the values of 𝑆𝑖−1 as follows. Let

𝑎0 be the first element in 𝐷, it is easy to see that

disc(𝐷,𝑌 1, 𝑌 2) =
∑︁

𝑥1∈𝑌 1,𝑥2∈𝑌 2

𝜖(𝑥1, 𝑥2)𝑀𝑎0,𝑥1,𝑥2 disc(𝐷 ∖ 𝑎0, 𝑌 1 ∖ 𝑥1, 𝑌 2 ∖ 𝑥2)
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where 𝜖(𝑥1, 𝑥2) is either +1 or −1. To be concrete, if we identify 𝑌 1, 𝑌 2 with the set {1, . . . , 𝑖},

then 𝜖(𝑗1, 𝑗2) = (−1)𝑗1+𝑗2 . Thus, for each triple (𝐷,𝑌 1, 𝑌 2) we just need to loop over 𝑛2𝑛3

terms, and for each we need 𝑂(𝑛𝑚𝑎𝑥) to find 𝐷 ∖ 𝑎0, 𝑌 1 ∖ 𝑥1, 𝑌 2 ∖ 𝑥2.

The recursion formula we need to evaluate is given in the following lemma.

Lemma 4.14. Let 𝑀 be a list of 𝑛 matrices of size 𝑛× 𝑛, with associated tripartite graph 𝐺.

Let (𝑇, 𝛼, 𝜒1, 𝜒2) be a tripartite decomposition of 𝐺. Let 𝑡 be an internal node of 𝑇 , let 𝑇𝑡 ⊆ 𝑇

denote the subtree rooted in 𝑡, and let 𝐷,𝑌 1, 𝑌 2 be such that

𝛼(𝑇𝑡) ∖ 𝛼(𝑡) ⊆ 𝐷 ⊆ 𝛼(𝑇𝑡), |𝐷| =
⃒⃒
𝑌 1
⃒⃒
=
⃒⃒
𝑌 2
⃒⃒

(4.17a)

𝜒1(𝑇𝑡) ∖ 𝜒1(𝑡) ⊆ 𝑌 1 ⊆ 𝜒1(𝑇𝑡), 𝜒2(𝑇𝑡) ∖ 𝜒2(𝑡) ⊆ 𝑌 2 ⊆ 𝜒2(𝑇𝑡) (4.17b)

Let 𝑐1, . . . , 𝑐𝑘 be the children of 𝑡. Then

disc(𝐷,𝑌 1, 𝑌 2) =
∑︁

𝒟,𝒴1,𝒴2

sgn(𝒴1)sgn(𝒴2)disc(𝐷𝑡, 𝑌
1
𝑡 , 𝑌

2
𝑡 )

𝑘∏︁
𝑗=1

(−1)|𝐷𝑡𝑐𝑗 |disc(𝐷𝑡𝑐𝑗 , 𝑌
1
𝑡𝑐𝑗 , 𝑌

2
𝑡𝑐𝑗 )disc(𝐷𝑐𝑐𝑗 , 𝑌

1
𝑐𝑐𝑗 , 𝑌

2
𝑐𝑐𝑗 )

(4.18)

where disc(·, ·, ·) is as in (4.16), sgn(·, ·) as in Definition 4.4, and the sum is over all 𝒟 =

(𝐷𝑡, 𝐷𝑡𝑐1 , . . .), 𝒴1 = (𝑌 1
𝑡 , 𝑌

1
𝑡𝑐1 , . . .), 𝒴

2 = (𝑌 2
𝑡 , 𝑌

2
𝑡𝑐1 , . . .) satisfying:

𝑍 = 𝑍𝑡 ⊔ (𝑍𝑡𝑐1 ⊔ 𝑍𝑐𝑐1 ⊔ · · · ⊔ 𝑍𝑡𝑐𝑘 ⊔ 𝑍𝑐𝑐𝑘) where 𝑍 ∈ {𝐷,𝑌 1, 𝑌 2}

𝜁(𝑇𝑐𝑗 ) ∖ 𝜁(𝑡) ⊆ 𝑍𝑐𝑐𝑗 ⊆ 𝜁(𝑇𝑐𝑗 ) 𝑍𝑡 ⊆ 𝜁(𝑡) 𝑍𝑡𝑐𝑗 ⊆ 𝜁(𝑡) ∩ 𝜁(𝑡𝑐𝑗 ) where 𝜁 ∈ {𝛼, 𝜒1, 𝜒2}.

Proof. Let 𝜋1 : 𝐷 → 𝑌 1 and 𝜋2 : 𝐷 → 𝑌 2 be matchings. Observe that Lemma 4.5 says that

sgn(𝜋1) will factor in the tree decomposition, leading to the term sgn(𝒟)sgn(𝒴1). Similarly,

sgn(𝜋2) leads to the term sgn(𝒟)sgn(𝒴2) (note that sgn(𝒟) cancels). Therefore, for the rest

of the proof we can ignore all sign factors. We can think of the pair (𝜋1, 𝜋2) as a subset of

𝐷 × 𝑌 1 × 𝑌 2. In a similar way as we did in the proof of Lemma 4.10, there is a unique

decomposition of (𝜋1, 𝜋2) of the form

(𝜋1, 𝜋2) = (𝜋1𝑡 , 𝜋
2
𝑡 ) ⊔ (𝜋1𝑐1 , 𝜋

2
𝑐1) ⊔ · · · ⊔ (𝜋1𝑐𝑘 , 𝜋

2
𝑐𝑘
) (4.19)
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where (𝜋1𝑡 , 𝜋2𝑡 ) ⊆ (𝛼×𝜒1×𝜒2)(𝑡), and for each child 𝑐 we have that (𝜋1𝑐 , 𝜋2𝑐 ) ⊆ (𝛼×𝜒1×𝜒2)(𝑇𝑐)

and

(𝜋1𝑐 , 𝜋
2
𝑐 ) ∩ (𝛼× 𝜒1 × 𝜒2)(𝑡) = ∅. (4.20)

Note that by construction 𝜋1𝑡 , 𝜋
2
𝑡 have the same domain. Let 𝐷𝑡 denote this domain, and

let 𝑌 1
𝑡 , 𝑌

2
𝑡 denote the respective ranges. Similarly, let 𝐷𝑐, 𝑌

1
𝑐 , 𝑌

2
𝑐 be the domain and ranges of

𝜋1𝑐 , 𝜋
2
𝑐 . Then we have

𝑍 = 𝑍𝑡 ⊔ (𝑍𝑐1 ⊔ · · · ⊔ 𝑍𝑐𝑘) where 𝑍 ∈ {𝐷,𝑌 1, 𝑌 2} (4.21a)

𝜁(𝑇𝑐) ∖ 𝜁(𝑡) ⊆ 𝑍𝑐 ⊆ 𝜁(𝑇𝑐) 𝑍𝑡 ⊆ 𝜁(𝑡) where 𝜁 ∈ {𝛼, 𝜒1, 𝜒2} (4.21b)

Thus, for matchings (𝜋1, 𝜋2) ∈ 𝐷 × 𝑌 1 × 𝑌 2 there is a unique partition as in (4.19)

and the corresponding domains and ranges satisfy (4.21). On the other hand, assume that

𝐷𝑡, 𝐷𝑐, 𝑌
1
𝑡 , 𝑌

1
𝑐 , 𝑌

2
𝑡 , 𝑌

2
𝑐 satisfy (4.13), and we are given some matchings 𝜋1𝑡 , 𝜋1𝑐 , 𝜋2𝑡 , 𝜋2𝑐 with these

domains and ranges and such that (𝜋1𝑐 , 𝜋
2
𝑐 ) satisfy (4.20). Then equations (4.21) tell us that

we can merge them into matchings 𝜋1, 𝜋2 with domain 𝐷 and ranges 𝑌 1, 𝑌 2. Condition (4.20)

ensures we are not overcounting. Then we have

disc(𝐷,𝑌 1, 𝑌 2) =
∑︁

𝐷𝑡,𝐷𝑐,𝑌 1
𝑡 ,𝑌 1

𝑐 ,𝑌 2
𝑡 ,𝑌 2

𝑐

disc(𝐷𝑡, 𝑌
1
𝑡 , 𝑌

2
𝑡 )

𝑘∏︁
𝑗=1

disc*(𝐷𝑐𝑗 , 𝑌
1
𝑐𝑗 , 𝑌

2
𝑐𝑗 ) (4.22)

where the sum is over all triples as in (4.21), and where disc*(𝐷𝑐, 𝑌
1
𝑐 , 𝑌

2
𝑐 ) is similar to

disc(𝐷𝑐, 𝑌
1
𝑐 , 𝑌

2
𝑐 ), except that it only uses matchings (𝜋1𝑐 , 𝜋

2
𝑐 ) satisfying (4.20).

Finally, we can obtain disc*(𝐷𝑐, 𝑌
1
𝑐 , 𝑌

2
𝑐 ) using inclusion-exclusion in a similar way as in

the proof of Lemma 4.9:

disc*(𝐷𝑐, 𝑌
1
𝑐 , 𝑌

2
𝑐 ) =

∑︁
𝐷𝑡𝑐⊔𝐷𝑐𝑐=𝐷𝑐, 𝐷𝑡𝑐⊆𝛼(𝑡)
𝑌 1
𝑡𝑐⊔𝑌 1

𝑐𝑐=𝑌 1
𝑐 , 𝑌 1

𝑡𝑐⊆𝜒1(𝑡)

𝑌 2
𝑡𝑐⊔𝑌 2

𝑐𝑐=𝑌 2
𝑐 , 𝑌 2

𝑡𝑐⊆𝜒2(𝑡)

(−1)|𝐷𝑡𝑐|disc(𝐷𝑡𝑐, 𝑌
1
𝑡𝑐, 𝑌

2
𝑡𝑐)disc(𝐷𝑐𝑐, 𝑌

1
𝑐𝑐, 𝑌

2
𝑐𝑐). (4.23)

Combining equations (4.22) and (4.23), we obtain equation (4.18).

We proceed to the complexity analysis.
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Theorem 4.15. Let 𝑀 be a list of matrices with associated tripartite graph 𝐺. Let (𝑇, 𝛼, 𝜒1, 𝜒2)

be a tripartite decomposition of 𝐺 of width 𝜔. Then we can compute Disc(𝑀) in ̃︀𝑂(𝑛2+𝑛 3𝜔).

Proof. The proof is very similar to the one of Theorem 4.11. For each node 𝑡 ∈ 𝑇 , we compute

disc(𝐷,𝑌 1, 𝑌 2) for every triple 𝐷,𝑌 1, 𝑌 2 that satisfies equation (4.17). We will show that for

each 𝑡 we can get disc(𝐷,𝑌 1, 𝑌 2) for all such 𝐷,𝑌 1, 𝑌 2 in ̃︀𝑂((𝑘𝑡 + 1)(𝑛 + 3𝜔)), where 𝑘𝑡 is

the number of children of 𝑡.

The base case is when 𝑡 is a leaf of 𝑇 . Let 𝑀0 be the subarray of 𝑀 given by indices

(𝛼(𝑡), 𝜒1(𝑡), 𝜒2(𝑡)). Then we need to find the mixed discriminant of all subarrays of 𝑀0. We

can do this in ̃︀𝑂(2𝜔) using of Lemma 4.13.

Assume now that 𝑡 is an internal node of 𝑇 with 𝑘𝑡 children and let 𝐷,𝑌 1, 𝑌 2 that

satisfy (4.17). Then equation (4.18) tells us how to find disc(𝐷,𝑌 1, 𝑌 2). Similarly as in

Lemma 4.7, we can evaluate this formula in ̃︀𝑂(𝑘𝑡(𝑛+3𝜔)), assuming we know all terms in the

recursion. We already found disc(𝐷𝑐𝑐, 𝑌
1
𝑐𝑐, 𝑌

2
𝑐𝑐) for all children in the recursion, and we can

find disc(𝐷𝑡, 𝑌
1
𝑡 , 𝑌

2
𝑡 ) for all 𝐷𝑡, 𝑌

1
𝑡 , 𝑌

2
𝑡 in ̃︀𝑂(2𝜔) in the same way as for the base case. This

leads to a bound of ̃︀𝑂((𝑘𝑡 + 1)(𝑛+ 3𝜔)) to compute disc(𝐷,𝑌 1, 𝑌 2) for all 𝐷,𝑌 1, 𝑌 2.

4.5.2 Higher dimensions

It is easy to see that our methods extend to compute generalizations of the permanent and

determinant in higher dimensions. We consider a square (𝑑+1)-dimensional array (or tensor)

𝑀 of length 𝑛, i.e., of size 𝑛 × · · · × 𝑛 (𝑑 + 1 times). Here we assume 𝑑 to be constant.

Let’s index the first coordinate of 𝑀 with a set 𝐴, and the following coordinates with sets

𝑋1, . . . , 𝑋𝑑. Consider a function 𝐹 of the form

𝐹 (𝑀) =
∑︁

𝜋1,...,𝜋𝑑

∏︁
𝑎∈𝐴

𝜖1(𝜋1) · · · 𝜖𝑑(𝜋𝑑)𝑀𝑎,𝜋1(𝑎),...,𝜋𝑑(𝑎) (4.24)

where the sum is over all bijections 𝜋𝑙 : 𝐴→ 𝑋 𝑙, and where 𝜖𝑙(𝜋𝑙) is either 1 or sgn(𝜋𝑙).

Let’s consider two special cases of equation (4.24). The simplest case is when 𝜖𝑙(𝜋𝑙) = 1

for all 𝑙. We refer to such function as the (𝑑+ 1)-dimensional permanent and we denote it as

Perm(𝑀) [55]. Some applications of this permanent are shown in [6, 132].

Consider now the case when 𝑑 + 1 is even and 𝜖𝑙(𝜋𝑙) = sgn(𝜋𝑙) for all 𝑙. This is perhaps
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the simplest generalization of the determinant, and it is usually referred to as the first Cayley

hyperdeterminant [32]. Some applications of the hyperdeterminant are shown in [9, 94]. As

opposed to the 2-dimensional case, computing the hyperdeterminant is #P-hard [72].

We now proceed to extend our decomposition methods to this setting. We associate a

(𝑑 + 1)-partite graph 𝐺 where for each nonzero entry of 𝑀 we put a (𝑑 + 1)-clique in the

respective coordinates. A tree decomposition of 𝐺 can be seen as a tuple (𝑇, 𝛼, 𝜒1, . . . , 𝜒𝑑).

The width 𝜔 of the decomposition is the largest of |𝛼(𝑡)| +
⃒⃒
𝜒1(𝑡)

⃒⃒
+ · · · +

⃒⃒
𝜒𝑑(𝑡)

⃒⃒
among all

nodes 𝑡.

As before, for some sets 𝐷 ⊆ 𝐴, 𝑌 𝑙 ⊆ 𝑋 𝑙, we consider the function

𝑓(𝐷,𝑌 1, . . . , 𝑌 𝑑) :=
∑︁

𝜋1,...,𝜋𝑑

∏︁
𝑎∈𝐴

𝜖1(𝜋1) · · · 𝜖𝑑(𝜋𝑑)𝑀𝑎,𝜋1(𝑎),...,𝜋𝑑(𝑎) (4.25)

where the sum is over all bijections 𝜋𝑙 : 𝐷 → 𝑌 𝑙.

There are two steps in order to generalize our results to this setting: evaluate 𝑓 in all

subarrays, and evaluate the recursion formula. For the former, the approach from Lemma 4.1

(and Lemma 4.13) has a simple generalization. Indeed, Barvinok shows this for the case of the

hyperdeterminant [9]. The proof is the same for an arbitrary function 𝐹 as in (4.24). Thus,

we have the following.

Proposition 4.16 ( [9]). Let 𝑀0 be a (𝑑+1)-dimensional array of size 𝑛0 × · · · × 𝑛𝑑, and let

𝑓 be as in (4.25). Let 𝐴0, 𝑋
1
0 , . . . , 𝑋

𝑑
0 be its set of coordinates, and let

𝑆 := {(𝐷,𝑌 1, . . . , 𝑌 𝑑) ⊆ 𝐴0 ×𝑋1
0 × · · · ×𝑋𝑑

0 : |𝐷| =
⃒⃒
𝑌 1
⃒⃒
= · · · =

⃒⃒⃒
𝑌 𝑑
⃒⃒⃒
}

We can compute 𝑓(𝐷,𝑌 1, . . . , 𝑌 𝑑) for all tuples in 𝑆 in 𝑂(𝑛𝑑+1
𝑚𝑎𝑥 2

𝑛0+···+𝑛𝑑), where 𝑛𝑚𝑎𝑥 =

max{𝑛0, . . . , 𝑛𝑑}.

Repeating the same analysis as in the proof of Lemma 4.14, the recursion formula is:

𝑓(𝐷,𝑌 1, . . . , 𝑌 𝑑) =
∑︁

𝒟,𝒴1,...,𝒴𝑑

𝛿1(𝒟,𝒴1) · · · 𝛿𝑑(𝒟,𝒴𝑑)𝑓(𝐷𝑡, 𝑌
1
𝑡 . . . , 𝑌

𝑑
𝑡 )

𝑘∏︁
𝑗=1

(−1)|𝐷𝑡𝑐𝑗 |𝑓(𝐷𝑡𝑐𝑗 , 𝑌
1
𝑡𝑐𝑗 , . . . , 𝑌

𝑑
𝑡𝑐𝑗 )𝑓(𝐷𝑐𝑐𝑗 , 𝑌

1
𝑐𝑐𝑗 , . . . , 𝑌

𝑑
𝑐𝑐𝑗 )

(4.26)
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where 𝛿𝑙(𝒟,𝒴 𝑙) is either 1 or sgn(𝒟)sgn(𝒴 𝑙) depending on 𝜖𝑙, and the sum is over all tuples

𝒟,𝒴1, . . . ,𝒴𝑑 such that

𝑍 = 𝑍𝑡 ⊔ (𝑍𝑡𝑐1 ⊔ 𝑍𝑐𝑐1 ⊔ · · · ⊔ 𝑍𝑡𝑐𝑘 ⊔ 𝑍𝑐𝑐𝑘) where 𝑍 ∈ {𝐷,𝑌 1, . . . , 𝑌 𝑑}

𝜁(𝑇𝑐𝑗 ) ∖ 𝜁(𝑡) ⊆ 𝑍𝑐𝑐𝑗 ⊆ 𝜁(𝑇𝑐𝑗 ) 𝑍𝑡 ⊆ 𝜁(𝑡) 𝑍𝑡𝑐𝑗 ⊆ 𝜁(𝑡) ∩ 𝜁(𝑡𝑐𝑗 ) where 𝜁 ∈ {𝛼, 𝜒1, . . . , 𝜒𝑑}

The complexity of the decomposition algorithm is as follows.

Theorem 4.17. Let 𝑀 be a square (𝑑+1)-dimensional array of length 𝑛, with (𝑑+1)-partite

graph 𝐺. Let 𝐹 be a generalized determinant/permanent as in (4.24). Let (𝑇, 𝛼, 𝜒1, . . . , 𝜒𝑑)

be a tree decomposition of 𝐺 of width 𝜔. Then we can compute 𝐹 (𝑀) in ̃︀𝑂(𝑛2 + 𝑛 3𝜔).

Proof. The proof is very similar to past ones. For each node 𝑡, we compute 𝑓(𝐷,𝑌 1, . . . , 𝑌 𝑑)

for all valid tuples. We show that for each 𝑡 we can do this in ̃︀𝑂((𝑘𝑡 + 1)(𝑛 + 3𝜔)), where 𝑘𝑡

is the number of children of 𝑡.

The base case, i.e., leaf nodes, reduces to Proposition 4.16, leading to a bound of ̃︀𝑂(2𝜔).

For an internal node 𝑡, equation (4.26) tells us how to find 𝑓(𝐷,𝑌 1, . . . , 𝑌 𝑑). Similarly as

in Lemma 4.7, we can evaluate this formula in 𝑂(𝑘𝑡(𝑛+ 3𝜔)).

For the special case of the permanent, we can give a better bound.

Theorem 4.18. Let 𝑀 be a square (𝑑+1)-dimensional array of length 𝑛, with (𝑑+1)-partite

graph 𝐺. Let (𝑇, 𝛼, 𝜒1, . . . , 𝜒𝑑) be a tree decomposition of 𝐺 of width 𝜔. Then we can compute

Perm(𝑀) in ̃︀𝑂(𝑛 2𝜔).

Proof. If there are no sign factors we can follow the procedure of Lemma 4.3 for the recursion,

leading to a bound of ̃︀𝑂((𝑘𝑡 + 1) 2𝜔) per node.

4.6 Mixed volume of zonotopes

The mixed volume MVol of 𝑛 convex bodies 𝐾1, . . . ,𝐾𝑛 in R𝑛 is the unique real function that

satisfies the following properties.

∙ MVol is multilinear and symmetric in its arguments.

∙ MVol(𝐾, . . . ,𝐾) = 𝑛! vol(𝐾), where vol denotes the volume.
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Alternatively, it can be shown that the function 𝑓(𝜆) := vol(
∑︀

𝑖 𝜆𝑖𝐾𝑖) for 𝜆𝑖 ≥ 0, is a homoge-

neous polynomial, and MVol is the coefficient of 𝜆1 · · ·𝜆𝑛. For more information about mixed

volumes, see e.g., [120]. We focus here in the case that all bodies 𝐾𝑖 are zonotopes, which are

a special class of polytopes.

4.6.1 Mixed volumes and permanents

Definition 4.5. A zonotope 𝑧 is a polytope that is a Minkowski sum of line segments, i.e.,

𝑧 = [0, 1]𝑧1 + [0, 1]𝑧2 + · · ·+ [0, 1]𝑧𝑚 = {𝑟1𝑧1 + · · ·+ 𝑟𝑚𝑧𝑚 : 0 ≤ 𝑟𝑖 ≤ 1}

where 𝑧𝑖 ∈ R𝑛 are vectors. In case 𝑧1, . . . , 𝑧𝑚 are linearly independent, we say that 𝑧 is a

parallelotope.

The mixed volume of zonotopes has a simple description as follows.

Proposition 4.19. Let 𝑧𝑖 =
∑︀

𝑗∈𝐽𝑖 [0, 1]𝑧
𝑖
𝑗 be a zonotope, for 𝑖 = 1, . . . , 𝑛. Then

MVol(𝑧1, . . . , 𝑧𝑛) =
∑︁

𝑗1∈𝐽1,...,𝑗𝑛∈𝐽𝑛

|Det(𝑧1𝑗1 , 𝑧
2
𝑗2 , . . . , 𝑧

𝑛
𝑗𝑛)| (4.27)

Proof. The multilinearity of the mixed volume implies

MVol(𝑧1, . . . , 𝑧𝑛) =
∑︁

𝑗1∈𝐽1,...,𝑗𝑛∈𝐽𝑛

MVol([0, 1]𝑧1𝑗1 , . . . , [0, 1]𝑧
𝑛
𝑗𝑛).

Thus, we just need to argue that

MVol([0, 1]𝑧1𝑗1 , . . . , [0, 1]𝑧
𝑛
𝑗𝑛) = |Det(𝑧1𝑗1 , . . . , 𝑧

𝑛
𝑗𝑛)|

which follows by noting that
∑︀

𝑖[0, 1]𝜆𝑖𝑧
𝑖
𝑗𝑖

is a parallelepiped with sides 𝜆𝑖𝑧𝑖𝑗𝑖 , and thus its

volume is given by the absolute volume of the determinant.

The mixed volume of 𝑛 parallelotopes reduces to a permanent when their main axes are

aligned, as shown now.
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Corollary 4.20. Let 𝑢1, . . . , 𝑢𝑛 ∈ R𝑛 and let 𝑀 ∈ R𝑛×𝑛
≥0 be a nonnegative matrix. Let

𝑧𝑖 =
∑︀

𝑗 [0, 1]𝑀𝑖,𝑗𝑢𝑗 be a zonotope. Then

MVol(𝑧1, . . . , 𝑧𝑛) = |Det(𝑢1, . . . , 𝑢𝑛)| Perm(𝑀).

Proof. We just need to use equation (4.27), and cancel out all terms that contain a repeated

vector 𝑢𝑗 , as the determinant is zero. The remaining terms have |Det(𝑢1, . . . , 𝑢𝑛)| as a factor

and we get the desired formula.

4.6.2 Graph representation

To use a decomposition method for mixed volumes we need to have a graph description of the

zonotopes. We consider now two different graphs that can be associated to a set of zonotopes,

and more generally to polytopes. The first one is a bipartite graph that can be thought of as

the analogue of the bipartite graph of a matrix. The second one has to do with the sparsity

in the standard basis representation and it is a more intuitive notion for general polytopes.

Definition 4.6. Let 𝑄 be a set of 𝑛 polytopes in R𝑛. Let 𝑈 denote the set of all vectors (up

to scaling) that are parallel to some edge in 𝑄. We refer to 𝑈 as the edge directions of 𝑄. The

edge graph 𝐺(𝑄) is a bipartite graph with vertices 𝑄∪𝑈 and edges (𝑞, 𝑢) if 𝑞 contains an edge

parallel to 𝑢.

Definition 4.7. Let 𝑄 be a set of 𝑛 polytopes in R𝑛. Let 𝑋 = {𝑥1, . . . , 𝑥𝑛} denote the

coordinates. The coordinates graph 𝐺𝑋(𝑄) has 𝑋 as vertex set, and for each polytope 𝑞 ∈ 𝑄

we form a clique in all its non constant components. Note that if 𝑞 =
∑︀

𝑗 [0, 1]𝑧𝑗 is a zonotope,

we form a clique in the nonzero coordinates of
∑︀

𝑗 𝑧𝑗 .

Remark 4.6. Note that the edge graph 𝐺(𝑄) is invariant under affine transformations of 𝑄,

whereas the coordinates graph 𝐺𝑋(𝑄) is not.

Example 4.10 (Zonotopes of bounded treewidth). Consider the following zonotopes:

𝑧1 = [0, 1](𝑎1𝑒𝑛 + 𝑒1) + [0, 1]𝑒1 (4.28a)

𝑧𝑖 = [0, 1](𝑎𝑖𝑒𝑛 + 𝑒𝑖 − 𝑒𝑖−1) + [0, 1](𝑒𝑖 − 𝑒𝑖−1) for 𝑖 = 2, . . . , 𝑛− 1 (4.28b)

𝑧𝑛 = [0, 1](𝑎𝑛𝑒𝑛 − 𝑒𝑛−1) (4.28c)
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where {𝑒𝑖}𝑖 is the canonical basis and 𝑎𝑖 ∈ Z are some integers.

Note that the segments of the above zonotopes are all nonparallel (there are 2𝑛 + 1 edge

directions). This means that the edge graph 𝐺 has 𝑛 connected components, one for each of

the zonotopes, and each component is either a 2-path or a 1-path. Thus, 𝐺 has treewidth 1.

As for the coordinates graph 𝐺𝑋 , it is the union of the triangles: 𝑋𝑖 := {𝑥𝑖, 𝑥𝑖+1, 𝑥𝑛}. It is

easy to see that 𝐺𝑋 has treewidth 2.

The following example shows the relationship between these graphs and the matrix graphs

we used before.

Example 4.11 (Relationship with matrix graphs). Let 𝑧𝑖 =
∑︀

𝑗 [0, 1]𝑀𝑖,𝑗𝑢𝑗 be zonotopes as

in Corollary 4.20. The edge graph 𝐺 of the zonotopes has vertices 𝑍 ∪𝑈 where 𝑍 = {𝑧𝑖}𝑖 and

𝑈 = {𝑢𝑗}𝑗 , and it has an edge (𝑧𝑖, 𝑢𝑗) whenever 𝑀𝑖,𝑗 ̸= 0. If we replace 𝑍 with the row set

and 𝑈 with the column set, this is precisely the bipartite graph of matrix 𝑀 .

