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Abstract
Determinantal Point Processes (DPPs) are random point processes well-suited for modelling repulsion. In
discrete settings, DPPs are a natural model for subset selection problems where diversity is desired. For
example, they can be used to select relevant but diverse sets of text or image search results. Among many
remarkable properties, they offer tractable algorithms for exact inference, including computing marginals,
computing certain conditional probabilities, and sampling.

In this thesis, we provide four main contributions that enable DPPs to be used in more general settings. First,
we develop algorithms to sample from approximate discrete DPPs in settings where we need to select a diverse
subset from a large amount of items.

Second, we extend this idea to continuous spaces where we develop approximate algorithms to sample from
continuous DPPs, yielding a method to select point configurations that tend to be overly-dispersed.

Our third contribution is in developing robust algorithms to learn the parameters of the DPP kernels, which is
previously thought to be a difficult, open problem.

Finally, we develop a temporal extension for discrete DPPs, where we model sequences of subsets that are not
only marginally diverse but also diverse across time.
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ABSTRACT

LEARNING, LARGE SCALE INFERENCE, AND

TEMPORAL MODELING OF DETERMINANTAL

POINT PROCESSES

Raja Mohd Hafiz Affandi Raja Ahmad

Eric Bradlow

Determinantal Point Processes (DPPs) are random point processes well-suited

for modelling repulsion. In discrete settings, DPPs are a natural model for subset

selection problems where diversity is desired. For example, they can be used

to select relevant but diverse sets of text or image search results. Among many

remarkable properties, they offer tractable algorithms for exact inference, including

computing marginals, computing certain conditional probabilities, and sampling.

In this thesis, we provide four main contributions that enable DPPs to be used

in more general settings. First, we develop algorithms to sample from approximate

discrete DPPs in settings where we need to select a diverse subset from a large

amount of items.

Second, we extend this idea to continuous spaces where we develop approximate

algorithms to sample from continuous DPPs, yielding a method to select point

configurations that tend to be overly-dispersed.

Our third contribution is in developing robust algorithms to learn the parameters

of the DPP kernels, which is previously thought to be a difficult, open problem.

Finally, we develop a temporal extension for discrete DPPs, where we model

sequences of subsets that are not only marginally diverse but also diverse across

time.
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Chapter 1

Introduction

A determinantal point process (DPP) provides a distribution over configurations

of points. The defining characteristic of the DPP is that it is a repulsive point

process, which makes it useful for modeling diversity. DPPs were first identified

as a class by Macchi [1975] who used them to model the distributions of fermion

systems at thermal equilibrium. Since the Pauli exclusion principle states that

no two fermions can occupy the same quantum state, this repulsiveness is aptly

described by a DPP.

Formally, given a space Ω ⊆ Rd, a specific point configuration A ⊆ Ω, and a

positive semi-definite kernel function L : Ω× Ω→ R, the probability density under

a DPP with kernel L is given by

PL(A) ∝ det(LA) , (1.1)

where LA is the |A| × |A| matrix with entries L(x,y) for each x,y ∈ A. This

defines a repulsive point process since point configurations that are more spread

out according to the metric defined by the kernel L have higher densities. To see

this, if we we let B the matrix of feature vectors of points in Ω and let L = B>B,

1



then the subdeterminant in Eq. (1.1) is proportional to the square of the volume

spanned by the kernel vectors associated with the points in A.

Despite the interesting repulsive characteristic they present, DPPs did not

receive much attention beyond the community of mathematical physics and proba-

bility for a few decades. This changed in the mid-to-late 2000s, when it was found

that DPPs in discrete spaces yield appealing mathematical properties including

computation of marginal and conditional probabilities [Borodin and Rains, 2005,

Borodin, 2009] and efficient sampling algorithms [Hough et al., 2006].

With the advent of the theory in discrete settings, DPPs have recently played

an increasingly important role in machine learning and statistics. With discrete

DPPs’ growing recognition as a method for diverse subset collection, they have

been widely applied to tasks such as pose estimation [Kulesza and Taskar, 2010],

image search [Kulesza and Taskar, 2011a], news thread discovery [Gillenwater et al.,

2012] and neural spiking models [Snoek et al., 2013].

For discrete DPPs, there exists a sampling algorithm that is exact and efficient

[Hough et al., 2006]. Given N base points (or items), {x1, . . . ,xN} = Ω, sampling

can be done using an eigendecomposition of the DPP kernel matrix L and it runs

in time O(N3) despite sampling from a distribution over 2N subsets. However,

when N is very large, an O(N3) algorithm can be prohibitively slow; for instance,

when selecting a subset of frames to summarize a long video. Furthermore, while

storing a vector of N items might be feasible, storing an N ×N matrix often is not.

The first contribution of this thesis is then to provide an approximate algorithm

to sample from large-scale DPPs using low-rank approximations of the kernel

matrix. While many low-rank approximation algorithms exist with guaranteed

performance in terms of the matrix norm, it is not clear how the errors propagate

to the preservation of the distributions defined by DPPs. In this thesis, we will

2



provide bounds on the error of DPPs based on low-rank approximated kernels.

Our algorithm will provide a method for diverse subset sampling in large-scale

settings. For example, we will consider the application to motion capture video

summarization.

DPPs defined on continuous spaces have also been found useful in applications

such as repulsive mixture modeling [Zou and Adams, 2012] where generating point

configurations that tend to be spread out is desirable. However, the use of DPPs

are somewhat limited due to the lack of efficient sampling algorithms. Our second

main contribution is this thesis is to propose an efficient algorithm to sample from

DPPs in continuous spaces using low-rank approximations of the kernel function.

We investigate two such schemes: Nyström and random Fourier features. Our

approach utilizes a dual representation of the DPP, a technique that has proven

useful in the discrete Ω setting as well [Kulesza and Taskar, 2010]. For k-DPPs,

which only place positive probability on sets of cardinality k [Kulesza and Taskar,

2012a], we also devise a Gibbs sampler that iteratively samples points in the k-set

conditioned on all k − 1 other points. The derivation relies on representing the

conditional DPPs using the Schur complement of the kernel. As a result, our

methods allow for the sampling of repulsive point configurations in continuous

spaces. We consider their applications to repulsive Gaussian mixture models and

synthesis of human motion.

Despite many remarkably efficient algorithms for inference of DPPs, an impor-

tant component of DPP modeling — learning the DPP kernel parameters — is

still considered a difficult, open problem. Even in the discrete Ω setting, DPP

kernel learning has been conjectured to be NP-hard [Kulesza and Taskar, 2012a].

Intuitively, the issue arises from the fact that in seeking to maximize the log-

likelihood of DPPs, the numerator yields a concave log-determinant term whereas

3



the normalizer contributes a convex term, leading to a non-convex objective. This

non-convexity holds even under various simplifying assumptions on the form of L.

Our third main contribution in this thesis is to provide robust algorithms to learn

the parameters of the DPP kernel. We propose Bayesian methods to learn the DPP

kernel parameters. These methods can be used to efficiently learn both discrete

and continuous DPPs, even in cases where gradient-based optimization methods

are not even feasible. We provide applications to classifying nerve fiber data in

diabetic patients and human judgement of image diversity.

Finally, we present a temporal extension to discrete DPPs, where we model

diverse sequences of subsets. In many applications, it is desirable to select subsets

that are not only marginally diverse but also diverse relative to those previously

shown. For example, in displaying news headlines from day-to-day, one aims to

select articles that are relevant and diverse on any given day and also diverse to

the articles that are shown in the previous days. We construct a Markov DPP

(M-DPP) for a sequence of random sets that defines a stationary process that

maintains DPP margins, implying that the subset chosen is encouraged to be

diverse at a particular time t. Crucially, the union of consecutive subsets is also

marginally DPP-distributed implying diversity across time as well. We will consider

the application of M-DPP in displaying daily news headline.

We believe this thesis will open up opportunities to use DPPs as parts of many

models, both in discrete and continuous settings, as well as spur further research

in developing theoretical properties and efficient algorithms for general classes of

DPPs.

1.1 Contributions

Our main contributions are summarized below.

4



• We provide an approximate algorithm to sample from large-scale DPPs using

low-rank approximations of the kernel matrix. We provide bounds on the

error of DPPs based on these low-rank approximated kernels.

• We propose propose an efficient algorithm to sample from DPPs in continuous

spaces using low-rank approximations of the kernel function. We provide

bounds on the error of DPPs based on these low-rank approximations. For

fixed-sized k-DPPs, we also devise a Gibbs sampler that iteratively samples

points in the k-set conditioned on all k − 1 other points.

• We provide robust algorithms to learn the parameters of the DPP kernel

using Bayesian methods. These methods can be extended to efficiently learn

large-scale discrete and continuous DPPs.

• We present a temporal extension to discrete DPPs, where we model diverse

sequences of subsets. Our construction defines a stationary process that

maintains DPP margins, implying that the subset chosen is encouraged to be

not only diverse at a particular time t but the union of consecutive subsets

are also marginally DPP-distributed implying diversity across time as well.

• We provide a variety of experimental results along the way, demonstrating

the successful application of our methods to real-world tasks including video

summarization, repulsive mixture model, repulsive social network clustering,

human motion synthesis, diabetic neuropathy classification, human judgement

of image diversity and news retrieval.

1.2 Thesis Outline

We summarize the chapters that follow.
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• Chapter 2: Background We present a survey of DPPs including existing

sampling and learning algorithms. We will also present a number of well-

known low-rank approximation methods and MCMC-based algorithms which

we will heavily rely on in sampling and learning large-scale/continuous DPPs.

• Chapter 3: Large-Scale Inference of Discrete DPPs We provide our

approximate sampling algorithm for large-scale discrete DPPs along with

error bounds associated with our methods and an empirical study of these

bounds, along with applications to motion capture video summarization.

• Chapter 4: Inference of Continuous DPPs We extend the sampling

algorithm to the continuous case in addition to a Gibbs sampling-type

algorithm for fixed-sized DPPs and apply them to repulsive Gaussian mixture

models and synthesis of human motion.

• Chapter 5: Large-Scale Learning of DPPs: We propose Bayesian

algorithms to learn kernel parameters of DPPs. We show how MCMC-type

algorithms can be modified to enable efficient learning of large-scale discrete

and continuous DPPs, even when likelihoods cannot be exactly or efficiently

computed but can be bounded instead. We provide applications to classifying

nerve fiver data in diabetic patients and human judgement of image diversity.

• Chapter 6: Markov DPPs We present our construction of Markov DPPs

that defines a stationary process that maintains individual diversity as well

as diversity across time. We provide their applications to displaying daily

news headline.

• Chapter 7: Conclusion We summarize our contributions and discuss their

significance and limitations. We mention possibilities for future work.

6



Chapter 2

Background

In this chapter, we first present a survey of DPPs. We provide a definition of

DPPs in discrete spaces and its interpretation and explore existing sampling and

learning algorithms. We then present the extension of DPPs to continuous spaces.

Finally, we present a number of well-known low-rank approximation methods and

MCMC-based algorithms which we will heavily rely on in sampling and learning

large-scale/continuous DPPs.

2.1 Discrete DPPs

A random point process P on a discrete base set Ω = {x1,x2, . . . ,xN} is a proba-

bility measure on the set 2Ω of all subsets of Ω. P is called a determinantal point

process (DPP) if there exists a positive semidefinite matrix L indexed by elements

of Ω such that the probability of sampling a set A ⊆ Ω is given by [Borodin and

Rains, 2005]:

PL(A) =
det(LA)

det(L+ I)
, (2.1)
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LA ≡ [Lij]xi,xj∈A is the submatrix of L indexed by the elements in A and I is the

N ×N identity matrix. Here we adopt the convention that det(L∅) = 1. This

representation of DPPs is known as the L-ensemble [Borodin and Rains, 2005].

The subdeterminant in Eq. (2.1) has an intuitive geometric interpretation. If

we let B be a D ×N matrix such that L = B>B, then if we denote the columns

of B by Bi, i = 1, 2, . . . , N , we get the following expression:

det(LA) = Vol2({Bi}xi∈A) (2.2)

where the right hand side denotes the square |A|-dimensional volume of the

parallelepiped spanned by the columns of B corresponding to the elements in

A. For this reason, DPPs give high probability to subsets that are diverse since

they are more orthogonal (and hence span larger volumes). Fig. 2.1 shows the

difference between sampling a set of points in the plane using a DPP (with Lij

inversely related to the distance between points xi and xj) and sampling points

independently. While the latter results in random clumping of the points, DPP

sampling, on the other hand, leads to a relatively uniformly spread set with good

coverage.

Due to the fact that DPPs favor selecting subsets that are diverse, they have

played an importand role in many machine learning tasks such as pose estimation

[Kulesza and Taskar, 2010], image search [Kulesza and Taskar, 2011a], salient news

thread discovery [Gillenwater et al., 2012] and neural spiking [Snoek et al., 2013]

where getting a good coverage of items is key. Coupled with appealing mathematical

properties and efficient algorithms explored in the next few subsections, discrete

DPPs are fast becoming an integral part of machine learning and statistics.
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Figure 2.1: A set of points in the plane drawn from a DPP (left), and the same
number of points sampled independently using a Poisson point process (right).
This figure is taken from Kulesza and Taskar [2012a].

2.1.1 Marginals and Conditionals

Marginals A DPP can also be represented in terms of its marginal kernel. Let

K be a semidefinite matrix such that K � I (all eigenvalues less than or equal to

1). Then if Y is a random set drawn according to the DPP with marginal kernel

K, then for every A ⊆ Ω:

P(Y ⊇ A) = det(KA) . (2.3)

Once again, KA ≡ [KA]xi,xj∈A denotes the submatrix of K indexed by elements in

A, and we adopt the convention that det(K∅) = 1. If we think of Kij as measuring

the similarity between items i and j, then

P(Y ⊇ {xi,xj}) = KiiKjj −K2
ij (2.4)

implies that Y is unlikely to contain both xi and xj when they are very similar.

Here as well, a DPP can be seen as modeling a collection of diverse items from the

base set Ω. It can be shown that an L-ensemble is a DPP with marginal kernel
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K = L(I +L)−1 = I − (L+ I)−1 [Macchi, 1975]. Conversely, a DPP with marginal

kernel K has L-ensemble kernel L = K(I −K)−1 (when the inverse exists).

Conditionals For any A,B ⊆ Y with A ∩B = ∅, it can be shown that [Kulesza

and Taskar, 2012a]

PL(Y = A ∪B|Y ⊇ A) =
det(LA∪B)

det(L+ IΩ\A)
, (2.5)

where IΩ\A is a matrix with ones on the diagonal entries indexed by the elements

of Ω \ A and zeros elsewhere.

This conditional distribution is itself a DPP over the elements of Ω\A [Borodin

and Rains, 2005]. In particular, suppose Y is DPP-distributed with L-ensemble

kernel L, and condition on the fact that Y ⊇ A. Then the set Y \ A is DPP-

distributed with marginal and L-ensemble kernels

KA =
[
I − (L+ IΩ\A)−1

]
Ω\A (2.6)

LA =
([

(L+ IΩ\A)−1
]

Ω\A

)−1

− I . (2.7)

Here, [·]Ω\A denotes the submatrix of the argument indexed by elements in Ω \ A.

Thus, DPPs as a class are closed under most natural conditioning operations.

2.1.2 Sampling Discrete DPPs

Hough et al. [2006] first described the DPP sampling algorithm shown in Algo-

rithm 1. Phase 1 is to compute an eigendecomposition L =
∑N

n=1 λnvnv
>
n of the

kernel matrix; from this, a random subset V of the eigenvectors is chosen by using

the eigenvalues to bias a sequence of coin flips. The Phase 2 of algorithm proceeds

iteratively, on each iteration selecting a new item yi to add to the sample and then
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Algorithm 1 Sampling discrete DPPs

Input: L-ensemble kernel matrix L
{(vn, λn)}Nn=1 ← eigenvector/value pairs of L
J ← ∅
for n = 1, . . . , N do
J ← J ∪ {n} with prob. λn

λn+1

V ← {vn}n∈J
Y ← ∅
while |V | > 0 do

Select yi from Ω with Pr(yi)=
1
|V |
∑

v∈V (v>ei)
2

Y ← Y ∪ {yi}
V ← V⊥, an orthonormal basis for the subspace of V orthogonal to ei

Output: Y

updating V in a manner that de-emphasizes items similar to the one just selected.

Note that ei is the ith elementary basis vector whose elements are all zero except

for a one in position i. Alg. 1 runs in time O(N3 +Nk3), where N is the number

of available items and k is the cardinality of the returned sample.

The sampling algorithm has an intuitive interpretation. The initial sampling of

a point is proportional to the square of the projection of the points to the collection

of selected eigenvectors. Thus points that align closer to the eigenvectors have a

higher probability of being chosen. However, as each successive point is selected

and V is updated by Gram-Schmidt orthogonalization, the distribution shifts to

avoid points near those already chosen. Fig. 2.2 shows a progression for a DPP

sampling over points in the unit square.

2.1.3 Fixed-sized kDPPs

In selecting a diverse collection of elements in Ω, a DPP jointly models both the

size of a set and its content. In some applications, the goal is to select (diverse) sets

of a fixed size. In order to achieve this goal, we can instead consider a fixed-size

determinantal point processes, or kDPP [Kulesza and Taskar, 2011a], which gives
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Figure 2.2: Sampling DPP over two-dimensional grid positions. Red circles
indicate already selected positions. On the bottom,lighter color corresponds to
higher probability. The DPP naturally reduces the probabilities for positions that
are similar to those already selected. This figure is taken from Kulesza and Taskar
[2012a].

a distribution over all random subsets Y ⊆ Ω with fixed cardinality k. The

L-ensemble construction of a kDPP, denoted PkL, gives probabilities

PkL(Y = A) =
det(LA)∑
|B|=k det(LB)

(2.8)

for all sets A with cardinality k and any positive semidefinite kernel L. While

the normalization constant cannot expressed as conveniently as the regular DPP,

Kulesza and Taskar [2011a] show that the kDPP distribution can be written as

PkL(A) =
det(LA)

ek(λ1, . . . , λN)
, (2.9)
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Algorithm 2 Sampling from a kDPP

Input: L-ensemble kernel matrix L, size k
{(vn, λn)}Nn=1 ← eigenvector/value pairs of L
J ← ∅
for n = N, . . . , 1 do

if u ∼ U [0, 1] < λn
en−1
k−1

enk
then

J ← J ∪ {n}
k ← k − 1
if k = 0 then

break
{continue with the rest of Algorithm 1}

where λ1, . . . , λN are eigenvalues of L and ek(λ1, . . . , λN) is the kth elementary

symmetric polynomial:

ek(λ1, . . . , λN) =
∑
|J |=k

∏
n∈J

λn . (2.10)

Note that ek(λ1, . . . , λN ) can be efficiently computed using recursion [Kulesza and

Taskar, 2012b].

The algorithm to sample from a kDPP is highlighted in Alg. 2.

2.1.4 Quality-Similarity Decomposition

An intuitive way to think of the L-ensemble kernel L is as a Gram matrix [Kulesza

and Taskar, 2010]:

L(x,y) = q(x)k(x,y)q(y) , (2.11)

interpreting q(x) ∈ R+ as representing the intrinsic quality of an item x, and

k(x,y) ∈ [−1, 1] as unit representing the similarity between items x and y. Under

this framework, we can model quality and similarity separately to encourage the

DPP to choose high quality items that are dissimilar to each other. This is very
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useful in many applications such as image or document search where, in response

to a search query, we can provide a very relevant (i.e. high quality) but diverse

(i.e. dissimilar) list of results.

2.1.5 Dual Representation of DPPs

While DPPs are remarkable in that sampling requires only O(N3) time despite

covering 2N sets, they are still computationally prohibitive when N is large. In

special cases where L is a linear kernel of low dimension, Kulesza and Taskar [2010]

showed that the complexity of sampling from these DPPs can be be significantly

reduced. In particular, when L = B>B, with B a D × N matrix and D � N ,

the complexity of the sampling algorithm can be reduced to O(D3). This arises

from the fact that L and the dual kernel matrix C = BB> share the same nonzero

eigenvalues, and for each eigenvector vk of L, Bvk is the corresponding eigenvector

of C. This leads to the sampling algorithm given in Alg. 3, which takes time

O(D3 +ND) and space O(ND).

Even in cases where the dimension D is large but finite, the complexity of the

DPP sampling algorithm can be further reduced by randomly projecting the linear

kernel onto a much lower dimension. Gillenwater et al. [2012] showed how such

random projections yield an approximate model with bounded variational distance

to the original DPP.

2.1.6 Learning Discrete DPPs

Assume we observe data A1, A2, . . . , AT with At ⊆ Ω and we model our DPP kernel

as L(x,y; Θ) with parameters Θ. Our log-likelihood then is given by

L(Θ) =
T∑
t=1

log(det(LAt(Θ)))− T log(det(L(Θ) + I)). (2.12)
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Algorithm 3 Dual-DPP-Sample(B)

Input: B such that L = B>B.
{(v̂n, λn)}Nn=1 ← eigendecomposition of C = BB>

J ← ∅
for n = 1, . . . , N do
J ← J ∪ {n} with prob. λn

λn+1

V̂ ←
{

v̂n√
v̂>Cv̂

}
n∈J

Y ← ∅
while |V̂ | > 0 do

Select yi from Ω with Pr(yi) = 1

|V̂ |

∑
v̂∈V̂ (v̂>Bi)

2

Y ← Y ∪ {yi}
Let v̂0 be a vector in V̂ with B>i v̂0 6= 0

Update V̂ ←
{
v̂ − v̂>Bi

v̂>0 Bi
v̂0 | v̂ ∈ V̂ − {v̂0}

}
Orthonormalize V̂ w.r.t. 〈v̂1, v̂2〉 = v̂>1 Cv̂2

Output: Y

Despite many remarkable properties of discrete DPPs presented in the preceeding

subsections, learning the DPP kernel parameters Θ is still considered a difficult

open problem. In particular, if we considered decomposing the kernel into quality

and similarity, as in Sec. 2.1.4, Kulesza and Taskar [2012a] have conjectured that

learning the parameters of the diversity kernel is NP-hard. Intuitively, the issue

arises from the fact that in seeking to maximize the log-likelihood of DPPs in

Eq. (2.12), the term associated with numerator yields a concave log-determinant

term whereas the the term associated with normalizer contributes a convex term,

leading to a non-convex objective. This non-convexity holds even under various

simplifying assumptions on the form of L. However, attempts have been made at

kernel learning as discussed below.

Quality Learning. Assuming the diversity kernel, k(x,y) is held fixed, Kulesza

and Taskar [2011b] presented a method to learn the quality kernel. In particular,
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given features f(xi) of a point xi, they modeled the quality function as

q(xi) = exp

(
1

2
θ>f(xi)

)
, (2.13)

and showed that Eq. (2.12) is now concave in Θ. They proved that the gradient

can be computed efficiently as

∇L(θ) =
T∑
t=1

[∑
xi∈At

f(xi)−
N∑
i=1

Kiif(xi)

]
(2.14)

where K is the marginal kernel in Section 2.1.1.

Mixture of Experts. Kulesza and Taskar [2011a] considered the case where we

are given a set L(1), L(2), . . . , L(D) of available expert kernel matrices and define

the convex combination model

Pα(A) =
D∑
d=1

αdPL(d)(A), (2.15)

where
∑D

d=1 αd = 1. Given observations A1, A2, . . . , AT , α is learned by optimizing

the logistic loss measure:

min
α

L(α) =
T∑
t=1

log(1 + eγ[Pα(At)−Pα(Ω\At)])

s.t.
D∑
d=1

αd = 1, (2.16)

where γ is a hyperparameter that controls how aggresively we penalize non-included

sets. Kulesza and Taskar [2011a] show that this optimization problem is convex

and can be solved using projected gradient methods.
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Nelder-Mead Optimization The only known method for parameter learning

of general kernels is suggested by Lavancier et al. [2012] using Nelder-Mead opti-

mization to maximize Eq. (2.12). Nelder-Mead optimization [Nelder and Mead,

1965] is a heuristic optimization technique that uses the multidimensional simplex

to locate a local optimum. As such the method does not require the knowledge

of the derivative of the log-likelihood. Note, however, this method can converge

to a non-stationary point [McKinnon, 1998] and even when it does converge to a

stationary point, it cannot be guaranteed to be the global optimum.

2.2 Continuous DPPs

Let Ω ⊆ Rd be a continuous space. To define DPPs on Ω, we first consider a

function L : Ω× Ω→ R with

∫
Ω

∫
Ω

|L(x,y)|2dxdy <∞ . (2.17)

Such a function is called the Hilbert-Schmidt kernel with the associated Hilbert-

Schmidt operator T given by

(Tu)(x) =

∫
Ω

L(x,y)u(y)dy . (2.18)

We also assume that L(x,y) = L(y,x) and that L(x,y) is a positive semidefinite

kernel function. Thus, T is a compact, self-adjoint operator and so L(x,y) has

the eigenfunction expansion

L(x,y) =
∞∑
n=1

λnφn(x)φn(y) , (2.19)

with λn ≥ 0 for all n.
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Finally, we assume that

tr(T ) =

∫
Ω

L(x,x)dx <∞ , (2.20)

which defines T as a trace class operator with a well-defined Fredholm determinant,

det(T + I) =
∞∏
n=1

(1 + λn) , (2.21)

since det(T + I) ≤ etr(T ).