On the other hand, the coordinates graph 𝐺𝑋 depends on the sparsity structure of vectors

𝑈 . Assume now that 𝑈 = {𝑒𝑗}𝑗 is the canonical basis. Then 𝐺𝑋 has an edge (𝑥𝑗 , 𝑥𝑘) whenever

there is some 𝑧𝑖 with 𝑀𝑖,𝑗 ̸= 0 and 𝑀𝑖,𝑘 ̸= 0. This corresponds to the column graph of 𝑀 .

Because of the above example it is expected that the tree decomposition methods derived

for the permanent should allow to compute mixed volumes of certain families of zonotopes.

Indeed, we now show if there are few edge directions and the edge graph 𝐺 has bounded

treewidth then the mixed volume can be computed efficiently.

Theorem 4.21. Let 𝑍 be a set of 𝑛 zonotopes in R𝑛. Let 𝑈 be the set of edge directions of

𝑍, and assume that 𝑑 := |𝑈 | − 𝑛 is constant. Let 𝐺 denote the edge graph of 𝑍. Given a tree

decomposition of 𝐺 of width 𝜔, we can compute MVol(𝑍) in ̃︀𝑂(𝑛𝑑+3 + 𝑛𝑑+1 2𝜔).

Proof. If |𝑈 | < 𝑛 it follows from (4.27) that MVol(𝑍) = 0. If |𝑈 | = 𝑛, then Corollary 4.20

tells us that we just need to compute the determinant of the 𝑢𝑖’s and the permanent of some

matrix 𝑀 . We can find the determinant in 𝑂(𝑛3) with linear algebra. For the permanent, as

the edge graph 𝐺 corresponds to the bipartite graph of 𝑀 , we can use Theorem 4.11. Thus,

we can find this permanent in ̃︀𝑂(𝑛 2𝜔).

If |𝑈 | > 𝑛, let 𝑊 ⊆ 𝑈 of size 𝑛. For each 𝑧 ∈ 𝑍 assume 𝑧 =
∑︀

𝑢∈𝑈 [0, 1]𝑐𝑢𝑢 for some scalars

𝑐𝑢. Let 𝑧𝑊 =
∑︀

𝑢∈𝑊 [0, 1]𝑐𝑢𝑢, and let 𝑍𝑊 = {𝑧𝑊 : 𝑧 ∈ 𝑍}. It follows from equation (4.27)
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that

MVol(𝑍) =
∑︁

𝑊⊆𝑈, |𝑊 |=𝑛

MVol(𝑍𝑊 ).

For each such 𝑊 the associated graph is a subgraph of 𝐺, so we can compute MVol(𝑍𝑊 ) iñ︀𝑂(𝑛3 + 𝑛 2𝜔). As there are
(︀
𝑛+𝑑
𝑛

)︀
= 𝑂(𝑛𝑑) possible 𝑊 , the result follows.

Example 4.12 (Zonotopes with few edge directions). Consider the following zonotopes:

𝑧𝑖 = [0, 1]𝑎𝑖𝑒𝑖 + [0, 1]𝑏𝑖𝑒 for 𝑖 = 1, . . . , 𝑛

where {𝑒𝑖}𝑖 is the canonical basis, 𝑒 :=
∑︀

𝑗 𝑒𝑗 = (1, . . . , 1) and 𝑎𝑖, 𝑏𝑖 ∈ Z are some integers.

Observe that there are 𝑛+ 1 edge directions: 𝑒1, . . . , 𝑒𝑛, 𝑒. Also note the that the edge graph

𝐺 is a tree, consisting of pairs (𝑧𝑖, 𝑒𝑖) and (𝑧𝑖, 𝑒). Therefore, Theorem 4.21 says that can

compute the mixed volume of these polytopes in polynomial time.

4.6.3 Hardness result

Theorem 4.21 shows that it is possible to exploit tree decompositions for mixed volume com-

putations. However, it restricts the zonotopes to have a small number of edge directions. This

is a strong requirement which is not satisfied in many cases (such as in Example 4.10). Unfor-

tunately, we will see that we need this condition. We remark that the same condition appears

in discrete optimization, where it allows to derive (strongly) polynomial time algorithms for

certain discrete convex optimization problems [103].

We now show that computing the mixed volume of the zonotopes in Example 4.10 is #P-

hard. This shows that mixed volumes of zonotopes continue to be hard, even if both 𝐺 and

𝐺𝑋 have bounded treewidth. We use a similar reduction as in [56], where they prove that the

volume of zonotopes is #P-hard.
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Lemma 4.22. The determinant of the following 𝑛× 𝑛 matrix is 𝑠1 + 𝑠2 + · · ·+ 𝑠𝑛.

𝑀 =

⎛⎜⎜⎜⎜⎝
1 −1 0 0 ··· 0 0
0 1 −1 0 ··· 0 0
0 0 1 −1 ··· 0 0
...

...
...

...
...

...
...

0 0 0 0 ··· −1 0
0 0 0 0 ··· 1 −1
𝑠1 𝑠2 𝑠3 𝑠4 ··· 𝑠𝑛−1 𝑠𝑛

⎞⎟⎟⎟⎟⎠
Proof. If we perform Gaussian elimination we end up with an upper triangular matrix where

the diagonal is: 𝑀𝑖,𝑖 = 1 for 𝑖 < 𝑛 and 𝑀𝑛,𝑛 = 𝑠1 + · · ·+ 𝑠𝑛.

Proposition 4.23. The following problem is #P-hard. Given integers 𝑎1, . . . , 𝑎𝑛, compute

the mixed volume of the 𝑛 zonotopes of equations (4.28).

Proof. We consider the #P-complete problem Subset-Sum: given a set of integers 𝐴, determine

the number of subsets 𝑆 ⊆ 𝐴 with sum zero. Let 𝑘 = 𝑛− 1, 𝐴 = {𝑎1, . . . , 𝑎𝑘} and let 𝑎𝑛 = 𝛿

be a parameter. We will show that the solution to the Subset-Sum problem is given by

1

2
MVol(𝑧1, . . . , 𝑧𝑛𝛿=−1)−MVol(𝑧1, . . . , 𝑧𝑛𝛿=0) +

1

2
MVol(𝑧1, . . . , 𝑧𝑛𝛿=1). (4.29)

Let’s evaluate equation (4.27). Consider the following 𝑛× (2𝑛− 1) matrix.

𝑀𝛿 =

⎛⎜⎜⎜⎜⎜⎝
1 1 −1 −1 0 0 ··· 0 0 0 0 0
0 0 1 1 −1 −1 ··· 0 0 0 0 0
0 0 0 0 1 1 ··· 0 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
0 0 0 0 0 0 ··· −1 −1 0 0 0
0 0 0 0 0 0 ··· 1 1 −1 −1 0
0 0 0 0 0 0 ··· 0 0 1 1 −1
𝑎1 0 𝑎2 0 𝑎3 0 ··· 𝑎𝑘−1 0 𝑎𝑘 0 𝛿

⎞⎟⎟⎟⎟⎟⎠
Observe that columns 2𝑖− 1 and 2𝑖 of 𝑀𝛿 correspond to 𝑧𝑖, and the last column corresponds

to 𝑧𝑛𝛿 . Then formula (4.27) considers submatrices of 𝑀𝛿 that use columns 𝑗1, . . . , 𝑗𝑛 where

𝑗𝑖 ∈ {2𝑖− 1, 2𝑖} for 𝑖 = 1, . . . , 𝑘 and 𝑗𝑛 = 2𝑛− 1. Note now that for any subset 𝑆 ⊆ 𝐴, there

is a natural submatrix 𝑀𝑆
𝛿 to consider: if 𝑎𝑖 ∈ 𝑆 then 𝑗𝑖 = 2𝑖 − 1 and otherwise 𝑗𝑖 = 2𝑖.

This correspondence is a bijection. Observe also that each submatrix 𝑀𝑆
𝛿 has the form of

Lemma 4.22. Thus, we have the following equation:

MVol(𝑧1, . . . , 𝑧𝑛𝛿 ) =
∑︁
𝑆⊆𝐴

⃒⃒⃒⃒
⃒⃒𝛿 + ∑︁

𝑎𝑖∈𝑆
𝑎𝑖

⃒⃒⃒⃒
⃒⃒ .
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Finally, observe that for any integer 𝑠 we have

1

2
|(−1) + 𝑠| − |𝑠| + 1

2
|1 + 𝑠| =

⎧⎪⎨⎪⎩
1 if 𝑠 = 0

0 otherwise

The last two equations imply that (4.29) indeed counts the subsets 𝑆 with sum zero.

4.6.4 Application to sparse polynomial systems

Sparse polynomial systems are closely connected to lattice polytopes. In particular, the generic

number of solutions of sparse systems is given by a mixed volume. Consequently, the results

from this section have natural implications about the complexity of solving sparse systems.

We now recall Bernstein’s Theorem [18] (see also [47, §7.5]), also known as the BKK bound,

which establishes the relationship between sparse systems and mixed volumes.

Definition 4.8. Let 𝑓 =
∑︀

𝛼 𝑐𝛼𝑥
𝛼 ∈ C[𝑋] be a multivariate polynomial in 𝑋 = (𝑥1, . . . , 𝑥𝑛).

The Newton polytope of 𝑓 is the convex hull of the set of exponents 𝛼, considered as vectors

in R𝑛.

Theorem 4.24 (Bernstein [18]). Let 𝑓1, . . . , 𝑓𝑛 ⊆ C[𝑋] be sparse polynomial equations in

variables 𝑋 = (𝑥1, . . . , 𝑥𝑛), and let 𝑄1, . . . , 𝑄𝑛 ⊆ R𝑛 be their Newton polytopes. If the

number of common zeros of these equations in (C*)𝑛 is finite, then it is upper bounded by

MVol(𝑄1, . . . , 𝑄𝑛). Moreover, the bound is achieved when the coefficients of the equations are

generic.

Bernstein’s theorem allows us to translate the results of this section to sparse polynomial

systems. In particular, Theorem 4.21 implies that for certain polynomial systems, whose New-

ton polytopes have few edge directions, we can efficiently determine the number of solutions.

Example 4.13. Consider the system of equations:

0 = 𝑐𝑖,1 + 𝑐𝑖,2 𝑥
𝑎𝑖
𝑖 + 𝑐𝑖,3

∏︁
𝑗

𝑥𝑏𝑖𝑗 + 𝑐𝑖,4 𝑥
𝑎𝑖
𝑖

∏︁
𝑗

𝑥𝑏𝑖𝑗 for 𝑖 = 1, . . . , 𝑛.

Since the Newton polytopes of these equations are the zonotopes from Example 4.12, then we

can efficiently compute the (generic) number of solutions of this system.
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We can also derive a hardness result on the complexity of solving generic polynomial

systems of small treewidth. Let 𝐹 = {𝑓1, . . . , 𝑓𝑛} ⊆ C[𝑋] be a sparse polynomial system.

Recall from Chapter 3 that we can describe the sparsity structure of the system with a graph

𝐺𝑋(𝐹 ) with vertex set 𝑋. It is easy to see that this graph 𝐺𝑋(𝐹 ) agrees with the coordinates

graph 𝐺𝑋(𝑄) of their Newton polytopes. The following is a consequence of Proposition 4.23.

Corollary 4.25 (Hardness of solving generic sparse systems). The following problem is #P-hard:

count the number of solutions of a generic sparse polynomial system of treewidth two.
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Part II

Polynomial optimization
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Chapter 5

Sampling algebraic varieties for

SOS optimization

In this chapter we study sum of squares (SOS) relaxations to optimize polynomial functions

over the real trace of an algebraic variety V. We propose a new methodology that, rather

than relying on some algebraic description, represents V with a generic set of complex samples.

Our methods leverage the coordinate ring structure to reduce the size of the corresponding

semidefinite program (SDP). The content of this chapter is based on [42].

5.1 Introduction

Consider the ring R[𝑥] := R[𝑥1, . . . , 𝑥𝑛] of multivariate polynomials and an algebraic vari-

ety V ⊆ C𝑛. For a given polynomial 𝑝 ∈ R[𝑥], we are interested in deciding whether

𝑝(𝑥) ≥ 0 for all 𝑥 ∈ V ∩ R𝑛. (5.1)

More generally, we can consider the problem of finding lower bounds for a polynomial on a

real variety.

The decision problem in (5.1) is computationally hard. As mentioned in Section 2.1.3,

there are tractable relaxations based on the SOS method [105]. Recall that a polynomial

𝐹 ∈ R[𝑥] is SOS if it can be written in the form 𝐹 (𝑥) =
∑︀

𝑖 𝑓𝑖(𝑥)
2 for some 𝑓𝑖 ∈ R[𝑥]. Given a

bound 𝑑 ∈ N, a sufficient condition for (5.1) to hold is the existence of a polynomial 𝐹 ∈ R[𝑥]
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such that

𝑝(𝑧) = 𝐹 (𝑧) for all 𝑧 ∈ V (i.e., 𝑝 ≡ 𝐹 mod I(V)); 𝐹 (𝑥) is SOS; deg(𝐹 ) ≤ 2𝑑.

(5.2)

We refer to such an 𝐹 as a 𝑑-SOS(V) certificate. The main problem we address in this chapter

is the following.

Problem. Given a bound 𝑑 ∈ N, a polynomial 𝑝(𝑥) and a variety V, find a 𝑑-SOS(V) cer-

tificate (if it exists).

It was shown in [104] that, given a Gröbner basis of the ideal I(V), the above problem

reduces to a semidefinite program (SDP). To the best of our knowledge, this is the only known

method to address it. This approach is quite effective for varieties with simple Gröbner bases,

such as the hypercube {0, 1}𝑛, or hypersurfaces. Unfortunately, besides these simple cases,

Gröbner bases computation is typically too expensive.

Given defining equations of the variety {ℎ𝑗(𝑥) = 0}𝑗 , there is a weaker class of certificates

based on writing 𝑝(𝑥) in the form 𝐹 (𝑥)+
∑︀

𝑗 𝑔𝑗(𝑥)ℎ𝑗(𝑥); see (2.4). This approach is widely used

in practice [22, 85], thanks to the convenience of allowing any set of defining equations. But

this simplicity comes with a price, since the success of the relaxation now depends on the choice

of a good set of equations {ℎ𝑗}𝑗 . Furthermore, the corresponding SDP is larger. Indeed, for

fixed V the number of unknowns is 𝑂(𝑑 2𝑛), whereas for (5.2) is 𝑂(𝑑 2 dimV); see Remark 5.3.

We also point out that for several parametric varieties, notably secant varieties [84], the

defining equations are not explicitly known, thus making this type of certificates unfeasible.

Sampling certificates In this chapter we propose an alternative geometric approach to

compute SOS(V) certificates. Rather than depending on an algebraic description of the variety,

we rely on a generic set of samples 𝑍 := {𝑧1, . . . , 𝑧𝑆} ⊆ V. By specializing the condition

in (5.2) to such samples, we get the following.

Definition 5.1. Let V ⊆ C𝑛 be a variety and let 𝑝 ∈ R[𝑥] be nonnegative on V ∩R𝑛. Given

a bound 𝑑 ∈ N, a sampling 𝑑-SOS pre-certificate is a pair (𝐹,𝑍), where 𝐹 (𝑥) is a polynomial
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and 𝑍 = {𝑧1, . . . , 𝑧𝑆} ⊆ V a sample set, such that

𝑝(𝑧𝑠) = 𝐹 (𝑧𝑠) for 𝑠 = 1, . . . , 𝑆; 𝐹 (𝑥) is SOS; deg(𝐹 ) ≤ 2𝑑; (5.3)

The pre-certificate is correct if 𝐹 is a 𝑑-SOS(V) certificate, i.e., it satisfies (5.2).

Computing a sampling pre-certificate reduces to an SDP. We show that suitable genericity

assumptions guarantee its correctness, thus giving us an SOS(V) certificate. An interesting

feature of our sampling methodology is that the only information needed about the variety

is a sampling oracle, i.e., a procedure that generates generic samples. Note that sampling

points is very simple when the variety has a known parametrization (e.g., for 𝑆𝑂(𝑛), Grass-

mannians, rank 𝑘 tensors). For a general variety V, the field of numerical algebraic geometry

(see Section 2.1.2) provides practical methods to sample generic points.

Contributions

This chapter presents the following contributions.

∙ We introduce a new methodology to compute SOS certificates over an algebraic vari-

ety V. This is a geometric formulation that represents V with a generic set of complex

samples, instead of relying on some algebraic description. In this way, we avoid algebraic

issues such as multiplicity and the dependence on the specific generators used. We ana-

lyze the correctness of our formulation, establishing sufficient conditions on the samples

and the variety.

∙ Our methodology takes advantage of the coordinate ring structure to simplify the SDP.

Moreover, it is the first such relaxation independent of Gröbner bases. This makes

our methods appealing for many varieties that are easy to sample from but for which

Gröbner bases computation is intractable. Examples of such varieties include 𝑆𝑂(𝑛),

Stiefel manifolds, Grassmannians and secant varieties.

∙ We apply for the first time techniques from numerical algebraic geometry to SOS pro-

grams. In this way, we inherit some of the main strengths from this area. We highlight

that these methods are trivially parallelizable, since they rely on homotopy continuation
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of many independent paths. They also allow us to work with straight-line programs (i.e.,

polynomials do not need to be expanded).

Related work

Our sampling SOS methodology extends the ideas from Löfberg and Parrilo in [92], where

they first consider sampling formulations for unconstrained SOS problems. They show that

sampling formulations offer some numerical advantages over the standard approach. Most

remarkably, the SDP has a low rank structure, which leads to a significant complexity im-

provement in interior point methods. In particular, low rank structure is exploited in the

solvers SDPT3 and DSDP [17, 133]. Secondly, the SDP is usually better conditioned, as it

relies on a set of orthogonal polynomials instead of a monomial basis. These properties make

sampling formulations appealing, as seen in [91,109,110]. We will see that these properties are

preserved in the variety case considered in this chapter. We remark that our use of the sam-

ples differs from [92] in that for us samples carry additional information about the underlying

variety V.

Different methods have been proposed to reduce complexity in SOS programs, in particular

by exploiting symmetries, sparsity, and quotient ring structure; see [22, §3.3], [86, §8] and

the references therein. This chapter is only concerned with the last item, but we point out

that all these techniques can be combined together. The Gröbner bases method to compute

quotient ring SOS certificates was introduced in [104]; some further improvements were made

in [106]. This is the default method for several varieties with simple Gröbner bases, particularly

from combinatorial optimization [86, §8]. Quotient ring methods have also been used for

unconstrained optimization [101]. We point out that there was no “direct” method (without

computing the radical
√
𝐼) to obtain SOS certificates on the coordinate ring (i.e., SOS(V)

certificates).

Although the existence (or degree bounds) of SOS certificates is beyond the scope of this

chapter (see e.g., [118]), we review some known results for completeness. In particular, SOS(V)

certificates exist if: (i) V is zero-dimensional, (ii) V is one-dimensional and 𝑝 is both strictly

positive and bounded [122], (iii) V is compact and 𝑝 is strictly positive [119], (iv) V is a

variety of minimal degree and 𝑝 is quadratic [23]. For most varieties there exist nonnegative
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polynomials which are not SOS. Nonetheless, such instances can always be approximated by

SOS polynomials (possibly of higher degree) [85, §2.6].

Solution outline

Our approach to compute 𝑑-SOS(V) certificates follows three main steps.

(i) Sampling: Obtain a “good” set of samples 𝑍 on the variety. It will be sufficient for us

to consider generic (random) samples on each component of the variety.

(ii) SDP: Given a sample set 𝑍, compute a sampling pre-certificate (𝐹,𝑍) using an SDP.

(iii) Verification: Check that the pre-certificate (𝐹,𝑍) is correct. This reduces to the identity

testing problem.

The structure of this chapter is as follows. Section 5.2 presents some basic algebraic pre-

liminaries. Afterwards, we approach each of the problems from above, although in a different

order to simplify the exposition. Section 5.3 deals with (ii), Section 5.4 with (iii), and Sec-

tion 5.5 with (i). Section 5.6 presents the complete sampling SOS methodology. Finally,

Section 5.7 shows several examples to illustrate our methods.

5.2 Preliminaries

5.2.1 Algebraic geometry

Let K denote a field which is either R or C, and let K[𝑥] = K[𝑥1, . . . , 𝑥𝑛] denote the ring of

polynomials with coefficients in K. Let 𝐼 ⊆ K[𝑥] be a polynomial ideal, and let V = VC(𝐼)

be the associated complex variety. The quotient ring K[𝑥]/𝐼 is the set of equivalence classes

where 𝑓 ∼𝐼 𝑔 if 𝑓 − 𝑔 ∈ 𝐼. The coordinate ring of V is the quotient ring K[V] := K[𝑥]/
√
𝐼.

Equivalently, K[V] is the set of equivalence classes of polynomials where 𝑓 ∼V 𝑔 if they define

the same function on V.

In this chapter we only consider complex varieties defined by real polynomials. It is easy

to see that a complex variety V can be defined by real polynomials if and only if it is self-

conjugate, i.e. its complex conjugate V is itself. Recall that any variety can be decomposed
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into irreducible components V𝑖 as in (2.1). If V is self-conjugate, then either V𝑖 is also

self-conjugate, or there is a pair (V𝑖,V𝑗) of conjugate components.

5.2.2 Sampling varieties

Our technique requires a sampling oracle for the complex variety V. More precisely, we need

to sample generic (random) points in each irreducible component of V. Observe that sampling

points is easy whenever we have a parametrization. For instance, we can sample points from

𝑆𝑂(𝑛) using the Cayley parametrization:

𝐴 ↦→ (id𝑛 −𝐴)(id𝑛 +𝐴)−1, for skew symmetric 𝐴. (5.4)

Other parametric varieties include Grassmannians, Stiefel manifolds, and secant varieties.

For a general variety V, a practical way to compute sample points is through the tools of

numerical algebraic geometry; we refer to [14,124] for an introduction. Homotopy continuation

tools such as Bertini [13] and PHCpack [137] allow to compute the irreducible decomposition

of V, and afterwards to sample an arbitrary number of points in any component. Typically

the most expensive part is to produce the decomposition; sampling points is relatively cheap.

These numerical methods offer the following advantages with respect to symbolic methods such

as Gröbner bases: they are trivially parallelizable (each path can be tracked independently),

they allow for straight-line programs (polynomials do not need to be to be expanded), and

they offer better numerical stability.

Remark 5.1 (Complex samples). Even though we are only interested in real polynomials, our

methods allow the sample points to be complex. This is an important feature, since computing

real points on a variety is significantly harder than computing complex points.

Remark 5.2 (Zero-dimensional case). The results from this chapter are most useful for positive-

dimensional varieties, particularly if the number of components is relatively small. The reason

is that we treat each irreducible component separately. In particular, we take care of the

zero-dimensional part of the variety exhaustively, i.e., we check for all such points that 𝑝(𝑥)

is indeed nonnegative. If the whole variety is zero-dimensional our algorithm reduces to a

brute-force search.
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5.2.3 SOS certificates on varieties

Consider a variety V defined by equations ℎ = {ℎ𝑗}𝑗 , and let 𝐼 = ⟨ℎ⟩ be the generated ideal.

There are two traditional SOS methods to certify nonnegativity on V ∩ R𝑛. An equations

𝑑-SOS certificate is a tuple of polynomials (𝐹, 𝑔1, . . . , 𝑔𝑚) such that

𝑝(𝑥) = 𝐹 (𝑥) +
∑︁
𝑗

𝑔𝑗(𝑥)ℎ𝑗(𝑥); 𝐹 (𝑥) is SOS; deg(𝐹 ), deg(𝑔𝑗ℎ𝑗) ≤ 2𝑑. (5.5)

Finding such a certificate reduces to an SDP [105]. A quotient ring 𝑑-SOS certificate is a

polynomial 𝐹 such that

𝑝− 𝐹 ∈ 𝐼 (i.e., 𝑝 ≡ 𝐹 mod 𝐼); 𝐹 (𝑥) is SOS; deg(𝐹 ) ≤ 2𝑑. (5.6)

Given a Gröbner basis of 𝐼, the above reduces to an SDP [22, §3.3.5]. For an introduction to

Gröbner bases and quotient ring computations we refer to [46].

Quotient ring formulations are appealing for two main reasons. Firstly, they are stronger

than equations SOS (i.e., if (5.5) is feasible then so is (5.6), but the converse is not true). And

secondly, the size of the associated SDP is smaller, not only because of the absence of the

equations 𝑔𝑗 , but since it also takes into account the structure of the quotient ring. Conse-

quently, quotient ring SOS has become the default approach for varieties with simple Gröbner

bases (e.g., the hypercube {0, 1}𝑛). However, the expense of Gröbner bases computation limits

its application to further cases.

Our sampling SOS methodology can be seen as a “better” quotient ring formulation. The

reason being that we work modulo the radical ideal
√
𝐼 = I(V), and thus the underlying space

is the coordinate ring. The following diagram illustrates the relations among these three types

of certificates.

relaxation
description of V

(5.5) equations SOS
{ℎ𝑗(𝑥) = 0}𝑗

(5.6) quot. ring SOS
Gröbner basis

(5.3) sampling SOS
samples {𝑧𝑠}𝑠

stronger and smaller SDP

Remark 5.3 (Hilbert function). For 𝑘 ∈ N, let ℒ𝑘 ⊆ R[V] be the linear space spanned by the

polynomials of degree at most 𝑘. The function 𝐻V(𝑘) := dim(ℒ𝑘) is known as the Hilbert

function, and it plays an important role in sampling SOS (also in quotient ring SOS). Indeed,
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the size of the PSD matrix in the SDP is precisely 𝐻V(𝑑). We will also see in Section 5.5 that

the number of samples we require is given by 𝐻V(2𝑑). The Hilbert function can be bounded

as follows [34]:

𝐻V(𝑘) ≤
(︂
𝑛+ 𝑘

𝑘

)︂
, and 𝐻V(𝑘) ≤ degV

(︂
dimV + 𝑘

𝑘

)︂
if V is equidimensional, (5.7)

where deg,dim denote the degree and dimension. The second bound implies that, for fixed V,

the size of the PSD matrix in sampling SOS is 𝑂(𝑑dimV). In contrast, for equations SOS we

get 𝑂(𝑑𝑛).

5.3 Computing pre-certificates

In this section we show how, given a candidate sample set 𝑍, computing sampling SOS pre-

certificates reduces to an SDP. We will also determine the condition we need on the sample

set in order for such pre-certificate to be correct. The answer will be given by the concept of

poisedness from polynomial interpolation. Finally, we will show how to reduce the size of the

SDP in order to take advantage of the coordinate ring structure.