For notational convenience, in the remainder of this thesis, we suppress the use

of the operator T . Thus, we will use expressions such as tr(L), det(L) and λ(L)

with the understanding that those quantities are defined by the Hilbert-Schmidt

operator associated with kernel L(x,y).

Given a symmetric, positive semidefinite Hilbert-Schmidt kernel, L, we can now

define a DPP on Ω with kernel L with probability density given by Eq. (2.1) where

LA is the |A| × |A| matrix with entries L(x,y) for each x,y ∈ A and det(L+ I) is

the Fredholm determinant of the associated operator defined by Eq. (2.21).

DPPs extend to the continuous settings naturally, with L now a kernel operator

instead of a matrix. Again appealing to Eq. (2.1), the DPP probability density for

point configurations A ⊆ Ω is given by

PL(A) =
det(LA)∏∞
n=1(λn + 1)

, (2.22)

where λ1, λ2, . . . are eigenvalues of the operator L.

The kDPP also extends to the continuous case with

PkL(A) =
det(LA)

ek(λ1:∞)
, (2.23)
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where λ1:∞ = (λ1, λ2, . . .).

In contrast to the discrete case, the eigenvalues λi for continuous DPP kernels

are generally unknown; exceptions include a few kernels such as the exponentiated

quadratic.

2.2.1 Example of Continuous Kernels

Here we present a few standard continuous kernels and results associated with

them. We first decompose the kernel L in terms of the quality and similarity

component, akin to what is done in Sec. 2.1.4.

Gaussian Quality and Similarity

Consider Ω = RD. Let the the quality and similarity be

q(x) =
√
α

D∏
d=1

1√
πρd

exp

{
− x2

d

2ρd

}
(2.24)

and

k(x,y) =
D∏
d=1

exp

{
−(xd − yd)2

2σd

}
,x,y ∈ RD. (2.25)

This kernel is appealing since many of its mathematical properties are known. In

particular, the eigenvalues and eigenfunctions are given by [Fasshauer and McCourt,

2012]:

λn = α
D∏
d=1

√
1

β2
d+1

2
+ 1

2γd

(
1

γd(β2
d + 1) + 1

)nd−1

, (2.26)

and

φn(x) =
D∏
d=1

(
1

πρ2
d

) 1
4

√
βd

2nd−1Γ(nd)
exp

{
−β

2
dx

2

2ρ2
d

}
Hnd−1

(
βdxd√
ρ2
d

)
, (2.27)
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where γd = σd
ρd

, βd = (1 + 2
γd

)
1
4 and n = (n1, n2, . . . , nD) is a multi index.

Uniform Quality and Gaussian Similarity

Consider Ω = [−1
2
, 1

2
]D, a hypercube of volume 1. Let the the quality and similarity

be

q(x) =

√
α

πD
1x∈[− 1

2
, 1
2

]D , (2.28)

k(x,y) = exp

{
−‖x− y‖2

σ

}
. (2.29)

This kernel represents models where points are given uniform quality within a

hypercube and points repulse one another depending on their Gaussian distances.

Unfortunately, no known exact eigendecomposition is known. However, since the

kernel is translationally invariant (ie. L(x,y) = L(x − y)) and defined over a

compact space, we can approximate its eigenstructure using the Fourier basis

φn(x) = exp
{

2πin>x
}
, n ∈ ZD. (2.30)

The approximate eigenvalues are then given by [Lavancier et al., 2012]

λn = ασe−π
2σ‖n‖2 . (2.31)

Uniform Quality and Matérn Similarity

Let Ω = [−1
2
, 1

2
]D, a hypercube of volume 1. Let the the quality and similarity be

q(x) =

√
ρ

21−ν

Γ(ν)αν
1x∈[− 1

2
, 1
2

]d , (2.32)

k(x,y) = ‖x− y‖νKν(
‖x− y‖

α
), (2.33)

20



where Kν is the modified Bessel function of the second kind.

No known exact eigendecomposition is known. However, since the kernel is also

translationally invariant the approximate eigenvalues using the Fourier basis in

Eq. (2.30) is [Lavancier et al., 2012]

λn = 4πDρ
ν

(1 + 4π2Dα2‖n‖2)1+ν
. (2.34)

Uniform Quality and Generalized Cauchy Similarity

Let Ω = [−1
2
, 1

2
]D, a hypercube of volume 1. Let the the quality and similarity be

q(x) =
√
ρ1x∈[− 1

2
, 1
2

]d , (2.35)

k(x,y) =
1

(1 + 1
α2‖x− y‖2)1+ν

. (2.36)

Again, no known exact eigendecomposition is known. The approximate eigen-

values using the Fourier basis in Eq. (2.30) is [Lavancier et al., 2012]

λn =
21−νπα2ρ

Γ(1 + ν)
‖2παn‖νKν(‖2παn‖), (2.37)

where Kν is the modified Bessel function of the second kind.

2.2.2 Sampling from a Continuous DPPs

When the eigendecomposition of a continuous kernel L(x,y) is known and the

DPP is defined on a compact space, Lavancier et al. [2012] suggest a modification

of the Hough et al. [2006] algorithm, presented in Sec. 2.1.2. In this case, the first

phase of the algorithm involves choosing a random set of eigenfunctions, φi(x) by

using the eigenvalues to bias the sequence of coin flips. However, in the second
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phase of the algorithm, instead of sampling points from discrete distribution

Pr(yi) =
1

|V |
∑
v∈V̂

(v>ei)
2, (2.38)

we have to sample from a continuous distribution

f(yi) =
1

|V |
∑
φ∈Φ

‖φn(yi)‖2, (2.39)

where Φ is the set of selected eigenfunctions. Lavancier et al. [2012] suggest

using rejection sampling with uniform density to sample from this distribution.

There are serious drawbacks for this method. Note that this method only works

for DPPs defined over a compact space since the rejection sampling step relies

heavily on using the uniform density over the space as a proposal. Even in

this case, an exact eigendecomposition is needed for the sampling algorithm and

in most cases, as suggested by Lavancier et al. [2012], we have to resort to an

eigenstructure approximation method, such as the Fourier basis which results only

in an approximate sampling algorithm.

2.2.3 Learning Continuous DPPs

In the continuous setting, no known exact learning algorithm exists. The only known

approximate method for parameter learning of continuous kernels is suggested by

Lavancier et al. [2012] using Nelder-Mead optimization to maximize Eq. (2.12) as

in the discrete case highlighted in Sec. 2.1.6. Here, however, eigendecompositions

are not known for many continuous kernels. In the case that the kernel L is

translationally invariant (ie. L(x,y) = L(x− y)) and defined over a unit square,

the eigenvalues of the kernel can be approximated using a Fourier basis, as in

Sec. 2.2.1, and thus the approximate log-likelihood can be computed from Eq. (2.22).
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Note, that even in this case, we have to truncate the eigenvalues to be able to

approximately evaluate the denominator in Eq. (2.22). For non-translationally

invariant kernels or DPPs defined over non-compact spaces, no known learning

algorithms (even approximate) exist.

2.3 Low-Rank Kernel Approximations

2.3.1 Nyström Approximation

A common method to improve scalibilty of many kernel-based algorithms involves

a low rank approximation to the high-dimensional kernel matrix. For many

applications, including SVM-based classification, Gaussian process regression,

PCA, and, in our case, sampling DPPs, fundamental algorithms require kernel

matrix operations of space O(N2) and time O(N3). A common way to improve

scalability is to create a low-rank approximation to the high-dimensional kernel

matrix. One such technique is known as the Nyström method, which involves

selecting a small number of landmarks and then using them as the basis for a low

rank approximation.

Given a sample W of r landmark items corresponding to a subset of the indices

of an N ×N symmetric positive semidefinite matrix L, let W be the complement

of W (with size N − r), let LW and LW denote the principal submatrices indexed

by W and W , respectively, and let LWW denote the (N − r)× r submatrix of L

with row indices from W and column indices from W . Then we can write L in

block form as

L =

 LW LWW

LWW LW

 . (2.40)

If we denote the pseudo-inverse of LW as L+
W , then the Nyström approximation of
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L using W is

L̃ =

 LW LWW

LWW LWWL
+
WLWW

 . (2.41)

Fundamental to this method is the choice of W . Various techniques have

been proposed; some have theoretical guarantees, while others have only been

demonstrated empirically. Williams and Seeger [2000] first proposed choosing

W by uniform sampling without replacement. A variant of this approach was

proposed by Frieze et al. [2004] and Drineas and Mahoney [2005], who sample

W with replacement, and with probabilities proportional to the squared diagonal

entries of L. This produces a guarantee that, with high probability,

‖L− L̃‖2 ≤ ‖L− Lr‖2 + ε
N∑
i=1

L2
ii . (2.42)

where Lr is the best rank-r approximation to L.

Kumar et al. [2012] later proved that the same rate of convergence applies

for uniform sampling without replacement, and argued that uniform sampling

outperforms other non-adaptive methods for many real-world problems while being

computationally cheaper.

In cases where there are large enough eigengaps in the spectrum of L, Jin et al.

[2011] proved that we can further improve the spectral norm bound to:

‖L− L̃r‖2 ≤ λr+1 +O

(
N√
r

)
. (2.43)

Instead of sampling elements of W from a fixed distribution, Deshpande et al.

[2006] introduced the idea of adaptive sampling, which alternates between select-

ing landmarks and updating the sampling distribution for the remaining items.

Intuitively, items whose kernel values are poorly approximated under the existing
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sample are more likely to be chosen in the next round.

By sampling in each round landmarks Wt chosen according to probabilities

p
(t)
i ∝ ‖Li − L̃i(W1 ∪ · · · ∪Wt−1)‖2

2 (where Li denotes the ith column of L), we are

guaranteed that

E
(
‖L− L̃(W )‖F

)
≤ ‖L− Lr‖F

1− ε + εT
N∑
i=1

L2
ii . (2.44)

where Lr is the best rank-r approximation to L and W = W1 ∪ · · · ∪WT .

Kumar et al. [2012] argue that adaptive Nyström methods empirically outper-

form the non-adaptive versions in cases where the number of landmarks is small

relative to N . In fact, their results suggest that the performance gains of adaptive

Nyström methods relative to the non-adaptive schemes are inversely proportional

to the percentage of items chosen as landmarks.

The Nyström method can also be extended in the continuous case. Given

z1, . . . ,zr landmarks sampled from Ω, we can approximate the kernel function as,

L̃(x,y) =
r∑
j=1

r∑
k=1

W 2
jkL(x, zj)L(zk,y), (2.45)

where Wjk = L(zj, zk)
−1/2.

2.3.2 Random Fourier Features

In cases where the kernel matrix L is generated from a shift-invariant kernel function

k(x,y) = k(x − y), we can construct a low-rank approximation using random

Fourier features (RFF) [Rahimi and Recht, 2007]. This involves mapping each

data point x ∈ Rd onto a random direction ω drawn from the Fourier transform of

25



the kernel function. In particular, we draw ω ∼ p(ω), where

p(ω) =

∫
Rd
k(∆) exp(−iω>∆)d∆ , (2.46)

and set zω(x) = eiω
>x. It can be shown then that zω(x)∗zω(y) is an unbiased

estimator of k(x− y). Here we denote zω(x)∗ as the complex conjugate of zω(x).

Note that the shift-invariant property of the kernel function is crucial to ensure that

p(ω) is a valid probability distribution, due to Bochner’s Theorem. The variance of

the estimate can be improved by drawing D random directions, ω1, . . . ,ωD ∼ p(ω)

and estimating the kernel function with k(x− y) as 1
D

∑D
j=1 zωj(x)∗zωj(y).

To use RFF for approximating kernel matrices, we assume that the matrix

L is generated from a shift-invariant kernel function, so that if xi is the vector

representing item i. Then

Lij = k(xi − xj) . (2.47)

We construct a D ×N matrix B with

Bij =
1√
D
zωi(xj) i = 1, . . . , D, j = 1, . . . , N . (2.48)

An unbiased estimator of the kernel matrix L is now given by L̃RFF = B>B.

2.4 Markov-Chain Monte Carlo (MCMC)

In Chapter 5, we will consider learning the parameters, Θ of a DPP kernel L(Θ)

from observations A1, . . . , AT by sampling from the posterior distribution

P(Θ|A1, . . . , AT ) ∝ P(Θ)P(A1, . . . , AT |Θ) , (2.49)
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where P(A1, . . . , AT |Θ) is the likelihood of Θ given the observations A1, . . . , AT and

P(Θ) is the prior on Θ. For many combinations of prior and likelihood, including

the DPP cases we consider in this thesis, Eq. (2.49) does not yield a closed-form that

we can sample directly from. Thus we resort to approximate techniques based on

Markov chain Monte Carlo (MCMC) [Robert and Casella, 2004]. MCMC methods

provide a class of algorithms that produce estimates of the posterior samples based

on iterative sampling, combining Monte Carlo integration with samples from a

specially constructed Markov chain. The key feature of these methods is that the

sampling procedure does not rely on sampling from the distribution in Eq. (2.49),

which is assumed to have an arbitrarily complex form. Here we present two MCMC

methods — Metropolis-Hastings (MH) and slice sampling.

2.4.1 Metropolis-Hastings (MH)

The Metropolis-Hastings (MH) algorithm provides a generic method for construct-

ing an ergodic Markov chain, relying solely on defining a valid proposal distribution

f(·|·) and evaluation of the target distribution P(Θ|A1, . . . , AT ) up to a normal-

ization constant. It is assumed evaluating P(Θ|A1, . . . , AT ) is easy, but sampling

from this distribution is challenging. We use the proposal distribution f(Θ̂|Θi)

to generate a candidate value Θ̂ given the current parameters Θi, which are then

accepted or rejected with probability min{r, 1} where

r =

(
P(Θ̂|A1, . . . , AT )

P(Θi|A1, . . . , AT )

f(Θi|Θ̂)

f(Θ̂|Θi)

)
. (2.50)

The MH algorithm is outlined in Alg. 4.

The randon-walk Metropolis-Hastings is an example of an MH algorithm where

the proposal distribution f(Θ̂|Θi) is chosen to have mean Θi. The hyperparameters
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Algorithm 4 Metropolis-Hastings

Input: Dimension: D, Starting point: Θ0, Prior distribution: P(Θ), Proposal
distribution f(Θ̂|Θ) with mean Θ, Samples: A1, . . . , AT ].
Θ = Θ0

for i = 0 : (τ − 1) do
Θ̂ ∼ f(Θ̂|Θi)

r =
(

P(Θ̂|A1,...,AT )
P(Θi|A1,...,AT )

f(Θi|Θ̂)

f(Θ̂|Θi)

)
u ∼ Uniform[0,1]
if u < min{1, r} then

Θi+1 = Θ̂
Output: Θ0:τ

of f(Θ̂|Θi) tune the width of the distribution, determining the average step size.

2.4.2 Slice Sampling

While simpler MCMC methods such as random-walk MH can provide a straight-

forward means of sampling from the posterior, its efficiency requires tuning the

proposal distribution. Choosing an aggressive proposal can result in a high rejection

rate, while choosing a conservative proposal can result in inefficient exploration

of the parameter space. For example, consider the case where we use a Gaussian

proposal for some real-valued parameters. If we set the variance of this Gaussian

proposal to be small, then the proposed values Θ̂ will be close to the current value,

Θi, introducing high correlation in the samples. If instead we set a large vari-

ance, the proposed values can potentially be far away from the current parameter

value. However, in this case, the rejection rate r =
(

P(Θ̂|A1,...,AT )
P(Θi|A1,...,AT )

f(Θi|Θ̂)

f(Θ̂|Θi)

)
can be

potentially low resulting in a high rejection rate. Thus the hyperparameters of

the proposal distrubution have to be tuned to provide balance between those two

cases.

To avoid the need to tune the proposal distribution, we can instead use slice

sampling [Neal, 2003], which automatically adjusts the step-size to match the local
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shape of the posterior probability while still satisfying detailed balance conditions.

We first describe this method in the univariate case, following the “linear stepping-

out” approach described by Neal [2003]. Given the current parameter Θi, we first

sample y ∼ Uniform[0,P(Θi|A1, . . . , AT )]. This defines our slice with all values of

Θ with P(Θ|A1, . . . , AT ) greater than y included in the slice. We then define a

random interval around Θi with width w that is linearly expanded until neither

endpoint is in the slice. We propose Θ̂ uniformly in the interval. If Θ̂ is in the slice,

it is accepted. Otherwise, Θ̂ becomes the new boundary of the interval, shrinking

it so as to still include the current state of the Markov chain. This procedure is

repeated until a proposed Θ̂ is accepted. The details for univariate slice sampling

are shown in Alg. 5 and illustrated in Fig. 2.3.

There are many ways to extend this algorithm to a multidimensional setting. We

consider the simplest extension proposed by Neal [2003] where we use hyperrectan-

gles instead of intervals. A hyperrectangle region is constructed around Θi and the

edge in each dimension is expanded or shrunk depending on whether its endpoints

lie inside or outside the slice. One could alternatively consider coordinate-wise or

random-direction approaches to multidimensional slice sampling.
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Figure 2.3: Illustration of the univariate slice sampling algorithm. In the first step,
A slice y is generated by sampling from Uniform[0, P (Θi|A1, . . . , AT )]. Once a slice
is generated, we need to sample new parameters inside the slice. We start with a
predetermined window around the previous parameters. If the endpoints fall inside
the slice, the window is linearly expanded until neither endpoint is in the slice.
We then propose Θ̂ uniformly in the interval. If Θ̂ is in the slice, it is accepted.
Otherwise, Θ̂ becomes the new boundary of the interval, thereby shrinking the
window. This procedure is repeated until a proposed Θ̂ is accepted.
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Algorithm 5 Univariate Slice Sampling

Input: Starting point: Θ0, Initial width: w, Prior distribution: P(Θ), Samples:
X = [X1, . . . , XT ].
Θ = Θ0

for i = 0 : (τ − 1) do
y ∼ Uniform[0,P(Θi|A1, . . . , AT )]
z ∼ Uniform[0, 1]
L = Θi − z ∗ w2
R = L+ w

2

while y > P(L|A1, . . . , AT ) do
L = L− w

2

while y > P(R|A1, . . . , AT ) do
R = R + w

2

Θ̂ ∼ Uniform[L,R]
if P(Θ̂|A1, . . . , AT ) < y then

while P(Θ̂|A1, . . . , AT ) < y do
if Θ̂ > Θ then
R = Θ̂

else
L = Θ̂

Θ̂ ∼ Uniform[L,R]
Θi+1 = Θ̂

Output: Θ0:τ
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Chapter 3

Large-Scale Inference of Discrete

DPPs

An appealing aspect of a DPP defined on a discrete space, Ω = {x1,x2, . . . ,xN} is

its efficient sampling algorithm. Despite the probability distribution being defined

on the 2N of all possible subsets of Ω, the DPP sampler of Hough et al. [2006]

leads to an O(N3) algorithm (see Sec. 2.1.2). Imagine, however, machine learning

applications such as video summarization where each video might contain tens of

thousands of frames or possibly more. Suppose we are interested in selecting a

diverse subset from this set of frames by sampling from a discrete DPP. In this case,

when N is very large, an O(N3) algorithm can be prohibitively slow. Furthermore,

while storing a vector of N items might be feasible, storing an N ×N matrix often

is not.

When the kernel matrix can be decomposed as L = B>B, where B is a D×N

matrix and D � N , as presented in Sec. 2.1.5, Kulesza and Taskar [2010] offer

a solution by considering sampling from the dual representation. Recall that in

these cases sampling can be done in O(D3) time without ever constructing L. If

D is finite but large, the complexity of the algorithm can be further reduced by
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randomly projecting B into a lower-dimensional space. Gillenwater et al. [2012]

showed how such random projections yield an approximate model with bounded

variational error.

However, linear decomposition of the kernel matrix using low-dimensional (or

even finite-dimensional) features may not be possible. Even a simple Gaussian ker-

nel has an infinite-dimensional feature space, and for many applications, including

video summarization, the kernel can be even more complex and nonlinear.

Here we address these computational issues by approximating a DPP kernel

matrix L with a low rank matrix L̃. There are many low-rank approximation

methods with results that are well documented both empirically and theoretically.

However, there are significant challenges in extending these results to the DPP.

Most existing theoretical results bound the Frobenius or spectral norm of the

kernel error matrix, but we show that these quantities are insufficient to give useful

bounds on distributional measures like variational distance. Instead, we derive

novel bounds for low-rank approximation that are specifically tailored to DPPs,

nontrivially characterizing the propagation of the approximation error through the

structure of the process.

One such approximation method that satisfies the hypothesis in our bounds is

the Nyström method presented in Sec. 2.3.1. Our bounds are provably tight in

certain cases, and we demonstrate empirically that the bounds are informative for

a wide range of real and simulated data. These experiments also show that the

proposed method provides a close approximation for DPPs on large sets.

Another approximation method is the random Fourier features (RFF) presented

in Sec. 2.3.2. Here, however, the method does not satisfy our hypothesis making

theoretical analysis much more difficult. We will present an empirical comparison

between the Nyström and RFF and show that the RFF method still proves to be
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useful in cases where there is low-correlation between the items.

Finally, we apply our techniques to select diverse and representative frames

from a series of motion capture recordings. Based on a user survey, we find that

the frames sampled from a Nyström-approximated DPP form better summaries

than randomly chosen frames.

3.1 Low-Rank Approximated DPPs/kDPPs

While the dual representation of DPPs may not be available in many cases (such

as cases where L is generated by infinite-dimensional features), the dual DPP

sampling outlined in Sec. 2.1.5 can still be harnessed when one approximates L

with a low-rank matrix L̃. Such an r-rank approximation to L combined with the

application of the the dual sampling reduces the complexity to O(r3 +Nr) time

and O(Nr) space.

Most analysis of the error of low-rank approximations has been limited to

the Frobenius and spectral norms of the residual matrix L− L̃, such as the ones

presented in Secs. 2.3.1 and 2.3.2. While matrix norm bounds ‖L − L̃‖F and

‖L− L̃‖2 are useful in quantifying the effectiveness of the low-rank approximation

methods in recovering the kernel matrix, it is not clear how these error bounds

propagate to quantifying the error in the DPP distributions. Specifically, since

the probability of sampling a specific subset A under a DPP is related to the

square of the volume spanned by the feature vectors of items in A (see Sec. 2.1).

Unfortunately, for many of these low-rank approximation methods, no volumetric

error bounds exist. The challenge here is to study how low-rank approximations

simultaneously affects all possible minors of L.

In fact, a small error in the matrix norm can have a large effect on the minors

of the matrix:
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Example 1 Consider matrices L = diag(M, . . . ,M, ε) and L̃ = diag(M, . . . ,M, 0)

for some large M and small ε. Although ‖L− L̃‖F = ‖L− L̃‖2 = ε, for any A that

includes the final index, we have det(LA)− det(L̃A) = εMk−1, where k = |A|.

It is conceivable that while errors on some subsets are large, most subsets are

well approximated. Unfortunately, this not generally true.

Definition 1 The variational distance between the DPP with kernel L and the

DPP with the low-rank approximated kernel L̃ is given by

‖PL − PL̃‖1 =
1

2

∑
A∈2Ω

|PL(A)− PL̃(A)| . (3.1)

The variational distance is a natural global measure of approximation that ranges

from 0 to 1. Unfortunately, it is not difficult to construct a sequence of matrices

where the matrix norm of L− L̃ tends to zero but the variational distance does

not.

Example 2 Let L be a diagonal matrix with entries 1/N and L̃ be a diagonal

matrix with N/2 entries equal to 1/N and the rest equal to 0. Note that ||L −

L̃||F = 1/
√

2N and ||L − L̃||2 = 1/N , which tend to zero as N → ∞. However,

the variational distance is bounded away from zero. To see this, note that the

normalizers are det(L+ I) = (1 + 1/N)N and det(L̃+ I) = (1 + 1/N)N/2, which

tend to e and
√
e, respectively. Consider all subsets which have zero mass in the

approximation, S = {A : det(L̃A) = 0}. Summing up the unnormalized mass

of sets in the complement of S, we have
∑

A/∈S det(LA) = det(L̃ + I) and thus∑
A∈S det(LA) = det(L+ I)− det(L̃+ I). Now consider the contribution of just
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the sets in S to the variational distance:

‖PL − PL̃‖1 ≥
1

2

∑
A∈S

∣∣∣∣ det(LA)

det(L+ I)
− 0

∣∣∣∣ (3.2)

=
det(L+ I)− det(L̃+ I)

2 det(L+ I)
, (3.3)

which tends to e−
√
e

2e
≈ 0.1967 as N →∞.

One might still hope that pathological cases occur only for diagonal matrices,

or more generally for matrices that have high coherence [Candes and Romberg,

2007]. In fact, coherence has previously been used by Talwalkar and Rostamizadeh

[2010] to analyze the error of Nyström approximations. Define the coherence

µ(L) =
√
N max

i,j
|vij| , (3.4)

where each vi is a unit-norm eigenvector of L. A diagonal matrix achieves the

highest coherence of
√
N and a matrix with all entries equal to a constant has the

lowest coherence of 1. Suppose that f(N) is a sublinear but monotone increasing

function with limN→∞ f(N) =∞. We can construct a sequence of kernels L with

µ(L) =
√
f(N) = o(

√
N) for which matrix norms of the low-rank approximation

error tend to zero, but the variational distance tends to a constant.

Example 3 Let L be a block diagonal matrix with f(N) constant blocks, each of

size N/f(N), where each non-zero entry is 1/N . Let L̃ be structured like L except

with half of the blocks set to zero. Note that µ2(L) = f(N) by construction and that

each block contributes a single eigenvalue of 1
f(N)

; the Frobenius and spectral norms

of L − L̃ thus tend to zero as N increases. The DPP normalizers are given by

det(L+I) = (1+1/f(N))f(N) → e and det(L̃+I) = (1+1/f(N))f(N)/2 → √e. By

a similar argument to the one for diagonal matrices, we can show that variational
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distance tends to e−
√
e

2e
.

Unfortunately, in the cases above, the low-rank approximations will yield poor

approximations to the original DPPs. Convergence of the matrix norm error alone is

thus generally insufficient to obtain tight bounds on the resulting approximate DPP

distribution. It turns out that the gap between the eigenvalues of the kernel matrix

and the spectral norm error plays a major role in the effectiveness of low-rank

approximations for DPPs, as we will show in Theorems 1 and 2. In the examples

above, this gap is not large enough for a close approximation; in particular, the

spectral norm errors are equal to the smallest non-zero eigenvalues. In the next

subsection, we derive approximation bounds for DPPs that are applicable to many

low-rank approximation algorithms.

3.1.1 Preliminaries

In analyzing the error in terms of the variational distance defined in Eq. (3.1), it is

important that we are able to analyze the approximation error for each possible

subset, |PL(A)−PL̃(A)|, A ∈ 2Ω. Since the DPP/kDPP distribution is given by the

determinantal form in Eqs. (2.1) and (2.9), it is only natural that we analyze how

the eigenvalues of the original kernel L are affected by the low-rank approximation

methods. Below we present a result for positive semidefinite matrices known as

Weyl’s inequality that characterize this effect on the eigenvalues.

Lemma 1 [Bhatia, 1997] Let L = L̃ + E, where L, L̃ and E are all positive

semidefinite N × N matrices with eigenvalues λ1 ≥ . . . ≥ λN ≥ 0, λ̃1 ≥ . . . ≥

λ̃N ≥ 0, and ξ1 ≥ . . . ≥ ξN ≥ 0, respectively. Then

λn ≤ λ̃m + ξn−m+1 for m ≤ n , (3.5)

λn ≥ λ̃m + ξn−m+N for m ≥ n . (3.6)
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Going forward, we use the convention λi = 0 for i > N . Weyl’s inequality gives

the following two corollaries.

Corollary 1 When ξj = 0 for j = r + 1, . . . , N , then for j = 1, . . . , N ,

λj ≥ λ̃j ≥ λj+r . (3.7)

Proof For the first inequality, let n = m = j in (3.6). For the second, let m = j

and n = j + r in (3.5).

Corollary 2 For j = 1, . . . , N ,

λj − ξN ≥ λ̃j ≥ λj − ξ1 . (3.8)

Proof We let n = m = j in (3.5) and (3.6), then rearrange terms to get the

desired result.

3.1.2 Set-wise bounds for DPPs

We are now ready to state set-wise bounds on the approximation error for DPPs

and kDPPs using certain classes of low-rank approximations In particular, we

assume that under the low-rank approximation schemes, both the approximated

kernel L̃ and the error matrix E = L − L̃ are positive semi-definite. Then, for

each set A ⊆ Ω, we want to bound the probability gap |PL(A)− PL̃(A)|. Going

forward, we use PA ≡ PL(A) and P̃A ≡ PL̃(A).

Theorem 1 Assume L̃ is positive semi-definite and has rank r, L has rank m with

eigenvalues λ1 ≥, λ2,≥, . . . ,≥ λm, |A| = k, and LA has eigenvalues λA1 ≥ . . . ≥ λAk .

Furthermore, assume that the error matrix E = L− L̃ is also postive semi-definite
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with rank m− r. Let

λ̂i = max
{
λi+(m−r), λi − ‖L− L̃‖2

}
(3.9)

λ̂Ai = max
{
λAi − ‖L− L̃‖2, 0

}
. (3.10)

Then

|PA − P̃A| (3.11)

≤ PA max

{[
1−

∏k
i=1 λ̂

A
i∏k

i=1 λ
A
i

]
,

[∏n
i=1(1 + λi)∏n
i=1(1 + λ̂i)

− 1

]}
.

Proof

P̃A − PA = PA
[

det(L+ I) det(L̃A)

det(L̃+ I) det(LA)
− 1

]
(3.12)

= PA
[(∏n

i=1(1 + λi)∏n
i=1(1 + λ̃i)

)(∏k
i=1 λ̃

A
i∏k

i=1 λ
A
i

)
− 1

]
.

Here λ̃A1 ,≥, . . . ,≥ λ̃Ak are the eigenvalues of L̃A. Now note that LA = L̃A + EA.

Since E is positive semidefinite, EA is also positive semidefinite. Thus by Corollary

1 we have λAi ≥ λ̃Ai , and so

P̃A − PA ≤ PA
[∏n

i=1(1 + λi)∏n
i=1(1 + λ̂i)

− 1

]
. (3.13)

For the reverse inequality, we multiply the left hand side of the above expression

by -1 and use the fact that λi ≥ λ̃i and λAi ≥ 0. By Corrolary 2,

λ̃Ai ≥ λAi − ξA1 ≥ λAi − ξ1 = λAi − ‖L− L̃‖2 , (3.14)
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resulting in the inequality

PA − P̃A ≤ PA
[

1−
∏k

i=1 λ̂
A
i∏k

i=1 λ
A
i

]
. (3.15)

The theorem follows by combining the two inequalities.

The theorem is tight if the approximation is exact (‖L− L̃‖2 = 0). It can also

be shown that these bounds are tight for the diagonal matrix examples discussed at

the beginning of this section, where the spectral norm error is equal to the non-zero

eigenvalues. Moreover, these bounds are convenient since they are expressed in

terms of the spectral norm of the error matrix and therefore can be easily combined

with existing approximation bounds for the Nyström method. Note that the

eigenvalues of L and the size of the set A both play important roles in the bound.

In fact, these two quantities are closely related; it is possible to show that the

expected size of a set sampled from a DPP is

E [|A|] =
N∑
n=1

λn
λn + 1

. (3.16)

Thus, if L has large eigenvalues, we expect the Nyström approximation error to be

large as well since the DPP associated with L gives high probability to large sets.

3.1.3 Set-wise bounds for kDPPs

We can obtain similar results for low-rank approximated kDPPs. In this case,

for each set A with |A| = k we want to bound the probability gap |PkA − P̃kA|.

Here we let PkA denote Eq. (2.9). As with the DPP case, this can be achieved by

analyzing the effect of low-rank approximation to the eigenvalues of L. In the

lemma below, we characterize how the denominator of Eq. (2.9) is affected by the

low-rank approximation to L.
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Lemma 2 Let ek once again denote the kth elementary symmetric polynomial of

L:

ek(λ1, . . . , λN) =
∑
|J |=k

∏
n∈J

λn , (3.17)

and

λ̂i = max
{
λi+(m−r), λi − ‖L− L̃‖2

}
, (3.18)

where m is the rank of L and r is the rank of L̃. Then

ek(λ1, . . . , λN) ≥ ek(λ̃1, . . . , λ̃N) ≥ ek(λ̂1, . . . , λ̂N) . (3.19)

Proof

ek(λ1, . . . , λN) =
∑
|J |=k

∏
n∈J

λn ≥
∑
|J |=k

∏
n∈J

λ̃n = ek(λ̃1, . . . , λ̃N) ,

by Corollary 1.

On the other hand,

ek(λ̃1, . . . , λ̃N) =
∑
|J |=k

∏
n∈J

λ̃n ≥
∑
|J |=k

∏
n∈J

λ̂n = ek(λ̂1, . . . , λ̂N) ,

by Corollary 1 and Corollary 2.

Since

PkL(A) =
det(LA)∑

|A′|=k det(LA′)
=

det(LA)∑
|J |=k

∏
n∈J λn

=
det(LA)

ek(λ1, . . . , λN)
, (3.20)

we can now prove the following theorem:
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Theorem 2 Under the conditions of Theorem 1,

|PkA − P̃kA| (3.21)

≤ PkA max

{[
ek(λ1, . . . , λN)

ek(λ̂1, . . . , λ̂N)
− 1

]
,

[
1−

∏k
i=1 λ̂

A
i∏k

i=1 λ
A
i

]}
.

Proof

P̃kA − PkA = PkA

[
ek(λ1, . . . , λN) det(L̃A)

ek(λ̃1, . . . , λ̃N) det(LA)
− 1

]
(3.22)

= PkA

[(
ek(λ1, . . . , λN)

ek(λ̃1, . . . , λ̃N)

)(∏k
i=1 λ̃

A
i∏k

i=1 λ
A
i

)
− 1

]
.

Here λ̃A1 ,≥, . . . ,≥ λ̃Ak are the eigenvalues of L̃A. Now note that LA = L̃A + EA.

Since E is positive semidefinite, it follows that EA is also positive semidefinite.

Thus by Corollary 1, we have λAi ≥ λ̃Ai and so

P̃kA − PkA ≤ PkA
[
ek(λ1, . . . , λN)

ek(λ̃1, . . . , λ̃N)
− 1

]
≤ PkA

[
ek(λ1, . . . , λN)

ek(λ̂1, . . . , λ̂N)
− 1

]
,

where the last inequality follows from Lemma 2.

On the other hand,

PkA − P̃kA = PkA

[
1−

(
ek(λ1, . . . , λN)

ek(λ̃1, . . . , λ̃N)

)(∏k
i=1 λ̃

A
i∏k

i=1 λ
A
i

)]
. (3.23)

By Corrolary 2,

λ̃Ai ≥ λAi − ξA1 ≥ λAi − ξ1 = λAi − ‖L− L̃‖2 . (3.24)

We also note that λ̃Ai ≥ 0. Since ek(λ1, . . . , λN) ≥ ek(λ̃1, . . . , λ̃N) by Lemma 2, we
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have

PkA − P̃kA ≤ PkA

[
1−

∏k
i=1 λ̂

A
i∏k

i=1 λ
A
i

]
. (3.25)

The theorem follows by combining the two inequalities.

Note that the scale of the eigenvalues has no effect on the kDPP; we can directly

observe from Eq. (2.8) that scaling L does not change the kDPP distribution

since any constant factor appears to the kth power in both the numerator and

denominator.

3.1.4 Nyström-approximated DPPs

In Secs. 3.1.2 and 3.1.3, we presented the theory for low-rank approximated DPP

kernels with certain conditions on the approximation method. In particular, we

assume that both the approximated kernel L̃ and the error matrix E = L − L̃

are positive semi-definite. One such technique that satisfies these conditions in

Theorems 1 and 2 is the Nyström method. To see this, we invoke the following

lemma:

Lemma 3 [Arcolano, 2011] Let L̃ be a Nyström approximation of L. Let E =

L − L̃ be the corresponding error matrix. Then E is positive semidefinite with

rank(E) = rank(L)− rank(L̃).

In this section we present empirical results on the performance of the Nyström

approximation for kDPPs using three datasets small enough for us to perform

ground-truth inference in the original kDPP. Two of the datasets are derived from

real-world applications available on the UCI repository1—the first is a linear kernel

1http://archive.ics.uci.edu/ml/
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Figure 3.1: The first 600 log-eigenvalues for each dataset.

matrix constructed from 1000 MNIST images, and the second an RBF kernel

matrix constructed from 1000 Abalone data points—while the third is synthetic

and comprises a 1000× 1000 diagonal kernel matrix with exponentially decaying

diagonal elements. Fig. 3.1 displays the log-eigenvalues for each dataset.

On each dataset, we perform the Nyström approximation with three differ-

ent sampling schemes: stochastic adaptive, greedy adaptive, and uniform. The

stochastic adaptive sampling technique is a simplified version of the scheme used in

Deshpande et al. [2006], where, on each iteration of landmark selection, we update

E = L− L̃ and then sample landmarks with probabilities proportional to E2
ii. In

the greedy scheme, we perform a similar update, but always choose the landmarks

with the maximum diagonal value Eii. Finally, for the uniform method, we simply

sample the landmarks uniformly without replacement.

In Fig. 3.2 (top), we plot log ||L − L̃||2 for each dataset as a function of the

number of landmarks sampled. For the MNIST data all sampling algorithms

initially perform equally well, but uniform sampling becomes relatively worse after

about 550 landmarks are sampled. For the Abalone data the adaptive methods

perform much better than uniform sampling over the entire range of sampled
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Figure 3.2: Error of Nyström approximations. Top: log(‖L− L̃‖2) as a function of
number of landmarks sampled. Bottom: log(‖P − P̃‖1) as a function of number of
landmarks sampled. The dashed lines show the bounds derived in Sec. 3.1. From
left to right, the datasets used are MNIST, Abalone and Artificial.

landmarks. This phenomenon is perhaps explained by the analysis of Talwalkar

and Rostamizadeh [2010], which suggests that uniform sampling works well for the

MNIST data due to its relatively low coherence (µ(L) = 0.5
√
N), while performing

poorly on the higher-coherence Abalone dataset (µ(L) = 0.8
√
N). For both of

the UCI datasets, the stochastic and greedy adaptive methods perform similarly.

However, for our artificial dataset it is easy to see that the greedy adaptive scheme

is optimal since it chooses the top remaining eigenvalues in each iteration.

In Fig. 3.2 (bottom), we plot log ||P − P̃ ||1 for k = 10 (estimated by sampling),

as well as the theoretical bounds from Sec. 3.1. The bounds track the actual

variational error closely for both the MNIST and Abalone datasets. For the

artificial dataset uniform sampling can do arbitrarily poorly, so we see looser

bounds in this case. We note that the variational distance correlates strongly with

the spectral norm error for each dataset.
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3.1.5 RFF-approximated DPPs

The Nyström technique is, of course, not the only possible means of finding low-rank

kernel approximations. One alternative for shift-invariant kernels is random Fourier

features (RFF) [Rahimi and Recht, 2007]. RFFs map each item onto a random

direction drawn from the Fourier transform of the kernel function; this results in

a uniform approximation of the kernel matrix. In practice, however, reasonable

RFF approximations seem to require a large number of random features, which

can reduce the computational benefits of this technique.

While RFF approximations guarantee unbiased estimates of the elements of the

kernel matrix, the approximation of the minors could be, in theory, highly biased

especially for large subsets. For this reason, RFF approximations can potentially be

a poor approximation for DPPs in cases where there are large correlation between

items. Furthermore, the error matrix E = L− L̃ are not guaranteed to be positive

semi-definite, making theoretical analysis much more difficult.

We instead performed empirical comparisons between the Nyström methods

and random Fourier features (RFFs). We apply the RFF approximation method

to the Abalone dataset. We use a Gaussian RBF kernel,

Lij = exp(−‖xi − xj‖2

σ2
) i, j = 1, . . . , 1000 , (3.26)

with σ2 taking values 0.1,1, and 10. In this case, the Fourier transform of the

kernel function, p(ω) is also a multivariate Gaussian.

In Fig. 3.3 we plot the empirically estimated log(‖Pk−P̃k‖1) for k = 10. While

RFFs compare favorably to the uniform random sampling of landmarks, their

performance is significantly worse than that of the adaptive Nyström methods,

especially in the case where there are strong correlations between items (σ2 = 1
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Figure 3.3: Error of Nyström and random Fourier features approximations:
log(‖P − P̃‖1) as a function of the number of landmarks sampled/random features
used. From left to right, the values of σ2 are 0.1, 1, and 10.
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Figure 3.4: The log-eigenvalues of RBF kernel applied to the Abalone datset.

and 10). In the extreme case where there is little to no correlation, the Nyström

methods suffer because a small sample of landmarks cannot reconstruct the other

items accurately. Yang et al. [2012] have previously demonstrated that, in kernel

learning tasks, the Nyström methods perform favorably compared to RFFs in cases

where there are large eigengaps in the kernel matrix. The plot of the eigenvalues

in Fig. 3.4 suggests that a similar result holds for approximating DPPs as well.

In practice, for kernel learning tasks, the RFF approach typically requires more

features than the number of landmarks needed for Nystroöm methods. However,

due the fact that sampling from a DPP requires O(r3) time where r is the number

of landmarks, we are constrained by the number of landmarks that can be used.
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3.2 Experiments

Recall our discussion earlier in this chapter regarding the task of video summa-

rization. Since videos typically contain tens of thousands of frames, if not more,

selecting a diverse set of frames via DPP sampling is prohibitively slow. Apply-

ing the DPP sampling algorithm using low-rank approximation methods in this

chapter, however, makes sampling a diverse subset selection task manageable. In

Sec. 3.1, we have shown that the error of a low-rank approximated DPP can be

bounded theoretically in terms of the variational distance. Furthermore, empirical

analysis on small datasets seem to suggest agreement with the theoretical bound

presented. This leads us to believe that sampling from a low-rank approximated

DPP mantains the diversity of the resulting selection. In this section, we test this

idea on a real life task of summarizing motion capture video.

In particular, we demonstrate the Nyström approximation on a motion summa-

rization task that is too large to permit tractable inference in the original DPP. As

input, we are given a series of motion capture recordings, each of which depicts

human subjects performing motions related to a particular activity, such as dancing

or playing basketball. In order to aid browsing and retrieval of these recordings in

the future, we would like to choose, from each recording, a small number of frames

that summarize its motions in a visually intuitive way. Since a good summary

should contain a diverse but representative set of frames, a DPP is a natural model

for this task.

We obtained test recordings from the CMU motion capture database2, which

offers motion captures of over 100 subjects performing a variety of actions. Each

capture involves 31 sensors attached to the subject’s body and sampled 120 times

per second. For each of nine activity categories—basketball, boxing, dancing,

2http://mocap.cs.cmu.edu/
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exercise, jumping, martial arts, playground, running, and soccer—we made a

large input recording by concatenating all available captures in that category. On

average, the resulting recordings are about N = 24,000 frames long (min 3,358;

max 56,601). At this scale, storage of a full N ×N DPP kernel matrix would be

highly impractical (requiring up to 25GB of memory), and O(N3) SVD would be

prohibitively expensive.

In order to model the summarization problem as a DPP, we designed a simple

kernel to measure the similarity between pairs of poses recorded in different frames.

We first computed the variance for the location of each sensor for each activity;

this allowed us to tailor the kernel to the specific motion being summarized. For

instance, we might expect a high variance for foot locations in dancing, and a

relatively smaller variance in boxing. We then used these variance measurements

to specify a Gaussian kernel over the position of each sensor, and finally combined

the Gaussian kernels with a set of weights chosen manually to approximately reflect

the importance of each sensor location to human judgments of pose similarity.

Specifically, for poses A = (a1,a2, . . . ,a31) and B = (b1, b2, . . . , b31), where a1 is

the three dimensional location of the first sensor in pose A, etc., the kernel value

is given by

L(A,B) =
31∑
i=1

wi exp

(
−‖ai − bi‖2

2

2σ2
i

)
, (3.27)

where σ2
i is the variance measured for sensor i, and w = (w1, w2, . . . , w31) is the

importance weight vector. We chose a weight of 1 for the head, wrists, and ankles,

a weight of 0.5 for the elbows and knees, and a weight of 0 for the remaining 22

sensors.

This kind of spatial kernel is natural for this task, where the items have inherent

geometric relationships. However, because the feature representation is infinite-

dimensional, it does not readily admit use of the dual methods of Kulesza and
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Taskar [2010]. Instead, we applied the stochastic adaptive Nyström approximation

developed above, sampling a total of 200 landmark frames from each recording in

20 iterations (10 frames per iteration), bringing the intractable task of sampling

from the high dimensional DPP down to an easily manageable size: sampling a set

of ten summary frames from the longest recording took less than one second.

Of course, this speedup naturally comes at some approximation cost. In order

to evaluate empirically whether the Nyström samples retained the advantages of

the original DPP, which is too expensive for direct comparison, we performed a user

study. Each subject in the study was shown, for each of the original nine recordings,

a set of ten poses (rendered graphically) sampled from the approximated DPP

model alongside a set of ten poses sampled uniformly at random (see Fig. 3.7).

Fig. 3.6 shows motion capture summaries sampled from the Nyström-approximated

kDPP (k=10). We asked the subjects to evaluate the two pose sets with respect

to the motion capture recording, which was provided in the form of a rendered

video. The subjects chose the set they felt better represented the characteristic

poses from the video (quality), the set they felt was more diverse, and the set they

felt made the better overall summary. The order of the two sets was randomized,

and the samples were different for each user.

Fig. 3.5 shows a sample screen from our user study. Each subject completed

four questions for each of the nine pairs of sets they saw (one pair for each of the

nine activities). 18 subjects completed the study, for a total of 162 responses to

each question. There was no significant correlation between a user’s preference for

the DPP set and their familiarity with the activity.

The results of the user study are shown in Table 3.1. Overall, the subjects felt

that the samples from the Nyström-approximated DPP were significantly better

on all three measures, p < 0.001. These results suggest that, while performing
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DPP to select a diverse set of frames from a MoCap video is infeasible due to the

large number of frames, sampling from an efficient low-rank approximated-DPP

still result in a diverse collection. Furthermore, the study validates the notion that

sampling a diverse collection of frames leads to better summaries of the activities

potrayed in the MoCap recordings.

Figure 3.5: Sample screen from the user study.

3.3 Conclusion

Low-rank approximation of a kernel matrix is an appealing technique for managing

the otherwise intractable task of sampling from high-dimensional DPPs. Given this
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Figure 3.6: DPP samples (k = 10) for each activity.
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Figure 3.7: A sample pair of frame sets for the activity of basketball. The top set
is chosen randomly, while the bottom is sampled from the Nyström-approximated
DPP.

Evaluation measure % DPP % Random
Quality 66.7 33.3
Diversity 64.8 35.2
Overall 67.3 32.7

Table 3.1: The percentage of subjects choosing each method in a user study of
motion capture summaries.

low-rank approximation, the unmanageable O(N3) task of sampling from DPPs on

large N sets is reduced to O(r3), where r is the approximation rank. We showed

that this appeal is theoretical as well as practical: we proved upper bounds for the

variational error of low-rank-approximated DPPs for approximation methods that

satisfy a few conditions (such as the Nyström method) and presented empirical

results to validate them. We also demonstrated that Nyström-approximated DPPs

can be usefully applied to the task of summarizing motion capture recordings.

53



Chapter 4

Inference for Continuous DPPs

Repulsive point processes, like hard core processes [Matérn, 1986, Daley and

Vere-Jones, 2003] have a long history in the spatial statistics community, where

considering continuous Ω is key. Many naturally occurring phenomena exhibit

diversity—trees tend to grow in the least occupied space [Neeff et al., 2005], ant hill

locations are over-dispersed relative to uniform placement [Bernstein and Gobbel,

1979] and the spatial distribution of nerve fibers is indicative of neuropathy, with

hard-core processes providing a critical tool [Waller et al., 2011]. Repulsive processes

on continuous spaces have garnered interest in machine learning as well, especially

relating to generative mixture modeling [Zou and Adams, 2012, Petralia et al.,

2012]. The main drawback for many repulsive point processes considered thus

far, is the inefficient sampling algorithm and the lack of mathematical structure.

For example, consider a well known example of a hard-core processes called the

Matérn process [Matérn, 1986]. Here the sampling algorithm involves drawing a

point one at a time, rejecting points that lie between a preset radius of a previously

sampled point. Not only is this samping algorithm inefficient (since many points

are potentially thrown away from the sample), the lack of mathematical properties

associated with this process makes it difficult to incorporate it in many real world
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tasks. On the other hand, the computationally attractive properties of DPPs and

their mathematical elegance as highlighted in Sec. 2.1 make them appealing to

consider in these applications.