5.3.1 Sampling SDP

For a degree bound 𝑑, let 𝑢(𝑥) ∈ R[𝑥]𝑁 denote the vector with all 𝑁 =
(︀
𝑛+𝑑
𝑑

)︀
monomials of

degree at most 𝑑. Recall from Proposition 2.2 that a polynomial 𝐹 ∈ R[𝑥] is 𝑑-SOS if and

only if 𝐹 (𝑥) = 𝑄 ∙ 𝑢(𝑥)𝑢(𝑥)𝑇 for some 𝑄 ⪰ 0. Computing a polynomial 𝐹 satisfying (5.3)

reduces to the following SDP:

find 𝑄 ∈ 𝒮𝑁 , 𝑄 ⪰ 0

subject to 𝑝(𝑧𝑠) = 𝑄 ∙ 𝑢(𝑧𝑠)𝑢(𝑧𝑠)𝑇 , for 𝑠 = 1, . . . , 𝑆
(5.8)

where 𝒮𝑁 denotes the space of 𝑁 × 𝑁 real symmetric matrices. Note that the matrix 𝑄 is

real, whereas 𝑝(𝑧𝑠) and 𝑢(𝑧𝑠) are complex. Thus, each equality imposes a constraint on both
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the real and the imaginary part, i.e.,

ℜ(𝑝(𝑧𝑠)) = 𝑄 ∙ ℜ(𝑢(𝑧𝑠)𝑢(𝑧𝑠)𝑇 ), ℑ(𝑝(𝑧𝑠)) = 𝑄 ∙ ℑ(𝑢(𝑧𝑠)𝑢(𝑧𝑠)𝑇 ).

The above SDP has two important features: the polynomial 𝑝 can be given as a straight-

line program (i.e., it does not need to be expanded) and the constraint matrices have low

rank. Indeed, the rank of the constraint matrices ℜ(𝑢(𝑧𝑠)𝑢(𝑧𝑠)𝑇 ) and ℑ(𝑢(𝑧𝑠)𝑢(𝑧𝑠)𝑇 ) is at

most two. This special rank structure can be exploited in interior point methods, as discussed

in [17,92, 110]. In particular, the Hessian assembly takes only 𝑂(𝑁3) operations for low rank

matrices, as opposed to 𝑂(𝑁4) for unstructured matrices.

Observe that the monomial vector 𝑢(𝑥) can be replaced by any other polynomial set with

the same linear span. In particular, we will see in Section 5.3.3 that 𝑢(𝑥) can be chosen to

be an orthogonal basis with respect to a natural inner product supported on the samples.

Remarkably, this orthogonalization reduces complexity in the SDP by exploiting the algebraic

dependencies of the coordinate ring R[V]. In addition, the conditioning of the problem might

improve, as explained in [92] for the unconstrained case V = C𝑛.

Remark 5.4 (Kernel/Image form). The feasible set of (5.8) has the form 𝑄 ⪰ 0, 𝑄 ∈ 𝒬, where

𝒬 = {𝑄 ∈ 𝒮𝑁 : 𝑄 ∙𝐴𝑖 = 𝑏𝑖}

is an affine subspace. We refer to the above representation of 𝒬 as the kernel form. Alterna-

tively, we can describe 𝒬 explicitly by giving some generators, i.e.,

𝒬 = {𝑄0 +
∑︁
𝑗

𝜆𝑗𝑄𝑗 : 𝜆𝑗 ∈ R}

where 𝑄0 ∙ 𝐴𝑖 = 𝑏𝑖 and 𝑄𝑗 ∙ 𝐴𝑖 = 0. We refer to this representation as the image form.

Depending on the problem, either of them might be more convenient. In particular, if the

number of constraints is close to the dimension of 𝒮𝑁 then the latter representation is more

compact. This will be the case in the applications shown in Sections 5.7.2 and 5.7.3. For

a given problem, we can decide which representation is better by estimating the number of

variables used in both of them, as discussed in [105].
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5.3.2 Poisedness implies correctness

We just showed how to compute a sampling SOS pre-certificate for a given sample set. How-

ever, this pre-certificate might be incorrect unless we are cautious with the sample set, as

illustrated in the next example.

Example 5.1 (Incorrect pre-certificate). Let V ⊆ C2 be the zero set of ℎ(𝑥) := 𝑥22 − 1, that

consists of two complex lines: C × {1} and C × {−1}. Let 𝑝(𝑥) := 𝑥21 − 𝑥2 + 1, which is

nonnegative on V ∩ R2. Let 𝑍 := {(𝑘, 1)}𝑆𝑘=1 ⊆ V be a set of samples and let 𝐹 (𝑥) := 𝑥21.

Observe that (𝐹,𝑍) is a sampling SOS pre-certificate, but it is not correct because 𝑝(0,−1) ̸=

𝐹 (0,−1). This example illustrates that a sample set, regardless of its size, might lead to

incorrect pre-certificates if it does not capture well the geometry of the variety (in this case 𝑍

misses one of the components of V).

We now present a condition that guarantees the correctness of a pre-certificate. Let ℛ =

R[V] be the coordinate ring of the variety, which is the space where we will work on. In

particular, we will see the entries of the polynomial vector 𝑢(𝑥), as well as 𝑝(𝑥), as elements

of ℛ. We need the following definition.

Definition 5.2. Let V ⊆ C𝑛 be a self-conjugate variety and let ℛ = R[V]. Let ℒ ⊆ ℛ be a

linear subspace and let 𝑍 ⊆ V be a set of samples. We say that (ℒ, 𝑍) is poised 1 if the only

polynomial 𝑞 ∈ ℒ such that 𝑞(𝑧) = 0 for all 𝑧 ∈ 𝑍 is the zero polynomial.

Remark 5.5. For any finite dimensional ℒ there is a finite set 𝑍 such that (ℒ, 𝑍) is poised.

Let ℒ𝑑 ⊆ ℛ be the linear space spanned by the entries of 𝑢(𝑥), and let ℒ2𝑑 ⊆ ℛ be spanned

by the entries of 𝑢(𝑥)𝑢(𝑥)𝑇 . Note that 𝐹 (𝑥) = 𝑄∙𝑢(𝑥)𝑢(𝑥)𝑇 ∈ ℒ2𝑑. The following proposition

tells us that poisedness guarantees the correctness of a sampling SOS pre-certificate. Thus, a

good set of samples is one such that (ℒ2𝑑, 𝑍) is poised.

Proposition 5.1. Let V ⊆ C𝑛 be a self-conjugate variety, let ℛ = R[V] and let 𝑝 ∈ ℛ be

nonnegative on V ∩ R𝑛. Let (𝐹,𝑍) be a sampling SOS pre-certificate and let ℒ2𝑑 ⊆ ℛ be a

linear subspace such that 𝑝, 𝐹 ∈ ℒ2𝑑. If (ℒ2𝑑, 𝑍) is poised then (𝐹,𝑍) is correct.
1In polynomial interpolation it is usually further required that |𝑍| = 𝐷, where 𝐷 is the dimension of ℒ [115].

We do not impose such condition.
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Proof. Let 𝑔 := 𝑝− 𝐹 ∈ ℒ2𝑑, and observe that 𝑔(𝑧) = 0 for 𝑧 ∈ 𝑍. As (ℒ2𝑑, 𝑍) is poised, this

implies that 𝑔 = 0 and thus 𝑝 = 𝐹 ∈ ℛ.

For the rest of this section we assume that the poisedness condition from above is satisfied.

In Section 5.5 we will discuss how to choose the samples in order to satisfy this requirement.

5.3.3 Reducing complexity

The size of the PSD matrix 𝑄 from (5.8) is
(︀
𝑛+𝑑
𝑑

)︀
. We can reduce the size of this matrix by

taking advantage of the coordinate ring structure. The size of the new matrix will be given

by the Hilbert function 𝐻V(𝑑); see Remark 5.3. To do so, we simply need to find a basis of

the linear subspace ℒ𝑑 ⊆ ℛ spanned by the entries of 𝑢(𝑥). We now explain how to get an

orthogonal basis 𝑢𝑜(𝑥) with respect to the inner product given in the next proposition.

Proposition 5.2. Let V ⊆ C𝑛 be a self-conjugate variety and let ℛ = R[V]. Let ℒ𝑑 ⊆ ℛ be

a linear subspace and let 𝑍 ⊆ V be a set of samples. Let ⟨·, ·⟩𝑍 : ℒ𝑑 × ℒ𝑑 → R be

⟨𝑓, 𝑔⟩𝑍 =
∑︁
𝑧∈𝑍

(𝑓(𝑧)𝑔(𝑧) + 𝑓(𝑧)𝑔(𝑧)).

If (ℒ𝑑, 𝑍) is poised then (ℒ𝑑, ⟨·, ·⟩𝑍) is a real inner product space.

Proof. It is clear that ⟨·, ·⟩𝑍 is bilinear and symmetric. Thus, we only need to check positive-

ness. Observe that ⟨𝑓, 𝑓⟩𝑍 =
∑︀

𝑧∈𝑍 2|𝑓(𝑧)|2 ≥ 0 , which is zero only if 𝑓(𝑧) = 0 for all 𝑧 ∈ 𝑍.

As 𝑓 ∈ ℒ𝑑, the poisedness condition implies 𝑓 = 0.

Remark 5.6. Note that if (ℒ2𝑑, 𝑍) is poised then (ℒ𝑑, 𝑍) is also poised.

To find an orthogonal basis, we will operate on the evaluation matrix 𝑈 with columns 𝑢(𝑧)

for 𝑧 ∈ 𝑍. Consider the real matrix 𝑊 := [ℜ(𝑈)|ℑ(𝑈)]. Observe that 𝑢(𝑥) is an orthogonal

basis with respect to ⟨·, ·⟩𝑍 if and only if the rows of 𝑊 are orthogonal with respect to the

standard real inner product. Thus, we just need to orthogonalize the rows of𝑊 . Using an SVD

(or rank revealing QR), we can obtain a decomposition 𝑊 = 𝑇𝑊 𝑜, where 𝑊 𝑜 has orthogonal

rows and 𝑇 is a real full rank transformation matrix. Let 𝑈𝑜 be such that𝑊 𝑜 = [ℜ(𝑈𝑜)|ℑ(𝑈𝑜)].

The matrix 𝑈𝑜 encodes the new vector of orthogonal polynomials 𝑢𝑜(𝑥). We note that directly

orthogonalizing the matrix 𝑈 does not work, as the transformation matrix 𝑇 would be complex.
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Algorithm 6 Orthogonal basis on the coordinate ring
Input: Polynomial vector 𝑢(𝑥), samples 𝑍 of variety V
Output: Orthogonal basis 𝑢𝑜(𝑥) and its evaluation matrix 𝑈𝑜

1: procedure OrthBasis(𝑢(𝑥), 𝑍)
2: 𝑈 := evaluation matrix with columns 𝑢(𝑧) for 𝑧 ∈ 𝑍
3: 𝑊 := [ℜ(𝑈) | ℑ(𝑈) ]
4: orthogonalize 𝑊 =: 𝑇𝑊 𝑜, where 𝑊 𝑜(𝑊 𝑜)𝑇 = id
5: let 𝑈𝑜 be such that 𝑊 𝑜 = [ℜ(𝑈𝑜) | ℑ(𝑈𝑜) ]
6: let 𝑢𝑜(𝑥) be such that 𝑢(𝑥) = 𝑇𝑢𝑜(𝑥)
7: return 𝑢𝑜(𝑥), 𝑈𝑜

Example 5.2. Let V be the complex variety of the set of rotation matrices 𝑆𝑂(2), i.e.,

V = {𝑋 ∈ C2×2 : 𝑋𝑇𝑋 = id2, Det(𝑋) = 1}. (5.9)

Let 𝑝(𝑋) = 4𝑋21−2𝑋11𝑋22−2𝑋12𝑋21+3, which is nonnegative on V∩R2×2. We want to find

a sampling SOS certificate. We can sample points on V using the Cayley parametrization (5.4).

Consider the following 3 complex samples:

𝑧1 =
[︀−0.6+0.8𝑖 1.2+0.4𝑖
−1.2−0.4𝑖 −0.6+0.8𝑖

]︀
, 𝑧2 =

[︀−1.2+0.4𝑖 0.6+0.8𝑖
−0.6−0.8𝑖 −1.2+0.4𝑖

]︀
, 𝑧3 =

[︀−0.75+0.25𝑖 0.75+0.25𝑖
−0.75−0.25𝑖 −0.75+0.25𝑖

]︀
.

We fix the degree bound 𝑑 = 1, and let 𝑢(𝑥) = (1, 𝑋11, 𝑋12, 𝑋21, 𝑋22) be the monomials

of degree at most 𝑑. The matrix of evaluations is:

𝑈 =

[︃ 1 1 1
−0.6+0.8𝑖 −1.2+0.4𝑖 −0.75+0.25𝑖
−1.2−0.4𝑖 −0.6−0.8𝑖 −0.75−0.25𝑖
1.2+0.4𝑖 0.6+0.8𝑖 0.75+0.25𝑖
−0.6+0.8𝑖 −1.2+0.4𝑖 −0.75+0.25𝑖

]︃

Using an SVD we obtain the orthogonalized matrix 𝑈𝑜 and the corresponding polynomial

basis 𝑢𝑜(𝑥). Note that 𝑢𝑜(𝑥) has only 3 elements, as opposed to 𝑢(𝑥).

𝑈𝑜 =
[︁−0.5955+0.1005𝑖 −0.5955−0.1005𝑖 −0.5201

0.3058+0.6116𝑖 −0.3058+0.6116𝑖 0.2548𝑖
−0.0708+0.6411𝑖 −0.0708−0.6411𝑖 0.4100

]︁ 𝑢𝑜(𝑋) = (𝑋21 +𝑋22 − .8054, 𝑋21 −𝑋22,

𝑋21 +𝑋22 + 2.4831)
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The sampling SDP is

find 𝑄 ∈ 𝒮3, 𝑄 ⪰ 0

subject to 𝑝(𝑧𝑠) = 𝑄 ∙ 𝑢𝑠𝑢𝑇𝑠 , for 𝑠 = 1, 2, 3

where 𝑢𝑠 denotes the 𝑠-th column of 𝑈𝑜. Solving the SDP we obtain the sampling pre-certificate

(𝐹,𝑍), where 𝐹 (𝑋) = (2𝑋21 + 1)2.

5.4 Verifying sampling pre-certificates

We now address the problem of testing the correctness of a pre-certificate (𝐹,𝑍). This problem

is equivalent to determining whether the polynomial 𝑓 := 𝑝 − 𝐹 is identically zero on the

variety V, and it is known as the identity testing problem (see e.g., [117] and the references

therein). Note that the problem is nontrivial even if V = C𝑛, since 𝑓 can be given as a straight-

line program (such as a determinant). Nonetheless, there is a nice randomized algorithm to

solve it, provided that we can efficiently sample the variety. Recall that generic samples can

be obtained as explained in Section 5.2.2. We now proceed to review the notion of genericity,

as well as showing the solution to the identity testing problem.

5.4.1 Genericity

The notion of genericity is fundamental in algebraic geometry. Let V ⊆ C𝑛 be an irre-

ducible variety of positive dimension. We say that a property holds generically on V if there

is a nonzero polynomial 𝑞 ∈ C[V] such that the property holds for any 𝑧 ∈ V such that

𝑞(𝑧) ̸= 0. Informally, this means that the property holds outside of the small bad region given

by 𝑞(𝑧) = 0. In Section 5.5.2 we will use a variation of this notion of genericity that is better

suited for dealing with real polynomials.

Example 5.3. Let V = C𝑚×𝑚 be the space of 𝑚 × 𝑚 matrices. The property of being

“nonsingular” is satisfied generically on V, since a matrix 𝐴 ∈ V is singular only if Det(𝐴) = 0.

We often say that a sample point 𝑧 ∈ V is generic if some property of interest (such as

the conclusion of a theorem) is satisfied generically on V. For instance, we may say “a generic
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𝑚 ×𝑚 matrix is nonsingular”. A generic point can be understood as a random point on the

variety.

Proposition 5.3. Let V be an irreducible variety, let 𝑓 ∈ C[V] be a nonzero polynomial and

let 𝑧 ∈ V be a generic sample. Then 𝑓(𝑧) is nonzero.

Proof. The conclusion holds except in the bad region defined by 𝑓(𝑧) = 0.

5.4.2 Identity testing

Genericity allows us to derive randomized algorithms that succeed with probability one with

respect to any distribution on V with full support. In particular, Proposition 5.3 gives rise

to Algorithm 7. This method efficiently solves the identity testing problem for an irreducible

variety (provided that it can be sampled). Surprisingly, no efficient deterministic algorithm to

this problem is known, and it is likely that finding such algorithm is very hard [76].

Algorithm 7 Identity testing over C
Input: Polynomial 𝑓 ∈ C[𝑥], irreducible variety V
Output: “True”, if 𝑓 is identically zero on V. “False”, otherwise.
1: procedure IsZero(𝑓,V)
2: 𝑧 := generic sample from V
3: return True if 𝑓(𝑧) = 0 else False

Remark 5.7 (Reducible varieties). If the variety V is reducible, we can still solve the identity

testing problem provided that we can sample each of its irreducible components. We simply

need to apply Algorithm 7 to each component.

Remark 5.8 (Probability one). Randomized algorithms derived from genericity statements

provably work with probability one in exact arithmetic. However, in floating point arithmetic

there is a nonzero probability of error, thus leading to Monte Carlo algorithms; for further

discussion see [124, §4].

5.5 Selecting the samples

The missing step to complete our sampling SOS methodology is to describe how to obtain a

good set of samples 𝑍. Recall from Section 5.3.2 that a good sample set must be such that
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(ℒ2𝑑, 𝑍) is poised. Thus the question we address here is the following: given a linear space

ℒ2𝑑 ⊆ ℛ = R[V], how can we get a sample set 𝑍 such that (ℒ2𝑑, 𝑍) is poised. We will see in

this section that this condition can be satisfied with a generic set of samples.

5.5.1 Poisedness again

Before proceeding to the selection of the samples, we first present an alternative character-

ization of poisedness. Let ℒ ⊆ ℛ be a finite dimensional subspace. Let 𝑣(𝑥) ∈ ℛ𝑁 be a

polynomial vector whose entries span ℒ. Let 𝑈 be the matrix with columns 𝑣(𝑧) for 𝑧 ∈ 𝑍

and let 𝑈̂ := [𝑈 |𝑈 ]. We will refer to the (complex) rank of matrix 𝑈̂ as the empirical di-

mension of ℒ with respect to 𝑍. It is easy to see that it does not depend on the choice of

generators.

Lemma 5.4. (ℒ, 𝑍) is poised if and only if the dimension of ℒ is equal to its empirical

dimension.

Proof. Let 𝐷 := dim(ℒ) and assume that 𝑣(𝑥) ∈ ℛ𝐷 is a basis. Assume first that the

rk(𝑈̂) = 𝐷. Note that any 𝑞 ∈ ℒ can be written uniquely in the form 𝑞(𝑥) = 𝜇𝑇𝑢(𝑥) for some

𝜇 ∈ R𝐷. The condition that 𝑞(𝑧) = 0 for 𝑧 ∈ 𝑍 ∪ 𝑍 implies that 𝜇𝑇 𝑈̂ = 0. As 𝑈̂ has full

row rank then 𝜇 = 0, and thus (ℒ, 𝑍) is poised. Assume now that 𝑈̂ does not have full row

rank. Then there is some nonzero 𝜆 ∈ C𝐷 such that 𝜆𝑇 𝑈̂ = 0. Observe that this implies that

ℜ(𝜆)𝑇𝑈 = ℑ(𝜆)𝑇𝑈 = 0, where ℜ,ℑ denote the real/imaginary part. Thus, there is a nonzero

𝜇 ∈ R𝐷 such that 𝜇𝑇𝑈 = 0. Considering the polynomial 𝑞(𝑥) := 𝜇𝑇𝑢(𝑥), we conclude that

(ℒ, 𝑍) is not poised.

Remark 5.9. Since matrix 𝑈̂ has 2|𝑍| columns, it follows from the lemma that if (ℒ, 𝑍) is

poised then 2|𝑍| ≥ dimℒ.

Example 5.4. Let V = C and ℛ = R[𝑥] be the space of univariate polynomials. Let ℒ be the

set of polynomials of degree less than 𝑁 and let 𝑣(𝑥) = (1, 𝑥, . . . , 𝑥𝑁−1). Let 𝑍 ∈ C𝑁/2 be a

tuple of complex samples, and let 𝑍 be the concatenation of 𝑍 and 𝑍. The evaluation matrix

𝑈̂ in this case is the Vandermonde matrix of 𝑍, which is singular only if there are repeated

elements in 𝑍. Therefore, (ℒ, 𝑍) is poised if and only if the elements of 𝑍 are all distinct.

145



5.5.2 How many samples

We return to the problem of finding a sample set 𝑍 such that (ℒ2𝑑, 𝑍) is poised. As we decided

that the samples will be random, the only missing point is to determine how many samples

to take. Remark 5.9 tells us that we need at least ⌈𝐷/2⌉ samples, where 𝐷 := dim(ℒ2𝑑). We

wonder if this condition is generically sufficient to guarantee poisedness.

Question. Let V be a self-conjugate variety. Let ℒ2𝑑 ⊆ R[V] be a 𝐷-dimensional linear

subspace and let 𝑍 ⊆ V be a generic set of samples with |𝑍| ≥ 𝐷/2. Is (ℒ2𝑑, 𝑍) poised?

In order to make sense of the above question, we have to be more precise about the meaning

of a generic set of samples. In Section 5.4.1 we saw the definition of a generic sample of an

irreducible variety. We have to extend this definition to multiple samples, taken possibly from

a reducible variety. Below we formalize the exact notion of genericity we use. It is slightly

different from the one in Section 5.4.1 as it includes the complex conjugates of the samples.

The reason for including the conjugates is that it reflects the fact that we are working with

real polynomials.

Definition 5.3. Let W ⊆ C𝑛 be an irreducible variety and let 𝑍 = (𝑧1, . . . , 𝑧𝑆) be a tuple

of 𝑆 samples in 𝑊 . We say that 𝑍 satisfies a property c-generically (conjugate generically) if

there is a polynomial 𝑞 ∈ C[𝑧1, . . . , 𝑧𝑆 , 𝑧1, . . . , 𝑧𝑆 ] such that:

∙ 𝑞(𝑧1, . . . , 𝑧𝑆 , 𝑧1, . . . , 𝑧𝑆) is not identically zero when 𝑧1, . . . , 𝑧𝑆 ∈ W.

∙ the property holds whenever 𝑞(𝑧1, . . . , 𝑧𝑆 , 𝑧1, . . . , 𝑧𝑆) ̸= 0.

Let W1, . . . ,W𝑟 be irreducible varieties and let 𝑍1 ⊆ W1, . . . , 𝑍𝑟 ⊆ W𝑟 be tuples of sam-

ples. We say that (𝑍1, . . . , 𝑍𝑟) satisfies a property c-generically if there are polynomials

𝑞1 ∈ C[𝑍1, 𝑍1], . . . , 𝑞𝑟 ∈ C[𝑍𝑟, 𝑍𝑟] such that:

∙ 𝑞𝑖(𝑍𝑖, 𝑍𝑖) is not identically zero on W𝑖, for 1 ≤ 𝑖 ≤ 𝑟.

∙ the property holds whenever 𝑞1(𝑍1, 𝑍1) ̸= 0, . . . , 𝑞𝑟(𝑍𝑟, 𝑍𝑟) ̸= 0.

We say that 𝑍 (resp. 𝑍1, . . . , 𝑍𝑟) is a c-generic set of samples if it satisfies some property of

interest c-generically.
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In the next section we will show that for an irreducible variety (or a conjugate pair of

irreducible varieties) the answer to the question from above is positive. However, for reducible

varieties, we need to make sure that we have enough samples in each irreducible component,

as will be discussed in Section 5.5.5. Example 5.1 illustrates what might go wrong if we do

not have enough samples in some component.

5.5.3 The irreducible case

Assume now that V = W ∪ W, where W ⊆ C𝑛 is an irreducible variety. This means that

either V is a self-conjugate irreducible variety, or it is a conjugate pair of irreducible varieties.

In the latter case, note that we can assume without loss of generality that 𝑍 ⊆ W, by possibly

exchanging some samples with their complex conjugates. We show now that if the samples 𝑍

are c-generic and are at least as many as the dimensionality of the problem, then the poisedness

property is satisfied.

Theorem 5.5. Let W ⊆ C𝑛 be an irreducible variety, let V = W ∪ W and let ℛ = R[V].

Let ℒ2𝑑 ⊆ ℛ be a linear subspace and let 𝑍 ⊆ W be a c-generic set of samples. If |𝑍| ≥ 𝐷/2,

where 𝐷 := dim(ℒ2𝑑), then (ℒ2𝑑, 𝑍) is poised 2.

Proof. Let 𝑣(𝑥) ∈ ℛ𝐷 be a basis of ℒ2𝑑. Let 𝑍𝑗 := {𝑧1, . . . , 𝑧𝑗}, let 𝑉𝑗 ∈ C𝐷×𝑗 be the

matrix with columns {𝑣(𝑧)}𝑧∈𝑍𝑗 and let 𝑉𝑗 := [ℜ(𝑉𝑗)|ℑ(𝑉𝑗)] ∈ R𝐷×2𝑗 . Also denote 𝑊𝑗 :=

[𝑉𝑗 |ℑ(𝑣(𝑧𝑗+1))] ∈ R𝐷×2𝑗+1. Because of Lemma 5.4, we just need to show that the matrix 𝑉𝑆

has rank 𝐷. To this end, we will show the following statements:

∙ if 𝑉𝑗−1 is full rank then 𝑊𝑗−1 is full rank c-generically.

∙ if 𝑊𝑗−1 is full rank then 𝑉𝑗 is full rank c-generically.

Clearly these statements imply that 𝑉𝑆 is full rank. Given the similarity between the two of

them, we only prove the latter.

Let 𝑗 ≤ 𝐷/2 and assume that 𝑊𝑗−1 is full rank. We will show that there is a polynomial

𝑄 ∈ C[𝑍𝑗 , 𝑍𝑗 ] which is not identically zero on W, and such that 𝑉𝑗 is full rank whenever

𝑄(𝑍𝑗 , 𝑍𝑗) ̸= 0.

2This theorem is a special instance of the dimensionality problem in polynomial interpolation, and more
elaborate versions can be found in the literature [43].
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Assume that 𝑉𝑗 is not full rank. Then there must exist a vector 𝜆 ∈ R2𝑗−1 such that

𝑣(𝑧𝑗) + 𝑣(𝑧𝑗) = 2ℜ(𝑣(𝑧𝑗)) =𝑊𝑗−1𝜆.

As 𝑊𝑗−1 has less than 𝐷 columns, there is some nonzero vector 𝜇 ∈ R𝐷 in its left kernel. Note

that 𝜇 = 𝜇(𝑍𝑗 , 𝑍𝑗) can be parametrized as a rational function of 𝑍𝑗 , 𝑍𝑗 , given that 𝑊𝑗−1 is

full rank. Let 𝑞𝜇(𝑥) := 𝜇𝑇 𝑣(𝑥) ∈ ℛ, which is nonzero due to the linear independence of 𝑣(𝑥).

Observe that

𝑞𝜇(𝑧𝑗) + 𝑞𝜇(𝑧𝑗) = 𝜇𝑇𝑊𝑗−1 𝜆 = 0.

As the coefficients of 𝑞𝜇 are rational functions on 𝑍𝑗 , 𝑍𝑗 , we conclude that the samples satisfy

a nonzero algebraic equation 𝑄 ∈ C[𝑍𝑗 , 𝑍𝑗 ].

Remark 5.10. If the samples are real, it can be shown in a similar way that we need |𝑍| ≥ 𝐷.

5.5.4 Verifying the number of samples

We just showed that, under genericity assumptions, the poisedness property is satisfied when-

ever we have as many samples as the dimension of the space. Concretely, we need to have

⌈𝐷/2⌉ complex samples, where 𝐷 = dim(ℒ2𝑑). However, as the dimension 𝐷 is not known a

priori, it is uncertain how many samples to take. Therefore, we need some way to estimate

such dimension, and the natural quantity to consider is the empirical dimension 𝐷𝑒. The

following corollary gives us a simple test that guarantees that 𝐷 = 𝐷𝑒.