On the surface, it seems that the eigendecomposition and projection algorithm

of Hough et al. [2006] for discrete DPPs, as highlighted in Sec. 2.1.2, would naturally

extend to the continuous case. While this is true in a formal sense as L becomes

an operator instead of a matrix, the key steps such as the eigendecomposition of

the kernel and projection of points on subspaces spanned by eigenfunctions are

computationally infeasible except in a few very limited cases where approximations

can be made [Lavancier et al., 2012], as discussed in Section 2.2.2. The absence of

a tractable DPP sampling algorithm for general kernels in continuous spaces has

hindered progress in developing DPP-based models for repulsion.

In this chapter, we propose an efficient algorithm to sample from DPPs in

continuous spaces using low-rank approximations of the kernel function. As in

Chapter 3, we utilize the dual representation of the DPP (but here for continuous

DPPs) and consider two low-rank approximation schemes: Nyström (highlighted in

Sec. 2.3.1) and random Fourier features (highlighted in Sec. 2.3.2). For kDPPs, we

also devise a Gibbs sampler that iteratively samples points in the k-set conditioned

on all k − 1 other points. The derivation relies on representing the conditional

DPPs using the Schur complement of the kernel.

Our methods allow us to handle a broad range of typical kernels and continuous

subspaces, provided certain simple integrals of the kernel function can be computed

efficiently. Decomposing our kernel into quality and similarity :

L(x,y) = q(x)k(x,y)q(y) (4.1)

where q(x) represents the quality at point x and k(x,y) denotes the similarity
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between points x and y, this includes, but is not limited to, all cases where the

(i) spectral density of the quality and (ii) characteristic function of the similarity

kernel can be computed efficiently. We provide a list of standard choices and their

associated feasibilities for DPP sampling in Table 4.1. The list is by no means

exhaustive, but is simply to provide some insight. We also elaborate upon some

standard kernels in the following sections. Our methods scale well with dimension,

in particular with complexity growing linearly in d.

Table 4.1: Examination of the feasibility of DPP sampling using Nyström, RFF
approximations and Gibbs sampling for a few standard examples of quality functions
q and similarity kernels k.

q(x) k(x, y) Method

Gaussian, Laplacian Gaussian, Laplacian
Nyström X

RFF X
Gibbs X

Gaussian, Laplacian Cauchy
Nyström ?

RFF X
Gibbs ?

Cauchy Gaussian, Laplacian
Nyström ?

RFF X
Gibbs ?

Cauchy Cauchy
Nyström ?

RFF X
Gibbs ?

Gaussian, Laplacian Linear, Polynomial
Nyström X

RFF X
Gibbs X

We propose continuous DPP sampling algorithms based on low-rank kernel

approximations in Sec. 4.1 and Gibbs sampling in Sec. 4.2. Theoretical and

empirical analysis of the two schemes is provided in Sec. 4.3. Finally, we apply our

methods to repulsive mixture modeling, repulsive latent social network modeling

and human pose synthesis in Sec. 4.4.1, Sec. 4.4.2 and 4.4.3, respectively.
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4.1 Sampling from a Low-Rank Continuous DPP

Recall that when Ω is discrete with cardinality N , the DPP sampling algorithm

by Hough et al. [2006], as presented in Sec. 2.1.2, uses an eigendecomposition of

the kernel matrix L =
∑N

n=1 λnvnv
>
n and recursively samples points xi as follows,

resulting in a set A ∼ DPP(L) with A = {xi}:

• Phase 1: Select eigenvector vn with probability λn
λn+1

. Let V be the selected

eigenvectors (k = |V |).

• Phase 2: For i = 1, . . . , k, sample points xi ∈ Ω sequentially with probability

based on the projection of xi onto the subspace spanned by V . Once xi is

sampled, update V by excluding the subspace spanned by the projection of

xi onto V .

When Ω is discrete, both steps are straightforward since the first phase involves

eigendecomposing a kernel matrix and the second phase involves sampling from

discrete probability distributions based on inner products between points and

eigenvectors. Extending this algorithm to a continuous space was considered

by Lavancier et al. [2012], but for a very limited set of kernels L and spaces Ω.

We refer to Sec. 2.2.2 for details. For general L and Ω, we face difficulties in

both phases. Extending Phase 1 to a continuous space requires knowledge of the

eigendecomposition of the kernel function. When Ω is a compact rectangle in Rd,

Lavancier et al. [2012] suggest approximating the eigendecomposition using an

orthonormal Fourier basis, as presented in Sec. 2.2.2.

Even if we are able to obtain the eigendecomposition of the kernel function

(either directly or via approximations as considered in Lavancier et al. [2012] and in

this section), we still need to implement Phase 2 of the sampling algorithm. Whereas

the discrete case only requires sampling from a discrete probability function, here
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we have to sample from a probability density. When Ω is compact, Lavancier et al.

[2012] suggest using a rejection sampler with a uniform proposal on Ω. The authors

note that the acceptance rate of this rejection sampler decreases with the number

of points sampled, making the method inefficient in sampling large sets from a DPP.

In most other cases, implementing Phase 2 even via rejection sampling is infeasible

since the target density is in general non-standard with unknown normalization.

Furthermore, a generic proposal distribution can yield extremely low acceptance

rates.

In summary, current algorithms can sample approximately from a continuous

DPP only for translation-invariant kernels defined on a compact space. In this

section, we propose a sampling algorithm that allows us to sample approximately

from DPPs for a wide range of kernels L and spaces Ω.

Again considering Ω discrete with cardinality N , the sampling algorithm has

complexity dominated by the eigendecomposition, O(N3). Again, as discussed in

Sec. 2.1.5, if the kernel matrix L is low-rank, i.e. L = B>B, with B a D × N

matrix and D � N , dual sampling allows us to sample efficiently from the DPP.

While the dependence on N in the dual is sharply reduced, in continuous spaces,

N is infinite. In order to extend the algorithm, we must find efficient ways to

compute C for Phase 1 and manipulate eigenfunctions implicitly for the projections

in Phase 2. Generically, consider sampling from a DPP on a continuous space

Ω with kernel L(x,y) =
∑∞

n=1 λnφn(x)φn(y),where λn and φn(x) are eigenvalues

and eigenfunctions, and φn(y) is the complex conjugate of φn(y). Assume that

we can approximate L by a low-dimensional (generally complex-valued) mapping,

B(x) : Ω 7→ CD:

L̃(x,y) = B(x)∗B(y) ,where B(x) = [B1(x), . . . , BD(x)]>. (4.2)
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Here, A∗ denotes complex conjugate transpose of A. We consider two efficient

low-rank approximation schemes in Sec. 4.1.2 and 4.1.1. Using such a low-rank

representation, we propose an analog of the dual sampling algorithm for continuous

spaces, described in Alg. 6. A similar algorithm provides samples from a k-DPP

described is in Alg. 7.

Algorithm 6 Dual sampler for a low-rank continuous DPP

Input: L̃(x,y) = B(x)∗B(y),
a rank-D DPP kernel

PHASE 1
Compute C =

∫
Ω
B(x)B(x)∗dx

Compute eigendecomp. C =∑D
k=1 λkvkv

∗
k

J ← ∅
for k = 1, . . . , D do
J ← J ∪ {k} with probability
λk
λk+1

V ← { vk√
v∗kCvk

}k∈J

PHASE 2
X ← ∅
while |V | > 0 do

Sample x̂ from f(x) =
1
|V |
∑

v∈V |v∗B(x)|2
X ← X ∪ {x̂}
Let v0 be a vector in V such that
v∗0B(x̂) 6= 0

Update V ← {v − v∗B(x̂)
v∗0B(x̂)

v0 | v ∈
V − {v0}}
Orthonormalize V w.r.t. 〈v1,v2〉 =
v∗1Cv2

Output: X

Algorithm 7 Dual sampler for a low-rank continuous kDPP

Input: L̃(x,y) = B(x)∗B(y),
a rank-D DPP kernel

PHASE 1
Compute C =

∫
Ω
B(x)B(x)∗dx

{(vn, λn)}Dn=1 ← eigendecomposi-
tion of C
for n = D, . . . , 1 do

if u ∼ U [0, 1] < λn
en−1
k−1

enk
then

J ← J ∪ {n}
k ← k − 1
if k = 0 then

break
V ← { vk√

v∗kCvk
}k∈J

PHASE 2
X ← ∅
while |V | > 0 do

Sample x̂ from density f(x) =
1
|V |
∑

v∈V |v∗B(x)|2
X ← X ∪ {x̂}
Let v0 be a vector in V such that
v∗0B(x̂) 6= 0

Update V ← {v − v∗B(x̂)
v∗0B(x̂)

v0 | v ∈
V − {v0}}
Orthonormalize V w.r.t. 〈v1,v2〉 =
v∗1Cv2

Output: X

In this dual view, we still have the same two-phase structure, and must address

two key challenges:
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• Phase 1: Assuming a low-rank kernel function decomposition as in Eq. (4.2),

we need to able to compute the dual kernel matrix, given by an integral:

C =

∫
Ω

B(x)B(x)∗dx . (4.3)

• Phase 2: In general, sampling directly from the density f(x) is difficult;

instead, we can compute the cumulative distribution function (CDF) and

sample x using the inverse CDF method Robert and Casella [2004]:

F (x̂ = (x̂1, . . . , x̂d)) =
d∏
l=1

∫ x̂l

−∞
f(x)1{xl∈Ω}dxl. (4.4)

Assuming (i) the kernel function L̃ is finite-rank and (ii) the terms C and f(x)

are computable, Alg. 6 provides exact samples from a DPP with kernel L̃. In

what follows, approximations only arise from approximating general kernels L with

low-rank kernels L̃. If given a finite-rank kernel L to begin with, the sampling

procedure is exact.

One could imagine approximating L as in Eq. (4.2) by simply truncating the

eigendecomposition (either directly or using numerical approximations). However,

this simple approximation for known decompositions does not necessarily yield

a tractable sampler, because the products of eigenfunctions required in Eq. (4.3)

might not be efficiently integrable. For our approximation algorithm to work, not

only do we need methods that approximate the kernel function well, but also that

enable us to solve Eq. (4.3) and (4.4) directly for many different kernel functions.

We consider two such approaches that enable an efficient sampler for a wide range

of kernels: Nyström and random Fourier features. The feasibility of these methods

for a few standard examples of kernels are shown in Table 4.1.
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4.1.1 Sampling from a Nyström-approximated DPP

One method of low-rank kernel approximation is the Nyström method (see Sec. 2.3.1).

Recall that in this method, a small number of landmarks are selected as the basis for

the low-rank approximation of the kernel L(x,y). In the continuous space, given

z1, . . . ,zD landmarks sampled from Ω, we can approximate the kernel function

and dual matrix as,

L̃Nys(x,y) =
D∑
j=1

D∑
k=1

W 2
jkL(x, zj)L(zk,y),

CNys
jk =

D∑
n=1

D∑
m=1

WjnWmk

∫
Ω

L(zn,x)L(x, zm)dx,

where Wjk = L(zj, zk)
−1/2. Denoting wj(v) =

∑D
n=1Wjnvn, the CDF of f(x) in

Alg. 6 is:

FNys(x̂) =
1

|V |
∑
v∈V

D∑
j=1

D∑
k=1

wj(v)wk(v)
d∏
l=1

∫ x̂l

−∞
L(x, zj)L(zk,x)1{xl∈Ω}dxl. (4.5)

We consider a decomposition L(x,y) = q(x)k(x,y)q(y). Here, we provide the

important example where Ω = Rd and both q(x) and k(x,y) are Gaussians and

also when k(x,y) is polynomial, a case that cannot be handled by RFF since it is

not translationally invariant.
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Example: Sampling from a Nyström-approximated DPP with Gaussian

quality and similarity

Assuming

q(x) = exp

{
−1

2
(x− a)>Γ−1(x− a)

}
,

k(x,y) = exp

{
−1

2
(x− y)>Σ−1(x− y)

}
,

the approximated kernel is given by

L̃Nys(x,y) =
D∑
j=1

D∑
k=1

W 2
jkq(x)q(zj)q(zk)q(y)

× exp

{
−1

2
(x− zj)

>Σ−1(x− zj)−
1

2
(y − zk)

>Σ−1(y − zk)

}
.

Let Σ−1 = QΛQ> with Λ = diag( 1
σ2

1
, . . . , 1

σ2
D

), Γ−1 = R∆R> with ∆ =

diag( 1
δ2
1
, . . . , 1

δ2
D

) and (Σ−1 + Γ−1) = TΘT> with Θ = diag( 1
θ2
1
, . . . , 1

θ2
D

). Further-

more, let z̃j = T>(Γ−1 + Σ−1)Σ−1zj , ã = T>(Γ−1 + Σ−1)Γ−1a and y = T>x. Then,

the elements of the dual matrix CNys are then given by

CNys
jk =

D∑
m−1

D∑
n=1

WjnWmkAmn

d∏
l=1

√
πθ2

l .

where

Amn = exp

{
− 1

2
(zn − a)>Γ−1(zn − a)− 1

2
(zm − a)>Γ−1(zm − a)− 1

2
z>mΣ−1zm

− 1

2
z>nΣ−1zn + (Γ−1a + Σ−1 (zm + zn)

2
)>(Σ−1 + Γ−1)−1(Γ−1a + Σ−1 (zm + zn)

2
)

− a>Γ−1a

}
.
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Finally, the CDF of f(y) is given by

FNys(y) =
1

|V |
∑
v∈V

D∑
j,k=1

wj(v)wk(v)Ajk

d∏
l=1

√
πθ2

l

2

[
1−erf

(
2ãl + z̃jl + z̃kl − 2yl

2
√
θ2
l

)]
.

Once samples y are obtained, we transform back to our original coordinate system

by letting x = Ty.

Example: Sampling from a Nyström-approximated DPP with Gaussian

quality and polynomial similarity

For simplicity of exposition, we consider a linear similarity kernel and d = 1,

although the result can straightforwardly be extended to higher order polyno-

mials and dimensions d. Assuming q(x) = exp {− x2

2ρ2} and k(x, y) = xy, the

approximated kernel is given by

L̃Nys(x, y) =
D∑
j=1

D∑
k=1

W 2
jk exp

{
−(x2 + z2

j + z2
k + y2)

2ρ2

}
(xzj)(yzk).

The elements of the dual matrix CNys are then given by

CNys
jk =

D∑
m−1

D∑
n=1

WjnWmk
zmzn

2
exp{−z

2
m + z2

n

2ρ2
}√πρ3.

The CDF is given by

FNys(y) =
1

|V |
∑
v∈V

D∑
j,k=1

wj(v)wk(v)
zjzk

2

× exp{−z
2
j + z2

k

2ρ2
}
[√

πρ3

4

[
erf

(
y√
r

)
+ 1

]
− 2ye

− y
2

ρ2

]
.

63



4.1.2 Sampling from an RFF-approximated DPP

Another low-rank approximation method is the random Fourier features (RFF), as

presented in Sec. 2.3.2. Here, we require the similarity kernel k(x, y) be translational

invariant (ie. k(x,y) = k(x− y)). In this method, a low-rank approximation of

the kernel is obtained by representing each point x using features that are sampled

from a random direction ω. In particular, frequencies are sampled independently

from the Fourier transform of the kernel function, ωj ∼ F(k(x− y)), and letting:

k̃(x− y) =
1

D

D∑
j=1

exp{iω>j (x− y)} , x,y ∈ Ω . (4.6)

To apply RFFs, we factor L into a quality function q and similarity kernel k

(i.e., q(x) =
√
L(x,x)):

L(x,y) = q(x)k(x,y)q(y) , x,y ∈ Ω where k(x,x) = 1. (4.7)

The RFF approximation can be applied to cases where the similarity function

has a known characteristic function, e.g., Gaussian, Laplacian and Cauchy. Using

Eq. (4.6), we can approximate the similarity kernel function to obtain a low-rank

kernel and dual matrix:

L̃RFF (x,y) =
1

D

D∑
j=1

q(x) exp{iω>j (x− y)}q(y)

CRFF
jk =

1

D

∫
Ω

q2(x) exp{i(ωj − ωk)
>x}dx.

The CDF of the sampling distribution f(x) in Algorithm 6 is given by:

FRFF (x̂) =
1

|V |
∑
v∈V

D∑
j=1

D∑
k=1

vjv
∗
k

d∏
l=1

∫ x̂l

−∞
q2(x) exp{i(ωj − ωk)

>x}1{xl∈Ω}dxl.

64



where vj denotes the jth element of vector v. Note that equations CRFF and FRFF

can be computed for many different combinations of Ω and q(x). In fact, this

method works for any combination of (i) translation-invariant similarity kernel k

with known characteristic function and (ii) quality function q with known spectral

density. The resulting kernel L need not be translation invariant. We illustrate

this method by considering a common and important example where Ω = Rd, q(x)

is Gaussian, and k(x,y) is any kernel with known Fourier transform.

Example: Sampling from an RFF-approximated DPP with Gaussian

quality

Assuming q(x) = exp
{
−1

2
(x− a)>Γ−1(x− a)

}
and k(x,y) = k(x − y) is given

by a translation-invariant kernel with known characteristic function. We start by

sampling ω1, . . . ,ωD ∼ F(k(x−y)). Note, for example, that the Fourier transform

of a Gaussian kernel is a Gaussian while that of the Laplacian is Cauchy and vice

versa. The approximated kernel is given by

L̃RFF = q(x)

[
1

D

D∑
j=1

exp iωj
>(x− y)

]
q(y),

where q(x) = exp
{
−1

2
(x− a)>Γ−1(x− a)

}
.

The elements of the dual matrix CRFF are then given by

CRFF
jk =

1

D

∫
Rd

exp{−(x− a)>Γ−1(x− a) + i(ωj − ωk)
>x}dx.

Letting R∆R> be the spectral decompostition of Γ−1 with ∆ = diag( 1
δ2
1
, . . . , 1

δ2
D

),

ω̃j = R>ωj, ã = R>a and y = R>x, one can straightforwardly derive:

CRFF
jk =

1

D

d∏
l=1

[√
πδ2

l exp

{
−δ

2
l (ω̃jl − ω̃jk)

2

4

}
+ iãl(ω̃jl − ω̃jk)

]
.
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Likewise,

FRFF (y) =
1

D|V |
∑
v∈V

D∑
j=1

D∑
k=1

v(j)v(k)∗
d∏
l=1

g(ω̃jl, ω̃kl, ãl, δl, yl),

where

g(ω̃jl, ω̃kl, ãl, δl, yl) =
1

2

√
πδ2

l exp

{
−δ

2
l (ω̃jl − ω̃kl)

2

4

}
+ iãl

(
ω̃jl − ω̃kl)(1− erf

(
i
√
δ2
l (ω̃jl − ω̃kl)

2
− yl − ãl

2
√
δ2
l

))
.

Once samples y are obtained, we transform back into our original coordinate

system by letting x = Ry.

4.2 Gibbs Sampling

Instead of the low-rank sampling algorithms presented in Section 4.1, for a kDPP,

we can also consider a Gibbs sampling scheme by iteratively sampling a point

conditioned on the location of the other k − 1 points being fixed. Although this

one-at-a-time move is far from optimal, we will show that it yields a tractable full

conditional distribution for a wide range of kernel functions. More importantly,

theory suggests that, asymptotically, we get exact (though correlated) samples

from the kDPP.

The probability of choosing a specific k point configuration is given by

p({xj}kj=1) ∝ det(L{xj}kj=1
). (4.8)

Denoting J\k = {xj}j 6=k and M\k = L−1
J\k

, the Schur’s determinantal identity
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formula yields

det(L{xj}kj=1
) = det(LJ\k)

(
L(xk,xk)−

∑
i,j 6=k

M
\k
ij L(xi,xk)L(xj,xk)

)
. (4.9)

Conditioning on the inclusion of the other k − 1 points, and suppressing constants

not dependent on xk we can now write the conditional distribution as

p(xk|{xj}j 6=k) ∝ L(xk,xk)−
∑
i,j 6=k

M
\k
ij L(xi,xk)L(xj,xk). (4.10)

Normalizing and integrating this density yields a full conditional CDF given by

F (x̂l|{xj}j 6=k) =

∫ x̂l
−∞ L(xl,xl)−

∑
i,j 6=kM

\k
ij L(xi,xl)L(xj,xl)1{xl∈Ω}dxl∫

Ω
L(x,x)−∑i,j 6=kM

\k
ij L(xi,x)L(xj,x)dx

. (4.11)

In general, sampling directly from this full conditional is difficult. However,

for a wide range of kernel functions, including those which can be handled by the

Nyström approximation in Sec. 4.1.1, the CDF can be computed analytically and

xk can be sampled using the inverse CDF method.

As with any Gibbs sampling scheme, the mixing rate is dependent on the

correlations between variables. In cases where the kernel introduces low repulsion

we expect the Gibbs sampler to mix well, while in a high repulsion setting the

sampler can mix slowly due to the strong dependencies between points and fact

that we are only doing one-point-at-a-time moves. We explore the dependence of

convergence on repulsion strength in the next section. Regardless, this sampler

provides a nice tool in the kDPP setting.

To extend this approach to standard DPPs, we can first sample k (this assumes

knowledge of the eigenvalues of L) and then apply the above method to get a
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sample. This is fairly inefficient if many samples are needed. A more involved but

potentially efficient approach is to consider a birth-death sampling scheme where

the size of the set can grow/shrink by 1 at every step. A paper that is concurent to

our work, Decreusefond et al. [2013] considered this approach using coupling from

the past. However, their method only allow sampling of DPPs with stationary and

compact kernels, akin to those that can be handled by Lavancier et al. [2012].

We illustrate this method by considering the case where Ω = Rd and q(x) and

k(x,y) are Gaussians. We use this same Schur complement scheme for sampling

from the full conditionals in the mixture model application of Sec. 4.4.1. A key

advantage of this scheme for several types of kernels is that the complexity of

sampling scales linearly with the number of dimensions d making it suitable in

handling high-dimensional spaces.

Example: Sampling from a DPP with Gaussian quality and similarity

using Gibbs sampling

For generic kernels L(x,y) = q(x)k(x,y)q(y), we can rewrite the CDF xk given

{xj}j 6=k for a k-DPP as:

F (x̂k|{xj}j 6=k) =

∫ x̂k
−∞ q(xk)

2(1−∑i,j 6=kMijq(xi)q(xj)k(xk,xi)k(xj,xk))1{xk∈Ω}dxk∫
Ω
q(x)2(1−∑i,j 6=kMijq(xi)q(xj)k(x,xi)k(xj,x))dx

.

Assuming that

q(x) = exp

{
−1

2
(x− a)>Γ−1(x− a)

}
k(x,y) = exp

{
−1

2
(x− y)>Σ−1(x− y)

}
,

the integrals above can be solved to yield

68



F (x̂k|{xj}j 6=k) =

∏d
l=1

[√
πδ2
l

2

[
1− erf

(
2ãl−2xkl

2
√
δ2
l

)]
−∑i,j 6=kMijAij

√
πθ2
l

2

[
1− erf

(
2ãl+z̃il+z̃jl−2xkl

2
√
θ2
l

)]]
∏d

l=1

[√
πδ2

l −
∑

i,j 6=kWijAij
√
πθ2

l

] .

where ã, z̃, δl, Aij and θl are as given in the Nyström sampling for Gaussian quality

and similarity kernel.

4.3 Analysis

4.3.1 Analysis of Low-Rank Approximation Sampling

Here we derive approximation bounds for the low-rank approximated DPPs in

continuous space. These bounds depend heavily on the following established

eigenvalue lemmas on compact, self-adjoint operators:

Lemma 4 [Fan, 1951] Let T = T̃ + S, where T, T̃ and S are all self-adjoint

compact operators with non-negative eigenvalues λ1 ≥ λ2 ≥ . . ., λ̃1 ≥ λ̃2 ≥ . . ., and

ξ1 ≥ ξ2 ≥ . . ., respectively. Then

λn ≤ λ̃m + ξn−m+1 for m ≤ n . (4.12)

Lemma 5 [Gohberg and Krĕı] Let T = T̃ +S, where T, T̃ and S are all self-adjoint

compact operators with non-negative eigenvalues λ1 ≥ λ2 ≥ . . ., λ̃1 ≥ λ̃2 ≥ . . ., and

ξ1 ≥ ξ2 ≥ . . ., respectively. Then

λn ≥ λ̃n for all n . (4.13)
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As with the analysis of low-rank approximated-DPPs in the discrete settings in

Sec. 3.1, we analyze the error of the variational distance by bounding the error

in distribution of each possible subsets. We establish the bounds by considering

the effect of low-rank approximation on the eigenvalues of the kernel, akin to the

analysis in the discrete case. In what follows, we derive similar results as in Sec. 3.1

using Lemmas 4 and 5 in place of Corrolaries 1 and 2. The intuition here is that

many results for positive semidefinite matrices carries over for compact self-adjoint

operators.

Theorem 3 Let λ1 ≥ λ2 ≥ . . . be the eigenvalues of a symmetric, positive

semidefinite Hilbert-Schmidt kernel, L(x,y) and let L̃(x,y) be its approxima-

tion, |A| = k, and LA has eigenvalues λA1 ≥ . . . ≥ λAk Further assume that L̃(x,y)

and E(x,y) = L(x,y)− L̃(x,y) are both positive semidefinite kernels.