Proposition 5.6. Let W ⊆ C𝑛 be an irreducible variety, let V = W ∪W and let ℛ = R[V].

Let ℒ2𝑑 ⊆ ℛ be a linear subspace and let 𝑍 ⊆ W be a c-generic set of samples. Let 𝐷 be the

dimension of ℒ2𝑑 and let 𝐷𝑒 be its empirical dimension with respect to 𝑍. If 𝐷𝑒 < 2|𝑍| then

(ℒ2𝑑, 𝑍) is poised (i.e., 𝐷 = 𝐷𝑒).

Proof. If 2|𝑍| < 𝐷 it follows from the proof of Theorem 5.5 that 𝐷𝑒 = 2|𝑍|. Therefore, we

must have that 2|𝑍| ≥ 𝐷, and thus (ℒ2𝑑, 𝑍) is poised because of Theorem 5.5.

The above corollary suggests a simple strategy that is summarized in Algorithm 8. We

form the vector 𝑢2(𝑥) = vec(𝑢(𝑥)𝑢(𝑥)𝑇 ), whose entries span ℒ2𝑑. Then we build the matrix
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Algorithm 8 Test samples
Input: Polynomial vector 𝑢(𝑥), samples 𝑍 of a variety V
Output: “True”, if generically we must have that (ℒ2𝑑, 𝑍) is poised, where ℒ2𝑑 ⊆ R[V] is

spanned by 𝑢(𝑥)𝑢(𝑥)𝑇 . “False”, if we cannot guarantee it.
1: procedure GoodSamples(𝑢(𝑥), 𝑍)
2: 𝑈̂2 := matrix with columns vec(𝑢(𝑧)𝑢(𝑧)𝑇 ), for 𝑧 ∈ 𝑍 ∪ 𝑍
3: return False if 𝑈̂2 has full column rank else True

of evaluations 𝑈̂2 with columns 𝑢2(𝑧) for 𝑧 ∈ 𝑍 ∪ 𝑍. The rank of this matrix is the empirical

dimension 𝐷𝑒. If 𝑈̂2 does not have full column rank the above corollary holds.

Remark 5.11. Consider the Hermitian matrix 𝑈̂*
2 𝑈̂2, where * denotes the conjugate transpose.

This matrix is often much smaller than 𝑈̂2, and it can be constructed efficiently as

𝑈̂*
2 𝑈̂2 = [⟨𝑢(𝑧𝑖), 𝑢(𝑧𝑗)⟩2]𝑧𝑖,𝑧𝑗∈𝑍∪𝑍 = (𝑈̂*𝑈̂) ∘ (𝑈̂*𝑈̂)

where ∘ denotes the Hadamard product. Therefore, it is practical to use matrix 𝑈̂*
2 𝑈̂2 instead

of 𝑈̂2, given that they have the same rank.

Example 5.5. Consider the case of Example 5.2. We used 𝑆 = 3 samples to compute the

pre-certificate. To verify that the number of samples was sufficient, we construct the matrix

𝑈̂*
2 𝑈̂2 =

⎡⎢⎣
1.5581 −0.2937+0.2562𝑖 0.1730−0.1158𝑖 0.0902+0.1118𝑖 0.0981 −0.0676−0.0720𝑖

−0.2937−0.2562𝑖 1.5581 0.1730+0.1158𝑖 0.0981 0.0902−0.1118𝑖 −0.0676+0.0720𝑖
0.1730+0.1158𝑖 0.1730−0.1158𝑖 0.2535 −0.0676−0.0720𝑖 −0.0676+0.0720𝑖 0.1396
0.0902−0.1118𝑖 0.0981 −0.0676+0.0720𝑖 1.5581 −0.2937−0.2562𝑖 0.1730+0.1158𝑖

0.0981 0.0902+0.1118𝑖 −0.0676−0.0720𝑖 −0.2937+0.2562𝑖 1.5581 0.1730−0.1158𝑖
−0.0676+0.0720𝑖 −0.0676−0.0720𝑖 0.1396 0.1730−0.1158𝑖 0.1730+0.1158𝑖 0.2535

⎤⎥⎦
The rank of this matrix is 5, and thus the condition from Proposition 5.6 is satisfied. Therefore,

the number of samples is sufficient.

5.5.5 Reducible varieties

The analysis made so far makes an irreducibility assumption on the variety V. This assumption

is satisfied for many varieties, in particular for any variety parametrized by C𝑛. Even if V

is not irreducible, we can always work with each of its irreducible components independently.

Indeed, note that 𝑝 ≥ 0 on some variety if and only if 𝑝 ≥ 0 on each irreducible component.

Nonetheless, there are circumstances in which we may not want to impose an irreducibility

assumption. For example, if the variety has bad numerical properties and thus its irreducible
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components cannot be accurately estimated. In such situations, we can repeat the same anal-

ysis from before if we have some method that samples points from each irreducible component.

For instance, if we intersect the variety V with a generic hyperplane of complementary dimen-

sion, the intersection is a finite set that contains points in each irreducible component. Note

that we do not know which component do the samples belong to, but we are certain that there

is at least one sample in each component.

The following corollary shows that if we have a sample set with enough points on each

irreducible component, then (ℒ2𝑑, 𝑍) is poised.

Proposition 5.7. Let W ⊆ C𝑛 be a variety, let V = W ∪ W and let ℛ = R[V]. Let

ℒ2𝑑 ⊆ ℛ be a linear subspace. Let W = W1 ∪ · · · ∪ W𝑟 be the irreducible decomposition,

and let 𝑍1 ⊆ W1, . . . , 𝑍𝑟 ⊆ W𝑟 be c-generic sets of samples. If |𝑍𝑖| ≥ 𝐷/2 for all 𝑖, where

𝐷 := dim(ℒ2𝑑), then (ℒ2𝑑, 𝑍) is poised.

Proof. Let 𝑓 ∈ ℒ2𝑑 be such that 𝑓(𝑧) = 0 for all 𝑧 ∈ 𝑍. We want to show that 𝑓 is the

zero polynomial in C[V]. Let V𝑖 := W𝑖 ∪ W𝑖 and let 𝜓𝑖 : C[V] → C[V𝑖] be the restriction

operator. It is clear that the dimension of 𝜓𝑖(ℒ2𝑑) is at most 𝐷. Thus, Theorem 5.5 says that

(𝜓𝑖(ℒ2𝑑), 𝑍𝑖) is poised whenever 𝑞𝑖(𝑍𝑖, 𝑍𝑖) ̸= 0, for some polynomial 𝑞𝑖 which is nonzero on

W𝑖. Note that 𝜓𝑖(𝑓) evaluates to zero on 𝑍𝑖, and thus 𝜓𝑖(𝑓) must be the zero element in C[V𝑖]

whenever 𝑞𝑖(𝑍𝑖, 𝑍𝑖) ̸= 0. Finally, observe that (𝜓1× · · ·×𝜓𝑘) : C[V] → C[V1]× · · ·×C[V𝑘] is

injective. We conclude that whenever 𝑞𝑖(𝑍𝑖, 𝑍𝑖) ̸= 0 then (𝜓1 × · · · × 𝜓𝑘)(𝑓) is zero and thus

𝑓 must be zero.

5.6 Computing sampling certificates

We already developed all the tools needed to find a sampling SOS certificate, and we now

put them together. Algorithm 9 summarizes our method for the case of an irreducible vari-

ety V. Naturally, the most computationally expensive part is solving the SDP. Recall from

Theorem 5.5 that the number of samples required is

𝑆min := ⌈𝐻V̂(2𝑑)/2⌉, 𝐻V̂(2𝑑) := dim(ℒ2𝑑) ≤ min

{︃(︂
𝑛+ 2𝑑

2𝑑

)︂
, deg 𝑉

(︂
dim𝑉 + 2𝑑

2𝑑

)︂}︃
,

(5.10)
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where V̂ = V ∪ V, and where we used the bound from (5.7). Since 𝐻V̂(2𝑑) is unknown in

general, we use a simple search strategy in Algorithm 9. The algorithm terminates when the

number of samples is at least 𝑆min.

In the case of a reducible variety, we might use Algorithm 9 for each of its irreducible

components separately. If we cannot reliably identify such components we need to take into

account the considerations from Section 5.5.5.

Remark 5.12 (Zero-dimensional case). Note that a zero-dimensional variety is reducible, each

component consisting of a single point. Thus, in such case our algorithm reduces to a brute-

force enumeration over all solutions, and better strategies may exist. The main problem to

address is that of producing small poised sets. We leave this as an open problem.

Algorithm 9 Sampling SOS
Input: Polynomial 𝑝 ∈ R[𝑥] (given by an evaluation oracle), irreducible variety V ⊆ C𝑛

(given by a sampling oracle), degree bound 𝑑 ∈ N
Output: 𝑑-SOS(V) certificate 𝐹 , if it exists. “Null”, if no certificate exists.
1: procedure SamplingSOS(𝑝, V, 𝑑)
2: 𝑢(𝑥) := vector with all monomials up to degree 𝑑
3: 𝑆 := initial guess on the number of samples (an upper bound is given in (5.10))
4: 𝑍 := generic set of 𝑆 samples from V
5: 𝑢(𝑥) := OrthBasis(𝑢(𝑥), 𝑍) ◁ find basis of R[V]
6: if not GoodSamples(𝑢(𝑥), 𝑍) then ◁ check if there are enough samples
7: increase 𝑆 and go to 4
8: 𝑄 := solution of SDP (5.8) (if none return Null) ◁ solve SDP
9: 𝐹 (𝑥) := 𝑄 ∙ 𝑢(𝑥)𝑢(𝑥)𝑇

10: if not IsZero(𝑝− 𝐹, V) then ◁ verify correctness
11: the sample set was not generic enough; go to 4
12: return 𝐹

5.7 Examples

We now show several examples and numerical evaluations to illustrate our methodology. We

implemented our algorithms in Matlab, using SDPT3 [133] to solve the semidefinite programs.

We also use Macaulay2 [67] for Gröbner bases, and Bertini [13] for numerical algebraic geom-

etry computations. The experiments are performed on an i7 PC with 8 cores of 3.40 GHz,

15.6 GB RAM, running Ubuntu 14.04. We will compare our techniques with the following two

methods: equations SOS (5.5) and the (Gröbner bases based) quotient ring SOS (5.6).
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5.7.1 Nilpotent matrices

Let V := {𝑋 ∈ C𝑛×𝑛 : 𝑋𝑛 = 0} be the variety of nilpotent matrices. Let 𝑝(𝑋) := Det(𝑋 +

id𝑛), which is nonnegative on V (moreover, it is identically one). We compare different SOS

methodologies to certify this.

First, consider the sampling approach. Let the degree bound 𝑑 = 1, and let us take

𝑆 =
(︀
𝑛+2
2

)︀
samples, which are always sufficient. Note that it is very easy to sample nilpotent

matrices. For instance, we can generate a random triangular matrix with zero diagonal, and

then apply a similarity transformation. For each sample 𝑋𝑠 ∈ V, we can efficiently evaluate

𝑝(𝑋𝑠) with Gaussian elimination. As 𝑝(𝑋𝑠) = 1 for all samples 𝑋𝑠, we will obtain the trivial

SOS decomposition 𝑝(𝑋) ≡V (1)2.

Consider now the Gröbner bases approach. Let ℎ ⊆ R[𝑋] be the 𝑛2 equations given by

𝑋𝑛 = 0. We want to compute a Gröbner basis of ℎ. Note, however, that the total number of

terms in ℎ is on the order of 𝑛𝑛+1, and the polynomials are all of degree 𝑛. Therefore, this

Gröbner basis computation is extremely complicated.

If we are smarter, we can take a different set of defining equations of V. Consider the

polynomial 𝑄𝑋(𝑡) := Det(𝑡 id𝑛 − 𝑋) − 𝑡𝑛, and let ℎ′ ⊆ R[𝑋] be the equations given by the

coefficients of 𝑄𝑋(𝑡). It turns out that ℎ′ generates the radical ideal of ⟨ℎ⟩, and moreover, it

is a Gröbner basis [74, §7]. However, ℎ′ has more than 𝑛! terms. Once we have the Gröbner

basis ℎ′, we need to compute the normal form of 𝑝. To obtain this normal form we need to

consider 𝑝 as a dense polynomial. As both 𝑝 and ℎ′ have on the order of 𝑛! terms, performing

this reduction is computationally intractable. If we are able to reduce it, we will conclude that

𝑝(𝑋) ≡V 1, as before.

Finally, note that equations SOS suffers from the same problems of the Gröbner bases

approach. For this method there is an additional problem, which is that the monomial basis

𝑢(𝑋) will be very large in order to account for all the monomials in 𝑝(𝑋) and ℎ(𝑋). This

problem was avoided in the previous methods because of the quotient ring reductions.

This example illustrates two of the advantages of the sampling formulation: it avoids the

algebraic problem of deciding which equations to use (e.g., ℎ vs. ℎ′), and it allows the use of

straight-line programs (e.g., Gaussian elimination) for more efficient evaluations.
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5.7.2 Weighted orthogonal Procrustes

We consider a family of optimization problems over varieties of orthogonal matrices. The

Stiefel manifold St(𝑘,R𝑛) is the set of orthonormal 𝑘-frames in R𝑛. We identify it with the set

of matrices 𝑋 ∈ R𝑛×𝑘 such that 𝑋𝑇𝑋 = id𝑘. Note that we can easily sample points from this

variety, for instance, by using the Cayley parametrization. Alternatively, we can orthogonalize

a random real matrix.

The weighted orthogonal Procrustes problem, also known as Penrose regression problem,

asks for a matrix 𝑋 ∈ St(𝑘,R𝑛) that minimizes ‖𝐴𝑋𝐶 −𝐵‖𝐹 , for some matrices 𝐴 ∈ R𝑚1×𝑛,

𝐵 ∈ R𝑚1×𝑚2 , 𝐶 ∈ R𝑘×𝑚2 . There is no closed form solution for this problem, and several local

optima may exist [35, 138].

Let 𝑢(𝑥) consist of all monomials up to some degree bound 𝑑. The sampling SDP is:

max
𝛾∈R, 𝑄⪰0

𝛾

subject to ‖𝐴𝑋𝑠𝐶 −𝐵‖2𝐹 − 𝛾 = 𝑄 ∙ 𝑢(𝑋𝑠)𝑢(𝑋𝑠)
𝑇 , for 𝑠 = 1, . . . , 𝑆

𝑋𝑠 ∈ St(𝑘,R𝑛)

Example 5.6 ( [35], Ex 2). Let (𝑛, 𝑘,𝑚1,𝑚2) = (4, 3, 5, 3) and consider the matrices

𝐴𝑇 =

[︂
0.2190 0.0470 0.6789 0.6793 0.9347
0.3835 0.5194 0.8310 0.0346 0.0535
0.5297 0.6711 0.0077 0.3834 0.0668
0.4175 0.6868 0.5890 0.9304 0.8462

]︂
, 𝐵𝑇 =

[︁
0.6526 0.2110 0.2229 −0.4104 −0.9381
0.6942 0.2204 0.2015 0.2994 1.0943
0.8299 1.1734 −0.1727 0.0474 −0.2351

]︁
, 𝐶 = id3.

We consider the degree 1 SOS relaxation. Following Algorithm 9, we find out that 𝑆 = 43

complex (or 85 real) samples are sufficient. More generally, the required number of samples

is a half of 𝐻V(2) =
(︀
𝑛𝑘+2

2

)︀
−
(︀
𝑘+1
2

)︀
. By solving the above SDP we obtain a lower bound of

1.118147 on the minimum norm ‖𝐴𝑋𝐶 − 𝐵‖𝐹 . Furthermore, the dual SDP matrix has rank

one, and thus we can recover a solution achieving such lower bound:

(𝑋*)𝑇 =
[︁−0.0895 0.7472 0.2732 −0.5992

0.7726 −0.1843 0.6035 −0.0702
−0.5277 0.0163 0.7309 0.4324

]︁
.

Table 5.1 compares different SDP formulations of the degree 1 SOS relaxation of the

weighted orthogonal Procrustes problem. We consider the case where 𝑚1 = 𝑛 and 𝑚2 =

𝑘. The table shows the number of variables/constraints and the computation time for the
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equations SDP and the sampling SDP. The computation is performed on random instances,

in which matrices 𝐴, 𝐵, 𝐶 are generated from the standard normal distribution. For the

sampling SDP we use the image form of the SDP (see Section 5.3.1), given that it has low

codimension. We remark that for the sampling SDP we include the preprocessing time, i.e.,

Algorithms 6 and 8.

We point out that the better performance of sampling SDP is due to the fact that it

makes use of the quotient ring structure. Although a similar sized SDP could be derived using

Gröbner bases, Table 5.1 shows that Gröbner bases computation is very expensive, much more

than solving the (larger) equations SDP. In particular, Macaulay2 ran out of memory for 𝑛 = 7,

𝑘 = 5.

Table 5.1: Degree 1 SOS relaxations for the weighted orthogonal Procrustes problem

𝑛 𝑘
Equations SDP Sampling SDP Gröbner bases

variables constraints time(𝑠) variables constraints time(𝑠) time(𝑠)

4 2 178 73 0.52 46 42 0.10 0.00
5 3 682 233 0.65 137 130 0.11 0.03
6 4 1970 576 1.18 326 315 0.15 9.94
7 5 4727 1207 3.56 667 651 0.31 out of mem.
8 6 9954 2255 13.88 1226 1204 0.70 out of mem.
9 7 19028 3873 42.14 2081 2052 2.11 out of mem.
10 8 33762 6238 124.43 3322 3285 5.07 out of mem.

5.7.3 Trace ratio problem

We now consider a problem on the Grassmaniann manifold Gr(𝑘,R𝑛), which is the set of

all 𝑘-dimensional subspaces of R𝑛. Note that we can easily sample points on Gr(𝑘,R𝑛) by

considering the subspace spanned by 𝑘 random vectors. By identifying a subspace with the

orthogonal projection onto it, we can view Gr(𝑘,R𝑛) as the set of matrices 𝑋 ∈ 𝒮𝑛 satisfying

𝑋2 = 𝑋 and tr(𝑋) = 𝑘; so this is indeed a variety. The trace ratio problem looks for the

maximizer of tr(𝐴𝑋)
tr(𝐵𝑋) on Gr(𝑘,R𝑛), for some given matrices 𝐴,𝐵 ∈ 𝒮𝑛, 𝐵 ≻ 0. This problem

arises in machine learning, and it can be efficiently solved by iterative methods, given that it

has a unique local maximum [145]. We consider the following variation:

max
𝑋∈Gr(𝑘,R𝑛)

tr(𝐴𝑋)

tr(𝐵𝑋)
+ tr(𝐶𝑋)
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for some 𝐴,𝐵,𝐶 ∈ 𝒮𝑛, 𝐵 ≻ 0. This problem may have several local maxima and thus local

methods may not converge to the global optimum [151,152].

To obtain an SOS relaxation, note that the problem is equivalent to minimizing 𝛾 such

that tr(𝐵𝑋)(𝛾 − tr(𝐶𝑋))− tr(𝐴𝑋) is nonnegative on Gr(𝑘,R𝑛). Thus, the SDP to consider

is:

min
𝛾∈R, 𝑄⪰0

𝛾

subject to tr(𝐵𝑋𝑠)(𝛾 − tr(𝐶𝑋𝑠))− tr(𝐴𝑋𝑠) = 𝑄 ∙ 𝑢(𝑋𝑠)𝑢(𝑋𝑠)
𝑇 , for 𝑠 = 1, . . . , 𝑆

𝑋𝑠 ∈ Gr(𝑘,R𝑛)

Example 5.7 ( [152], Ex 3.1). Let 𝑛 = 3, 𝑘 = 2 and consider the matrices 𝐴,𝐵,𝐶 from below.

For the degree bound 𝑑 = 1, Algorithm 9 gives that 𝑆 = 8 complex (or 15 real) samples are

sufficient. In general, the number of samples is a half of 𝐻V(2) =
(︀ 1

2
(𝑛2+𝑛)

2

)︀
. Solving the above

SDP we get an upper bound of 28.692472. As the dual matrix has rank one, we can recover

the optimal solution 𝑋*.

𝐴 =
[︁
11 5 8
5 10 9
8 9 5

]︁
, 𝐵 =

[︁
7 7 7
7 10 8
7 8 8

]︁
, 𝐶 =

[︁
15 10 9
10 7 6
9 6 6

]︁
, 𝑋* =

[︁
0.61574 0.15424 0.46132
0.15424 0.93809 −0.18517
0.46132 −0.18517 0.44617

]︁

As before, we compare the equations SDP and the sampling SDP of the degree 1 SOS

relaxation. Table 5.2 shows the number of variables/constraints and the computation time on

random instances for both methods. It also shows the computation time of Gröbner bases.

Table 5.2: SOS relaxations for the trace ratio problem

Degree 1 SOS relaxations for the trace ratio problem

𝑛 𝑘
Equations SDP Sampling SDP Gröbner bases

variables constraints time(𝑠) variables constraints time(𝑠) time(𝑠)

4 2 342 188 0.47 56 45 0.10 0.00
5 3 897 393 0.71 121 105 0.11 0.02
6 4 2062 738 1.34 232 210 0.15 0.20
7 5 4265 1277 3.62 407 378 0.19 6.04
8 6 8106 2073 9.06 667 630 0.34 488.17
9 7 14387 3198 23.83 1036 990 0.61 out of mem.
10 8 24142 4733 58.17 1541 1485 1.18 out of mem.
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5.7.4 Low rank approximation

Consider the problem of finding the nearest rank 𝑘 tensor. Let C𝑛1×···×𝑛ℓ denote the set of

tensors of order ℓ and dimensions (𝑛1, . . . , 𝑛ℓ) and let C𝑛1×···×𝑛ℓ
≤𝑘 be the closure of the space of

tensors of rank at most 𝑘. Note that we can easily generate generic samples of rank 𝑘 tensors.

Given a real tensor 𝑇 ∈ R𝑛1×···×𝑛ℓ , the rank 𝑘 approximation problem asks for the nearest

point 𝑋 ∈ R𝑛1×···×𝑛ℓ
≤𝑘 , i.e., the minimizer of ‖𝑇 − 𝑋‖2 where ‖ · ‖ denotes the norm of the

vectorization.

Let 𝑑 := ⌊𝑘/2⌋ + 1 and let 𝑢(𝑋) be the vector with all monomials of degree at most 𝑑.

Denoting 𝜍(𝑋) := ‖𝑋‖2, we consider the following SDP relaxation:

max
𝛾∈R, 𝑄⪰0

𝛾

subject to (‖𝑇 −𝑋𝑠‖2 − 𝛾) 𝜍(𝑋𝑠)
𝑑−1 = 𝑄 ∙ 𝑢(𝑋𝑠)𝑢(𝑋𝑠)

𝑇 , for 𝑠 = 1, . . . , 𝑆

𝑋𝑠 ∈ C𝑛1×···×𝑛ℓ
≤𝑘

We remark that computing the defining equations of the variety C𝑛1×···×𝑛ℓ
≤𝑘 is very compli-

cated [84]. This means that using traditional SOS methods is usually not possible.

Example 5.8 ( [48], Ex 3). Let 𝑇 ∈ R2×2×2×2 be the tensor whose nonzero entries are

𝑇1111 = 25.1, 𝑇1121 = 0.3, 𝑇1212 = 25.6, 𝑇2111 = 0.3, 𝑇2121 = 24.8, 𝑇2222 = 23.

Consider the rank one approximation problem. Solving the above SDP (𝑑 = 1, 𝑆 = 49) we

obtain the lower bound 42.1216 on the minimum distance ‖𝑇 −𝑋‖. From the dual solution

we recover the minimizer 𝑋*, whose only nonzero entry is 𝑋*
1212 = 25.6.

Consider now the rank three approximation problem. The above SDP (𝑑 = 2, 𝑆 = 2422)

gives a lower bound of 23.0000. Again, we can recover the minimizer 𝑋*, whose nonzero

entries are

𝑋*
1111 = 25.1, 𝑋*

1121 = 0.3, 𝑋*
1212 = 25.6, 𝑋*

2111 = 0.3, 𝑋*
2121 = 24.8

To see that 𝑋* is rank three, note that after removing the entry 25.6 we are left with a 2× 2

matrix.
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5.7.5 Certifying infeasibility

Given a complex variety V ⊆ C𝑛 consider the problem of certifying that V ∩ R𝑛 is empty. A

Positivstellensatz infeasibility certificate consists in showing that the constant polynomial −1

is SOS on the variety V [105]. For instance, if V = {𝑖,−𝑖} ⊆ C, a Positivstellensatz certificate

is that −1 = 𝑥2 on the variety V. We take an approach from numerical algebraic geometry,

where we first compute a numerical irreducible decomposition of V, and then use sampling

SOS to obtain the infeasibility certificate. For a given vector 𝑢(𝑥) the SDP problem to solve

is:
find 𝑄 ⪰ 0

subject to − 1 = 𝑄 ∙ 𝑢(𝑧𝑠)𝑢(𝑧𝑠)𝑇 , for 𝑠 = 1, . . . , 𝑆

𝑧𝑠 ∈ V

Example 5.9. Let V ⊆ C9 be the positive dimensional part of the cyclic 9-roots problem.
The cyclic 9-roots equations are:

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9

𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥3𝑥4 + 𝑥4𝑥5 + 𝑥5𝑥6 + 𝑥6𝑥7 + 𝑥7𝑥8 + 𝑥8𝑥9 + 𝑥9𝑥1

𝑥1𝑥2𝑥3 + 𝑥2𝑥3𝑥4 + 𝑥3𝑥4𝑥5 + 𝑥4𝑥5𝑥6 + 𝑥5𝑥6𝑥7 + 𝑥6𝑥7𝑥8 + 𝑥7𝑥8𝑥9 + 𝑥8𝑥9𝑥1 + 𝑥9𝑥1𝑥2

...

𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7𝑥8 + 𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7𝑥8𝑥9 + · · ·+ 𝑥9𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7

𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7𝑥8𝑥9 − 1

The zero set of these equations consists of a two-dimensional variety V of degree 18, and 6156

isolated solutions [59]. We remark that computing a Gröbner basis of these equations is very

complicated unless its special structure is exploited. Indeed, Macaulay2 ran out of memory

after 5 hours of computation.

We computed the irreducible decomposition of V using Bertini; it took 2ℎ 45𝑚 with the de-

fault parameters. The variety V decomposes into three pairs of conjugate irreducible varieties

(each pair of degree 6). For each component we proceed to compute a sampling 2-SOS certifi-

cate. We require 31 complex samples on each component, which we obtained from Bertini in

less than a second. Note that the upper bound from (5.10) predicted 1
2 ·min{

(︀
13
4

)︀
, 6
(︀
6
4

)︀
} = 45

samples. For each 𝑗 = 0, . . . , 5 we solved the respective sampling SDP, obtaining an infeasi-
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bility certificate of the form

−1 = (𝑅𝑗 𝑢(𝑥))
𝑇 (𝑅𝑗 𝑢(𝑥)), for 𝑥 ∈ V𝑗 .

This allows us to conclude that each irreducible component of V is purely complex. For

instance, for the first irreducible component V0 it takes only 0.74𝑠 to obtain the certificate

shown in Figure 5-1.

5.7.6 Amoeba membership

The (unlog) amoeba 𝒜V ⊆ R𝑛
+ of a variety V ⊆ C𝑛 is the image of V under the absolute

value function, i.e., 𝒜V = {|𝑧| : 𝑧 ∈ V}. The amoeba membership problem is to determine

whether some point 𝜆 ∈ R𝑛
+ belongs to 𝒜V. Theobald and De Wolff recently proposed the

use of Positivstellensatz certificates to prove that 𝜆 /∈ 𝒜V [131]. We now briefly describe this

approach.

For some 𝑓 ∈ C[𝑧], let ℜ(𝑓),ℑ(𝑓) ∈ R[𝑥, 𝑦] be such that

𝑓(𝑥+ 𝑖 𝑦) = ℜ(𝑓)(𝑥, 𝑦) + 𝑖ℑ(𝑓)(𝑥, 𝑦).

Consider the following sets of equations in R[𝑥, 𝑦]:

𝐽V := {ℜ(𝑓𝑗),ℑ(𝑓𝑗)}𝑚𝑗=1, ℎ𝜆 := {𝑥2𝑖 + 𝑦2𝑖 − 𝜆2𝑖 }𝑛𝑖=1

where 𝑓𝑗 are the defining equations of V. Theobald and De Wolff suggest computing a Gröbner

basis of 𝐽V ∪ ℎ𝜆 and then search for a Positivstellensatz infeasibility certificate.

Consider the following approach based on a set of samples 𝑍 ⊆ V. Let V̂ ∈ C2𝑛 be the zero

set of 𝐽V ⊆ R[𝑥, 𝑦]. Note that if 𝑧 ∈ V then (ℜ(𝑧),ℑ(𝑧)) ∈ V̂. Thus, given some monomial

vectors 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦), we can formulate the following SDP:

find 𝑄 ⪰ 0, 𝐶

subject to − 1 = 𝑄 ∙ 𝑢(𝑥𝑠, 𝑦𝑠)𝑢(𝑥𝑠, 𝑦𝑠)𝑇 + ℎ𝜆(𝑥𝑠, 𝑦𝑠)
𝑇𝐶 𝑣(𝑥𝑠, 𝑦𝑠), for 𝑠 = 1, . . . , 𝑆

𝑧𝑠 = 𝑥𝑠 + 𝑖 𝑦𝑠 ∈ V
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Example 5.10. Let V ⊆ C𝑛𝑘 be the complex variety associated to the Stiefel manifold

St(𝑘,R𝑛). Let 𝜆 = (1/𝑛, 1/𝑛, . . . , 1/𝑛), and let us show that 𝜆 /∈ 𝒜V using the SDP from

above. We consider the degree 1 SOS relaxation for the case 𝑛 = 6, 𝑘 = 4. We require 1205

complex samples on V, which we obtain using the Cayley parametrization. It takes only 0.79𝑠

to compute the Positivstellensatz certificate from below. On the other hand, Macaulay2 ran

out of memory while computing a Gröbner basis of 𝐽V.

−1 = (𝑅𝑢(𝑥, 𝑦))𝑇 (𝑅𝑢(𝑥, 𝑦))− 1.2
6∑︁

𝑖=1

ℎ𝑖(𝑥, 𝑦), for (𝑥, 𝑦) ∈ V̂

𝑢(𝑥, 𝑦) = (𝑦6, 𝑦5, 𝑦4, 𝑦3, 𝑦2, 𝑦1) ℎ𝑖(𝑥, 𝑦) = 𝑥2𝑖 + 𝑦2𝑖 − 1/𝑛2

𝑅 =

⎡⎢⎣ 0.1765714 0.8458754 −0.3371163 −1.0598462 0.0269367 0.6447252
0.2893688 0.1328983 −1.4142041 0.4346374 0.1677938 −0.2855976
−0.4505154 −0.6521358 −0.3240160 0.2748310 −0.0022626 1.2614402
1.0819066 0.4199281 0.3317461 0.7231132 −0.3725210 0.5304889
0.8377745 −1.0150421 −0.1600336 −0.6991182 −0.3744590 −0.1150085
0.4579696 −0.1868200 0.2138378 −0.0250102 1.4464173 0.1299494

⎤⎥⎦
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𝑢(𝑥) = (𝑥2
8, 𝑥7𝑥9, 𝑥

2
6, 𝑥5𝑥9, 𝑥5𝑥7, 𝑥

2
4, 𝑥3𝑥6, 𝑥2𝑥7, 𝑥2𝑥6, 𝑥

2
2, 𝑥1𝑥3, 𝑥

2
1, 𝑥8, 𝑥7, 𝑥6, 𝑥5, 𝑥3, 𝑥1, 1)

𝑅0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.9638686 −0.3445318 0.8395791 −1.9531033 0.6329543 −0.0152284 0.0238164 0.4701138 −1.9766327 −0.8363703
0.3474835 −0.3993919 0.5501348 −1.2198730 −0.2314149 0.0354563 1.0086575 0.4018444 1.0316339 −0.6193326
0.0117704 −0.5278490 0.6157589 −0.3131173 0.2207819 −0.0080541 0.4038186 0.1500184 −0.2618475 0.3089739
−0.0131866 0.1597228 0.1191077 −0.1088218 0.0697348 −0.1149430 −0.5067092 −0.1883695 −0.5993569 0.0244521
−0.4504113 −0.0761266 0.0056933 0.1535964 −0.0860039 0.0007534 0.1264270 0.0880389 −0.0927822 −0.1429983
−0.0804265 0.1450405 −0.0077285 −0.1657304 −0.3240087 0.0014097 0.0631496 −0.4083965 0.0191162 0.0854950
0.0192110 0.1019831 −0.1208989 −0.1821975 −0.1203214 0.0405222 0.0595267 −0.1921851 −0.0669972 −0.1710978
−0.1242984 0.1450764 −0.2725352 −0.1145423 0.0498037 0.0036466 −0.0705293 0.2012444 0.0873671 −0.2016367
−0.0724047 −0.0072012 −0.0659910 0.1174698 −0.0830511 0.0339559 0.1872153 −0.0010648 −0.1488432 0.1014557
−0.1440253 0.0026597 −0.1198142 0.0147434 0.1104305 0.0249783 0.0246079 −0.0286915 −0.0633959 0.0786306
0.0872131 −0.0503333 −0.0426310 −0.0108485 −0.1538320 0.0351373 −0.0895051 0.0994606 −0.0858176 0.0033518
0.0508126 0.0850471 −0.0581353 −0.0654513 0.0413446 −0.0119532 0.0757765 0.0459333 −0.0169990 0.1009677
0.0112157 0.0251923 −0.0096306 −0.0680984 −0.0005761 0.0111481 −0.0373533 0.0293210 0.0134771 0.1119457
0.0240035 −0.1089833 −0.0750114 −0.0316807 0.0593823 −0.0045386 −0.0385441 −0.0541272 0.0162211 0.0093965
0.0727416 0.0067146 −0.0258618 0.0206007 0.0284529 −0.0125337 0.0450957 −0.0142651 −0.0460162 −0.0377493
0.0018262 0.0096039 0.0092749 −0.0098153 0.0116513 0.0124708 −0.0166840 −0.0307406 0.0039079 −0.0005090
0.0167276 0.0418916 0.0339853 0.0127189 0.0353915 0.0352643 −0.0230590 0.0037635 −0.0020096 −0.0118329
−0.0000118 0.0028062 0.0010184 −0.0000054 0.0000008 −0.0076840 −0.0004971 0.0000191 0.0000175 0.0000097
0.0000403 0.0016845 −0.0003547 −0.0000443 −0.0000077 0.0102089 0.0023837 −0.0001760 −0.0000343 −0.0000479

0.1130541 0.0243746 −1.0601901 −0.5184653 0.5389394 −0.5290480 1.4666654 −0.3021666 −0.0722647
−0.4838530 0.0446110 0.0443714 0.0400056 −1.4678116 −0.8155807 −0.3859305 0.4715178 0.0326426
−0.1549109 0.0903295 0.6966522 0.1005015 0.1763720 1.0574739 −0.3501351 −0.0462028 0.1140547
0.5739993 −0.0684158 0.3571626 0.0861604 −0.6655387 −0.1886137 −0.4910517 0.1000489 0.1425230
−0.0397509 0.0175350 −0.4837186 0.1313369 0.0071916 0.1063667 −0.5799628 0.0186656 −0.1366172
0.0288713 −0.0270858 −0.1711768 0.0516328 −0.2256508 0.3277098 0.1917983 −0.0453268 −0.0388412
−0.1128892 0.0088688 0.1873327 0.1850600 0.2445545 −0.1280363 −0.1585725 −0.1034274 0.0225831
0.0175299 −0.0263491 0.0802817 −0.1067258 −0.0673210 0.2239093 0.0003892 −0.0262654 0.1438365
−0.1171573 0.0113433 0.0483356 −0.1727556 −0.1006414 −0.0966047 −0.0033401 −0.1640771 0.2015432
−0.1481463 0.0152680 0.0863339 0.1057026 −0.0780024 −0.0238758 0.0753908 0.1662874 −0.0984320
−0.0868955 0.0296646 −0.0024721 −0.0139792 −0.0210549 0.0241345 −0.0051360 0.0220213 −0.0734852
0.0428166 −0.0263798 −0.0151096 −0.0341225 0.0015975 −0.0045648 −0.0459362 −0.0584079 −0.1230225
−0.0239812 −0.0019790 −0.0630874 0.0477949 0.0312372 −0.0118692 −0.0260705 0.0443067 0.1156214
−0.0084732 0.0434794 −0.0322293 −0.0031909 −0.0252367 0.0031306 −0.0173622 −0.0663103 −0.0011153
−0.0013241 −0.0085007 −0.0350008 0.0115394 −0.0048681 0.0243468 −0.0006443 0.0436652 0.0255582
−0.0261973 −0.0090256 −0.0019749 −0.0604685 0.0112659 0.0022552 −0.0232959 0.0276527 −0.0063107
−0.0469611 0.0047957 −0.0132026 0.0243877 −0.0253729 0.0101839 −0.0006742 −0.0451327 −0.0022650
−0.0020972 0.0071188 −0.0000255 −0.0008521 0.0000673 0.0000274 −0.0002656 0.0000749 −0.0000434
0.0054816 0.0120243 0.0000808 −0.0010943 0.0006406 0.0000603 0.0000083 0.0026580 0.0001099

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 5-1: Positivstellensatz infeasibility certificate for the cyclic 9-roots problem.
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Chapter 6

Local stability of semidefinite

relaxations

Consider semidefinite programming (SDP) relaxations of a parametric family of polynomial

optimization problems. This chapter concerns the stability analysis of these relaxations. We

assume that the SDP relaxation is exact for a nominal value of the parameters, and analyze

the behavior of the relaxation nearby this nominal parameter. The content of this chapter is

based on [37].

6.1 Introduction

Polynomial optimization problems are hard to solve in general, and SDP relaxations have

become a standard approach to tackle them. We focus in this chapter on optimization problems

over algebraic sets that involve parameters, and we assume that for a given value of the

parameters the SDP relaxation is tight, i.e., it correctly solves the problem. We study the

behavior of the relaxation under small perturbations of the special parameters, identifying

sufficient conditions under which the relaxation continues to be tight.

An important class of problems we consider is that of finding the point 𝑦* on an algebraic

variety 𝑌 ⊆ R𝑛 that minimizes a loss function, e.g., the Euclidean distance ‖𝑦 − 𝜃‖ to some

given 𝜃. These problems arise often in statistical estimation problems, such as low rank ap-

proximation, camera triangulation, rotation synchronization, approximate matrix completion
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and approximate GCD. In these problems the case where 𝜃 ∈ 𝑌 is trivial, and SDP relaxations

are tight. Our methods allow a systematic analysis of the behavior of these relaxations when

𝜃 is close to 𝑌 . In particular, we recover tightness results previously shown in the context of

camera triangulation [1] and rotation synchronization [112].

Since polynomial optimization problems can always be rewritten as quadratically con-

strained quadratic programs (QCQP’s) (see e.g., [97, 123]), in the rest of this chapter we will

only consider QCQP’s. As illustrated in the next example, there is a natural SDP relaxation

of a QCQP; namely, its Lagrangian dual. More generally, SDP relaxations coming from the

SOS method correspond to the Lagrangian dual of a suitable QCQP.

Example 6.1 (Nearest point to the twisted cubic). Let 𝑌 := {(𝑡, 𝑡2, 𝑡3) : 𝑡 ∈ R} be the twisted

cubic curve in R3. Given 𝜃 ∈ R3, the problem of finding the nearest point in 𝑌 to 𝜃 can be

phrased as:

min
𝑦∈𝑌

‖𝑦 − 𝜃‖2, where 𝑌 = {𝑦 ∈ R3 : 𝑦2 = 𝑦21, 𝑦3 = 𝑦1𝑦2}. (6.1)

The above is a QCQP, and its Lagrangian dual is the following SDP:

max
𝛾,𝜆1,𝜆2∈R

𝛾, s.t.

(︃
𝛾+‖𝜃‖2 −𝜃1 𝜆1−𝜃2 𝜆2−𝜃3
−𝜃1 1−2𝜆1 −𝜆2 0

𝜆1−𝜃2 −𝜆2 1 0
𝜆2−𝜃3 0 0 1

)︃
⪰ 0. (6.2)

We will show that when 𝜃 is sufficiently close to 𝑌 the above relaxation is tight. Equivalently,

the duality-gap val (6.1)−val (6.2) is zero in a neighborhood of 𝑌 . This is illustrated in Figure 6-

1, by showing the projection of 𝑌 onto the 𝑦1𝑦3-plane, and the duality-gap for parameters 𝜃

of the form (𝜃1, 𝜃
2
1, 𝜃3). Besides the fact that there is zero-duality-gap when 𝜃 is close to 𝑌 ,

we will also see that we can recover the minimizer of (6.1) from the SDP.

We shall say that a variety 𝑌 is quadratic if it is the zero set of some quadratic equations

𝑓𝑖 ∈ R[𝑦] (e.g., the twisted cubic (6.1)). As stated next, the problem of finding the nearest

point from 𝜃 to a quadratic variety 𝑌 has a tight SDP relaxation when 𝜃 is close to 𝑌 . More

precisely, we show that if 𝜃 ∈ 𝑌 satisfies a certain regularity condition, then the relaxation is

tight when 𝜃 deviates slightly from 𝜃.
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Figure 6-1: Duality gap in problem (6.1) for parameters 𝜃 of the form (𝜃1, 𝜃
2
1, 𝜃3). There is no

duality-gap in the dotted region.

Theorem 6.1 (Nearest point to a quadratic variety). Consider the problem

min
𝑦∈𝑌

‖𝑦 − 𝜃‖2, where 𝑌 := {𝑦 ∈ R𝑛 : 𝑓1(𝑦) = · · · = 𝑓𝑚(𝑦) = 0}, 𝑓𝑖 quadratic.

Let 𝜃 ∈ 𝑌 be such that rk(∇𝑓(𝜃)) = 𝑛−dim𝜃 𝑌 . Then there is zero-duality-gap for any 𝜃 ∈ R𝑛

that is sufficiently close to 𝜃.

Theorem 6.1 is a special case of a more general result, Theorem 6.8, that we will prove

in Section 6.4. Both of these theorems rely on the objective function being strictly convex.

These results can be readily applied to many estimation problems, such as rank one tensor

approximation, the triangulation problem, and rotation synchronization (see Section 6.7.1).

The proof is relatively elementary.

Unfortunately, having strictly convex objective is a strong requirement that is often not

satisfied. In particular, the nearest point problem to a cubic curve cannot be written as a

QCQP with a strictly convex objective.

Example 6.2. Consider the nearest point problem to the plane curve 𝑌 := {𝑦 ∈ R2 : 𝑦22 = 𝑦31}.
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This curve is not defined by quadratic equations in (𝑦1, 𝑦2). But by introducing the auxiliary

variable 𝑧1 we can rewrite the nearest point problem as a QCQP:

min
𝑧1∈R, 𝑦∈R2

‖𝑦 − 𝜃‖2, s.t. 𝑦2 = 𝑦1𝑧1, 𝑦1 = 𝑧21 , 𝑦2𝑧1 = 𝑦21. (6.3)

Note that the presence of the “auxiliary” variable 𝑧1 means that the objective function is not

strictly convex. Nonetheless, we will see that the resulting QCQP has zero-duality-gap when

𝜃 is close enough to the curve 𝑌 .
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Figure 6-2: The plane curve 𝑦22 = 𝑦31 is the projection of the twisted cubic.

In this chapter we consider a general family of QCQP’s parametrized by 𝜃, and we assume

that there is zero-duality-gap for a fixed parameter 𝜃. The main contribution of this chapter

is to identify sufficient conditions that guarantee zero-duality-gap as 𝜃 → 𝜃. Our results,

in particular, can be used in nearest point problems to varieties, such as the plane curve of

Example 6.2. Note that the conditions we require are nontrivial, and it is easy to find problems

with positive-duality-gap for 𝜃 arbitrarily close to 𝜃 (see Example 6.7).

The organization of this chapter is as follows. In Section 6.2 we formalize our problem of

study. In Section 6.3 we introduce the main tools needed for our results. In Section 6.4 we

prove Theorem 6.8, a generalization of Theorem 6.1. In Section 6.5 we state Theorem 6.14, the

most general result of this chapter. In Section 6.6 we prove Theorem 6.14 using the implicit

function theorem. In Section 6.7 we show some applications of our results.
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Related work

Several results concerning tightness of SDP relaxations exist. There are two main kinds of

results. The first class is based on structural assumptions on the equations (or the feasible

set). In particular, the Lagrangian dual of several classes of QCQP’s are exact [16, 81, 150,

153], such as trust-region problems (there is a single ball constraint) [126], and S-lemma type

problems [107]. Similarly, certain classes of combinatorial optimization problems are known

to have tight SDP relaxations [66,93]. We point out that there has been plenty of research in

this area, and our references are far from extensive.

A second class of results, typically tailored to statistical estimation problems, shows tight-

ness of SDP relaxations under low noise assumptions. In particular, it was shown in [1] that the

first SOS relaxation of the triangulation problem is tight in the low noise regime under gener-

icity assumptions. Similarly, it has been shown that the first SOS relaxation of the rotation

synchronization problem is tight under low noise [63, 112, 146]. We generalize these types of

results by systematically studying the behavior of SDP relaxations under small perturbations

of the problem.

Perturbation analysis of nonlinear optimization problems is a well studied subject [28,

60, 90]. In particular, sufficient conditions for continuity and differentiability of the optimal

value/solutions are known [28,60]. Similarly, the Lipschizian stability of general optimization

problems, together with concepts such as tilt/full stability, has received a lot of attention [90,

100]. The stability analysis of special classes of nonlinear programs, such as semidefinite

programs [28, §5.3.6] and convex quadratic programs [69], has also been considered. In this

chapter we apply these techniques to the study of SDP relaxations of equality constrained

QCQP’s. As opposed to previous work we are mostly interested in the correctness of the SDP

relaxation, i.e., whether we can recover an optimal solution of the QCQP from the relaxation.

6.2 Formalizing the problem

In this section we formalize our problem of study. We also begin to explain the role of Lagrange

multipliers in certifying zero-duality-gap.
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6.2.1 Problem statement

Consider a family of QCQP’s parametrized by 𝜃 ∈ Θ:

min
𝑥∈R𝑁

𝑔𝜃(𝑥)

ℎ𝑖𝜃(𝑥) = 0, for 𝑖 = 1, . . . ,𝑚

(P𝜃)

where 𝑔𝜃, ℎ𝑖𝜃 are quadratic in 𝑥, and the dependence on 𝜃 is continuously differentiable. Note

that 𝑔𝜃 may not be convex. To simplify the notation, we will focus in this chapter on the

homogeneous case. By that we mean that 𝑔𝜃, ℎ𝑖𝜃 do not have linear terms, i.e.,

𝑔𝜃(𝑥) := 𝑥𝑇𝐺𝜃𝑥, ℎ𝑖𝜃(𝑥) = 𝑥𝑇𝐻 𝑖
𝜃 𝑥+ 𝑏𝑖 for some 𝐺𝜃, 𝐻

𝑖
𝜃 ∈ 𝒮𝑁 , 𝑏𝑖 ∈ R,

and that at least one 𝑏𝑖 is nonzero.

Remark 6.1 (Sign invariance). Since a homogeneous problem is invariant under the involution

𝑥 ↦→ −𝑥, we can only recover the solution up to sign changes.

Remark 6.2 (Homogenization). We can always get rid of linear terms by introducing a homog-

enizing variable 𝑧0. For instance, the homogenized form of (6.1) is:

min
𝑧0∈R, 𝑦∈R3

‖𝑦 − 𝜃𝑧0‖2 s.t. 𝑧20 = 1, 𝑦2𝑧0 = 𝑦21, 𝑦3𝑧0 = 𝑦1𝑦2.

Recall that a QCQP has an associated dual pair of SDP relaxations. In the case of (P𝜃)

we get:

min
𝑆∈𝒮𝑁

𝐺𝜃 ∙ 𝑆

𝐻 𝑖
𝜃 ∙ 𝑆 + 𝑏𝑖 = 0, 𝑖 = 1, . . . ,𝑚

𝑆 ⪰ 0

(P*
𝜃 )

max
𝜆∈R𝑚

𝑑(𝜆) :=
∑︀

𝑖 𝜆𝑖𝑏𝑖

𝒬𝜃(𝜆) ⪰ 0

(D𝜃)

where 𝒬𝜃(𝜆) is the Hessian of the Lagrangian function:

𝒬𝜃(𝜆) := 𝐺𝜃 +
∑︁
𝑖

𝜆𝑖𝐻
𝑖
𝜃 ∈ 𝒮𝑁 .

Note that (D𝜃) is the Lagrangian dual of (P𝜃), and that the inequalities val(𝑃𝜃) ≥ val(P*
𝜃 ) ≥
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val(D𝜃) always hold. We are concerned here with the zero-duality-gap condition val(𝑃𝜃) =

val(𝐷𝜃).

Throughout this chapter we denote by 𝜃 the nominal value of the parameter 𝜃, such

that (P𝜃) has zero-duality-gap, and we investigate the behavior of the relaxation under small

perturbations around 𝜃.

6.2.2 Lagrange multipliers and zero-duality-gap

Given a feasible solution 𝑥𝜃 of (P𝜃), recall that 𝜆 ∈ R𝑚 is a Lagrange multiplier at 𝑥𝜃 if

𝜆𝑇∇ℎ𝜃(𝑥𝜃) = −∇𝑔𝜃(𝑥𝜃) ⇐⇒
∑︁
𝑖

𝜆𝑖𝐻
𝑖
𝜃𝑥𝜃 = −𝐺𝜃𝑥𝜃 ⇐⇒ 𝒬𝜃(𝜆)𝑥𝜃 = 0.

We denote by Λ𝜃(𝑥𝜃) the affine space of Lagrange multipliers at 𝑥𝜃.

Lemma 6.2. Let 𝑥𝜃 ∈ R𝑁 , 𝜆 ∈ R𝑚. Then 𝑥𝜃 is optimal to (P𝜃) and 𝜆 is optimal to (D𝜃) with

val(𝑃𝜃) = val(𝐷𝜃) if and only if the following conditions hold:

6.2(i) ℎ𝜃(𝑥𝜃) = 0 (primal feasibility).

6.2(ii) 𝒬𝜃(𝜆) ⪰ 0 (dual feasibility).

6.2(iii) 𝜆 ∈ Λ𝜃(𝑥𝜃) (complementarity).

If furthermore 𝒬𝜃(𝜆) has corank-one, then the unique optimal solution of (P*
𝜃 ) is 𝑥𝜃𝑥𝑇𝜃 .

Proof. Assume that the conditions 6.2(i-iii) hold. Since 𝒬𝜃(𝜆)𝑥𝜃 = 0, then

0 = 𝑥𝑇𝜃 𝒬𝜃(𝜆)𝑥𝜃 = 𝑥𝑇𝜃 𝐺𝜃𝑥𝜃 +
∑︁
𝑖

𝜆𝑖 𝑥
𝑇
𝜃𝐻

𝑖
𝜃𝑥𝜃 = 𝑔𝜃(𝑥𝜃)− 𝑑(𝜆), (6.4)

and thus (𝑥𝜃, 𝜆) are primal/dual optimal. The converse is similar.

Assume now that 𝒬𝜃(𝜆) has corank-one. Let 𝑆* be an optimal solution of (P*
𝜃 ). By

complementary slackness we have 𝒬𝜃(𝜆) ∙ 𝑆* = 0, and since both matrices lie in 𝒮𝑁
+ , then

rk(𝒬𝜃(𝜆)) + rk(𝑆*) ≤ 𝑁 . Thus, any optimal solution of (P*
𝜃 ) has rank one. It follows that

there is a unique optimal, namely 𝑆* = 𝑥𝜃𝑥
𝑇
𝜃 .

The above lemma gives necessary and sufficient conditions for having zero-duality-gap.

Moreover, if an additional assumption holds (corank-one Hessian), then we can also recover
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the minimizer of the QCQP from the SDP. We point out that items 6.2(i-iii) correspond to the

optimality conditions of a nonlinear program, and that variants of Lemma 6.2 have appeared

before (e.g., [1, Thm 2]).

As a simple application of Lemma 6.2, let us see that the nearest point problem to a

variety 𝑌 has zero-duality-gap for any 𝜃 ∈ 𝑌 (in fact, the associated multiplier is 𝜆̄ = 0).

Proposition 6.3 (Nearest point problem). Consider the problem:

min
𝑦∈𝑌

‖𝑦 − 𝜃‖2, where 𝑌 := {𝑦 ∈ R𝑛 : ∃𝑧′ ∈ R𝑘−1 s.t. 𝑓𝑖(𝑧′, 𝑦) = 0, 1 ≤ 𝑖 ≤ 𝑚}

where 𝑓𝑖 are quadratic polynomials, and 𝑧′ is a set of auxiliary variables. There is zero-duality-

gap for any 𝜃 ∈ 𝑌 .

Proof. In order to apply Lemma 6.2, we first need to consider the homogeneous version of the

problem:

min
𝑧∈R𝑘, 𝑦∈R𝑛

‖𝑦 − 𝜃𝑧0‖2 s.t. 𝑧20 = 1, ℎ𝑖(𝑧, 𝑦) = 0, 1 ≤ 𝑖 ≤ 𝑚,

where 𝑧 = (𝑧0, 𝑧
′), and ℎ𝑖 is the homogenization of 𝑓𝑖 with respect to 𝑧0:

ℎ𝑖(𝑧, 𝑦) = ℎ𝑖(𝑧0, 𝑧
′, 𝑦) := 𝑧20 𝑓𝑖(𝑧

′/𝑧0, 𝑦/𝑧0).

Let 𝑥̄ = (𝑧, 𝜃) be the optimal solution, and let 𝑔𝜃(𝑧, 𝑦) := ‖𝑦−𝜃𝑧0‖2 be the objective function.

Notice that 𝜆̄ = 0 is a Lagrange multiplier at 𝑥̄ since ∇𝑔𝜃(𝑥̄) = 0. Moreover, 𝜆̄ = 0 is dual

feasible since 𝑔𝜃 is convex and thus 𝒬𝜃(𝜆̄) = 𝐺𝜃 ⪰ 0. Then there is zero-duality-gap by

Lemma 6.2.

6.3 Continuity of Lagrange multipliers

In Lemma 6.2 we identified necessary and sufficient conditions for zero-duality-gap at a fixed

parameter 𝜃. In this section we will study conditions under which we continue to get zero-

duality-gap for parameters 𝜃 close to 𝜃.