λ̂i = max
{

0, λi − ‖T − T̃‖
}
, λ̂Ai = max

{
0, λAi − ‖T − T̃‖

}
, (4.14)

where T and T̃ are Hilbert-Schmidt operators associated with kernels L and L̃,

respectively and ‖.‖ denotes the spectral operator. Then,

|PA − P̃A| ≤ PA max

{[
1−

∏k
i=1 λ̂

A
i∏k

i=1 λ
A
i

]
,

[∏∞
i=1(1 + λi)∏∞
i=1(1 + λ̂i)

− 1

]}
. (4.15)

Proof T, T̃ and S be the Hilbert-Schmidt operator associated with kernel func-

tion L(x,y), L̃(x,y) and E(x,y) = L(x,y) − L̃(x,y) respectively. Note that if

L(x,y), L̃(x,y) and E(x,y) are all positive semidefinite kernels, then T, T̃ and S

are all self-adjoint compact operators. Thus Lemmas 4 and 5 applies. Then using

Lemmas 4 and 5 in place of Corrolaries 1 and 2, we can proof Theorem 3 in a

similar manner as Theorem 1.
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Theorem 4 Under the conditions of Theorem 3,

|PkA − P̃kA| ≤ PkA max

{[
ek(λ1, . . . , λN)

ek(λ̂1, . . . , λ̂N)
− 1

]
,

[
1−

∏k
i=1 λ̂

A
i∏k

i=1 λ
A
i

]}
.

Proof Using Lemmas 4 and 5 in place of Corrolaries 1 and 2, we can proof

Theorem 4 in a similar manner as Theorem 2.

4.3.2 Empirical Study of Low-Rank Approximation Sam-

pling

We also empirically evaluate the performance of the RFF and Nyström approxima-

tions. We compute the total variational distance

‖PL − PL̃‖1 =
1

2

∑
A

|PL(A)− PL̃(A)| , (4.16)

where PL(A) denotes the probability of set X under a DPP with kernel L. One

can show that the normalized density is PL(A) = det(LA)∏∞
n=1(1+λn(L))

, which requires

the eigenvalues of the kernel L. Thus, we restrict our analysis to the case where

the quality function and similarity kernel are Gaussians with isotropic covariances

Γ = diag(ρ2, . . . , ρ2) and Σ = diag(σ2, . . . , σ2), respectively, since the eigenvalues

of the kernel is easily computable in this setting [Fasshauer and McCourt, 2012].

In this case, as presented in Sec. 2.2.1, letting n = (n1, . . . , nd) with nj ∈ Z+, the

eigenvalues (indexed by multi-index n) are given by:

λn =
d∏
j=1

√
πρ2

β2+1
2

+ 1
2γ

(
1

γ(β2 + 1) + 1

)nj−1

(4.17)

where γ = σ2

ρ2 and β = (1 + 2
γ
)

1
4 . Since the eigenvalues are known in closed-form, we

can estimate the total variation distance by sampling sets A from the approximated
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Figure 4.1: Estimates of total variational distance for Nyström and RFF approx-
imation methods to a DPP with Gaussian quality and similarity with covariances
Γ = diag(ρ2, . . . , ρ2) and Σ = diag(σ2, . . . , σ2), respectively. (a)-(c) For dimensions d=1,
5 and 10, each plot considers ρ2 = 1 and varies σ2. (d) Eigenvalues for the Gaussian
kernels with σ2 = ρ2 = 1 and varying dimension d.

DPP and calculating the absolute difference between PL(A) and PL̃(A).

Fig. 4.1 displays estimates of the total variational distance for the RFF and

Nyström approximations when ρ2 = 1, varying σ2 (the repulsion strength) and the

dimension d. Note that the RFF method performs slightly worse as σ2 increases

and is rather invariant to d while the Nyström method performs much better for

increasing σ2 but worse for increasing d.

While this phenomenon seems perplexing at first, a study of the eigenvalues of

the Gaussian kernel across dimensions sheds light on the rationale (see Fig. 4.1).

Note that for fixed σ2 and ρ2, the decay of eigenvalues is slower in higher dimensions.

It has been previously demonstrated that the Nyström method performs favorably

in kernel learning tasks compared to RFF in cases where there is a large eigengap

72



in the kernel matrix [Yang et al., 2012]. The plot of the eigenvalues seems to

indicate the same phenomenon here. Furthermore, this result is consistent with

the comparison of RFF to Nyström in approximating DPPs in the discrete Ω case

in Chapter 3.

This behavior can also be explained by looking at the theory behind these

two approximations. For the RFF, while the kernel approximation is guaranteed

to be an unbiased estimate of the true kernel element-wise, the variance is fairly

high [Rahimi and Recht, 2007]. In our case, we note that the RFF estimates

of minors are biased because of non-linearity in matrix entries, overestimating

probabilities for point configurations that are more spread out, which leads to

samples that are overly-dispersed. For the Nyström method, on the other hand,

the quality of the approximation depends on how well the landmarks cover Ω. In

our experiments the landmarks are sampled i.i.d. from q(x). When either the

similarity bandwidth σ2 is small or the dimension d is high, the effective distance

between points increases, thereby decreasing the accuracy of the approximation.

4.3.3 Empirical Study of Gibbs Sampling

To assess the mixing rate of the Gibbs sampling scheme, we ran the Gibbs sampler

to sample points from a 1-dimensional 15-DPP with uniform quality and Gaussian

similarity kernels in the space Ω = [−1
2
, 1

2
]. We perform this sampling under two

values of repulsion parameter, σ2 = 0.01 (high repulsion) and σ2 = 0.001 (low

repulsion). We ran 100 Gibbs chains, each of length 3000, discard the first 1500

samples as burn-in and thin every 15 iterations which we call cycles. Each cycle

represents a full resampling of the set, having cycled through the past 15 points.

Fig. 4.2 (a)-(b) shows a visualization of the 15 points of the 15-DPPs. As

an ordered set, we see qualitatively that the locations of the points are highly
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correlated from cycle to cycle in the high repulsion Gibbs samples while less

correlation is observed in the low-repulsion counterpart.

Quantitatively, we use two measures as a proxy to the mixing rate: the average

movement of point from cycle to cycle and the effective sample size. The average

movement, m, is simply defined as the average difference in distance between points

from one cycle to another averaged over the cycles:

m =
1

T − 1

1

k

T−1∑
t=1

k∑
i=1

(xt+1
i − xti)2, (4.18)

where T is the length of the chain after burn-in and thinning, k is the number of

points and xti is the coordinate of point xi at cycle t. In our experiment, T and

k are 100 and 15, respectively. When the Gibbs chain is mixing well, we expect

the average movement to be high as this signals that the points are less correlated

across cycles.

The effective sample size is a standard measure in assessing the mixing of a

Gibbs chain. To compute this, we first compute the lag-s autocorrelation function

of each point in the sampled sets. We then average the autocorrelation function at

lag-s across the k points and denote this quantity ρ̄s. The effective sample size is

then given by αT , where

α =
1

1 + 2
∑2δ+1

s=1 ρ̄s
, (4.19)

where δ is the smallest positive integer satisfying ρ̄2δ + ρ̄2δ+1 > 0. In the case of

i.i.d. samples, we expect α to be close to 1 while in cases where the mixing is bad,

α will be much lower.

Table 4.2 shows the average values of m and α for our Gibbs samples with

i.i.d. Nyström-approximated DPP samples serving as a benchmark. We see that
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Figure 4.2: Visualization plots of location of 1-dimension DPP samples: (a)-(b)
are samples from the Gibbs scheme in low repulsion and high repulsion settings,
respectively.
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in the low repulsion setting, the Gibbs chain mixes well with values close to the

benchmarks while for the Gibbs sampler in the high repulsion setting, the values

of m and α are much lower, indicating slow mixing.

m α
Gibbs High Repulsion 0.08 (0.07,0.08) 0.39 (0.31,0.45)
Gibbs Low Repulsion 0.1 (0.10,0.11) 0.92 (0.80,1)

Nyström High Repulsion 0.11 (0.1,0.11) 0.98 (0.82, 1)
Nyström Low Repulsion 0.11 (0.11,0.12) 0.98 (0.90, 1)

Table 4.2: The mean and 95% confidence interval for average movement, m and the
effective sample size coefficient, α for Gibbs samples and i.i.d. Nyström samples in
high and low repulsion settings.

4.4 Experiments

4.4.1 Repulsive priors for mixture models

Mixture models are used in a wide range of applications from clustering to density

estimation. A common issue with such models, especially in density estimation

tasks, is the introduction of redundant, overlapping components that increase the

complexity and reduce interpretability of the resulting model. This phenomenon is

especially prominent when the number of samples is small. In a Bayesian setting,

a common fix to this problem is to consider a sparse Dirichlet prior on the mixture

weights, which penalizes the addition of non-zero-weight components. However,

such approaches run the risk of inaccuracies in the parameter estimates [Petralia

et al., 2012]. Instead, Petralia et al. [2012] show that sampling the location param-

eters using repulsive priors leads to better separated clusters while maintaining the

accuracy of the density estimate. They propose a class of repulsive priors that rely

on explicitly defining a distance metric and the manner in which small distances
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are penalized. The resulting posterior computations can be fairly complex.

The theoretical properties of DPPs make them an appealing choice as a repulsive

prior. In fact, Zou and Adams [2012] considered using DPPs as repulsive priors

in latent variable models. However, in the absence of a feasible continuous DPP

sampling algorithm, their method was restricted to performing MAP inference.

Here we propose a fully generative probabilistic mixture model using a DPP prior

for the location parameters, with a K-component model using a KDPP.

In the common case of mixtures of Gaussians (MoG), our posterior computations

can be performed using Gibbs sampling with nearly the same simplicity of the

standard case where the location parameters µk are assumed to be i.i.d.. In

particular, with the exception of updating the location parameters {µ1, . . . , µK},

our sampling steps are identical to standard MoG Gibbs updates in the uncollapsed

setting. For the location parameters, instead of sampling each µk independently

from its conditional posterior, our full conditional depends upon the other locations

µ\k as well. This full conditional has an interpretation as a single draw from a

tilted 1-DPP. As such, we can employ the Gibbs sampling scheme of Sec. 4.2. We

provide the details below.

⇡
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µk

K

N

↵
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�2
0
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yi

�2
k K
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↵
{µ1, . . . , µK}

L

a�

b�

IID DPP

Figure 4.3: Graphical models for mixtures of Gaussians using IID and DPP priors
on the location parameters.

Generative Model We consider a Bayesian mixture of Gaussians with either

an independent normal (IID) or KDPP (DPP) prior on the location parameters.
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In both cases, the K-component model with N observations is specified as:

π | α ∼ Dir(α, . . . , α)

σ2
k | aσ, bσ ∼ IG(aσ, bσ), k = 1, . . . , K

{µ1, . . . , µK} ∼ F

zi | π ∼ π, i = 1, . . . , N

yi | π, {µk, σ2
k} ∼ N(µzi , σ

2
zi

), i = 1, . . . , N.

(4.20)

Here, IG denotes the inverse gamma distribution and Dir a K-dimensional Dirichlet.

For simplicity, we consider the univariate case here, though the multivariate case

follows directly by considering an inverse Wishart prior in place of the inverse

gamma and likewise modifying F accordingly. Such a multivariate case is examined

in the iris classification example.

The difference between the models is in how the location parameters are

specified. For the IID case, we simply have:

µk | µ0, σ
2
0 ∼ N(µ0, σ

2
0) . (4.21)

For the DPP case, we jointly sample:

{µ1, . . . , µK} | L ∼ K-DPP(L). (4.22)

We consider L decomposed into Gaussian quality and similarity terms:

L(µm, µn) = q(µm)k(µm, µn)q(µn), (4.23)
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Algorithm 8 Mixture of Gaussians sampler

Input: Previous mixture weights π, emission parameters {µk, σk}2.
for i = 1, . . . , N do

Sample cluster indicators zi | yi, {µk, σ2
k}, πk ∝ 1

Ci

∑K
k=1 πkN(yi;µk, σ

2
k)δ(zi, k)

Sample mixture weights π | {zi}, α ∼ Dir(α +N1, . . . , α +NK)
for k = 1, . . . , K do

Sample scale parameters σ2
k | {yi : zi = k}, µk, aσ, bσ

∼ IG
(
aσ + Nk

2
, bσ + 1

2

∑
i:zi=1(yi − µk)2

)
Sample location parameters {µ1, . . . , µK} | {yi}, {zi}, {σ2

k} ∼ Fpost
Output: New mixture weights π, emission parameters {µk, σ2

k}.

with

k(µm, µn) = exp

{
−(µm − µn)2

γ2
0

}
, q(µm) = N(µ0, 2σ

2
0). (4.24)

Gibbs sampling For the uncollapsed setting, where mixture weights π and

emission parameters {µk, σ2
k} are sampled, Alg. 8 summarizes the Gibbs sampler

for the finite mixture of Gaussians. We write the algorithm generically so that

the overlap between IID and DPP is clear. In particular, the locations are sampled

from Fpost, which generically refers to the full conditional of the cluster means. For

the IID case, we sample i.i.d. for each k from

µk | {yi : zi = k}, σ2
k, µ0, σ

2
0 ∼ N

(
µ̂k, σ̂

2
k

)
, (4.25)

where µ̂k =
(

1
σ2

0
+ Nk

σ2
k

)−1 (
µ0

σ2
0

+ 1
σ2
k

∑
i:zi=k

yi

)
and σ̂2

k =
(

1
σ2

0
+ Nk

σ2
k

)−1

. Here, Nk =

|{yi : zi = k}|, i.e., the cardinality of the set of observations assigned to cluster k.

For DPP, note that

p({µj}kj=1|{yi}, {zi}, {µk, σ2
k}) ∝ det(Lµ1,...,µk)

k∏
j=1

∏
i:zi=j

N(yi;µj, σ
2
j ).
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Unfortunately, this posterior distribution is not a k-DPP. However, fixing the rest

of k − 1 centroids, the full conditional of µk is (dropping constant terms that do

not depend on µk)

p(µk|{yi}, {zi}, {µj, σ2
j}j 6=k, σ2

k) ∝ det(Lµ1,...,µk)
∏
i:zi=k

N(yi;µk, σ
2
k). (4.26)

As before, we can use Schur’s determinantal equality [Schur, 1917] to get

det(Lµ1,...,µk) ∝ L(µk, µk)−
∑
i,j 6=k

M
\k
ij L(µi, µk)L(µj, µk) (4.27)

= q2(µk)

(
1−

∑
i,j 6=k

M
\k
ij q(µi)k(µi, µk)k(µj, µk)q(µj)

)
. (4.28)

Combining the previous two equations, we get the full conditional

p(µk|{yi}, {zi}, {µj, σ2
j}j 6=k, σ2

k) (4.29)

∝ q2(µk)

(
1−

∑
i,j 6=k

M
\k
ij q(µi)k(µi, µk)k(µj, µk)q(µj)

) ∏
i:zi=k

N(yi;µk, σ
2
k). (4.30)

The CDF of the distribution above can be computed easily, since it only

involves exponential quadratic forms. The inverse CDF method can then be

used to obtain a sample from the above distribution. Note once again that

q2(µk)
∏

i:zi=k
N(yi;µk, σ

2
k) is defined to be exactly the same as the Gaussian

distribution where µk would have been sampled from in the IID case. Thus the

equation above gives a nice intuition on the conditional density of µk in the DPP

setting: it is an exponentially tilted distribution in which q2(µk)
∏

i:zi=k
N(yi;µk, σ

2
k)

is corrected by a factor that depends on the location of the other centroids. In the

case where all of the other centroids are far away from the cluster center µ̂k, the

correction factor is close to one and we would recover the density for the IID case.
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Figure 4.4: Comparison between the full conditional for µk using the IID and DPP

models at a given iteration m of the sampler.

To get a sense of why the DPP leads to more diverse cluster centers than IID,

consider the full conditional for µk at some iteration m of our sampler, as visualized

in Fig. 4.4. We have some data points currently assigned to cluster k via cluster

indicators zi = k. The IID model assumes that µk is independent of the other µj ’s

whereas the DPP conditions on the other cluster centers leading to a conditional

distribution for µk that puts more mass on uncovered regions. In subsequent

iterations, the data that had been assigned to cluster k but are not well covered

by the sampled (and repulsed) µk will instead be assigned to one of the existing

cluster centers that have mass near that data item. Such an alternative cluster

exists, and is why µk was repulsed from that region, or will likely exist in future

draws.

One attractive aspect of our DPP formulation is the fact that the sampling

strategy maintains nearly the same simplicity as the standard IID sampler. This

is in contrast, for example, to the repulsive mixture formulation of Petralia et al.

[2012] which relied on slice sampling and draws from truncated normals, where
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the truncating region could only be computed in closed form for a restricted set of

repulsive functions.

We assess the clustering and density estimation performance of the DPP-based

model on both synthetic and real datasets. In each case, we run 10,000 Gibbs

iterations, discard 5,000 as burn-in and thin the chain by 10. For our mixture

of Gaussian experiments, we used an inverse-Wishart IW(ν,Ψ) with ν = d + 1

and Ψ = I, which corresponds to aσ = 2 and bσ = 1 for the inverse-Gamma in

1-dimension. Here, we use an inverse-Wishart specification such that Σ ∼ IW(ν,Ψ)

has mean E[Σ] = Ψ
ν−d+1

. The Dirichlet hyperparameters were set to α = 1
3
, just as

in Petralia et al. [2012]. For the location hyperparameters, in the IID case we set

µ0 = 0 and σ2
0 = 1. In the DPP case, we set µ0 = 0. After each Gibbs sampling

iteration, we learn σ2
0 and the repulsion parameter, ρ2

0 by running an iteration of

slice sampling discussed in Chapter 5.

We randomly permute the labels in each iteration to ensure balanced label

switching. Draws are post-processed following the algorithm of Stephens [2000] to

address the label switching issue.

Synthetic data To assess the role of the prior in a density estimation task, we

generated a small sample of 100 observations from a mixture of two Gaussians.

We consider two cases, the first with well-separated components and the second

with poorly-separated components. We compare a mixture model with locations

sampled i.i.d. (IID) to our DPP repulsive prior (DPP). In both cases, we set an

upper bound of six mixture components. In Fig. 4.5, we see that both IID and

DPP provide very similar density estimates. However, IID uses many large-mass

components to describe the density. As a measure of simplicity of the resulting

density description, we compute the average entropy of the posterior mixture

membership distribution, which is a reasonable metric given the similarity of the
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Figure 4.5: For each synthetic and real dataset: (top) histogram of data overlaid with
actual Gaussian mixture generating the synthetic data, and posterior mean mixture
model for (middle) IID and (bottom) DPP. Red dashed lines indicate resulting density
estimate.

overall densities. Lower entropy indicates a more concise representation in an

information-theoretic sense. We also assess the accuracy of the density estimate

by computing both (i) Hamming distance error relative to true cluster labels and

(ii) held-out log-likelihood on 100 observations. The results are summarized in

Tables 4.3 and 4.4 . We see that DPP results in (i) significantly lower entropy,

(ii) lower overall clustering error, and (iii) statistically indistinguishable held-out

log-likelihood. This resulting lower entropy is especially true when the mixtures are

poorly-separated since regular mixture models tend to infer overlapping clusters

around the data. These results signify that we have a sparser representation with

well-separated (interpretable) clusters while maintaining the accuracy of the density

estimate.

Real data We also tested our DPP model on three real density estimation tasks

considered in Richardson and Green [1997]: 82 measurements of velocity of galaxies

diverging from our own (galaxy), acidity measurement of 155 lakes in Wisconsin

(acidity), and the distribution of enzymatic activity in the blood of 245 individuals
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Table 4.3: Mixture membership entropy and held-out log-likelihood for IID and DPP.

DATASET ENTROPY HELDOUT LOG-LIKE.
IID DPP IID DPP

Well-separated 1.10 (0.3) 1.02 (0.2) -169 (6) -171(8)
Poorly-separated 1.45 (0.2) 0.75 (0.3) -211(10) -207(9)
Galaxy 0.91 (0.2) 0.70 (0.2) -20(2) -21(2)
Acidity 1.32 (0.1) 0.96 (0.1) -49 (2) -48(3)
Enzyme 1.01 (0.1) 0.95 (0.1) -55(2) -55(3)

(enzyme). We once again judge the complexity of the density estimates using the

posterior mixture membership entropy as a proxy. To assess the accuracy of the

density estimates, we performed 5-fold cross validation to estimate the predictive

held-out log-likelihood. As with the synthetic data, we find that DPP visually

results in better separated clusters (Fig. 4.5). The DPP entropy measure is also

significantly lower for data that are not well separated (acidity and galaxy) while

the differences in predictive log-likelihood estimates are not statistically significant

(Table 4.3).

Finally, we consider a classification task based on the iris dataset: 150 obser-

vations from three iris species with four length measurements. For this dataset,

there has been significant debate on the optimal number of clusters. While there

are three species in the data, it is known that two have very low separation. Based

on loss minimization, Sugar and James [2003], Wang [2010] concluded that the

optimal number of clusters was two. Table 4.4 compares the classification error

using DPP and IID when we assume for evaluation the real data has three or two

classes (by collapsing two low-separation classes), but consider a model with a

maximum of six components. While both methods perform similarly for three

classes, DPP has significantly lower classification error under the assumption of two

classes, since DPP places large posterior mass on only two mixture components.

This result hints at the possibility of using the DPP mixture model as a model
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Table 4.4: Classification error IID and DPP.

DATA CLASSIFICATION ERROR
IID DPP

Well-separated 0.19 (0.1) 0.15 (0.1)
Poorly-separated 0.51 (0.1) 0.39 (0.1)
Iris (3 cls) 0.43 (0.02) 0.43 (0.02)
Iris (2 cls) 0.23 (0.03) 0.17 (0.03)

selection method.

4.4.2 Latent clustering of social networks

In social network models, there is often an interest in finding clusters of interacting

actors when the number of groups in the data is unknown. Handcock et al. [2007]

proposed a method in which ties between actors depends on their distances in an

unobserved latent Euclidean space. The location of the actors in this latent space

can be modeled by a mixture of distributions, each corresponding to a cluster. In

particular, the K-component model with binary observations yij ∈ {0, 1}, denoting

ties between N actors is specified as:

π | α ∼ Dir(α, . . . , α)

σ2
k | aσ, bσ ∼ IG(aσ, bσ), k = 1, . . . , K

{µ1, . . . , µK} ∼ F

zi | π ∼ π, i = 1, . . . , N

xi | π, {µk, σ2
k} ∼ N(µzi , σ

2
zi

), i = 1, . . . , N

β | ψ, ν ∼ N(ψ, ν)

yij | β, xi, xj ∼
e−β|xi−xj |

e−β|xi−xj |+1
.

(4.31)
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Again, IG denotes the inverse-gamma distribution and Dir a K-dimensional Dirich-

let. Here, {xi} denotes the location of the actors in the latent space and the ties,

{yij}, between actors depends on their distances in this space. MCMC methods

can then be used to estimate the mixture components. The number of groups can

then be chosen by computing the BIC [Fraley and Raftery, 1998] and choosing the

one with the highest value.

IID DPP

Figure 4.6: Graphical models for latent clustering of social network using IID and
DPP priors on the location parameters.

In the case of the latent network clustering, posterior computations can be

performed using Metropolis-Hastings and Gibbs sampling. With the exception

of updating the location parameters {µ1, . . . , µK}, the steps are identical to the

Metropolis-Hastings and Gibbs updates in Handcock et al. [2007]. Fig. 4.6 illustrates

the associated graphical model. As in Sec. 4.4.1, instead of sampling each µk

independently from a Gaussian posterior, we iteratively sample µk given the other

locations µ\k, variance, cluster indicators, and the location of the actors in the

latent space. In each iteration, the hyperparameters for the DPP prior are inferred

using the slice sampling method in Chapter 5.

We run our latent network clustering with DPP prior on the Sampson monk

data [Sampson, 1969]. This data consists of 18 monks in an American monastery

divided into three separate groups. Consistent with Handcock et al. [2007], we

consider a monk having a tie to another monk if he ranked that monk in the top
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Latent Network, 3 Clusters Latent−DPP Network, 3 Clusters

Figure 4.7: Social network clustering on Monk data with 3 clusters. Color indicates
true clusters. Black cross indicates cluster center and black circle indicates the
variance of the cluster.

three postive affect in of three interviews given over a 12-month period.

Figs. 4.7 and 4.8 show the plots of the posterior mean of the latent positions of

the monks with I.I.D. and DPP priors under the assumptions of 3 and 5 mixture

components. The color indicates the true labelling of the monk groups. Under the

assumption of 3 mixture components, we see that with the DPP prior, the latent

positions are farther separated than with the model with IID prior. In this case,

however, both methods are able to accurately separate the three clusters with zero

misclassification error as shown in Table 4.5. The real advantage of using the DPP

prior is when the number of components is assumed to be higher than the actual

number of groups. Under the assumption of 5 mixture components, we see that

the model with DPP prior is still able to seperate the three groups. The model

with the IID prior, on the other hand, is not able to do so since the latent positions

often are assigned to different clusters in each iteration of the Gibbs sampling. As

a result, the misclassification rate is much higher for the model with the IID prior.

As before, this result hints at the possibility of using the DPP mixture model as a

model selection method without the use of BIC or cross validation.
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Latent Network, 5 Clusters Latent−DPP Network, 5 Clusters

Figure 4.8: Social network clustering on Monk data with 5 clusters.Black cross
indicates cluster center and black circle indicates the variance of the cluster.

Table 4.5: Median Misclassification rates for Monk Data. Brackets show the 25%
and 75% quantile.

Method IID(3 clust.) DPP(3 clust.) IID(5 clust.) DPP(5 clust.)

Misclass 0 [0,0] 0 [0,0] 0.33 [0.28,0.33] 0.08 [0.08,1.5]

4.4.3 Generating diverse sample perturbations

We consider another possible application of continuous-space sampling. In many

applications of inverse reinforcement learning or inverse optimal control, the learner

is presented with control trajectories executed by an expert and tries to estimate

a reward function that would approximately reproduce such policies [Abbeel

and Ng, 2004]. In order to estimate the reward function, the learner needs to

compare the rewards of a large set of trajectories (or all, if possible), which becomes

intractable in high-dimensional spaces with complex non-linear dynamics. A typical

approximation is to use a set of perturbed expert trajectories as a comparison

set, where a good set of trajectories should cover as large a part of the space as

possible.

We propose using DPPs to sample a large-coverage set of trajectories, in

particular focusing on a human motion application where we assume a set of
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motion capture (MoCap) training data taken from the CMU database [CMU, 2009].

Here, our dimension d is 62, corresponding to a set of joint angle measurements. For

a given activity, such as dancing, we aim to select a reference pose and synthesize

a set of diverse, perturbed poses. To achieve this, we build a kernel with Gaussian

quality and similarity using covariances estimated from the training data associated

with the activity. In particular, we computed the covariance estimate from the

training data, and set the similarity covariance parameter Σ equal to this estimate.

We then take the quality covariance parameter to be Γ = 1
2
Σ. The Gaussian

quality is centered about the selected reference pose and we synthesize new poses

by sampling from our continuous DPP using the low-rank approximation scheme.

In Fig. 4.11, we show an example of such DPP-synthesized poses. For the

activity dance, to quantitatively assess our performance in covering the activity

space, we compute a coverage rate metric based on a random sample of 50 poses

from a DPP. For each training MoCap frame, we compute whether the frame has

a neighbor in the DPP sample within an ε-neighborhood in terms of the Euclidean

distance. We compare our coverage to that of i.i.d. sampling from a multivariate

Gaussian chosen to have variance matching our DPP sample. Despite favoring

the i.i.d. case by inflating the variance to match the diverse DPP sample, the

DPP poses still provide better average coverage over 100 runs. See Fig. 4.9 for

an assessment of the coverage metric. A visualization of the samples is in the

supplement. Note that the i.i.d. case requires on average ε = 253 to cover all data

whereas the DPP only requires ε = 82. By ε = 40, we cover over 90% of the data

on average. Capturing the rare poses is extremely challenging with i.i.d. sampling,

but the diversity encouraged by the DPP overcomes this issue.

In Fig. 4.10, we provide a visualization of poses sampled from the DPP relative

to i.i.d. sampling of poses from a multivariate Gaussian. From these plots, we
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Figure 4.9: Fraction of data having a DPP/i.i.d. sample within an ε-neighborhood.
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Figure 4.10: (a)-(c) DPP (blue) and i.i.d. multivariate Gaussian (red) samples
projected onto the top 4 principal components of the dance data.

see how the sample of poses from the DPP covers a broader space, even when the

covariance of the multivariate Gaussian is inflated to match that of the DPP. The

reason for this broader coverage is the fact that the under the DPP, sampled poses

repulse from regions already covered by other sampled poses.

Fig. 4.11 displays additional human poses that are drawn i.i.d. from a multivari-

ate Gaussian, and compares to our DPP draws from both the RFF and Nyström

approximations.
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Original Pose

Poses synthesized from i.i.d. draws from a multivariate Gaussian

Poses synthesized from an RFF-approximated DPP

Poses synthesized from a Nyström-approximated DPP

Figure 4.11: Synthesizing perturbed human poses relative to an original pose by
sampling (1) i.i.d. from a multivarite Gaussian versus (2) drawing a set from an
RFF- or Nyström- approximated DPP with kernel based on MoCap data from the
activity category. The Gaussian covariance is likewise formed from the activity
data.

4.5 Conclusion

Motivated by the recent successes of DPP-based subset modeling in finite-set

applications and the growing interest in repulsive processes on continuous spaces,

we considered methods by which continuous-DPP sampling can be straightfor-

wardly and efficiently approximated for a wide range of kernels. Our low-rank

approach harnessed approximations provided by Nyström and random Fourier

feature methods and then utilized a continuous dual DPP representation. The

resulting approximate sampler garners the same efficiencies that led to the success
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of the DPP in the discrete case. For k-DPPs, we devised an exact Gibbs sampler

that utilized the Schur complement representation. Finally, we demonstrated that

continuous-DPP sampling is useful both for repulsive mixture modeling (which

utilizes the Gibbs sampling scheme) and in synthesizing diverse human poses (which

we demonstrated with the low-rank approximation method). As we saw in the

MoCap example, we can handle high-dimensional spaces d, with our computations

scaling just linearly with d. We believe this work opens up opportunities to use

continuous DPPs as parts of many models.
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Chapter 5

Large-Scale Learning of DPPs

While DPPs have many appealing properties, such as efficient sampling and

marginal and conditional computation, learning the DPP kernel parameters, is still

considered a difficult, open problem. Even in the discrete Ω setting, DPP kernel

learning has been conjectured to be NP-hard [Kulesza and Taskar, 2012a]. As

discussed in Sec. 2.1.6, the issue arises from the fact that in seeking to maximize

the log-likelihood of Eq. (2.1), the numerator yields a concave log-determinant

term whereas the normalizer contributes a convex term, leading to a non-convex

objective under various simplifying assumptions on the form of L.

In reference to Sec. 2.1.6, attempts to partially learn the kernel have been

studied by, for example, learning the parametric form of the quality function q(x)

for fixed similarity k(x,y) [Kulesza and Taskar, 2011b], or learning a weighting on

a fixed set of kernel experts [Kulesza and Taskar, 2011a]. So far, the only attempt

to learn the parameters of the similarity kernel k(x,y) has used Nelder-Mead

optimization [Lavancier et al., 2012], which lacks theoretical guarantees about

convergence to a stationary point and is only exact in the discrete settings.

We consider parametric forms for the quality function q(x) and similarity

kernel k(x,y), as in Sec. 2.1.6 and propose Bayesian methods to learn the DPP

93



kernel parameters Θ. In addition to capturing posterior uncertainty rather than

a single point estimate, these methods can be easily modified to efficiently learn

large-scale and continuous DPPs where the eigenstructures are either unknown or

are inefficient to compute. In contrast, gradient ascent algorithms for maximum

likelihood estimation (MLE) require kernels L that are differentiable with respect

to Θ in the discrete Ω case. In the continuous Ω case, the eigenvalues must

additionally have a known, differentiable functional form, which only occurs in

limited scenarios.

We first explore likelihood maximization algorithms for learning DPP and k-

DPP kernels. After examining the shortcomings of the MLE approach, we propose a

set of techniques for Bayesian posterior inference of the kernel parameters in Sec. 5.1,

and explore modifications to accommodate learning large-scale and continuous

DPPs. In Sec. 5.2, we derive a set of DPP moments assuming a known kernel

eigenstructure and explore using these moments as a model-checking technique. In

low-dimensional settings, we can use a method of moments approach to learn the

kernel parameters via numerical techniques. Finally, we test our methods on both

simulated and real-world data. Specifically, in Sec. 5.3 we use DPP learning to

study the progression of diabetic neuropathy based on spatial distribution of nerve

fibers and also to study human perception of diversity of images.

5.1 Learning Parametric DPPs

Assume that we are given a training set consisting of samples A1, A2, . . . , AT , and

that we model these data using a DPP/k-DPP with parametric kernel

L(x,y; Θ) = q(x; Θ)k(x,y; Θ)q(y; Θ) , (5.1)
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with parameters Θ. We denote the associated kernel matrix for a set At by LAt(Θ)

and the full kernel matrix/operator by L(Θ). Likewise, we denote the kernel

eigenvalues by λi(Θ). In this section, we explore various methods for DPP/k-DPP

learning.

5.1.1 Learning using Optimization Methods

To learn the parameters Θ of a discrete DPP model, we can maximize the log-

likelihood

L(Θ) =
T∑
t=1

log det(LAt(Θ))− T log det(L(Θ) + I) . (5.2)

Lavancier et al. [2012] suggest that the Nelder-Mead simplex algorithm [Nelder

and Mead, 1965] can be used to maximize L(Θ). This method is based on evaluating

the objective function at the vertices of a simplex, then iteratively shrinking the

simplex towards an optimal point. While this method is convenient since it does

not require explicit knowledge of derivates of L(Θ), it is regarded as a heuristic

search method and is known for its failure to necessarily converge to a stationary

point [McKinnon, 1998].

Gradient ascent and stochastic gradient ascent provide more attractive ap-

proaches because of their theoretical guarantees, but require knowledge of the

gradient of L(Θ):

dL(Θ)

dΘ
=

∑T
t=1 tr

(
LAt(Θ)−1 dLAt (Θ)

dΘ

)
− T tr

(
(L(Θ) + I)−1 dL(Θ)

dΘ

)
. (5.3)

To find the MLE, we can perform gradient ascent

Θi = Θi−1 + η
dL(Θ)

dΘ
. (5.4)
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However, note that due to the non-convexity of our objective function, this can

lead to convergence to local optima.

Below we provide a few examples. In the following examples, we denote

xi = (x
(1)
i , x

(2)
i , . . . , x

(d)
i ), where d is the number of dimension.

Example: Gaussian Similarity with Uniform Quality

In this example, we consider the kernel

L(Σ) = exp{−(x− y)>Σ−1(x− y)} .

In order to perform the gradient ascent algorithm in Eq. (5.4) we need to

compute the gradient of the log-likelihood with respect to Σ.

Denote G
(lm)
ij = Lij

(x
(l)
i −x

(l)
j )(x

(m)
i −x(m)

j )

2Σ2
lm

. Then,

dL(Σ)

dΣlm

=
T∑
t=1

tr
(
LAt(Σ)−1G

(lm)
At

)
− T tr

(
(L(Σ) + I)−1G(lm)

)
Example: Gaussian Similarity with Gaussian Quality

Similarly, for the kernel

L(Γ,Σ) = exp{−x>Γ−1x− (x− y)>Σ−1(x− y)− y>Γ−1y},

the gradient log-likelihood with respect to Θ = (Γ,Σ) can easily be computed.

Denote C
(lm)
ij = Lij

(x
(l)
i x

(m)
i +x

(l)
j x

(m)
j )

2Γ2
lm

and G
(lm)
ij as in previous example. Then,

dL(Γ,Σ)

dΓlm
=

T∑
t=1

tr
(
LAt(Σ)−1C

(lm)
At

)
− T tr

(
(L(Σ) + I)−1C(lm)

)

and dl(Γ,Σ)
dΣlm

the same as the previous example.
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Example: Polynomial Similarity with Uniform Quality

Finally we consider the polynomial similarity kernel

L(p, q) =
(
x>y + p

)q
.

This kernel is important in the discrete setting for applications such as image search

and text summarization where the similarity between items can be represented as

the inner product of their feature vectors.

Denote Rij = qL
q−1
q

ij and Uij = Lij log(L
1
q

ij). Then,

dL(p, q)

dp
=

T∑
t=1

tr
(
LAt(p, q)

−1RAt
)
− T tr

(
(L(p, q) + I)−1R)

)

dL(p, q)

dq
=

T∑
t=1

tr
(
LAt(p, q)

−1UAt
)
− T tr

(
(L(p, q) + I)−1U)

)

We note, however, that these methods are still susceptible to convergence to

local optima due to the non-convex likelihood landscape. Furthermore, both these

methods require that the likelihood is known exactly. When the number of base

items N is large, computing the likelihood or its derivative will be inefficient. In

Sec. 5.1.3, we will develop a method that requires only the upper and lower bounds

on the likelihood.

The log likelihood of the k-DPP kernel parameter is

L(Θ) =
T∑
t=1

log det(LAt(Θ))− T log
∑
|B|=k

det(LB(Θ)) , (5.5)

which presents an addition complication due to needing a sum over
(
n
k

)
terms in
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the gradient.

In the case of continuous DPPs/kDPPs, once again, both methods require

that the likelihood is known exactly. For kernel operators with infinite rank

(such as the Gaussian), an explicit truncation has to be made since computing

the exact likelihood is infeasible. Furthermore, gradient ascent can only be used

in cases where the exact eigendecomposition of the kernel operator is known

with a differentiable form for the eigenvalues (see Eq. (2.22)). This restricts the

applicability of gradient-based likelihood maximization to a limited set of scenarios,

such as a DPP with Gaussian quality function and similarity kernel. Even in these

cases, an explicit truncation has to be made as well, resulting in an approximate

gradient of L(Θ). Unfortunately, such approximate gradients are not unbiased

estimates of the true gradient, so the theory associated with attractive stochastic

gradient based approaches does not hold. Table 5.1 summarizes the feasibility of

using gradient-based methods to learn the parameters of DPP kernels.

Table 5.1: Examination of the feasibility of learning the parameters of DPP kernels
using gradient-based methods.

DPP Setup Eigendecomp. Compute Normalizer Gradient
Discrete(small N) known efficient yes,

for many kernels
Discrete(large N) known inefficient approx.

w/truncation
Cont.(Gaussian) known infeasible approx.

w/truncation
Cont.(most kernels) unknown infeasible No
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5.1.2 Bayesian Learning for Discrete DPPs

Instead of optimizing the likelihood to get an MLE, here we propose a Bayesian

approach of sampling from the posterior distribution over kernel parameters:

P(Θ|A1, . . . , AT ) ∝ P(Θ)
T∏
t=1

det(LAt(Θ))

det(L(Θ) + I)
(5.6)

for the DPP and, for the k-DPP,

P(Θ|A1, . . . , AT ) ∝ P(Θ)
T∏
t=1

det(LAt(Θ))

ek(λ1(Θ), . . . , λN(Θ))
. (5.7)

Here, P(Θ) is the prior on Θ. Since neither Eq. (5.6) nor Eq. (5.7) yield a

closed-form posterior, we resort to approximate techniques based on Markov chain

Monte Carlo (MCMC) (see Sec. 2.4). We highlight two techniques: random-walk

Metropolis-Hastings (MH) (see Sec. 2.4.1) and slice sampling (see Sec. 2.4.2),

although other MCMC methods can be employed without loss of generality.

In random-walk MH, we use a proposal distribution f(Θ̂|Θi) to generate a

candidate value Θ̂ given the current parameters Θi, which are then accepted or

rejected with probability min{r, 1} where

r =

(
P(Θ̂|A1, . . . , AT )

P(Θi|A1, . . . , AT )

f(Θi|Θ̂)

f(Θ̂|Θi)

)
. (5.8)

The proposal distribution f(Θ̂|Θi) is chosen to have mean Θi. The hyperparameters

of f(Θ̂|Θi) tune the width of the distribution, determining the average step size.

To avoid the need to tune the proposal distribution, we can instead use slice

sampling [Neal, 2003], which performs a local search for an acceptable point while

still satisfying detailed balance conditions. We refer to Section. 2.4.2 for further

details.
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Algorithm 9 Random-Walk Metropolis-Hastings

Input: Dimension: D, Starting point: Θ0, Prior distribution: P(Θ), Proposal
distribution f(Θ̂|Θ) with mean Θ, Samples: A1, . . . , AT ].
Θ = Θ0

for i = 0 : (τ − 1) do
Θ̂ ∼ f(Θ̂|Θi)

r =
(

P(Θ̂|A1,...,AT )
P(Θi|A1,...,AT )

f(Θi|Θ̂)

f(Θ̂|Θi)

)
r =

( ∏T
t=1 det(LXt (Θ̂))∏T
t=1 det(LXt (Θi))

(det(L(Θi)+I)

det(L(Θ̂)+I)
)T f(Θi|Θ̂)

f(Θ̂|Θi)
p(Θ̂;Φ0)
p(Θi;Φ0)

)
u ∼ Uniform[0,1]
if u < min{1, r} then

Θi+1 = Θ̂
Output: Θ0:τ

As an illustrative example, we consider synthetic data generated from a two-

dimensional discrete DPP using a kernel where

q(xi) = exp

{
−1

2
x>i Γ−1xi

}
(5.9)

k(xi,xj) = exp

{
−1

2
(xi−xj)

>Σ−1(xi−xj)

}
, (5.10)

where Γ = diag(0.5, 0.5) and Σ = diag(0.1, 0.2). We consider Ω to be a grid of

100 points evenly spaced in a 10× 10 unit square and simulate 100 samples from

a DPP with kernel as above. We then condition on these simulated data and

perform posterior inference of the kernel parameters using MCMC. Fig. 5.1 shows

the sample autocorrelation function of the slowest mixing parameter, Σ11, learned

using random-walk MH and slice sampling. Furthermore, we ran a Gelman-Rubin

test [Gelman and Rubin, 1992] on 5 chains starting from overdispersed starting

positions and found that the average partial scale reduction function across the

four parameters to be 1.016 for MH and 1.023 for slice sampling, indicating fast

mixing of the posterior samples.
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Figure 5.1: Sample autocorrelation function for posterior samples of the slowest
mixing parameter of the kernel in Eq. (5.9) and Eq. (5.10) sampled using MH and
slice sampling.

5.1.3 Bayesian Learning for Large-Scale Discrete and Con-

tinuous DPPs

In the large-scale discrete or continuous settings, evaluating the normalizers

det(L(Θ) + I) or
∏∞

n=1(λn(Θ) + 1), respectively, can be inefficient or infeasible.

Even in cases where an explicit form of the truncated eigenvalues can be computed,

this will only lead to approximate MLE solutions, as discussed in Sec. 5.1.1.

On the surface, it seems that most MCMC algorithms will suffer from the

same problem since they require knowledge of the likelihood as well. However,

we argue that for most of these algorithms, an upper and lower bound of the

posterior probability is sufficient as long as we can control the accuracy of these

bounds. In particular, denote the upper and lower bounds by P+(Θ|A1, . . . , AT )

and P−(Θ|A1, . . . , AT ), respectively. In the random-walk MH algorithm we can
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Algorithm 10 Random-Walk Metropolis-Hastings with Posterior Bounds

Input: Dimension: D, , Starting point: Θ0, Prior distribution: P(Θ), Proposal
distribution f(Θ̂|Θ) with mean Θ, samples: X = [X1, . . . , XT ].
Θ = Θ0

for i = 0 : τ do
Θ̂ ∼ f(Θ̂|Θi)
r+ =∞, r− = −∞
u ∼ Uniform[0,1]
while u ∈ [r−, r+] do

r+ =
(

P+(Θ̂|A1,...,AT )
P−(Θi|A1,...,AT )

f(Θi|Θ̂)

f(Θ̂|Θi)

)
r− =

(
P−(Θ̂|A1,...,AT )
P+(Θi|A1,...,AT )

f(Θi|Θ̂)

f(Θ̂|Θi)

)
Increase tightness on P+ and P−

if u < min{1, r−} then
Θt = Θ̂

Output: Θ0:τ

then compute the upper and lower bounds on the acceptance ratio,

r+ =

(
P+(Θ̂|A1, . . . , AT )

P−(Θi|A1, . . . , AT )

f(Θi|Θ̂)

f(Θ̂|Θi)

)
(5.11)

r− =

(
P−(Θ̂|A1, . . . , AT )

P+(Θi|A1, . . . , AT )

f(Θi|Θ̂)

f(Θ̂|Θi)

)
. (5.12)

We can precompute the threshold u ∼ Uniform[0, 1], so we can still sometimes

accept or reject the proposal Θ̂ even if these bounds have not completely converged.

All that is necessary is for u < min{1, r−} (immediately reject) or u > min{1, r+}

(immediately accept). In the case that u ∈ (r−, r+), we can perform further

computations to increase the accuracy of our bounds until a decision can be made.

As we only sample u once in the beginning, this iterative procedure yields a Markov

chain with the exact target posterior as its stationary distribution; all we have

done is “short-circuit” the computation once we have bounded the acceptance

ratio r away from u. We show this procedure in Alg. 10.

The same idea applies to slice sampling. In the first step of generating a slice,
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instead of sampling y ∼ Uniform[0,P(Θi|A1, . . . , AT )], we use a rejection sampling

scheme first propose a candidate slice as

ŷ ∼ Uniform[0,P+(Θi|A1, . . . , AT )] . (5.13)

We then decide whether ŷ < P−(Θi|A1, . . . , AT ), in which case we know ŷ <

P(Θi|A1, . . . , AT ) and we accept ŷ as the slice and set y = ŷ. In the case where

ŷ ∈ (P−(Θi|A1, . . . , AT ),P+(Θi|A1, . . . , AT )), we keep increasing the tightness of

our bounds until a decision can be made. If at any point ŷ exceeds the newly

computed P+(Θi|A1, . . . , AT ), we know that ŷ > P(Θi|A1, . . . , AT ) so we reject the

proposal. In this case, we generate a new ŷ and repeat.

Upon accepting a slice y, the subsequent steps for proposing a parameter Θ̂

proceed in a similarly modified manner. For the interval computation, the endpoints

Θe are each examined to decide whether y < P−(Θe|A1, . . . , AT ) (endpoint is not

in slice) or y > P+(Θe|A1, . . . , AT ) (endpoint is in slice). The tightness of the

posterior bounds is increased until a decision can be made and the interval can be

adjusted, if need be. After convergence of the interval, Θ̂ is generated uniformly

over the interval and is likewise tested for acceptance. We illustrate this procedure

in Fig. 5.2.

The lower and upper bounds of the posterior probability can in fact be incor-

porated in many MCMC-type algorithms. This provides a convenient and efficient

way to garner posterior samples assuming that tightening the bounds can be done

efficiently. In our case, the upper and lower bounds for the posterior probability

can be computed either using eigenvalues truncation or low-rank approximations.
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Figure 5.2: Illustration of slice sampling algorithm using posterior bounds. See
Fig. 2.3 for the illustration for regular slice sampling method. In the first step, a
candidate slice ŷ is generated. ŷ is rejected if it is above the upper posterior bound
and rejected if it is below the lower posterior bound. If ŷ is in between the bounds,
then the bounds are tightened until a decision can be made. Once a slice, y is
accepted, we need to sample new parameters inside the slice. To determine whether
the endpoints of the interval or the new parameters are in the slice we decide
that they are in the slice if the upper bound of posterior probability evaluated at
the points are higher than the slice value and decide that they are outside of the
slice if the lower bound of the posterior probability is lower than the slice value.
Otherwise, we tighten the bounds until a decision can be made.
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Exact Bayesian Learning with Eigenvalue Truncation

The upper and lower bounds for the posterior probability can be computed based

on the truncation of the kernel eigenvalues and can be arbitrarily tightened by

including more terms in the truncation. In the discrete DPP/k-DPP settings, the

eigenvalues can be efficiently computed to a specified point using methods such as

power law iterations. In the continuous setting, explicit truncation can be done

when the kernel is Gaussian,

L(x,y) = α exp

{
−1

2
x>Γ−1x− 1

2
(x− y)>Σ−1(x− y)− 1

2
y>Γ−1y

}
, (5.14)

x,y ∈ Rd, since the eigenvalues are explicitly known [Fasshauer and McCourt,

2012].

Explicit forms for the posterior probability bounds of Θ for DPPs and k-DPPs

as a function of the eigenvalue truncations follow from Prop. 1 and 2 combined

with Eqs. (5.6) and (5.7), respectively.

Proposition 1 Let λ1:∞ be the eigenvalues of kernel L. Then

M∏
n=1

(1 + λn) ≤
∞∏
n=1

(1 + λn) (5.15)

and
∞∏
n=1

(1 + λn) ≤ exp

{
tr(L)−

M∑
n=1

λn

}[ M∏
n=1

(1 + λn)

]
. (5.16)

Proof The first inequality is trivial since the eigenvalues λ1:∞ are all nonnegative.