Throughout this section we let 𝜃 be a zero-duality gap parameter, and 𝑥̄ be the minimizer

of (P𝜃), which we assume is unique (up to sign). Observe that 𝑥̄ ̸= 0 since we assumed that
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the constant term 𝑏𝑖 of some ℎ𝑖𝜃(𝑥) is nonzero. Consider the Lagrange multiplier mapping :

L : Θ ⇒ R𝑁 × R𝑚, 𝜃 ↦→ {(𝑥𝜃, 𝜆𝜃) : 𝑥𝜃 primal feasible, 𝜆𝜃 ∈ Λ𝜃(𝑥𝜃)}

= {(𝑥𝜃, 𝜆𝜃) : ℎ𝜃(𝑥𝜃) = 0, 𝒬𝜃(𝜆𝜃)𝑥𝜃 = 0}.
(6.5)

As we will see, continuity properties of L play a crucial role in our analysis.

6.3.1 A first stability result

Our first stability result relies on the existence of a dual optimal solution 𝜆 satisfying the

following two properties (recall that 𝑥̄ is fixed).

Assumption C1H (corank-one Hessian). Let 𝜆 be dual optimal at 𝜃. The matrix 𝒬𝜃(𝜆) has

corank-one, or equivalently, strict complementarity holds for the dual pair of SDP’s.

Assumption WC (weak continuity of multipliers). Let ℓ̄ = (𝑥̄, 𝜆) ∈ L(𝜃) be a Lagrange

multiplier pair. There exists ℓ𝜃 ∈ L(𝜃) such that ℓ𝜃 → ℓ̄ as 𝜃 → 𝜃.

Proposition 6.4 (C1H + WC =⇒ stability). Let (𝑥̄, 𝜆) be primal/dual optimal at 𝜃, such

that Assumptions C1H and WC hold. Then for any 𝜃 sufficiently close to 𝜃 there is zero-

duality-gap and (P*
𝜃 ) recovers the minimizer.

Proof. By Assumption WC, there exist (𝑥𝜃, 𝜆𝜃) with: 𝑥𝜃 feasible for (P𝜃), 𝜆𝜃 ∈ Λ𝜃(𝑥𝜃), and

(𝑥𝜃, 𝜆𝜃) → (𝑥̄, 𝜆) as 𝜃 → 𝜃. It follows that 𝒬𝜃(𝜆𝜃) → 𝒬𝜃(𝜆), since 𝑔𝜃 and ℎ𝑖𝜃 depend contin-

uously on 𝜃. Notice that 𝒬𝜃(𝜆𝜃) has a 0-eigenvalue since 𝒬𝜃(𝜆𝜃)𝑥𝜃 = 0. Let us see that, as

𝜃 → 𝜃, the remaining eigenvalues of 𝒬𝜃(𝜆𝜃) are positive. This would conclude the proof because

of Lemma 6.2. By assumption, 𝒬𝜃(𝜆) has 𝑁 − 1 positive eigenvalues. Since 𝒬𝜃(𝜆𝜃) → 𝒬𝜃(𝜆),

and by the continuity of the eigenvalues, we conclude that 𝒬𝜃(𝜆𝜃) also has 𝑁 − 1 positive

eigenvalues when 𝜃 → 𝜃, as wanted.

Proposition 6.4 establishes conditions to guarantee zero-duality-gap nearby 𝜃. We will see a

few more stability results later in this chapter, but all of them rely implicitly on Proposition 6.4.

This is illustrated in Figure 6-3.

While it is easy to check whether a given matrix has corank-one, it is typically not easy

to find a dual variable 𝜆 that satisfies Assumption C1H. This is similar to the second order
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zero-duality-gap
nearby 𝜃

Prop 6.4
∙ corank-one Hessian (C1H)
∘ weak continuity of multipli-
ers (WC)

Thm 6.1
∙ nearest point problem
∘ ACQ

Thm 6.7
∙ restricted Slater (RS)
∘ strong continuity of multi-
pliers (SC)

Thm 6.14

∙ restricted Slater (RS)
∘ ACQ
∘ smoothness
∘ not a branch point

perturbation
in direction 𝜇

Figure 6-3: Conditions that imply zero-duality-gap nearby 𝜃. The main assumption in each
box is denoted with ∙, and regularity assumptions are marked with ∘.

optimality conditions in non-linear programming which is also stated in terms of the existence

of a Lagrange multiplier that satisfies certain conditions, without any procedure to find such

a multiplier

In practice there is often a natural choice 𝜆̄ for the dual variables, such as 𝜆̄ = 0 in nearest

point problems (Proposition 6.3). If Assumptions C1H and WC hold for such a nominal 𝜆̄,

we will be certain that there is zero-duality-gap. Unfortunately, it is often the case that the

Hessian matrix 𝒬𝜃(𝜆̄) has rank less than 𝑁 − 1, violating Assumption C1H. This situation

arises, for instance, in nearest point problems to non-quadratic varieties. In the remainder of

this section we will analyze how to establish stability in these cases.

6.3.2 Restricted Slater

Assume we are given a dual variable 𝜆̄ for which Assumption C1H (corank-one Hessian) is not

satisfied. The following “Slater-type” condition allows us to find a dual variable 𝜆′ for which

Assumption C1H holds.

Assumption RS (restricted Slater). Let (𝑥̄, 𝜆̄) be primal/dual optimal at 𝜃, and consider

the subspace

𝑉 := {𝑣 ∈ R𝑁 : 𝒬𝜃(𝜆̄)𝑣 = 0, 𝑥̄𝑇 𝑣 = 0}.

There exists 𝜇 ∈ R𝑚 such that the quadratic function Ψ𝜇(𝑥) :=
∑︀

𝑖 𝜇𝑖ℎ
𝑖
𝜃
(𝑥) satisfies: ∇Ψ𝜇(𝑥̄) =

0, and Ψ𝜇 is strictly convex on 𝑉 .

Importantly, Assumption RS can be efficiently checked. Indeed, by restating the strict con-

vexity of Ψ𝜇 in terms of its Hessian, Assumption RS corresponds to the strict feasibility of an
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SDP (find 𝜇 s.t.
∑︀

𝑖 𝜇𝑖𝐻
𝑖
𝜃
𝑥̄ = 0, (

∑︀
𝑖 𝜇𝑖𝐻

𝑖
𝜃
)|𝑉 ≻ 0). We will elaborate more on Assumption RS

in Section 6.5, illustrating concrete examples that satisfy it.

As seen next, the vector 𝜇 from Assumption RS gives us a direction along which we can

perturb the problem to go back to the corank-one case.

Lemma 6.5 (RS =⇒ “nearby” C1H). Let (𝑥̄, 𝜆̄) be primal/dual optimal at 𝜃, and let 𝜇 be

as in Assumption RS. Then there is an 𝜖 > 0 such that 𝜆𝑡 := 𝜆̄ + 𝑡𝜇 is dual optimal and

corank𝒬𝜃(𝜆𝑡) = 1 for any 0 < 𝑡 < 𝜖.

The proof of Lemma 6.5 relies on the following well-known lemma.

Lemma 6.6 (Finsler [61]). Let 𝐴,𝐵 ∈ 𝒮𝑛, 𝐴 ⪰ 0 be such that 𝑣𝑇𝐵𝑣 > 0 for every 𝑣 ̸= 0 with

𝐴𝑣 = 0. Then there is some 𝜖 > 0 such that 𝐴+ 𝑡𝐵 ≻ 0 for any 0 < 𝑡 < 𝜖.

Proof of Lemma 6.5. Since (𝑥̄, 𝜆̄) is primal/dual optimal, it satisfies conditions 6.2(i-iii). We

need to show that (𝑥̄, 𝜆𝑡) also satisfies 6.2(i-iii), and that corank𝒬𝜃(𝜆𝑡) = 1. It is easy

to see that 𝜆𝑡 ∈ Λ𝜃(𝑥̄), so it remains to show that 𝒬𝜃(𝜆𝑡) ⪰ 0 and has corank-one. Let

𝐴 := 𝒬𝜃(𝜆̄) ⪰ 0 and 𝐵 :=
∑︀

𝑖 𝜇𝑖𝐻
𝑖
𝜃
. Since 𝜆̄ ∈ Λ𝜃(𝑥̄) then 𝐴𝑥̄ = 0. Similarly, since∑︀

𝑖 𝜇𝑖𝐻
𝑖
𝜃
𝑥̄ = 0 then 𝐵𝑥̄ = 0. We may assume WLOG that 𝑥̄ = (1, 0𝑁−1). Then 𝐴 =

(︀
0 0
0 𝐴′

)︀
,

𝐵 =
(︀
0 0
0 𝐵′

)︀
, where 𝐴′, 𝐵′ ∈ 𝒮𝑁−1, 𝐴′ ⪰ 0. Note that the strict convexity condition in

Assumption RS means that 𝑣𝑇𝐵′𝑣 > 0 for every nonzero 𝑣 ∈ R𝑁−1 with 𝐴′𝑣 = 0. From

Lemma 6.6 we know that 𝐴′ + 𝑡𝐵′ ≻ 0 for all 0 < 𝑡 < 𝜖. Therefore, 𝐴 + 𝑡𝐵 ⪰ 0 and has

corank-one for 0 < 𝑡 < 𝜖, as wanted.

6.3.3 Stability under Assumption RS

Lemma 6.5 allows us to find some new dual variables 𝜆′ for which Assumption C1H is satisfied.

In order to use Proposition 6.4 and conclude stability, it remains to see that 𝜆′ satisfies

Assumption WC (weak continuity). This requires a stronger continuity condition on the

original pair (𝑥̄, 𝜆̄). Before stating this assumption, we first recall a well-studied notion of

continuity for set-valued-mappings. We refer to [4, 108] for a detailed introduction to set-

valued-mappings.

Definition 6.1 (Painlevé-Kuratowski continuity). Let F : Θ ⇒ R𝑛 be a set-valued mapping,

and assume that each F(𝜃) ⊆ R𝑛 is nonempty. A selection of F is an assignment 𝑦𝜃 ∈ F(𝜃) for
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each 𝜃 ∈ Θ. The inner limit of F at 𝜃 consists of all limits of selections {𝑦𝜃}𝜃, i.e.,

lim inf
𝜃→𝜃

F(𝜃) := {𝑦 ∈ R𝑛 : ∃𝑦𝜃 ∈ F(𝜃) s.t. 𝑦𝜃
𝜃→𝜃−−−→ 𝑦},

The outer limit of F at 𝜃 consists of all cluster points of selections {𝑦𝜃}𝜃, i.e.,

lim sup
𝜃→𝜃

F(𝜃) := {𝑦 ∈ R𝑛 : ∃𝜃𝑖
𝑖→∞−−−→ 𝜃, ∃𝑦𝑖 ∈ F(𝜃𝑖) s.t. 𝑦𝑖

𝑖→∞−−−→ 𝑦}.

The inner and outer limits are always closed sets that sandwich the closure of F(𝜃):

lim inf
𝜃→𝜃

F(𝜃) ⊆ cl(F(𝜃)) ⊆ lim sup
𝜃→𝜃

F(𝜃).

F is (Painlevé-Kuratowski) continuous1 at 𝜃 if F(𝜃) = lim inf𝜃→𝜃 F(𝜃) = lim sup𝜃→𝜃 F(𝜃).

Remark 6.3. When F is defined by continuous equations, such as L, then the equation F(𝜃) =

lim sup𝜃→𝜃 F(𝜃) always holds [108, Ex 5.8]. Consequently, in this chapter we will focus our

attention only on the inner limit.

Remark 6.4. Note that Assumption WC is simply that ℓ̄ ∈ lim inf𝜃→𝜃 L(𝜃).

Example 6.3. Consider the mapping

F : R ⇒ R, 𝜃 ↦→

⎧⎪⎨⎪⎩
{0}, if 𝜃 < 0

[−1, 1], if 𝜃 ≥ 0

This mapping is continuous at any 𝜃 ̸= 0. Observe that lim inf𝜃→0 F(𝜃) = {0} and lim sup𝜃→0 F(𝜃) =

[−1, 1]. Thus F is not continuous at 0.

Assumption SC (strong continuity of multipliers). Let ℓ̄ ∈ L(𝜃) be a Lagrange multiplier

pair. There exists a closed neighborhood 𝑈 ∋ ℓ̄ such that L(𝜃) ∩ 𝑈 ⊆ lim inf𝜃→𝜃 L(𝜃), or

equivalently, such that the mapping 𝜃 ↦→ L(𝜃) ∩ 𝑈 is continuous at 𝜃.

Theorem 6.7 (RS + SC =⇒ stability). Let (𝑥̄, 𝜆̄) be primal/dual optimal at 𝜃, such that

1 Although other notions of (set-valued-mapping) continuity exist, they agree for the case of compact valued
mappings [108]. Since the analysis done in this chapter is local, we may always restrict the range to some closed
ball. Hence, we may ignore this distinction in this chapter.
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Assumptions RS and SC hold. Then for any 𝜃 sufficiently close to 𝜃 there is zero-duality-gap

and (P*
𝜃 ) recovers the minimizer.

Proof. Let 𝑈 ∋ ℓ̄ be as in Assumption SC. By Lemma 6.5, there is a dual optimal 𝜆′ with

𝒬𝜃(𝜆
′) of corank-one, and moreover, 𝜆′ can be arbitrarily close to 𝜆̄. Thus, we may assume that

ℓ′ := (𝑥̄, 𝜆′) ∈ 𝑈 . Since ℓ′ also belongs to L(𝜃), it in fact belongs to L(𝜃)∩𝑈 ⊆ lim inf𝜃→𝜃 L(𝜃).

Then ℓ′ satisfies Assumptions C1H and WC, and the theorem follows from Proposition 6.4.

Although Proposition 6.4 and theorem 6.7 are easy to interpret (particularly Proposi-

tion 6.4), verifying the continuity assumptions on L might be complicated. In the following

sections we will find simpler regularity conditions that ensure these continuity properties (see

Figure 6-3). In particular, in Section 6.4 we will see that, for the restricted case of Theo-

rem 6.1, a simple constraint qualification (ACQ) suffices. For the general case (Theorem 6.14)

we will need two additional regularity assumptions.

6.4 An easy first case

The purpose of this section is to prove a generalized version of Theorem 6.1, and to obtain

bounds on the magnitude of the perturbations we can tolerate. Before presenting the theorem,

we recall a well-studied constraint qualification (also known as quasiregularity [19]), that

guarantees the existence of Lagrange multipliers (see e.g., [15, §5.1]).

Notation. This section works with problems in homogeneous and non-homogeneous (affine)

form. We will distinguish them by using different notation. In particular, 𝑦 denotes variables

in affine coordinates, and 𝑥 in homogeneous coordinates.

Definition 6.2. Given 𝑓 : R𝑛 → R𝑚, let 𝑌 := {𝑦 ∈ R𝑛 : 𝑓(𝑦) = 0}. The Abadie constraint

qualification (ACQ) holds at 𝑦 ∈ 𝑌 , denoted ACQ𝑌 (𝑦), if 𝑌 is a smooth manifold nearby 𝑦,

and rk(∇𝑓(𝑦)) = 𝑛− dim𝑦 𝑌 . Here dim𝑦 𝑌 denotes the local dimension of 𝑌 at 𝑦.

Remark 6.5. Under ACQ, the Lagrange multiplier space has dimension 𝑚− (𝑛− dim𝑦 𝑌 ).

We will prove the following theorem.
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Theorem 6.8. Consider the problem

min
𝑦∈𝑌

𝑞𝜃(𝑦), with 𝑌 := {𝑦 ∈ R𝑛 : 𝑓1(𝑦) = · · · = 𝑓𝑚(𝑦) = 0}, (6.6)

where 𝑞𝜃, 𝑓𝑖 are quadratic, and the dependence on 𝜃 is continuous. Let 𝜃 be such that 𝑞𝜃 is

strictly convex, and its minimizer 𝑦 satisfies ∇𝑞𝜃(𝑦) = 0, or equivalently, 𝑦 is the unconstrained

minimizer of 𝑞𝜃(𝑦). If ACQ𝑌 (𝑦) holds, then there is zero-duality-gap whenever 𝜃 is close

enough to 𝜃. Moreover, (P*
𝜃 ) recovers the minimizer of (6.6).

Remark 6.6. The nearest point problem to a quadratic variety (Theorem 6.1) corresponds to

the case 𝑞𝜃(𝑦) := ‖𝑦 − 𝜃‖2. Indeed, this objective is strictly convex, the minimizer is 𝑦 = 𝜃

(since 𝜃 ∈ 𝑌 ), and thus ∇𝑞𝜃(𝑦) = 0. Theorem 6.1 generalizes the main result of [1], as will be

discussed in Example 6.11.

6.4.1 Preparing the problem

The proof of Theorem 6.8 will rely on the tools we developed in Section 6.3; more precisely,

on Proposition 6.4. We will now prepare problem (6.6) for applying these tools.

Since the equations 𝑞𝜃, 𝑓𝑖 in (6.6) may involve linear terms, we need to consider its homog-

enized form:

min
𝑥∈𝑋

𝑔𝜃(𝑥), 𝑋 := {(𝑧0, 𝑦) ∈ R𝑛+1 : 𝑧20 = 1, ℎ1(𝑧0, 𝑦) = · · · = ℎ𝑚(𝑧0, 𝑦) = 0} (6.7)

where 𝑔𝜃, ℎ𝑖 are the homogenizations of 𝑞𝜃, 𝑓𝑖. The Lagrange multiplier spaces of (6.6) and (6.7)

are isomorphic. Concretely, for any feasible 𝑥𝜃 = (1, 𝑦𝜃) it can be shown that:

Λ𝜃(𝑦𝜃) = {𝜇 ∈ R𝑚 : 𝜇𝑇∇𝑓(𝑦𝜃) = −∇𝑞𝜃(𝑦𝜃)}, (6.8)

Λ𝜃(𝑥𝜃) = {𝜆 = (𝜆0, 𝜇) ∈ R𝑚+1 : 𝜆0 = −𝑔𝜃(𝑥𝜃), 𝜇 ∈ Λ𝜃(𝑦𝜃)}. (6.9)

Also consider the Hessians of the Lagrangian functions of (6.6) and (6.7):

𝒞𝜃(𝜇) := ∇2𝑞𝜃 +
∑︁
𝑖

𝜇𝑖∇2𝑓𝑖, 𝒬𝜃(𝜆0, 𝜇) := ∇2𝑔𝜃 + 𝜆0∇2(𝑧20 − 1) +
∑︁
𝑖

𝜇𝑖∇2ℎ𝑖. (6.10)
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Observe that 𝒬𝜃(𝜆0, 𝜇) ∈ 𝒮𝑛+1 contains 𝒞𝜃(𝜇) ∈ 𝒮𝑛 as a submatrix.

We can now specialize the conditions from Proposition 6.4 to problem (6.6).

Lemma 6.9. Let 𝑥̄ = (1, 𝑦) and 𝜆̄ = (−𝑔𝜃(𝑥̄), 0). Then (𝑥̄, 𝜆̄) is primal/dual optimal, 𝜆̄ sat-

isfies Assumption C1H, and

Assumption WC holds ⇐⇒ ∃𝑦𝜃 ∈ 𝑌, 𝜇𝜃 ∈ Λ𝜃(𝑦𝜃) s.t. (𝑦𝜃, 𝜇𝜃)
𝜃→𝜃−−−→ (𝑦, 0). (6.11)

Proof. The equivalence in (6.11) follows from the isomorphism Λ𝜃(𝑦𝜃) ∼= Λ𝜃(𝑥𝜃). Recall that

(𝑥̄, 𝜆̄) is optimal if and only if conditions 6.2(i-iii) are satisfied. Since ∇𝑞𝜃(𝑦) = 0 then 0 ∈

Λ𝜃(𝑦), and thus 𝜆̄ ∈ Λ𝜃(𝑥̄). It remains to show that 𝒬𝜃(𝜆̄) ⪰ 0 and has corank-one. Observe

that 𝒞𝜃(0) = ∇2𝑞𝜃 ≻ 0 because 𝑞𝜃 is strictly convex. Note that 𝒬𝜃(𝜆̄) contains 𝒞𝜃(0) as a

submatrix, and the extra row/column is such that 𝒬𝜃(𝜆̄)𝑥̄ = 0. It follows that 𝒬𝜃(𝜆̄) ⪰ 0 and

has corank-one.

6.4.2 Small multipliers

From Lemma 6.9, what we need now is to show the existence of some (𝑦𝜃, 𝜇𝜃) such that 𝑦𝜃

approaches 𝑦 and 𝜇𝜃 approaches 0.

Lemma 6.10. For each 𝜃, let 𝑦𝜃 be an optimal solution of (6.6). Then 𝑦𝜃 → 𝑦 as 𝜃 → 𝜃.

Proof. See Section 6.8.

It remains to find some small multipliers 𝜇𝜃 associated to 𝑦𝜃. The ACQ property allows

us to do so.

Lemma 6.11. Let 𝑦𝜃 be an optimal solution of (6.6). Let 𝜎𝜃 be the 𝑠-th largest singular value

of ∇𝑓(𝑦𝜃), where 𝑠 := codim𝑦𝜃𝑌 , and assume that 𝜎𝜃 > 0 (i.e., 𝐴𝐶𝑄𝑌 (𝑦𝜃) holds). Then there

exists 𝜇𝜃 ∈ Λ𝜃(𝑦𝜃) with ‖𝜇𝜃‖ ≤ 1
𝜎𝜃
‖∇𝑞𝜃(𝑦𝜃)‖.

Proof. Recall that Λ𝜃(𝑦𝜃) is given by the linear equation in (6.8). This equation has a solution,

since ACQ guarantees the existence of multipliers. Then 𝜇𝑇𝜃 := −∇𝑞𝜃(𝑦𝜃)𝐽† is one such

solution, where 𝐽 := ∇𝑓(𝑦𝜃) is the Jacobian and † denotes the pseudo-inverse. The lemma

follows by noticing that ‖𝐽†‖ = 1/𝜎𝜃, since 𝜎𝜃 is the smallest nonzero singular value of 𝐽 .
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Proof of Theorem 6.8. By Proposition 6.4 and lemma 6.9, it is enough to find 𝑦𝜃, 𝜇𝜃 as in (6.11).

Let 𝑦𝜃 be an optimal solution of (6.6). By Lemma 6.10 we know that 𝑦𝜃 → 𝑦 as 𝜃 → 𝜃. Since

ACQ is an open condition, it holds in a neighborhood of 𝑦. By Lemma 6.11 there exists 𝜇𝜃

with ‖𝜇𝜃‖ ≤ 1
𝜎𝜃
‖∇𝑞𝜃(𝑦𝜃)‖. By assumption ∇𝑞𝜃(𝑦) = 0, and by ACQ we also have 𝜎𝜃 > 0. It

follows that 𝜇𝜃 → 0 as 𝜃 → 𝜃, as wanted.

6.4.3 Guaranteed region of zero-duality-gap

We proceed to estimate bounds on the magnitude of the perturbations we can tolerate. Con-

sider the set of zero-duality-gap parameters:

Θ := {𝜃 ∈ Θ : val(𝑃𝜃) = val(𝐷𝜃), and (P*
𝜃 ) recovers the minimizer}.

Our goal is to find a neighborhood of 𝜃 that is entirely contained in Θ.

Example 6.4. Consider one more time the twisted cubic from Example 6.1. Figure 6-4

illustrates the region of zero-duality-gap guaranteed by the results of this section.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1

6

4

2

0

2

4

6

3

Y

zero duality gap

Figure 6-4: Region of zero-duality-gap from Figure 6-1. The darker region is the guaranteed
region of zero-duality-gap (Corollary 6.13).

In order to find explicit bounds we need to quantify each of the assumptions we made in

Proposition 6.4, and to impose some additional Lipschitz properties. We make the following

assumptions:
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6.12(i) (corank-one Hessian) The second smallest eigenvalue of 𝒬𝜃(𝜆̄), denoted 𝜈2(𝑄̄), is strictly

positive.

6.12(ii) (weak continuity of L) There is a constant 𝐾 ≥ 0 such that

∀𝜃 ∈ Θ ∃(𝑥𝜃, 𝜆𝜃) ∈ L(𝜃) s.t. 𝑥𝜃
𝜃→𝜃−−−→ 𝑥̄, ‖𝜆𝜃 − 𝜆̄‖ ≤ 𝐾‖𝜃 − 𝜃‖.

6.12(iii) (dependence on 𝜃) There is a constant 𝐿 ≥ 0 such that

‖𝒬𝜃(𝜆̄)−𝒬𝜃(𝜆̄)‖𝐹 ≤ 𝐿‖𝜃 − 𝜃‖

We will need one last assumption, which holds, in particular, when Θ is bounded.

6.12(iv) Consider the linear map ℋ𝜃 : R𝑚 → 𝒮𝑁 that 𝜇 ↦→ 1
2

∑︀
𝑖 𝜇𝑖𝐻

𝑖
𝜃. There is some 𝑀 ≥ 0

that bounds the operator norm ‖ℋ𝜃‖ ≤𝑀 for all 𝜃 ∈ Θ.

The following theorem is the quantitative version of Proposition 6.4.

Theorem 6.12. Under Assumptions 6.12(i-iv),

{︂
𝜃 ∈ Θ : ‖𝜃 − 𝜃‖ < 𝜈2(𝑄̄)

𝐾𝑀 + 𝐿

}︂
⊆ Θ.

Proof. Let 𝜃 be such that ‖𝜃−𝜃‖ < 𝜈2(𝑄̄)
𝐾𝑀+𝐿 . By Lemma 6.2, it is enough to show the existence

of Lagrange multipliers 𝜆𝜃 such that the second smallest eigenvalue of 𝒬𝜃(𝜆𝜃) is positive (the

first one is zero). By assumption there exists 𝜆𝜃 such that ‖𝜆𝜃 − 𝜆̄‖ < 𝐾‖𝜃 − 𝜃‖. Note that

‖𝒬𝜃(𝜆𝜃)−𝒬𝜃(𝜆̄)‖𝐹 = ‖ℋ𝜃(𝜆𝜃 − 𝜆̄)‖𝐹 ≤ ‖ℋ𝜃‖ ‖𝜆𝜃 − 𝜆̄‖ ≤ 𝐾𝑀‖𝜃 − 𝜃‖,

and thus

‖𝒬𝜃(𝜆𝜃)−𝒬𝜃(𝜆̄)‖𝐹 ≤ ‖𝒬𝜃(𝜆𝜃)−𝒬𝜃(𝜆̄)‖𝐹 + ‖𝒬𝜃(𝜆̄)−𝒬𝜃(𝜆̄)‖𝐹

≤ (𝐾𝑀 + 𝐿)‖𝜃 − 𝜃‖ < 𝜈2(𝑄̄).
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By Weyl’s inequality [52, Thm 5.1], we have

|𝜈2(𝒬𝜃(𝜆𝜃))− 𝜈2(𝒬𝜃(𝜆̄))| ≤ ‖𝒬𝜃(𝜆𝜃)−𝒬𝜃(𝜆̄)‖ ≤ ‖𝒬𝜃(𝜆𝜃)−𝒬𝜃(𝜆̄)‖𝐹

and thus

𝜈2(𝒬𝜃(𝜆𝜃)) ≥ 𝜈2(𝒬𝜃(𝜆̄))− ‖𝒬𝜃(𝜆𝜃)−𝒬𝜃(𝜆̄)‖𝐹 > 𝜈2(𝑄̄)− 𝜈2(𝑄̄) = 0,

as wanted.