To prove the second inequality, we use the AM-GM inequality: For any non-

negative numbers, γ1, ..., γM , (
∏M

n=1 γn)
1
M ≤∑M

n=1
γn
M

.
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Let ΛM =
∑∞

n=M+1 λn and γn = 1 + λn. Then,

∞∏
n=1

(1 + λn) =
∞∏
n=1

γn = (
M∏
n=1

γn)(
∞∏

n=M+1

γn)

= (
M∏
n=1

γn)( lim
l→∞

M+l∏
n=M+1

γn)

≤ (
M∏
n=1

γn)( lim
l→∞

(
M+l∑

n=M+1

γn
l

)l)

≤ (
M∏
n=1

(1 + λn)) exp(ΛM) .

Proposition 2 Let λ1:∞ be the eigenvalues of kernel L. Then

ek(λ1:M) ≤ ek(λ1:∞) (5.17)

and

ek(λ1:∞) ≤
k∑
j=0

(tr(L)−∑M
n=1 λn)j

j!
ek−j(λ1:M) . (5.18)

Proof Let ek(λ1:m) be the kth elementary symmetric function:

ek(λ1:m) =
∑

J⊆{1,....,m},|J |=k
∏

j∈J λj.

Trivially, we have a lower bound since the eigenvalues λ1:∞ are non-negative:

ek(λ1:m) ≤ ek(λ1:n) for m ≤ n .

For the upper bound we can use the Schur-concavity of elementary symmetric

functions for non-negative arguments [Guan, 2006].Thus for λ̄1:N ≺ λ1:N :

k∑
i=1

λ̄n ≤
k∑

n=1

λn for k = 1, . . . , N − 1 (5.19)
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and
N∑
n=1

λ̄n =
N∑
n=1

λn , (5.20)

we have ek(λ̄1:N) ≥ ek(λ1:N).

Now let ΛM =
∑∞

n=M+1 λn and ΛN
M =

∑N
n=M+1 λn. We consider

λ̄
(M)
1:N ≡

(
λ1, . . . , λM ,

ΛN
M

N −M , . . . ,
ΛN
M

N −M

)
. (5.21)

Note that λ̄
(M)
1:N ≺ λ1:N and so ek(λ̄

(M)
1:N ) ≥ ek(λ1:N) for M < N .

We now compute ek(λ̄
(M)
1:N ). Note that for ek(λ̄

(M)
1:N ), the terms in the sum

are products of k factors, each containing some of the λ1:M factors and some

of the
ΛNM
N−M factors. The sum of the terms that have j factors of type

ΛNM
N−M is(

N−M
j

) ( ΛNM
N−M

)j
ek−j(Λ(m)), so we have:

ek(λ̄
(M)
1:N ) =

k∑
j=0

(
N −M

j

)(
ΛN
M

N −M

)j
ek−j(λ1:M) .

Using
(
N−M
j

)
≤ (N−M)j

j!
, we get

ek(λ̄
(M)
1:N ) =

k∑
j=0

(
(ΛN

M)j

j!

)
ek−j(λ1:M) .

Letting N →∞, we get out upper bound

ek(λ1:∞) ≤
k∑
j=0

(
(ΛM)j

j!

)
ek−j(λ1:M) for m ≤ n.

Note that the expression tr(L) in the bounds can be easily computed as either∑N
n=1 Lii in the discrete case or

∫
Ω
L(x,x)dx in the continuous case.

The corresponding bounds for a 3600× 3600 discrete Gaussian kernel example

are shown in Fig. 5.3.
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Figure 5.3: Normalizer bounds for a discrete DPP (left) and a 10-DPP (right)
with Gaussian quality and similarity as in Eqs. (5.9) and (5.10) and Ω a grid of
3600 points.

Exact Bayesian Learning with Low-Rank Approximations

The algorithms developed in this section relies heavily on the ability to not only

calculate the upper and lower bounds on the posterior probability but to arbitrarily

tighten those bounds as well. For many continuous DPP kernels, the exact

eigendecomposition is unknown. While approximate eigenvalues can be computed,

for example using Fourier bases as illustrated in Sec. 2.2.1, this will only lead to an

approximate posterior computation. Furthermore, the associated approximation

bounds cannot be arbitrarily tightened.

Here we propose using low-rank approximations to sample from the exact

posterior distribution. The advantage we have here is that we can harness the

theory and algorithms we developed in Chapter 4 to provide bounds on the

posterior probability that can be arbitrarily tightened by increasing the rank of

the approximations. Thus we can exact samples from the posterior even in cases

where no known algorithm can even attempt to learn kernel parameters due to the

infeasibility of computing the exact posterior probability or likelihood.

We will utilize the same Bayesian methodologies described in the previous sec-

tion. However, since a low-rank approximation gives us approximated eigenvalues,
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the bounds in Props. 1 and 2 no longer hold. Instead, we provide the bounds below

by finding the upper and lower bounds on the approximated eigenvalues.

Proposition 3 Let λ1:∞ be the eigenvalues of kernel L and λ̃1:r be the eigenvalues

of its rank-r approximated kernel, L̃. Further assume that L̃(x,y) and E(x,y) =

L(x,y)− L̃(x,y) are both positive semidefinite kernels, then

r∏
n=1

(1 + λ̃n) ≤
∞∏
n=1

(1 + λn) (5.22)

and

∞∏
n=1

(1 + λn) ≤
[

r∏
n=1

(1 + λ̃n + (tr(L)− tr(L̃)))

]
exp

{
tr(L)− tr(L̃)

}
. (5.23)

Proof The first inequality follows from Lemma 5. For the second inequality, we

have

λn ≤ λ̃n + ‖L− L̃‖ ≤ λ̃n + tr(L)− tr(L̃), (5.24)

from Lemma 4. Let Λr =
∑∞

n=r+1 λn and γn = 1 + λn. Then,

∞∏
n=1

(1 + λn) =
∞∏
n=1

γn = (
r∏

n=1

γn)(
∞∏

n=r+1

γn)

= (
r∏

n=1

γn)( lim
l→∞

r+l∏
n=r+1

γn)

≤ (
r∏

n=1

γn)( lim
l→∞

(
r+l∑

n=r+1

γn
l

)l)

≤ (
r∏

n=1

(1 + λn)) exp(Λr)

≤
[

r∏
n=1

(1 + λ̃n + (tr(L)− tr(L̃)))

]
exp

{
tr(L)− tr(L̃)

}
.

Proposition 4 Let λ1:∞ be the eigenvalues of kernel L and λ̃1:r be the eigenvalues
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of its rank-r approximated kernel, L̃. Further assume that L̃(x,y) and E(x,y) =

L(x,y)− L̃(x,y) are both positive semidefinite kernels. Let

λ̂n = λ̃n + tr(L)− tr(L̃)

for n = 1, 2, . . . (we make the convention that λ̃n = 0 for n > r). Then

ek(λ1:∞) ≥ ek(λ̃1:r) (5.25)

and

ek(λ1:∞) ≤ ek(λ̂1:∞). (5.26)

Proof By Lemmas 4 and 5,

λ̃n ≤ λn ≤ λ̂n. (5.27)

for n = 1, 2, . . .. Then

ek(λ̃1:r) =
∑
|J |=k

∏
n∈J

λ̃n ≤
∑
|J |=k

∏
n∈J

λn = ek(λ1:∞) (5.28)

and

ek(λ1:∞) =
∑
|J |=k

∏
n∈J

λn ≤
∑
|J |=k

∏
n∈J

λ̂n = ek(λ̂1:∞) . (5.29)

Once again, tr(L) in the bounds can be easily computed:
∫

Ω
L(x,x)dx. For

Nyström approximation, tr(L̃) =
∑r

i=1

∑r
j=1

∑r
k=1 WjiWik

∫
Ω
L(x, zj)L(zk,x)dx.

While this looks daunting at first, is nothing more than the trace of the dual

matrix computed in Sec. 4.1.1. Furthermore, note that we can make these bounds

arbitrarily tight by sampling more landmarks since λ̃n → λn for all n and tr(L̃)→

tr(L) as r → ∞. Table 5.2 summarizes the feasibility of using MCMC-based
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methods to sample from exact posteriors of the parameters of DPP kernels.

Table 5.2: Examination of the feasibility of sampling from exact posteriors of the
parameters of DPP kernels using MCMC-based methods.

DPP Setup Eigendecomp. Compute Normalizer MCMC
Discrete(small N) known efficient yes
Discrete(large N) known inefficient yes w/eigenval.

truncation
Cont.(Gaussian) known infeasible yes w/eigenval.

truncation
Cont.(most kernels) unknown infeasible yes w/low-rank.

approx.

5.2 Method of Moments

Convergence and mixing of MCMC samplers can be challenging to assess. Although

generic techniques such as Gelman-Rubin diagnostics [Gelman and Rubin, 1992]

are applicable, we additionally provide a set of tools more directly tailored to

the DPP by deriving a set of theoretical moments. When performing posterior

inference of kernel parameters, we can check whether the moments of our data

match the theoretical moments given by the posterior samples. This can be done

in cases where the eigenstructure is fully known.

In the discrete case, we first need to compute the marginal probabilities. Borodin

[2009] shows that the marginal kernel, K, can be computed directly from L:

K = L(I + L)−1 . (5.30)
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The mth moment can then be calculated via

E[xm] =
N∑
i=1

xmi K(xi,xi) . (5.31)

In the continuous case, given the eigendecomposition of the kernel operator,

L(x,y) =
∑∞

n=1 λnφn(x)∗φn(y) (where φn(x)∗ denotes the complex conjugate

of the nth eigenfunction), the mth moment is

E[xm] =

∫
Ω

∞∑
n=1

λn
λn + 1

xmφn(x)2dx . (5.32)

Note that this generally cannot be evaluated in closed form since the eigende-

compositions of most kernel operators are not known. However, in certain cases

where the eigenfunctions are known analytically, the moments can be directly

computed. For a kernel defined by Gaussian quality and similarity the eigende-

composition can be performed using Hermite polynomials. We provide the details

below.

Example: Moments for Continuous DPP with Gaussian Quality and

Similarity

Let

q(x) =
√
α

D∏
d=1

1√
πρd

exp

{
− x2

d

2ρd

}
(5.33)

and

k(x,y) =
D∏
d=1

exp

{
−(xd − yd)2

2σd

}
,x,y ∈ RD. (5.34)
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In this case, the eigenvalues and eigenvectors of the operator L are given by

[Fasshauer and McCourt, 2012]:

λn = α
D∏
d=1

√
1

β2
d+1

2
+ 1

2γd

(
1

γd(β2
d + 1) + 1

)nd−1

, (5.35)

and

φn(x) =
D∏
d=1

(
1

πρ2
d

) 1
4

√
βd

2nd−1Γ(nd)
exp

{
−β

2
dx

2

2ρ2
d

}
Hnd−1

(
βdxd√
ρ2
d

)
, (5.36)

where γd = σd
ρd

, βd = (1 + 2
γd

)
1
4 and n = (n1, n2, . . . , nD) is a multi index.

In the case of DPPs (as opposed to k-DPPs), we can use the number of items as

an estimate of the 0th moment. The 0th moment is given by
∑

n=1
λn

1+λn
. Denote

x = (x1, x2, . . . , xd). For higher moments, note that

E[xmj ] =
∫
R
∑∞

n=1
λn
λn+1

xmj φn(x)2dxj

=
∑∞

n=1
λn
λn+1

∫
R x

m
j φn(x)2dxj .

Using the results of moment integrals involving a product of two Hermite

polynomials [Paris, 2010], we get that

E[xmj ] =

∫
Rd

∞∑
n

λn
λn + 1

(

√
ρj√
2βj

)m℘m
2

(nj − 1) , (5.37)

for m even and 0 otherwise. The polynomial ℘m
2

(nj − 1) is given in Eq. (4.8) in

Paris [2010]. For example, the second and fourth moments are given by

(i) E[x2
j ] =

∑∞
n

λn
λn+1

(
√
ρj√
2βj

)2(2nj − 1) ,

(ii) E[x4
j ] =

∑∞
n

λn
λn+1

(
√
ρj√
2βj

)43(2n2
j − 2nj + 1) .
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Unfortunately, the method of moments can be challenging to use for direct

parameter learning since Eqs. (5.31) and (5.32) are not analytically available in

most cases. In low dimensions, these quantities can be estimated numerically, but

it remains an open question as to how these moments should be estimated for

large-scale problems.

5.3 Experiments

5.3.1 Simulations

We provide an explicit example of Bayesian learning for a continuous DPP with

the kernel defined by

q(x) =
√
α

D∏
d=1

1√
πρd

exp

{
− x2

d

2ρd

}
(5.38)

k(x,y) =
D∏
d=1

exp

{
−(xd − yd)2

2σd

}
,x,y ∈ RD. (5.39)

Here, Θ = {α, ρd, σd} and the eigenvalues of the operator L(Θ) are given in Sec. 5.2.

Furthermore, the trace of L(Θ) can be easily computed as

tr(L(Θ)) =

∫
Rd
α

D∏
d=1

1

πρd
exp

{
− x2

d

2ρd

}
dx = α . (5.40)

Thus, upper and lower bounds for the likelihood can be explicitly calculated and

our proposed Bayesian learning algorithms are applicable.

We test our Bayesian learning algorithms on simulated data generated from a

2-dimensional isotropic kernel (σd = σ, ρd = ρ for d = 1, 2) using Gibbs sampling

in Sec. 4.2. We used weakly informative inverse gamma priors on σ,ρ and α. In
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particular, we used the same priors for all three parameters

P(α) = P(ρ) = P(σ) = Inv-Gamma(0.001, 0.001) . (5.41)

We then learn the parameters using hyperrectangle slice sampling.

We tweak the (α, ρ, σ) used for simulation so that we have the following three

scenarios:

(i) 10 DPP samples with average number of points=18 using

(α, ρ, σ) = (1000, 1, 1),

(ii) 1000 DPP samples with average number of points=18 using

(α, ρ, σ) = (1000, 1, 1),

(iii) 10 DPP samples with average number of points=77 using

(α, ρ, σ) = (100, 0.7, 0.05).

Fig. 5.4 shows trace plots of the posterior samples for all three scenarios. In

the first scenario, the parameter estimates vary wildly whereas in the other two

scenarios, the posterior estimates are more stable. In all the cases, the zeroth and

second moment estimated from the posterior samples are in the neighborhood of

the corresponding empirical moments as shown in Fig. 5.5.

This leads us to believe that the posterior is broad in cases where we have both

a small number of samples and few points in each sample. The posterior becomes

more peaked as the total number of points increases. Note that using a stationary

similarity kernel allows us to garner information either from few sets with many

points or many sets of few points.

Dispersion Measure In many applications, we are interested in quantifying the

overdispersion of point process data. In spatial statistics, one standard quantity

used to measure dispersion is the Ripley K-function [Ripley, 1977]. Here, instead,
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Figure 5.4: Posterior samples for a continuous DPP with Gaussian quality and
similarity. The first 3 columns show posterior samples for (from right to left) α, ρ
and σ. The top row are samples from Scenario (i) (blue) and Scenario (ii) (green)
while the second row are samples from Scenario (iii), plotted with the same relative
scales to the other scenarios. Red lines indicate the true parameter values that
generated the data.

we would like to use the learned parameters of the DPP to measure overdispersion

as repulsion. An important characteristic of a measure of repulsion is that it

should be invariant to scaling. In the case for Gaussian quality and similarity

kernel, as the data are scaled from x to ηx, the parameters scale from (α, σi, ρi) to

(α, ησi, ηρi). This suggests that an appropriate scale-invariant measure of repulsion

is γi = σi/ρi.

5.3.2 Diabetic Neuropathy

Recent breakthroughs in skin tissue imaging have spurred interest in studying the

spatial patterns of nerve fibers in diabetic patients. It has been observed that

these nerve fibers appear to become more clustered as diabetes progresses. Waller

et al. [2011] previously analyzed this phenomena based on 6 thigh nerve fiber

samples. These samples were collected from 5 diabetic patients at different stages
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Figure 5.5: Moment estimates under the parameters learned for a continuous DPP
with Gaussian quality and similarity. The two columns show the zero-th and
second moment estimates. The top row are samples from Scenario (i) (blue) and
Scenario (ii) (green) while the second row are samples from Scenario (iii), plotted
with the same relative scales to the other scenarios. Red lines indicate the empirical
moments.
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Figure 5.6: Nerve fiber samples. Clockwise: (i) Normal subject, (ii) Mildly Diabetic
Subject 1, (iii) Mildly Diabetic Subject 2,(iv) Moderately Diabetic subject, (v)
Severely Diabetic Subject 1 and (vi) Severely Diabetic Subject 2.

of diabetic neuropathy and one healthy subject. On average, there are 79 points in

each sample (see Fig. 5.6). Waller et al. [2011] analyzed the Ripley K-function

and found that the difference between the healthy and severely diabetic samples

to be highly significant.

We instead study the differences between these samples by learning the kernel

parameters of a DPP and quantifying the level of repulsion of the point process. Due

to the small sample size, we consider a 2-class study of Normal/Mildly Diabetic

versus Moderately/Severely Diabetic. We perform two analyses. In the first,

we directly quantify the level of repulsion based on our scale-invariant statistic,

γ = σ/ρ (see Sec. 5.3.1). In the second, we perform naive Bayes classification

on the two classes. Typically, we would train the classifier on a small subset of

the data and test the classifier on the rest of the data. Here, however, since we

only have six samples, we perform a leave-one-out classification by training the

parameters on the two classes with one sample left out. We then evaluate the

likelihood of the held-out sample under the two learned classes. We repeat this for
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Figure 5.7: The repulsion measure, γ under the two learned DPP classes: Nor-
mal/Mildly Diabetic (left box) and Moderately/Severely Diabetic (right box)

.

all six samples.

We model our data using a 2-dimensional continuous DPP with Gaussian

quality and similarity as in Eqs. (5.38) and (5.39). Since there is no observed

preferred direction in the data, we use an isotropic kernel (σd = σ and ρd = ρ for

d = 1, 2). We place weakly informative inverse gamma priors on (α, ρ, σ):

P(α) = P(ρ) = P(σ) = Inv-Gamma(0.001, 0.001) (5.42)

and learn the parameters using slice sampling with eigenvalue bounds as outlined

in Sec. 5.1.3. The results shown in Fig. 5.7 indicate that our γ measure clearly

separates the two classes, concurring with the results of Waller et al. [2011].

Furthermore, we are able to correctly classify all six samples as shown in Fig. 5.8.

While the results are preliminary, being based on only six observations, they show

promise for this task.
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Figure 5.8: The leave-one out log-likelihood of each sample under the two learned
DPP classes: Normal/Mildly Diabetic (left box) and Moderately/Severely Diabetic
(right box).

5.3.3 Diversity in Images

We also examine DPP learning for quantifying how visual features relate to human

perception of diversity in different image categories. This is useful in applications

such as image search, where it is desirable to present users with a set of images

that are not only relevant to the query, but diverse as well.

Building on work by Kulesza and Taskar [2011a], three image categories—cars,

dogs and cities—were studied. Within each category, 8-12 subcategories (such as

Ford for cars, London for cities and poodle for dogs) were queried from Google

Image Search and the top 64 results were retrieved. For a subcategory subcat,

these images form our base set Ωsubcat. To assess human perception of diversity,

human annotated sets of size six were generated from these base sets. However, it

is challenging to ask a human to coherently select six diverse images from a set of

64 total. Instead, Kulesza and Taskar [2011a] generated a partial result set of five

images from a 5-DPP on each Ωsubcat with a kernel based on the SIFT256 features
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(explained later). Human annotators (via Amazon Mechanical Turk) were then

presented with two images selected at random from the remaining subcategory

images and asked to add the image they felt was least similar to the partial result

set. These experiments resulted in about 500 samples spread evenly spread evenly

across the different subcategories.

We aim to study how the human annotated sets differ from the top six Google

results. As in Kulesza and Taskar [2011a], we extracted three types of features

from the images—color features, SIFT descriptors [Vedaldi and Fulkerson, 2010,

Lowe, 1999] and GIST descriptors [Oliva and Torralba, 2006] below:

Color: Each pixel is assigned a coordinate in three-dimensional Lab color

space. The colors are then sorted into axis-aligned bins, producing a histogram of

either 8 (denoted color8) or 64 (denoted color64) dimensions.

SIFT: The images are processed to obtain sets of 128-dimensional SIFT de-

scriptors. These descriptors are commonly used in object recognition to identify

objects in images and are invariant to scaling, orientation and minor distortions.

The descriptors for a given category are combined, subsampled to set of 25,000, and

then clustered using k-means into either 256 (denoted SIFT256) or 512 (denoted

SIFT512) clusters. The feature vector for an image is the normalized histogram of

the nearest clusters to the descriptors in the image.

GIST: The images are processed to obtain 960-dimensional GIST feature

vectors that is commonly used to describe scene structure.

We also extracted the features above from the center of the images, defined

as the centered rectangle with dimensions half those of the original image. This

yields a total of 10 different feature vectors. Since we are only concerned with the

diversity of the images, we ensure that the quality across the images are uniform

by normalizing each feature vector such that their L2 norm equals to 1. We then
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combine the feature vectors into 3 types of features- color, SIFT and GIST.

We denote these features for image i as f color
i , fSIFT

i , and fGIST
i , respectively. For

each subcategory, we model our data as a discrete 6-DPP on Ωsubcat with kernel

Lsubcat
i,j = exp

{
−
∑
feat

‖f feat
i − f feat

j ‖2
2

σcat
feat

}
(5.43)

for feat ∈ {color, SIFT,GIST} and i, j indexing the 64 images in Ωsubcat. Here, we

assume that each category has the same parameters across subcategories, namely,

σcat
feat for subcat ∈ cat and cat ∈ {cars, dogs, cities}.

To learn from the Top-6 images, we consider the samples as being generated from

a 6-DPP. To emphasize the human component of the 5-DPP + human annotation

sets, we examine a conditional 6-DPP [Kulesza and Taskar, 2012a] that fixes the

five images from the partial results set and only considers the probability of adding

the human annotated image. In general, given a partial set of observations A and

k-DPP kernel L, we can define the conditional k-DPP probability of choosing a

set B given the inclusion of set A (with |A|+ |B| = k)as

PkL(Y = A ∪B|A ∈ Y ) ∝ det(LAB) (5.44)

with

LA =
([

((L+ IAc)
−1]

Ac

)−1 − I (5.45)

where IAc denotes the identity matrix with 0 for diagonal corresponding to elements

in A. Here, following the N ×N inversion, the matrix is restricted to rows and

columns indexed by elements not in A, then inverted again. The normalizer is
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given by Kulesza and Taskar [2012a].

∑
|Y ′|=k−|A|

det(LAY ′) (5.46)

In our experiment, our samples can be seperated into the partial result sets

and human annotations,

X t
DPP+human = (At, bt) (5.47)

where At is the partial result sets and bt is the human annotated result, we model

the data from the conditional 6-DPP Lsubcat(bt|At). In this case, the likelihood is

given by

Li(Θcat) =
det(Li A

t

bt
(Θcat))∑N

i=1 L
i At
xi

(Θcat)
(5.48)

for each subcategory, i. That is, for each subcategory, i, we compute Li(Θcat) and

use Eq. (5.45) to compute the conditional kernel.

All subcategory samples within a category are assumed to be independent

draws from a DPP defined on Ωsubcat with kernel Lsubcat parameterized by a shared

set of σcat
feat, for subcat ∈ cat. As such, each of these samples equally informs the

posterior of σcat
feat. We perform posterior sampling of the 6-DPP or conditional

6-DPP kernel parameters using slice sampling with weakly informative inverse

gamma priors on the σcat
feat:

P(σcat
feat) = Inv-Gamma(0.001, 0.001) . (5.49)

Fig. 5.9 shows a comparison between σcat
feat learned from the human annotated

samples (conditioning on the 5-DPP partial result sets) and the Top-6 samples

for different categories. The results indicate that the 5-DPP + human annotated

samples differs significantly from the Top-6 samples in the features judged by
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human to be important in diversity in each category. For cars and dogs, human

annotators deem color to be a more important feature for diversity than the Google

search engine based on their Top-6 results. For cities, on the other hand, the SIFT

features are deemed important for diversity by human annotators, while the Google

search engine puts a much lower weight on them. Keep in mind, though, that

this result only highlights the diversity components of the results while ignoring

quality. In real life applications, it is desirable to combine both the quality of

each image (as a measure of relevance of the image to the query) and the diversity

between the top results. Regardless, we have shown that DPP kernel learning can

be informative of judgements of diversity, and this information could be used (for

example) to tune search engines to provide results more in accordance with human

judgement.

5.3.4 Learning Mixture Model Parameters

In Secs. 4.4.1 and 4.4.2, we introduced repulsive mixture modeling and repulsive

latent social clustering by putting a kDPP prior on the location parameters, {µk}

and performing Gibbs sampling to learn the mixture model. In many cases, a priori,

we have no information about the clusters variances and the amount of repulsion

that exists in the data. Instead of setting the hyperparameters to arbitrary values,

it is desirable to develop a more robust way to handle this.