In the special case of the nearest point problem from Theorem 6.1 the above bounds can

be made more explicit. The perturbation tolerance region shown in Figure 6-4 uses the bound

in the following corollary.

Corollary 6.13. Consider the (affine) setting of Theorem 6.1. For 𝑦 ∈ 𝑌 , let Θ(𝑦) consist of

all 𝜃 for which 𝑦 is the nearest point in 𝑌 , i.e., ‖𝜃 − 𝑦‖ = dist(𝜃, 𝑌 ). Then

{︁
𝜃 ∈ Θ(𝑦) : ‖𝜃 − 𝜃‖ < 𝜎𝑠

2𝑀

}︁
⊆ Θ

where:

∙ 𝜎𝑠 is the 𝑠-th largest singular value of ∇𝑓(𝑦), where 𝑠 := codim𝑦𝑌 .

∙ 𝑀 is the operator norm of the linear map ℋ : R𝑚 → 𝒮𝑛 that 𝜇 ↦→ 1
2

∑︀
𝑖 𝜇𝑖∇2𝑓𝑖.

Proof. Follows by noticing that 𝜈2(𝑄̄) = 1, 𝐾 = 2
𝜎𝑠

, 𝐿 = 0. See Section 6.8.

6.5 The general case

In Section 6.4 we observed that for nearest point problems to quadratic varieties a simple

regularity condition (ACQ) guaranteed zero-duality-gap nearby 𝜃. The purpose of this section

is to identify regularity conditions that work for arbitrary QCQP’s. Throughout this section

we consider problem (P𝜃) and use the following notation:

∙ the parameter space Θ is an open set of R𝑑.

∙ 𝜃 ∈ Θ is a zero-duality-gap parameter, i.e., val(𝑃𝜃) = val(𝐷𝜃).
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∙ 𝑥̄ ∈ R𝑁 is optimal for (P𝜃), and 𝜆̄ ∈ R𝑚 is optimal for (𝐷𝜃).

∙ 𝑄̄ := 𝒬𝜃(𝜆̄) ∈ 𝒮𝑁 is the Hessian of the Lagrangian at 𝜃. Note that 𝑄̄ ⪰ 0.

∙ 𝑋𝜃 := {𝑥 ∈ R𝑁 : ℎ𝜃(𝑥) = 0} is the (primal) feasible set, and 𝑋̄ := 𝑋𝜃.

We proceed to describe Theorem 6.14, our most general result. As illustrated in Figure 6-3,

the theorem has four assumptions. The first of them is the restricted Slater assumption, which

we restate for the convenience of the reader. The remaining three are regularity conditions

that will be explained later in this section.

Theorem 6.14 (Main result). Assume that:

RS (restricted Slater) There exists 𝜇 ∈ R𝑚 such that 𝜇𝑇∇ℎ𝜃(𝑥̄) = 0 and (
∑︀

𝑖 𝜇𝑖𝐻
𝑖
𝜃
)|𝑉 ≻ 0,

where 𝑉 := {𝑣 ∈ R𝑁 : 𝑄̄𝑣 = 0, 𝑥̄𝑇 𝑣 = 0}.

R1 (constraint qualification) ACQ𝑋̄(𝑥̄) holds.

R2 (smoothness) 𝒲 := {(𝜃, 𝑥) : ℎ𝜃(𝑥) = 0} is a smooth manifold nearby 𝑤̄ := (𝜃, 𝑥̄), and

dim𝑤̄ 𝒲 = dimΘ+ dim𝑥̄ 𝑋̄.

R3 (not a branch point) 𝑥̄ is not a branch point of 𝑋̄ with respect to 𝑣 ↦→ 𝑄̄𝑣.

Then val(𝑃𝜃) = val(𝐷𝜃) whenever 𝜃 is close enough to 𝜃. Moreover, (P𝜃) has a unique optimal

solution 𝑥𝜃, and (P*
𝜃 ) has as unique optimal solution 𝑥𝜃𝑥

𝑇
𝜃 .

Remark 6.7 (Strictly convex Lagrangian). If 𝑄̄ has corank-one then conditions RS and R3

always hold, so it suffices to check R1 and R2.

We proceed to discuss each of the assumptions of Theorem 6.14.

RS. Restricted Slater

In order to illustrate Assumption RS in an example, we will first express it in a slightly different

form. Let 𝑛 := rk 𝑄̄, 𝑘 := 𝑁 −𝑛, and consider a coordinate system 𝑥 = (𝑧, 𝑢), 𝑧 ∈ R𝑘, 𝑢 ∈ R𝑛

such that the Hessian has the form 𝑄̄ =
(︀
0 0
0 𝐶

)︀
where 𝐶 ∈ 𝒮𝑛 is positive definite. In these

coordinates we have 𝑉 = (𝑧)⊥ × {0𝑛}, where 𝑥̄ = (𝑧, 𝑢̄). Then

(
∑︀

𝑖 𝜇𝑖𝐻
𝑖
𝜃
)|𝑉 = 𝒜(𝜇)|(𝑧)⊥ , where 𝒜(𝜇) :=

∑︀
𝑖 𝜇𝑖∇2

𝑧𝑧ℎ
𝑖
𝜃
∈ 𝒮𝑘, (6.12)
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and Assumption RS becomes: ∃𝜇 ∈ R𝑚 s.t. 𝜇𝑇∇ℎ𝜃(𝑥̄) = 0, 𝒜(𝜇)|(𝑧)⊥ ≻ 0.

Example 6.5. Consider a nearest point problem as in Proposition 6.3. After the change of

coordinates 𝑢 := 𝑦 − 𝜃𝑧0 the problem becomes

min
𝑧∈R𝑘,𝑢∈R𝑛

‖𝑢‖2 s.t. ℎ𝑖(𝑧, 𝑢+ 𝜃𝑧0) = 0

Since 𝜆̄ = 0 then 𝑄̄ = ∇2(‖𝑢‖2) =
(︀
0 0
0 id𝑛

)︀
has the desired form (in coordinates 𝑧, 𝑢).

Let us see that Assumption RS is satisfied in Example 6.2.

Example 6.6. Consider the nearest point problem to the curve 𝑦22 = 𝑦31. Homogenizing the

equations in (6.3) with respect to 𝑧0 we get

ℎ0 := 𝑧20 − 1, ℎ1 := 𝑦2𝑧0 − 𝑦1𝑧1, ℎ2 := 𝑦1𝑧0 − 𝑧21 , ℎ3 := 𝑦2𝑧1 − 𝑦21.

Let 𝜃 ∈ 𝑌 be a parameter on the curve, which means 𝜃 = (𝑡2, 𝑡3) for some 𝑡 ∈ R. The

minimizer of the homogenized problem is 𝑥̄ = (𝑧, 𝜃), where 𝑧 = (1, 𝑡). Let us see that for any

𝜃 ̸= 0 the vector 𝜇 := (0, 𝑡,−𝑡2,−1) satisfies Assumption RS. Observe that

∇ℎ(𝑥̄) =

(︃
2 0 0 0
𝜃2 −𝜃1 −𝑧1 1
𝜃1 −2𝑡 1 0
0 𝜃2 −2 𝜃1 𝑡

)︃
=

(︃
2 0 0 0
𝑡3 −𝑡2 −𝑡 1
𝑡2 −2𝑡 1 0
0 𝑡3 −2 𝑡2 𝑡

)︃
,

and thus 𝜇𝑇∇ℎ(𝑥̄) = 0. It remains to check the positivity condition. In order to get the

matrix 𝒜(𝜇) we consider the change of coordinates 𝑢 = 𝑦 − 𝜃𝑧0, as explained in Example 6.5.

Denoting ℎ′𝑖(𝑧, 𝑢) := ℎ𝑖(𝑧, 𝑢+ 𝜃𝑧0), then

𝒜(𝜇) =
∑︁
𝑖

𝜇𝑖∇2
𝑧𝑧ℎ

′
𝑖 =

(︁
2𝜇0+2𝜇1𝜃2+2𝜇2𝜃1−2𝜇3𝜃21 −𝜇1𝜃1+𝜇3𝜃2

−𝜇1𝜃1+𝜇3𝜃2 −2𝜇2

)︁
=
(︀

𝑡4 −𝑡3

−𝑡3 𝑡2

)︀
.

Note that the orthogonal complement of 𝑧 = (1, 𝑡) is spanned by 𝜁 := (𝑡,−1). Since 𝜁𝑇𝒜(𝜆)𝜁 =

𝑡2(𝑡2+1)2 is strictly positive, then 𝒜(𝜆)|(𝑧)⊥ ≻ 0. We conclude that Assumption RS holds for

all 𝜃 ∈ 𝑌 ∖ {0}.

Let us show now that Assumption RS is nontrivial. The following problem violates it, and

indeed has positive-duality-gap for most values of 𝜃.
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Example 6.7 (Non-informative dual). Consider the following (homogenized) formulation for

the nearest point problem to the twisted cubic:

min
𝑧∈R3,𝑦∈R3

‖𝑦 − 𝜃‖2 s.t. 𝑧20 − 1 = 𝑧21 + 𝑧22 − 1 = 0, ( 𝑧1 𝑧2 )
(︀ 𝑧0 𝑦1 𝑦2
𝑦1 𝑦2 𝑦3

)︀
= 0

Let us see that val(𝐷𝜃) = 0 for any 𝜃, and thus there is positive-duality-gap for most values

of 𝜃. Observe that the diagonal entries of the Lagrangian Hessian are:

diag(𝒬𝜃(𝜆)) =
1
2

∑︁
𝑖

𝜆𝑖 diag(∇2
𝑥𝑥ℎ𝑖) = (𝜆0, 𝜆1, 𝜆1, 0, 0, 0).

Then the cost function of any dual feasible 𝜆 satisfies 𝑑(𝜆) := −𝜆0 − 𝜆1 ≤ 0. Thus 𝜆 = 0 is

dual optimal, as we claimed. Let us see now that the conditions from Theorem 6.14 are not

met. Assuming ACQ holds, then dimΛ𝜃(𝑥̄) = 5 − (6 − 1) = 0 (see Remark 6.5) and thus

Λ𝜃(𝑥̄) = {0}. Since the 𝜇 from Assumption RS must belong Λ𝜃(𝑥̄), then the only choice is

𝜇 = 0. It follows that Assumption RS fails.

Remark 6.8. Examples 6.1 and 6.7 illustrate that different QCQP formulations of the same

problem might have different stability properties. In general, an optimal QCQP formulation

of a polynomial optimization problem can be derived by including all quadratic constraints

that are valid on the variety. This is equivalent to working modulo the coordinate ring (see

e.g., [42])

R1. Constraint qualification

The most basic regularity assumption we make is ACQ, i.e., that 𝑋̄ is smooth nearby 𝑥̄, and

that the tangent space of 𝑋̄ at 𝑥̄ is spanned by the gradients of the constraints. Note that

ACQ is needed simply to guarantee the existence of Lagrange multipliers at 𝑥̄.

R2. Smoothness

Another natural condition to make is that the dependence of the feasible set 𝑋𝜃 as a function

of 𝜃 is smooth (continuously differentiable). More precisely, we require that 𝒲 := {(𝜃, 𝑥) :

ℎ𝜃(𝑥) = 0} is a smooth manifold nearby 𝑤̄ := (𝜃, 𝑥̄), and that its local dimension is precisely

dimΘ + dim𝑥̄ 𝑋̄.
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Remark 6.9. For nearest point problems the feasible set 𝑋𝜃 is independent of 𝜃. Therefore,

𝒲 = Θ× 𝑋̄ and condition R2 is satisfied.

R3. Not a branch point

The ACQ property guarantees regularity of 𝑋̄ nearby 𝑥̄. When the Lagrangian function is not

strictly convex, we also require that 𝑥̄ remains regular after projecting onto the range of 𝑄̄.

The following example motivates this.

Example 6.8. Consider the nearest point problem to the curve 𝑌 defined by 𝑦22 = 𝑦31. In

Example 6.2 we introduced an auxiliary variable 𝑧1 to phrase the problem as a QCQP. The

lifted curve in R3 is the twisted cubic, which is nonsingular everywhere; see Figure 6-2. But

curve 𝑌 has a singularity at (0, 0). This singularity is problematic, since it means that the

nearest point map is not uniquely defined locally.

As in the above example, when the objective function is not strictly convex (e.g., due to

auxiliary variables) we need that 𝑥̄ is regular after a suitable projection. By regularity we

mean that 𝑥̄ is not a branch point, as formalized next.

Definition 6.3 (Branch point). Let 𝜋 : R𝑁 → R𝑛 be a linear map. Let 𝑋̄ ⊆ R𝑁 be the zero

set of ℎ̄, and let 𝑇𝑥𝑋̄ := ker∇ℎ̄(𝑥) denote the tangent space of 𝑋̄ at 𝑥. We say that 𝑥 is a

branch point of 𝑋̄ with respect to 𝜋 if there is a nonzero vector 𝑣 ∈ 𝑇𝑥𝑋̄ with 𝜋(𝑣) = 0.

Example 6.9. Let 𝜋 : (𝑧, 𝑦1, 𝑦2) ↦→ (𝑦1, 𝑦2), and consider the projection of the twisted cubic

from Figure 6-2. Notice that the tangent line at the point (0, 0, 0) is precisely the 𝑧-axis, and

thus (0, 0, 0) is a branch point.

The last regularity assumption is that 𝑥̄ is not a branch point with respect to the map

𝑣 ↦→ 𝑄̄𝑣, or equivalently, with respect to the projection 𝜋𝑄̄ onto the range of 𝑄̄.

Example 6.10. Consider a nearest point problem as in Proposition 6.3. Since 𝜆̄ = 0 then

𝑄̄ = ∇2(‖𝑦 − 𝜃𝑧0‖2), and its range is {(𝑧0, 𝑧′, 𝑦) ∈ R𝑛+𝑘 : 𝑧′ = 0, 𝑧0 = −𝑦𝑇 𝜃} of dimension 𝑛.

In particular, when 𝜃 = 0 then 𝜋𝑄̄ is simply (𝑧, 𝑦) ↦→ 𝑦. Moreover, Assumption R3 holds if

and only if ∇𝑧′𝑓(𝑧
′, 𝑦) is injective.
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6.6 Proof of main theorem

Recall the Lagrange multiplier mapping L : Θ ⇒ R𝑁 × R𝑚 from (6.5). In Theorem 6.7 we

showed that local continuity of this mapping (Assumption SC), together with Assumption RS,

guarantee zero-duality-gap nearby 𝜃. Thus, our goal now is to see that Assumptions (R1-R3)

imply local continuity of L. In order to do so, we consider the following property of set-valued

mappings [54,108].

Definition 6.4 (Aubin property). Let F : R𝑑 ⇒ R𝑛 be a set-valued mapping. F has the Aubin

property at 𝑝 ∈ R𝑑 for 𝑦 ∈ R𝑛 if 𝑦 ∈ F(𝑝) and there is a constant 𝜅 ≥ 0 and neighborhoods

𝑈 ∋ 𝑦, 𝑉 ∋ 𝑝 such that

F(𝑝′) ∩ 𝑈 ⊆ F(𝑝) + 𝜅|𝑝′ − 𝑝|ℬ for all 𝑝′, 𝑝 ∈ 𝑉,

where ℬ ⊆ R𝑛 denotes the unit ball.

The Aubin property implies local continuity, as stated next.

Lemma 6.15. Let F : R𝑑 ⇒ R𝑛 be a mapping with closed graph. Assume that F has the Aubin

property at 𝑝 for 𝑦. Then there exists a closed neighborhood 𝑈0 ∋ 𝑦 such that 𝑝 ↦→ F(𝑝) ∩ 𝑈0

is continuous at 𝑝.

Proof. See Section 6.8.

Because of the above lemma, it is enough for us to show that the Lagrange multiplier

mapping L has the Aubin property. In particular, the proof Theorem 6.14 can be reduced to

the following proposition.

Proposition 6.16. Let 𝑥̄ be optimal to (P𝜃) and 𝜆̄ ∈ Λ𝜃(𝑥̄) be dual feasible. Under Assump-

tions (R1-R3) the mapping L has the Aubin property at 𝜃 for (𝑥̄, 𝜆̄).

Proof of Theorem 6.14 (assuming Proposition 6.16). Since L has the Aubin property at 𝜃 for

(𝑥̄, 𝜆̄), then by Lemma 6.15 there is a neighborhood 𝑈 ∋ (𝑥̄, 𝜆̄) such that the mapping

𝜃 ↦→ L(𝜃) ∩ 𝑈 is continuous at 𝜃. Then Assumption SC holds, and the result follows from

Theorem 6.7.
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In the remaining of this section we will prove Proposition 6.16, thus concluding the proof

of Theorem 6.14.

6.6.1 The implicit function theorem

The main technical tool we use for Proposition 6.16 is the implicit function theorem, which

can be phrased in terms of the Aubin property (see [54, Ex. 4D.3]).

Theorem 6.17 (Implicit function). Given 𝑓 : R𝑑 × R𝑛 → R𝑚 continuously differentiable,

consider the solution mapping

F : R𝑑 ⇒ R𝑛, 𝑝 ↦→ {𝑦 ∈ R𝑛 : 𝑓(𝑝, 𝑦) = 0}.

Let 𝑝, 𝑦 be such that 𝑦 ∈ F(𝑝). If ∇𝑦𝑓(𝑝, 𝑦) is surjective, then F satisfies the Aubin property

at 𝑝 for 𝑦.

Note that Proposition 6.16 would be immediate if L satisfied the hypothesis from Theo-

rem 6.17. Unfortunately this is not true, since the defining equations of L may have linearly

dependent gradients. In order to fix this problem, we consider a maximal subset of the equa-

tions ℎ′ ⊆ ℎ such that {∇𝑥ℎ
𝑖
𝜃
(𝑥̄)}ℎ𝑖∈ℎ′ are linearly independent. Equivalently, ℎ′ ⊆ ℎ is such

that ∇𝑥ℎ
′
𝜃
(𝑥̄) is full rank, and has the same rank as ∇𝑥ℎ𝜃(𝑥̄). Consider the modified solution

mapping

L′ : 𝜃 ↦→ {(𝑥, 𝜆) : ℎ′𝜃(𝑥) = 0, 𝒬𝜃(𝜆)𝑥 = 0}.

This new mapping satisfies the assumptions of Theorem 6.17, as seen next.

Lemma 6.18. Under Assumption R3, L′ has the Aubin property at 𝜃 for (𝑥̄, 𝜆̄).

Proof. Let us see that the surjectivity condition from Theorem 6.17 is satisfied. To simplify

the notation we will ignore the dependence on 𝜃, since the only parameter we consider in this

proof is 𝜃. Let 𝐽 ′ := ∇𝑥ℎ
′(𝑥̄), which is a submatrix of 𝐽 := ∇𝑥ℎ(𝑥̄). Note that by construction

the rows of 𝐽 ′ are independent and ker 𝐽 ′ = ker𝐽 . Let 𝑓(𝑥, 𝜆) := (ℎ′(𝑥),𝒬𝜃(𝜆)𝑥) ∈ R𝑚+𝑁 .
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We need to show that the rows of ∇𝑓(𝑥̄, 𝜆̄) are independent. Denoting 𝑄̄ := 𝒬𝜃(𝜆̄), then

∇𝜆,𝑥𝑓(𝑥̄, 𝜆̄) =

⎛⎝ 0 ∇ℎ′(𝑥̄)

∇ℎ(𝑥̄)𝑇 𝒬𝜃(𝜆̄)

⎞⎠ =

⎛⎝ 0 𝐽 ′

𝐽𝑇 𝑄̄

⎞⎠ .

Let (𝑢, 𝑣) be a vector in the left kernel of ∇𝑓(𝑥̄, 𝜆̄), i.e., 𝑣𝑇𝐽𝑇 = 0, 𝑢𝑇𝐽 ′ + 𝑣𝑇 𝑄̄ = 0. We

need to show that (𝑢, 𝑣) = 0. Since 𝑣 ∈ ker 𝐽 = ker 𝐽 ′ then 0 = (𝑢𝑇𝐽 ′ + 𝑣𝑇 𝑄̄)𝑣 = 𝑣𝑇 𝑄̄𝑣,

and thus 𝑄̄𝑣 = 0. As 𝑣 ∈ ker 𝐽 and 𝑄̄𝑣 = 0, then 𝑣 = 0 by Assumption R3. Therefore

0 = 𝑢𝑇𝐽 ′ + 𝑣𝑇 𝑄̄ = 𝑢𝑇𝐽 ′, and thus 𝑢 = 0 since the rows of 𝐽 ′ are independent.

In order to prove Proposition 6.16 it remains to see that the modified mapping L′ agrees

with L, at least locally. This follows from the following lemma.

Lemma 6.19. Let 𝑋𝜃 ⊆ 𝑋 ′
𝜃 ⊆ R𝑁 be the zero sets of ℎ𝜃, ℎ′𝜃. Under Assumptions R1 and R2,

there are neighborhoods 𝑉0 ∋ 𝜃 and 𝑈0 ∋ 𝑥̄ such that 𝑋𝜃 ∩ 𝑈0 = 𝑋 ′
𝜃 ∩ 𝑈0 for all 𝜃 ∈ 𝑉0.

The proof of Lemma 6.19 requires an auxiliary lemma.

Lemma 6.20. Let 𝒲 := {𝑤 ∈ R𝐾 : ℎ(𝑤) = 0}, where ℎ = (ℎ1, . . . , ℎ𝑚), and assume that

𝒲 is a smooth 𝐷-dimensional manifold nearby 𝑤̄. Let ℎ′ = (ℎ1, . . . , ℎ𝐾−𝐷) ⊆ ℎ be such that

their gradients at 𝑤̄ are linearly independent. Then there is a neighborhood 𝑈 ⊆ R𝐾 of 𝑤̄ such

that 𝒲 ∩ 𝑈 = 𝒲 ′ ∩ 𝑈 , where 𝒲 ′ := {𝑤 : ℎ′(𝑤) = 0}.

Proof. By the implicit function theorem 𝒲 ′ is a 𝐷-dimensional manifold nearby 𝑤̄. Thus,

there is a neighborhood 𝑈 ⊆ R𝐾 of 𝑤̄ such that 𝒲 ∩ 𝑈 is a submanifold of 𝒲 ′ ∩ 𝑈 . Since

they have the same dimension, 𝒲 ∩ 𝑈 must be an open set of 𝒲 ′ ∩ 𝑈 .

Proof of Lemma 6.20. Let 𝒲 := {(𝜃, 𝑥) : ℎ𝜃(𝑥) = 0} and 𝒲 ′ := {(𝜃, 𝑥) : ℎ′𝜃(𝑥) = 0}. We will

use Lemma 6.20 to show the existence of a neighborhood 𝑈 ∋ 𝑤̄, such that 𝒲 ∩𝑈 = 𝒲 ′ ∩𝑈 .

Note that this would conclude the proof. By Assumption R2 we know that 𝒲 is a smooth

manifold nearby 𝑤̄ := (𝑥̄, 𝜃) of dimension 𝐷 := dimΘ + dim𝑥̄ 𝑋̄. Recall that by construction

of ℎ′ the gradients {∇ℎ𝑖
𝜃
(𝑥̄)}ℎ𝑖∈ℎ′ are linearly independent, and the number of equations is

|ℎ′| = rk∇ℎ𝜃(𝑥̄). Since ACQ𝑋̄(𝑥̄) holds, then

|ℎ′| = rk∇ℎ𝜃(𝑥̄) = 𝑁 − dim𝑥̄ 𝑋̄ = (dimΘ +𝑁)−𝐷.
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Thus the assumptions of Lemma 6.20 are satisfied, as wanted.

We are finally ready to prove Proposition 6.16.

Proof of Proposition 6.16. The Aubin property is a local condition. Since L,L′ agree nearby

𝜃, 𝑥̄ (Lemma 6.19), and since L′ has the Aubin property (Lemma 6.18), then the same holds

for L.

6.7 Applications

6.7.1 Estimation problems with strictly convex objective

Let us show some immediate consequences of Theorems 6.1 and 6.8. We will use the following

well-known property (see e.g., [57, §16.6]).

Lemma 6.21. Let ℎ ⊆ R[𝑥] be a polynomial system and let 𝑋 be its variety. If the ideal ⟨ℎ⟩

is radical then ACQ holds for each smooth point of 𝑋. In particular, ACQ holds generically

on 𝑋 (on a dense open subset).

We first consider two nearest point problems. We will apply Theorem 6.1, and thus we

will need to check the ACQ property.

Example 6.11 (Triangulation). Given ℓ projective cameras 𝑃𝑗 : P3 → P2 and noisy images

𝑢̂𝑗 ∈ R2 of an unknown point 𝑧 ∈ P3, the triangulation problem is

min
𝑢∈𝑈

ℓ∑︁
𝑗=1

‖𝑢𝑗 − 𝑢̂𝑗‖2, 𝑈 := {𝑢 ∈ (R2)ℓ : ∃𝑧 ∈ P3 s.t. 𝑢𝑗 = Π𝑃𝑗𝑧 for 1 ≤ 𝑗 ≤ ℓ},

where Π : P2 → R2 is the dehomogenization (𝑦1 : 𝑦2 : 𝑦3) ↦→ (𝑦1/𝑦3, 𝑦2/𝑦3). Notice that this

problem is parameterized by 𝜃 = (𝑢̂1, . . . , 𝑢̂ℓ). 𝑈 is known as the multiview variety. Assume

that either ℓ = 2, or ℓ ≥ 4 and the camera centers are not coplanar. Then the variety 𝑈 can

be described as

𝑈 = {𝑢 ∈ (R2)ℓ : 𝑓𝑖𝑗(𝑢𝑖, 𝑢𝑗) = 0, 1 ≤ 𝑖 < 𝑗 ≤ ℓ},

where 𝑓𝑖𝑗 are some quadratic equations known as the epipolar constraints [71]. By using

this description of 𝑈 we obtain a QCQP. Moreover, these epipolar equations define a radical
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ideal [71], and thus ACQ holds generically (Lemma 6.21). It follows from Theorem 6.1 that

the SDP relaxation of this QCQP is (generically) tight under small noise.

Remark 6.10. The above SDP relaxation was considered in [1], where they also showed tight-

ness under low noise.

Example 6.12 (Rank one approximation). Consider the problem of finding the nearest rank

one tensor. Let R𝑛1×···×𝑛ℓ be the set of tensors of dimensions (𝑛1, . . . , 𝑛ℓ) and let 𝑋 ⊆

R𝑛1×···×𝑛ℓ be the space of rank one tensors. 𝑋 is known as the Segre variety, and it is also

defined by quadratic equations (the 2 × 2 minors of the tensor flattenings). Therefore, this

nearest point problem is a QCQP, and we can consider its SDP relaxation. The Segree variety

is smooth at any point other than the origin. Since the ideal is radical, then ACQ holds at all

these points. Thus, under low noise assumptions this problem is solved exactly by the SDP

relaxation. This result also extends to the case of symmetric tensors, given that the Veronese

variety is also defined by quadrics.

Remark 6.11. An essentially equivalent SDP relaxation for the nearest rank one tensor was

proposed in [102]. No tightness results were known.

We will now see some applications of Theorem 6.8. Note that the theorem has three

assumptions: the objective is strictly convex, ACQ holds, and the minimizer of the noiseless

case is also the global minimum. Since in the problems below the objective function is a

squared loss function, and since in the noiseless case the objective value is zero, then the last

condition is always satisfied. Thus, we will only check strict convexity and ACQ.

Example 6.13 (𝑆𝑂(𝑑) synchronization). Consider the problem of determining the absolute

rotations of 𝑛+1 objects given (noisy) relative rotations among some pairs. Let 𝑆𝑂(𝑑) denote

the special orthogonal group. Given a graph 𝐺 = (𝑉,𝐸), where 𝑉 = {0, . . . , 𝑛}, and matrices

𝑅̂𝑖𝑗 ∈ R𝑑×𝑑 for each 𝑖𝑗 ∈ 𝐸, the problem is

min
𝑅1,...,𝑅𝑛∈𝑆𝑂(𝑑)

∑︁
𝑖𝑗∈𝐸

‖𝑅𝑗 − 𝑅̂𝑖𝑗𝑅𝑖‖2𝐹 , 𝑆𝑂(𝑑) := {𝑅 ∈ R𝑑×𝑑 : 𝑅𝑇𝑅 = id𝑑, Det(𝑅) = 1},

(6.13)

where 𝑅0 := id𝑛 is the reference point, This problem is parametrized by 𝜃 = (𝑅̂𝑖𝑗)𝑖𝑗∈𝐸 . To
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obtain a QCQP, we can replace 𝑆𝑂(𝑑) by the orthogonal group 𝑂(𝑑):

min
𝑅1,...,𝑅𝑛∈𝑂(𝑑)

∑︁
𝑖𝑗∈𝐸

‖𝑅𝑗 − 𝑅̂𝑖𝑗𝑅𝑖‖2𝐹 , 𝑂(𝑑) := {𝑅 ∈ R𝑑×𝑑 : 𝑅𝑇𝑅 = id𝑑}. (6.14)

Observe that (6.13) and (6.14) have the same minimizer in the low noise regime, given that

𝑆𝑂(𝑑)𝑛 is a connected component of 𝑂(𝑑)𝑛. Consider the SDP relaxation of the QCQP (6.14).

Note that the objective function is strictly convex (Lemma 6.22), and that ACQ is satisfied

everywhere since the variety is smooth and the ideal is radical (Lemma 6.21). Thus, under

low noise, the SDP relaxation finds the true minimizer of (6.14), which is the same of (6.13).

Lemma 6.22. Let 𝐺 = (𝑉,𝐸) be a connected graph, let 𝑥0 ∈ R𝑘, and let 𝐿𝑖𝑗 : R𝑘 → R𝑘

be invertible linear maps for 𝑖𝑗 ∈ 𝐸. Then the function 𝑓(𝑥) :=
∑︀

𝑖𝑗∈𝐸 ‖𝑥𝑗 − 𝐿𝑖𝑗𝑥𝑖‖2, where

𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ (R𝑘)𝑛, is strictly convex.

Proof. We may assume that the reference point 𝑥0 = 0 (otherwise, simply apply an affine

transformation). Since 𝑓(𝑥) is convex and homogeneous, it suffices to see that 𝑓(𝑥) = 0

implies 𝑥 = 0. If 𝑓(𝑥) = 0 then 𝑥𝑗 = 𝐿𝑖𝑗𝑥𝑖 for each 𝑖𝑗 ∈ 𝐸. Since 𝑥0 = 0 and 𝐺 is connected

it is clear that each 𝑥𝑖 must be zero.

Remark 6.12. An alternative QCQP formulation for the 𝑆𝑂(3) synchronization problem can

be obtained by representing rotations with quaternions [63]. The same analysis as above

shows that the corresponding SDP relaxation is tight in the low noise regime, as was observed

experimentally in [63].

Example 6.14 (𝑆𝐸(𝑑) synchronization). A natural extension of the above problem is to

replace rotation matrices by elements of the special Euclidean group 𝑆𝐸(𝑑). Given a graph

𝐺 = (𝑉,𝐸), and 𝑅̂𝑖𝑗 ∈ R𝑑×𝑑, 𝑢̂𝑖𝑗 ∈ R𝑑 for 𝑖𝑗 ∈ 𝐸, the problem is

min
𝑅𝑖∈𝑆𝑂(𝑑), 𝑢𝑖∈R𝑑

∑︁
𝑖𝑗∈𝐸

‖𝑅𝑗 − 𝑅̂𝑖𝑗𝑅𝑖‖2𝐹 + ‖𝑢𝑗 − 𝑢𝑖 −𝑅𝑖𝑢̂𝑖𝑗‖2, (6.15)

where 𝑅0 := id𝑑, 𝑢0 := 0. As before, we can replace 𝑆𝑂(𝑑) with 𝑂(𝑑) to obtain a QCQP, and

consider its SDP relaxation. An argument similar to Lemma 6.22 shows that the objective

function is strictly convex, and thus the SDP recovers the minimizer of (6.15) under low noise.
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Remark 6.13. SDP relaxations for 𝑆𝐸(𝑑) synchronization have received considerable attention

in past years and similar tightness results have been derived [112,146].

Example 6.15 (Orthogonal Procrustes). Given 𝑛, 𝑘,𝑚1,𝑚2 ∈ N and matrices 𝐴 ∈ R𝑚1×𝑛,

𝐵 ∈ R𝑚1×𝑚2 , 𝐶 ∈ R𝑘×𝑚2 , the weighted orthogonal Procrustes problem, also known as Penrose

regression problem, is

min
𝑋∈R𝑛×𝑘

‖𝐴𝑋𝐶 −𝐵‖2𝐹 , s.t. 𝑋𝑇𝑋 = id𝑘. (6.16)

Note that the above is a QCQP parametrized by 𝜃 = (𝐴,𝐵,𝐶). ACQ holds everywhere since

the variety (the Stiefel manifold) is smooth and the ideal is radical. The objective function

is strictly convex as long as the linear map 𝑋 ↦→ 𝐴𝑋𝐶 is injective. In such cases the SDP

relaxation (D𝜃) will be tight under low noise.

Remark 6.14. Recall that in Section 5.7.2 we also studied this problem, and we introduced a

“better” SDP relaxation (stronger and more efficient) than (D𝜃). Naturally, such relaxation

will also be tight under low noise.

6.7.2 Stability of unconstrained SOS

Let R[𝑧]2𝑑 be the vector space of multivariate polynomials of degree at most 2𝑑 in variables

𝑧 = (𝑧1, . . . , 𝑧𝑛). Consider the parametric family of polynomial optimization problems:

min
𝑧∈R𝑛

𝑝𝜃(𝑧), where 𝑝𝜃 ∈ R[𝑧]2𝑑 depends continuously on 𝜃. (POP𝜃)

The SOS relaxation of (POP𝜃) is

max
𝛾∈R

𝛾 s.t. 𝑝𝜃(𝑧)− 𝛾 ∈ Σ𝑛,2𝑑, (SOS 𝜃)

where Σ𝑛,2𝑑 is the SOS cone:

Σ𝑛,2𝑑 := {𝑓 ∈ R[𝑧]2𝑑 : 𝑓(𝑧) =
∑︁
𝑖

𝑓𝑖(𝑧)
2 for some 𝑓𝑖 ∈ R[𝑧]𝑑}.
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Assume now that for a fixed value of 𝜃 we know that the relaxation is tight. As before, we

investigate the behavior of the SOS relaxation as 𝜃 → 𝜃.

Example 6.16. For the polynomial 𝑝𝜃(𝑧) := 𝑧41𝑧
2
2 + 𝑧21𝑧

4
2 + 𝜃𝑧21𝑧

2
2 ∈ R[𝑧]6 we have:

𝜃 ≥ 0 =⇒ val(POP𝜃) = val(SOS 𝜃) = 0,

𝜃 < 0 =⇒ val(POP𝜃) =
1
27𝜃

3 and (SOS 𝜃) is infeasible.

Hence the relaxation is not stable nearby 𝜃 = 0.

The following theorem shows stability under a certain interiority condition.

Theorem 6.23. Let 𝜃 be such that 𝛾 := val(POP𝜃) = val(SOS 𝜃) and there is a unique

minimizer 𝑧. Consider the face 𝐾𝑧 of the cone Σ𝑛,2𝑑 given by the vanishing at 𝑧:

𝐾𝑧 := Σ𝑛,2𝑑 ∩ 𝐿𝑧, 𝐿𝑧 := {𝑓 ∈ R[𝑧]2𝑑 : 𝑓(𝑧) = 0, ∇𝑓(𝑧) = 0}.

Note that 𝑝𝜃 − 𝛾 ∈ 𝐾𝑧. If 𝑝𝜃 − 𝛾 lies in the relative interior of 𝐾𝑧, then the relaxation (SOS 𝜃)

is tight and recovers the minimizer whenever 𝜃 is close enough to 𝜃.

We proceed to prove Theorem 6.23. We may assume WLOG that 𝛾 = 0, and thus 𝑝𝜃 ∈

Σ𝑛,2𝑑. In order to use our methods, we need to rephrase (POP𝜃) as a QCQP. Let

𝑥 := (𝑧𝛼)𝛼∈𝐽 ∈ (R[𝑧]𝑑)𝑁 , where 𝐽 := {𝛼 ∈ N𝑛 :
∑︀

𝑖 𝛼𝑖 ≤ 𝑑}, 𝑁 :=
(︀
𝑛+𝑑
𝑑

)︀
,

be the vector with all 𝑁 monomials of degree at most 𝑑. Notice that any 𝑓 ∈ R[𝑧]2𝑑 can be

written in the form 𝑓(𝑧) = 𝑥𝑇𝑄𝑥 for some 𝑄 ∈ 𝒮𝑁 . We say that such a 𝑄 is a Gram matrix

of 𝑓 . Moreover, 𝑓 is SOS if and only if it has a positive semidefinite Gram matrix. We need

two properties of these Gram matrices.

Lemma 6.24. Assume that 𝑝 ∈ int𝐾𝑧. Then 𝑝 has a Gram matrix 𝑄̄ ⪰ 0 of corank-one.

Proof. Consider the linear map

𝜑 : 𝒮𝑁 → R[𝑧]2𝑑, 𝐴 ↦→ 𝑥𝑇𝐴𝑥. (6.17)
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Let 𝑥̄ ∈ R𝑁 be given by evaluating each of the monomials in 𝑥 at 𝑧. Let

𝑆 := {𝑄 ∈ 𝒮𝑁 : 𝑄 ⪰ 0, 𝑄𝑥̄ = 0}

and observe that 𝐾𝑧 = 𝜑(𝑆). Since linear maps preserve relative interiors of convex sets,

then int𝐾𝑧 = 𝜑(int𝑆). It follows that 𝑝 has a Gram matrix 𝑄̄ ⪰ 0 such that 𝑄̄𝑥̄ = 0, and

corank 𝑄̄ = 1.

Lemma 6.25. Let 𝑄̄ be a Gram matrix of 𝑝𝜃. Then 𝑄𝜃 := 𝜑†(𝑝𝜃 − 𝑝𝜃) + 𝑄̄ is a Gram matrix

of 𝑝𝜃, where 𝜑† is the pseudo-inverse of the linear map in (6.17).

Proof. Follows by noticing that 𝑄 is a Gram matrix of 𝑓 if and only if 𝜑(𝑄) = 𝑓 .

By the above lemmas, we know that there exist Gram matrices 𝑄𝜃 ∈ 𝒮𝑁 for each 𝑝𝜃 such

that: 𝑄𝜃 ⪰ 0 and has corank-one, and the dependence on 𝜃 is continuous. Thus the parametric

optimization problem (POP𝜃) can be phrased as

min
𝑥∈𝑋

𝑥𝑇𝑄𝜃𝑥, where 𝑋 := {(𝑧𝛼)𝛼∈𝐽 : 𝑧 ∈ R𝑛} ⊆ R𝑁 .

The above is indeed a QCQP since 𝑋, the Veronese variety, is defined by quadratic equations

𝑋 := {𝑥 ∈ R𝑁 : 𝑥0 = 1, 𝑥𝛼1𝑥𝛼2 = 𝑥𝛽1𝑥𝛽2 ∀𝛼1, 𝛼2, 𝛽1, 𝛽2 ∈ 𝐽 s.t. 𝛼1 + 𝛼2 = 𝛽1 + 𝛽2}.

Since we have a QCQP formulation, its Lagrangian dual gives an SDP relaxation of (POP𝜃).

Moreover, this Lagrangian dual coincides with (SOS 𝜃). The proof of Theorem 6.23 now follows

from Theorem 6.8.

Proof of Theorem 6.23. Consider the above QCQP. Since the first coordinate of 𝑥 is always

one, let 𝑥 = (1, 𝑦) with 𝑦 ∈ R𝑁−1. Similarly, let 𝑥̄ = (1, 𝑦) where 𝑦 = (𝑧𝛼)𝛼∈𝐽∖{0}. Let

𝑞𝜃(𝑦) := 𝑥𝑇𝑄𝜃𝑥. By construction we know that 𝑄𝜃 ⪰ 0, 𝑄𝜃𝑥̄ = 0, corank𝑄𝜃 = 1. It follows

that min𝑦 𝑞𝜃(𝑦) = 0, and it is attained at 𝑦. The corank-one assumption means that 𝑞𝜃 is

strictly convex. In order to apply Theorem 6.8 it remains to see that the ACQ assumption

is satisfied. Note that the variety 𝑋 is smooth since the unique singularity of the Veronese
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variety is the origin, but we are fixing the first coordinates to be one. Since the ideal is radical,

Lemma 6.21 implies that ACQ holds everywhere.

6.7.3 Noisy Euclidean distance matrix completion

We now show a simple application of Theorem 6.14. Consider the problem of determining the

location of 𝑛+ 1 objects given the (noisy) pairwise distances among some of them. Formally,

given 𝑝 ∈ N, a graph 𝐺 = (𝑉,𝐸), and positive numbers 𝜃𝑖𝑗 for each 𝑖𝑗 ∈ 𝐸, the goal is to find

𝑡𝑖 ∈ R𝑝 such that

‖𝑡𝑖 − 𝑡𝑗‖2 ≈ 𝜃𝑖𝑗 for 𝑖𝑗 ∈ 𝐸.

The problem can be modelled as finding the nearest point to the variety of Euclidean distance

matrices:

min
𝑑∈𝐷

∑︁
𝑖𝑗∈𝐸

(𝑑𝑖𝑗 − 𝜃𝑖𝑗)
2, 𝐷 := {𝑑 ∈ R(

𝑉
2) : ∃𝑡𝑖 ∈ R𝑝 s.t. 𝑑𝑖𝑗 = ‖𝑡𝑖 − 𝑡𝑗‖2 for 𝑖𝑗 ∈

(︀
𝑉
2

)︀
}.

(6.18)

We point out that given a valid Euclidean distance matrix 𝑑 ∈ 𝐷 recovering the locations 𝑡𝑖

amounts to an eigenvalue decomposition.

Remark 6.15. It follows from [116] that the above problem is NP-hard even if 𝑝 = 1.

Remark 6.16. The special case in which all pairs are observed, i.e., 𝐸 =
(︀
𝑉
2

)︀
, is nontrivial, and

it is known as multidimensional scaling (see e.g., [33]).

We focus here on the one-dimensional case (𝑝 = 1). The variety of 1D Euclidean distance

matrices is defined by some quadratics known as the Cayler-Menger determinants:

𝐷 = {𝑑 ∈ R(
𝑉
2) : ℎ𝑖𝑗𝑘(𝑑) = 0 for 𝑖𝑗𝑘 ∈

(︀
𝑉
3

)︀
}, ℎ𝑖𝑗𝑘(𝑑) := Det

(︃
0 𝑑𝑖𝑗 𝑑𝑖𝑘 1
𝑑𝑖𝑗 0 𝑑𝑗𝑘 1
𝑑𝑖𝑘 𝑑𝑗𝑘 0 1
1 1 1 0

)︃
.

In particular, problem (6.18) is a QCQP (when 𝑝 = 1). Notice that if all pairs are observed,

i.e, 𝐸 =
(︀
𝑉
2

)︀
, then Theorem 6.1 tells us that its SDP relaxation is tight under low noise. In

case that there are missing pairs this argument does not apply. The next example illustrates

that Theorem 6.14 might be used to show tightness in such cases.

192



Example 6.17. Consider the graph

𝐺 = (𝑉,𝐸), 𝑉 = {0, 1, 2, 3}, 𝐸 = {02, 03, 12, 13, 23},

whose only missing edge is 01. Let 𝜃 ∈ R𝐸 be a zero duality gap parameter, i.e., there is some

𝑡 ∈ R𝑛 such that 𝜃𝑖𝑗 = (𝑡𝑖 − 𝑡𝑗)
2 for all 𝑖𝑗 ∈ 𝐸. We assume that 𝜃 is generic (in particular,

𝑡𝑖 ̸= 𝑡𝑗). We will use Theorem 6.14 to show zero-duality-gap nearby 𝜃. We denote 𝑡𝑖𝑗 := 𝑡𝑗 − 𝑡𝑖

to simplify the notation. Let us split the vector 𝑑 = (𝑧01, 𝑦), where 𝑧01 ∈ R and 𝑦 ∈ R𝐸 . The

minimizer of (6.18) is 𝑑 = (𝑧01, 𝜃), where 𝑧01 := 𝑡201, and its Jacobian is

∇ℎ(𝑑) = ∇𝑧,𝑦ℎ(𝑑) = 4

(︃
−𝑡12𝑡02 𝑡12𝑡01 0 −𝑡01𝑡02 0 0
−𝑡13𝑡03 0 𝑡13𝑡01 0 −𝑡01𝑡03 0

0 −𝑡23𝑡03 𝑡23𝑡02 0 0 −𝑡02𝑡03
0 0 0 −𝑡23𝑡13 𝑡23𝑡12 −𝑡12𝑡13

)︃
.

Conditions (R1-R3) from Theorem 6.14 are easy to check:

R1. Note that rk∇ℎ(𝑑) ≥ 3 (generically), and that dim𝐷 = 3. Thus, ACQ holds.

R2. The feasible set is independent of 𝜃, so 𝒲 = Θ× 𝑋̄.

R3. By Example 6.10, it is enough to check that ∇𝑧01ℎ(𝑑) is injective. This follows by

noticing that the first row of ∇ℎ(𝑑) is nonzero.

For the remaining condition, Assumption RS, we consider the vector 𝜇 ∈ R(
𝑉
3) with entries

𝜇012 = −𝑡03𝑡13𝑡23, 𝜇013 = 𝑡02𝑡12𝑡23, 𝜇023 = −𝑡01𝑡12𝑡13, 𝜇123 = 𝑡01𝑡02𝑡03. (6.19)

We will see that either 𝜇 or −𝜇 satisfy Assumption RS. It is easy to see that 𝜇𝑇∇ℎ(𝑑) = 0,

so it remains to verify the positivity condition. As in Example 6.5, we consider the change of

coordinates 𝑢 = 𝑦 − 𝜃𝑧0, and let ℎ′𝑖𝑗𝑘(𝑧0, 𝑧01, 𝑢) := ℎ𝑖𝑗𝑘(𝑧01, 𝑢 + 𝜃𝑧0). It can be checked that

∇2
𝑧𝑧ℎ

′
𝑖𝑗𝑘 = 0 if 𝑖𝑗 ̸= 01, and the matrix 𝒜 from (6.12) is:

𝒜(𝜇) =
∑︁
𝑖𝑗𝑘

𝜇𝑖𝑗𝑘∇2
𝑧𝑧ℎ

′
𝑖𝑗𝑘 = 𝜇012

(︁
𝑡201(𝑡01+2𝑡12)2 −𝑡202−𝑡212

−𝑡202−𝑡212 1

)︁
+ 𝜇013

(︁
𝑡201(𝑡01+2𝑡13)2 −𝑡203−𝑡213

−𝑡203−𝑡213 1

)︁
= 𝑡223(𝑡0 + 𝑡1 − 𝑡2 − 𝑡3)

(︀ 𝑡401 −𝑡201
−𝑡201 1

)︀
.

Notice that 𝒜(𝜇) ̸= 0 and that 𝒜(𝜇)𝑧 = 0 where 𝑧 := (1, 𝑡201). It follows that either
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𝒜(𝜇)|(𝑧)⊥ ≻ 0 or 𝒜(−𝜇)|(𝑧)⊥ ≻ 0, and thus Assumption RS holds.

Remark 6.17. The argument from above can be readily adapted to the case 𝑉 = {0, . . . , 𝑛},

𝐸 =
(︀
𝑉
2

)︀
∖ {01}. Conditions (R1-R3) are easy. Consider the vector 𝜇 ∈ R(

𝑉
3) whose only

nonzero entries are the ones in (6.19). The matrix 𝒜(𝜇) is then the same as before, and thus

Assumption RS holds.

6.8 Additional proofs

Proof of Lemma 6.10. Let 𝛾𝜃 := 𝑞𝜃(𝑦𝜃) be the optimal value. Let us first show that 𝛾𝜃 → 𝛾𝜃

as 𝜃 → 𝜃. Since 𝛾𝜃 = 𝑞𝜃(𝑦𝜃) ≤ 𝑞𝜃(𝑦) then

lim sup
𝜃→𝜃

𝛾𝜃 ≤ lim
𝜃→𝜃

𝑞𝜃(𝑦) = 𝑞𝜃(𝑦) = 𝛾𝜃

Let 𝜌𝜃 := min𝑦∈R𝑛 𝑞𝜃(𝑦) be the unconstrained minimum of 𝑞𝜃. Clearly 𝜌𝜃 ≤ 𝛾𝜃. Since 𝑞𝜃 is

convex quadratic, there is an explicit formula for 𝜌𝜃, and it can be checked that 𝜌𝜃 → 𝜌𝜃.

Therefore,

𝛾𝜃 = 𝜌𝜃 = lim
𝜃→𝜃

𝜌𝜃 ≤ lim inf
𝜃→𝜃

𝛾𝜃.

It follows that lim𝜃→𝜃 𝛾𝜃 = 𝛾𝜃, as we claimed.

Let us now show that 𝑦𝜃 → 𝑦. Since 𝑔𝜃 is strictly convex and 𝑦 is the minimizer, it is

sufficient to see that 𝑔𝜃(𝑦𝜃) → 𝑔𝜃(𝑦). Let 𝑡 > 𝛾𝜃 be arbitrary and let 𝑆𝜃 := {𝑦 ∈ R𝑛 : 𝑔𝜃(𝑦) ≤ 𝑡}.

Since 𝑔𝜃 is strictly convex and 𝑔𝜃 depends continuously on 𝜃, there is a compact set 𝑆 such

that 𝑆𝜃 ⊆ 𝑆 for all 𝜃 sufficiently close to 𝜃. Since 𝛾𝜃 → 𝛾𝜃, then 𝑔𝜃(𝑦𝜃) < 𝑡 when 𝜃 is close to

𝜃. Therefore, we may assume that 𝑦𝜃 ∈ 𝑆 for all 𝜃. Denoting ‖ · ‖𝑆 the infinity norm on the

compact set 𝑆, then

|𝑔𝜃(𝑦𝜃)− 𝑔𝜃(𝑦)| ≤ |𝑔𝜃(𝑦𝜃)− 𝑔𝜃(𝑦𝜃)|+ |𝑔𝜃(𝑦𝜃)− 𝑔𝜃(𝑦)| ≤ ‖𝑔𝜃 − 𝑔𝜃‖𝑆 + |𝛾𝜃 − 𝛾𝜃|
𝜃→𝜃−−−→ 0

as wanted.

Proof of Corollary 6.13. We will use a simple variation of Theorem 6.12. Recall the definitions

of 𝒞𝜃(𝜇), 𝒬𝜃(𝜆) from (6.10). Since 𝒞𝜃(𝜇) is a submatrix of 𝒬𝜃(𝜆), where 𝜆 = (𝜆0, 𝜇), then
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their eigenvalues satisfy 𝜈1(𝒞𝜃(𝜇)) ≤ 𝜈2(𝒬𝜃(𝜆)). The proof of Theorem 6.12 relied on lower

bounding 𝜈2(𝒬𝜃(𝜆)), but we can instead bound 𝜈1(𝒞𝜃(𝜇)). Consequently, Theorem 6.12 can

be modified by replacing 𝒬𝜃(𝜆) with 𝒞𝜃(𝜇), and 𝜈2(𝑄̄) with 𝜈1(𝒞𝜃(𝜇̄)). It only remains to

compute the constants from Assumptions 6.12(i-iii):

(i) 𝜈1(𝒞𝜃(𝜇̄)) = 1 since 𝜇̄ = 0 and thus 𝒞𝜃(𝜇̄) = ∇2(‖𝑦 − 𝜃‖2) = id𝑛.

(ii) 𝐾 = 2
𝜎𝑠

since ‖𝜇𝜃‖ ≤ 2
𝜎𝑠
‖𝑦 − 𝜃‖ for any 𝜃 ∈ Θ(𝑦) by Lemma 6.11.

(iii) 𝐿 = 0 since 𝒞𝜃(𝜇̄) = id𝑛 is independent of 𝜃.

Proof of Lemma 6.15. From the definition of the Aubin property it is clear that there exists

a neighborhood 𝑈0 ∋ 𝑦 such that F has the Aubin property at 𝑝 for 𝑦, for any 𝑦 ∈ 𝑈0 ∩ F(𝑝).

We may assume that 𝑈0 is closed. Let F0 : 𝑝 ↦→ F(𝑝) ∩ 𝑈0, and note that it has closed

graph since F does. Thus, F0 is outer semicontinuous [108, Thm 5.7]). The lemma follows

from [108, Thm 9.38].
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Chapter 7

Summary

This thesis focused on the use of graphical and geometrical structure in problems involving

polynomial equations, with applications in sciences and engineering. The first part of this

thesis (Chapters 3 and 4) investigated graphical structure for solving polynomial systems,

as well as for computing permanents and related functions. The second part (Chapters 5

and 6) explored semidefinite relaxations of polynomial optimization problems, obtaining more

efficient relaxations and better guarantees.

In Chapter 3 we introduced a new data structure to represent polynomial systems, chordal

networks, aimed at exploiting graphical structure. We showed that several interesting families

of polynomial systems have small chordal network representations, even though the number of

components is exponentially large. We also saw that chordal networks can be efficiently used

to compute several properties of the underlying variety (e.g., cardinality, dimension). Chordal

networks showed orders of magnitude reduction over existing methods in cases from algebraic

statistics and vector addition systems.

In Chapter 4 we obtained a novel algorithm to compute permanents of matrices with

structured sparsity. The complexity of our method is ̃︀𝑂(𝑛 2𝜔), where 𝜔 is the treewidth

of the bipartite adjacency graph. We also derived efficient algorithms to compute mixed

discriminants and hyperdeterminants of structured arrays. Finally, we showed that computing

mixed volumes and solving generic polynomial systems is #P-hard, even when the treewidth

is bounded.

In Chapter 5 we proposed a novel SOS relaxation for optimization problems over algebraic
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varieties. Our method represents the variety with a generic set of complex samples, as opposed

to previous techniques which rely on an algebraic description. Importantly, we can reduce the

size of the relaxation by taking advantage of the geometric structure of the variety. Our

methods can be directly used for several varieties of interest, such as 𝑆𝑂(𝑛), Grassmannians,

and rank 𝑘 tensors. They also allow the use, for the first time, of tools from numerical algebraic

geometry to SOS optimization.

In Chapter 6 we studied SDP relaxations of parametrized optimization problems over

varieties. We assumed that the relaxation is tight (or exact) for a nominal value of the

parameters, and identified sufficient conditions (and quantitative bounds) for the relaxation

to remain tight after small perturbations of the parameters. We showed several applications

to estimation problems (e.g., the triangulation problem, rotation synchronization, rank-one

tensor approximation), proving that SDP relaxations solve these problems exactly under low

noise.
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