We do this by learning the parameters in each iteration of the Gibbs sampling

using slice sampling as proposed in Sec. 5.1.3. In experiments in Secs. 4.4.1

and 4.4.2, we find that performing the slice sampling learning of the parameters in

each Gibbs iteration leads to results that are at least as good as setting σ2 = 1

and ρ2 = 1. Furthermore, this method is now robust to the scaling of the data as

the slice sampler will generate parameters that adapt to the amount of variance
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Figure 5.9: For the image diversity experiment, boxplots of posterior samples
of (from left to right) σcat

color, σ
cat
SIFT and σcat

GIST. Each plot shows results for human
annotated sets (left) versus Google Top 6 (right). Categories from top to bottom:
(a)cars, (b)dogs and (c)cities
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and repulsion among clusters.

5.4 Conclusion

Determinantal point processes have become increasingly popular in machine learn-

ing and statistics. While many important DPP computations are efficient, learning

the parameters of a DPP kernel is difficult due to the fact that the likelihood is

non-convex and that the likelihood and it’s gradient are either not known or not

computationally feasible in many scenarios. We proposed Bayesian approaches

using MCMC, in particular, for inferring these parameters. In addition to being

more robust and providing a characterization of the posterior uncertainty, these

algorithms can be modified to deal with large-scale and continuous DPPs. We also

showed how our posterior samples can be evaluated using moment matching as

a model-checking method. Finally we demonstrated the utility of learning DPP

parameters in studying diabetic neuropathy and evaluating human perception of

diversity in images. We also illustrated that we can perform full Bayesian inference

in mixture models by combining the continuous DPP sampling algorithm and the

learning of the kernel parameters.
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Chapter 6

Markov DPPs

While a discrete DPP is useful in selecting diverse subcollections, there are many

applications that require these subsets to be diverse not just individually but also

through time. For example, we might use a DPP to display a set of news headlines

that are relevant to a user’s interests while maintaining diversity, covering a variety

of topics. Suppose further that we are asked to sequentially select multiple diverse

sets of items, for example, displaying new headlines day-by-day. In this case we

want the subsets to be diverse across time, offering headlines today that are unlike

the ones shown yesterday. In this chapter, we construct a Markov DPP (M-DPP)

that models a sequence of random sets {Yt}. The proposed M-DPP defines a

stationary process that maintains DPP margins. Crucially, the induced union

process Zt ≡ Yt ∪ Yt−1 ∪ · · · ∪ Yt−p is also marginally DPP-distributed. Jointly,

these properties imply that the sequence of random sets are encouraged to be

diverse both at a given time step as well as across consecutive time steps. Figs. 6.1

and 6.2 illustrate the comparison between a sequence of independent samples

from a DPP and a sequence sampled from a first order M-DPP which introduces

diversity across two consecutive time-steps. This process can also be extended to

a higher order such that more than two consecutive subsets are jointly diverse.
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Figure 6.1: Sequence of samples drawn independently from a DPP. While DPP
points are diverse within each time steps, the union of subsets across consecutive
time-steps are not.

Fig. 6.3 illustrates the case for order 2. Actual samples from a 1-dimensional DPP

and M-DPP with Gaussian kernels are shown in Fig. 6.4.

Our specific construction of the M-DPP yields an exact sampling procedure

that can be performed in polynomial time. Additionally, we explore a method

for incrementally learning the quality of each item in the base set Y based on

externally provided preferences. In particular, a decomposition of the DPP kernel

matrix has an interpretation as defining the quality of each item and pairwise

similarities between items. Our incremental learning procedure assumes a well-

defined similarity metric and aims to learn features of items that a user deems

as preferable. These features are used to define the quality scores for each item.

The M-DPP aids in the exploration of items of interest to the user by providing

sequentially diverse results.
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Figure 6.2: Sequence of samples drawn from a first order Markov-DPP. Not only are
the M-DPP samples diverse within each time steps but the union of two consecutive
subsets are jointly diverse as well.

Figure 6.3: Sequence of samples drawn from a second order Markov-DPP. Not only
are the second order M-DPP samples diverse within each time steps but the union
of any of the three consecutive subsets are jointly diverse as well.
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DPP M-DPP

Time Time

Figure 6.4: A set of points on a line (y axis) drawn from a DPP independently
over time (left) and from a M-DPP (right). While DPP points are diverse only
within time steps (columns), M-DPP points are also diverse across time steps.

6.1 Markov DPPs (M-DPPs)

In certain applications, such as in the task of displaying news headlines, our goal

is not only to generate a diverse collection of items at one time point, but also to

generate collections of items at subsequent time points that are both highly relevant

and dissimilar to the previous collection. To address these goals, we introduce the

Markov determinantal point process (M-DPP), which emphasizes both marginal

and conditional diversity of selected items. Harnessing the quality and similarity

interpretation of the DPP in Eq. (2.11), the M-DPP provides a dynamic way of

selecting high quality and diverse collections of items as a temporal process. In

this section, we first explore the easier construction of a first order M-DPP/M-

kDPP including their sampling algorithms. We then extend this construction to

M-DPP/M-kDPP of higher order such that longer sequences of consecutive subsets

are ensured to be jointly diverse.
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6.1.1 First Order M-DPPs

We constructively define a first-order, discrete-time Markov point process on Y by

specifying a Markov transition distribution (and initial distribution). Throughout,

we use the notation {Yt}, Yt ⊆ Y , to represent a sequence of sets following a M-DPP.

We consider two such constructions: one based on marginal kernels, and the other

on L-ensembles. Both yield equivalent stationary processes with DPP margins.

Additionally, and quite intuitively, the induced union process {Zt ≡ Yt ∪ Yt−1}

has DPP margins with a closely related kernel. Combining these two properties,

we conclude that the constructed M-DPPs yield a sequence of sets {Yt} that are

diverse at any time t and across time steps t, t− 1.

Marginal construction. Let K be a marginal kernel with K ≺ 1
2
I (that is, all

the eigenvalues are non-negative and less than 1
2
). Define P(Y1 ⊇ A) = det(KA)

and

P(Yt ⊇ B|Yt−1 ⊇ A) =
det(KA∪B)

det(KA)
, (6.1)

where A∩B = ∅. Throughout, we adopt the implicit constraint that Yt∩Yt−1 = ∅.

We have immediately the joint probability

P(Y2 ⊇ B,Y1 ⊇ A) = det(KA∪B) , (6.2)

and therefore

P(Y2 ⊇ B) = P(Y2 ⊇ B,Y1 ⊇ ∅) = det(KB) . (6.3)

Inductively, the process is stationary and marginally DPP.
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Finally, we have the union of consecutive sets:

P(Zt ≡ Yt ∪ Yt−1 ⊇ C)

=
∑
A⊆C

P(Yt ⊇ C \ A,Yt−1 ⊇ A) =
∑
A⊆C

det(KC)

= 2|C| det(KC) = det((2K)C) . (6.4)

That is, Zt is marginally distributed as a DPP with marginal kernel 2K. Since a

randomly sampled subset of a DPP-distributed set also follows a DPP, marginally

we can imagine this process as sampling Zt and then splitting its elements randomly

into two sets, Yt−1 and Yt.

L-ensemble construction. The above is appealingly simple, but the marginal

form of the conditional in Eq. (6.1) is not particularly conducive to a sequential

sampling process. Instead, we can rewrite everything as L-ensembles. Assume that

at the first time step P(Y1 = Y1) =
det(LY1

)

det(L+I)
and define the transition distribution

as

P(Yt = Yt|Yt−1 = Yt−1) =
det(MYt∪Yt−1)

det(M + IY\Yt−1)
, (6.5)

for M = L(I−L)−1. Note that the transition distribution is essentially a conditional

DPP with L-ensemble kernel M (Eq. (2.5)). M is well-defined as long as L ≺ I,

which is equivalent to K ≺ 1
2
I, as in the marginal construction.

Now we have the joint probability

P(Y2 = Y2,Y1 = Y1) =
det(MY1∪Y2)

det(M + IY\Y1)

det(LY1)

det(L+ I)
. (6.6)
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Using the fact that det(M + IY\Y1)/ det(M + I) = det(LY1),

P(Y2 = Y2,Y1 = Y1) =
1

det(L+ I)

det(MY1∪Y2)

det(M + I)
. (6.7)

Therefore, marginally,

P(Y2 = Y2) =
∑
Y1⊆Y

1

det(L+ I)

det(MY1∪Y2)

det(M + I)

=
∑

(Y1∪Y2)⊇Y2

1

det(L+ I)

det(MY1∪Y2)

det(M + I)

=
det(M + IY\Y2)

det(L+ I) det(M + I)
=

det(LY2)

det(L+ I)
. (6.8)

Here, we used
∑

B⊇A det(MB) = det(M + IY\A), which is immediately derived

from Eq. (2.5). By induction, we conclude

P(Yt = Yt) =
det(LYt)

det(L+ I)
. (6.9)

Thus, our construction yields a stationary process with Yt marginally distributed

as a DPP with L-ensemble kernel L.

One can likewise analyze the margin of the induced union process {Zt ≡
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Yt ∪ Yt−1}:

P(Zt ≡ Yt ∪ Yt−1 = C)

=
∑
A⊆C

P(Yt = C \ A,Yt−1 = A)

=
∑
A⊆C

1

det(L+ I)

det(MC)

det(M + I)

=
2|C|

det(L+ I)

det(MC)

det(M + I)
(6.10)

=
1

det(L+ I)

det((2M)C)

det(M + I)
. (6.11)

Noting that

det(M + I) det(L+ I) = det((M + I)(L+ I))

= det((M + I)(I − (M + I)−1 + I))

= det(2M + 2I − I) = det(2M + I) , (6.12)

we conclude

P(Zt ≡ Yt ∪ Yt−1 = C) =
det((2M)C)

det(2M + I)
. (6.13)

We have shown that Zt is marginally distributed as a DPP with L-ensemble kernel

2M . The corresponding marginal kernel is

2M(2M + I)−1 = 2L(I − L)−1
[
(L+ I)(I − L)−1

]−1

= 2L(L+ I)−1 = 2K . (6.14)

Thus, we have reproduced the same characterization of Zt as in Eq. (6.4) for the

marginal kernel construction.
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To summarize the marginal properties of the M-DPP, using the notation

Y ∼ L,K to denote that Y is from a DPP with L-ensemble kernel L and marginal

kernel K, we have:

Yt ∼ L,K (6.15)

Zt ∼ 2L(I − L)−1, 2K . (6.16)

6.1.2 First Order Markov kDPPs

One can also construct a first order Markov kDPP (M-kDPP). Although we define

a stationary process, our construction does not yield Yt marginally kDPP. Instead,

it yields what we will call a thinned-kDPP which encourages the sets to be diverse

as well. However, the M-kDPP ensures that Zt ≡ Yt∪Yt−1 follows a 2kDPP. Since

Zt is encouraged to be diverse, the subsets Yt and Yt−1 will likewise be diverse

despite not following a kDPP themselves. Fig. 6.5 illustrates the process of drawing

from a thinned-kDPP.

We start by defining the margin and transition distributions:

P(Yt−1 = Yt−1) =

∑
|A|=k det(LYt−1∪A)(

2k
k

)∑
|B|=2k det(LB)

(6.17)

P(Yt = Yt|Yt−1 = Yt−1) =
det(LYt−1∪Yt)∑
|A|=k det(LYt−1∪A)

, (6.18)

where A and Yt are disjoint from Yt−1. Then, jointly

P(Yt = Yt,Yt−1 = Yt−1) =
det(LYt−1∪Yt)(

2k
k

)∑
|B|=2k det(LB)

, (6.19)
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Figure 6.5: Drawing a thinned− kDPP sample. First, samples are drawn from a
2kDPP. Then the set is thinned by randomly selecting half of the points in the set.

from which we confirm the stationarity of the process:

P(Yt = Yt) =

∑
|Yt−1|=k det(LYt∪Yt−1)(
2k
k

)∑
|B|=2k det(LB)

. (6.20)

The implied union process has margins

P(Zt ≡ Yt ∪ Yt−1 = C)

=
∑

A⊆C,|A|=k

P(Yt = C \ A,Yt−1 = A)

=
∑

A⊆C,|A|=k

det(LC)(
2k
k

)∑
|B|=2k det(LB)

=
det(LC)∑

|B|=2k det(LB)
, (6.21)

which is a 2kDPP with L-ensemble kernel L.
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Algorithm 11 Sampling from a Markov DPP
Input: matrix L
M ← L(I − L)−1

Y1 ← dpp-sample(L) using Alg. 1
for t = 2, . . . , T do

L(t) ←
(

(M + IY\Yt−1)−1
Y\Yt−1

)−1

− I
Yt ← dpp-sample(L(t)) using Alg. 1

Output: {Yt}

6.1.3 Sampling from First Order M-DPPs and M-kDPPs

In the previous subsections we showed how our constructions of M-(k)DPPs lead

to DPP (and DPP-like) marginals for {Yt} and the union process {Zt}. These

connections to DPPs give us valuable intuition about the diversity induced both

within and across time steps. They serve another purpose as well: since DPPs and

kDPPs can be sampled in polynomial time, we can leverage existing algorithms to

efficiently sample from M-DPPs and M-kDPPs.

To sample from M-DPPs, we will proceed sequentially, first sampling Y1 from the

initial distribution and then repeatedly selecting Yt from the transition distribution

given Yt−1. The initial distribution is a DPP with L-ensemble kernel L and

can therefore be sampled directly using Alg. 1. As we have shown, the transition

distribution Eq. (6.5) is a conditional DPP with L-ensemble kernel M = L(I−L)−1;

using Eq. (2.7), the L-ensemble kernel for Yt given Yt−1 = Yt−1 can be written as

L(t) =
(

(M + IY\Yt−1)−1
Y\Yt−1

)−1

− I . (6.22)

Thus we can sample simply and efficiently from a M-DPP using Alg. 11. The

runtime is O(TN3 +TNk3
max), where kmax is the maximum number of items chosen

at a single time step. Note that for constant kmax this is the same runtime as a

Kalman filter with a state vector of size N .
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Algorithm 12 Sampling from a Markov kDPP

Input: matrix L, size k
Z1 ← kdpp-sample(L, 2k) using Alg. 2
Y1 ← random half of Z1

for t = 2, . . . , T do

L(t) ←
(

(L+ IY\Yt−1)−1
Y\Yt−1

)−1

− I
Yt ← kdpp-sample(L(t), k) using Alg. 2

Output: {Yt}

To sample from M-kDPP, we can now use Alg. 12 to perform sequential sampling

for a M-kDPP. At first glance, the initial distribution (which is not a kDPP) seems

difficult to sample; however it can be obtained by harnessing the union process

form of Eq. (6.42) and first sampling a 2kDPP with L-ensemble kernel L and then

throwing away half of the resulting items at random. For this reason, we call this

process thinned-kDPP. Transitionally, we have a conditional kDPP whose kernel

can be computed as in Eq. (6.22). Alg. 12 summarizes the M-kDPP sampling

process, which runs in time O(TN3 + TNk3).

6.1.4 Higher Order M-DPPs

While we have shown that the first order M-DPP subsets are diverse at subsequent

time steps, this does not necessarily imply diversity at longer intervals. In fact, it

is possible for realizations to have oscillations, where groups of high-quality items

recur every two (or more) time steps. While our experiments (Sec. 6.3) suggest

that first order M-DPP oscillations do not arise in the task we study, it is useful to

construct higher order M-DPPs/M-kDPPs such that subsets are diverse across a

longer consecutive time steps. Here we extend the construction of the first order

M-DPPs to a higher order process.

Here we constructively define a pth-order, discrete-time autoregressive point

process on Y by specifying a Markov transition distribution (and initial distribution).
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We once again consider two such constructions: one based on marginal kernels, and

the other on L-ensembles. Both yield equivalent stationary processes with DPP

margins. Furthermore, the induced union process {Zt ≡ Yt∪Yt−1∪ · · ·∪Yt−p} has

DPP margins with a closely related kernel. We can conclude that the constructed

M-DPPs yield a sequence of sets {Yt} that are diverse at any time t and across

time steps t, t− 1, . . . , t− p.

Marginal construction. Let K be a marginal kernel with K ≺ 1
p+1

I. Define

P(Y1 ⊇ A) = det(KA) and

P(Yt ⊇ At|Yt−1 ⊇ At−1, . . . ,Yt−l ⊇ At−l) =
det(KAt∪At−1∪···∪At−l)

det(KAt−1∪At−2∪···∪At−l)
, (6.23)

for l = 1, . . . , p.

Once again, we assume that Yt ∩ Yt−1 ∩ . . . ∩ Yt−p = ∅. We have immediately

the joint probability

P(Yt ⊇ At,Yt−1 ⊇ At−1, . . . ,Yt−l ⊇ At−l) = det(KAt∪At−1∪···∪At−l
), (6.24)

for l = 1, . . . , p. and therefore

P(Yt ⊇ At) = P(Yt ⊇ At,Yt−1 ⊇ ∅, . . . ,Yt−l ⊇ ∅) = det(KAt) (6.25)

Inductively then, the process is stationary and marginally DPP. Finally, we

139



have the union of consecutive sets: for l = 1, 2, . . . , p,

P(Zt ≡ Yt ∪ Yt−1 ∪ · · · ∪ Yt−l ⊇ Cl)

=
∑
C1⊆C2

∑
C2⊆C3

· · ·
∑

Cl−1⊆Cl

P(Yt ⊇ Cl \ Cl−1,Yt−1 ⊇ Cl−1 \ Cl−2, · · · ,Yt−1 ⊇ C1)

=
∑
C1⊆C2

∑
C2⊆C3

· · ·
∑

Cl−1⊆Cl

det(KCl)

= (l + 1)|C| det(KCl) = det
(
((l + 1)K)Cl

)
. (6.26)

where we used the binomial expansion identity,
∑N

i=0

(
N
i

)
mi = (m+ 1)N for any

integer m.

Thus the union process of the l + 1 consecutive sets (with l ≤ p) is marginally

distributed as a DPP with marginal kernel (l+ 1)K. Note that we recover the first

order M-DPPs as a special case when p = 1.

L-ensemble construction. Once again, we can rewrite everything as L-ensembles.

Assume that at the first time step P(Y1 = Y1) =
det(LY1

)

det(L+I)
and define the transition

distribution as

P(Yt = At|Yt−1 = At−1, . . . ,Yt−l = At−l) =
det(M

(l)
At∪At−1∪···∪At−l

)

det(M (l) + IY\(At−1∪···∪At−l)
)
, (6.27)

where M (l) = L(I − lL)−1 for l = 1, . . . , p.

Note here that the transition distribution is a conditional DPP with L-ensemble

kernel M (l) (Eq. (2.5)). M is well-defined as long as L ≺ 1
p
I, which is equivalent

to K ≺ 1
p+1

I, as in the marginal construction.
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For t = 1, . . . , p+ 1, we now we have the joint probability

P(Yt = At,Yt−1 = At−1, . . . ,Y1 = A1)

=

[
t−1∏
i=1

det(M
(i)
Ai+1∪···∪A1

)

det(M (i) + IY\(Ai∪···∪A1))

]
det(LA1)

det(L+ I)
, (6.28)

Using the fact that det(M (l) + IY\Y )/ det(M (l) + I) = det(M
(l−1)
Y ) for l = 2, . . . , p

and det(M (1) + IY\Y )/ det(M (1) + I) = det(LY ),

P(Yt = At,Yt−1 = At−1, . . . ,Y1 = A1)

=

[
t−1∏
i=1

1

det(M (i) + I)

]
det(M

(t−1)
At∪···∪A1

)

det(L+ I)
, (6.29)

Using the fact that
∑

B⊇A det(M
(i)
B ) = det(M (i) + IY\A) from Eq. (2.5), marginally

we have

P(Yt = At)

=

[
t−1∏
i=1

1

det(M (i) + I)

] ∑
(A1∪A2∪...∪At)⊇(A1∪A2∪...∪At−1)

· · ·
∑

(A1∪A2)⊇A1

det(M
(t−1)
At∪···∪A1

)

det(L+ I)

=
det(LYt)

det(L+ I)
. (6.30)

By induction, we conclude that Yt is marginally distributed a a DPP with

kernel L for all t.

One can likewise analyze the margin of the induced union process {Zt ≡
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Yt ∪ Yt−1 ∪ Y1} for t = 2, . . . , p+ 1:

P(Zt ≡ Yt ∪ Yt−1 ∪ Y1 = Ct)

=
∑
C1⊆C2

∑
C2⊆C3

· · ·
∑

Ct−1⊆Ct

P(Yt = Ct \ Ct−1,Yt−1 = Ct−1 \ Ct−2, · · · ,Y1 = C1)

=
∑
C1⊆C2

∑
C2⊆C3

· · ·
∑

Cl−1⊆Cl

[
t−1∏
i=1

1

det(M (i) + I)

]
det(M

(t−1)
Ct

)

det(L+ I)

= t|Ct|

[
t−1∏
i=1

1

det(M (i) + I)

]
det(M

(t−1)
Ct

)

det(L+ I)
, (6.31)

where we once again used the binomial expansion identity,
∑N

i=0

(
N
i

)
mi = (m+1)N

for any integer m. Noting that

[
t−1∏
i=1

det(M (i) + I)

]
det(L+ I) =

[
t−1∏
i=1

det(L(I − iL)−1 + I)

]
det(L+ I)

= det
(
tM (t−1) + I

)
, (6.32)

by induction, we conclude that for l = 1, . . . , p:

P(Zt ≡ Yt ∪ Yt−1 ∪ Yt−l = C) =
det
(
((l + 1)M (l))C

)
det ((l + 1)M (l) + I)

. (6.33)

We have shown that the union of l+1 consecutive sets (for l = 1, . . . , p) is marginally

distributed as a DPP with L-ensemble kernel (l + 1)M (l). The corresponding

marginal kernel is

(l + 1)M (l)
[
(l + 1)M (l) + I

]−1
= (l + 1)L(I − lL)−1

[
(l + 1)L(I − lL)−1 + I

]−1

= (l + 1)L(L+ I)−1 = (l + 1)K . (6.34)

recovering our marginal kernel construction.
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For l = 1, . . . , p, we can summarize the process as follows:

Yt ∼ L,K, (6.35)

Yt ∪ Yt−l ∪ · · · ∪ Yt−l ∼ (l + 1)L(I − lL)−1, (l + 1)K. (6.36)

In particular,

Yt ∪ Yt−1 ∪ · · · ∪ Yt−p ∼ (p+ 1)L(I − pL)−1, (p+ 1)K. (6.37)

6.1.5 Higher Order M-kDPP

We now consider a pth order M-kDPP. For l = 1, . . . , p+ 1, we start by defining

the initial and transition distributions:

P(Y1 = A1) =

∑
|A|=pk det(LA1∪A)(

(p+1)k
k

)∑
|B|=(p+1)k det(LB)

(6.38)

P(Yt = At|Yt−1 = At−1, . . . ,Yt−l = At−l)

=

∑
|A|=(p−l)k det(LAt∪···∪At−l∪A)(

(p−l+1)k
k

)∑
|B|=(p−l+1)k det(LAt−1∪···∪At−l∪B)

, (6.39)

where A and Ai, i = t, t−1, . . . , t−l are all disjoint. Then, jointly for l = 1, . . . , p+1,

P(Yl = Al,Yl−1 = Al−1, . . . ,Y1 = A1) =

∑
|A|=(p−l)k det(LAt∪···∪At−l∪A)[∏l

i=0

(
(p−i+1)k

k

)]∑
|B|=(p+1)k det(LB)

,

(6.40)

from which we confirm the stationarity of the process:

P(Yl = Al) =

∑
|A|=pk det(LAt∪A)(

(p+1)k
k

)∑
|B|=(p+1)k det(LB)

. (6.41)
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By induction, the above marginal holds for all t. The implied union process

has margins

P(Zt ≡ Yt ∪ Yt−1 ∪ Yt−l = Cl+1)

=
∑

C1⊆C2,|C1|=k

∑
C2⊆C3,|C2|=2k

· · ·
∑

Cl⊆Cl+1,|Cl|=lk

P(Yt = Cl+1 \ Cl, . . . ,Yt−l = C1)

=
∑

C1⊆C2,|C1|=k

∑
C2⊆C3,|C2|=2k

· · ·
∑

Cl⊆Cl+1,|Cl|=lk

∑
|A|=(p−l)k det(LCl+1

)[∏l
i=0

(
(p−i+1)k

k

)]∑
|B|=(p+1)k det(LB)

=

∑
|A|=(p−l)k det(LCl+1∪A)(

(p−l+1)k
k

)∑
|B|=(p+1)k det(LB)

. (6.42)

In particular,

P(Zt ≡ Yt ∪ Yt−1 ∪ Yt−p = C) =
det(LC)∑

|B|=(p+1)k det(LB)
, (6.43)

which is a k-DPP. So in summary, marginally, Yt is stationary, distributed as a

thinned-kDPP.

The union process of l+ 1 consecutive sets (with l = 1, . . . , p) is also stationary,

distributed as another thinned-kDPP.

Finally, the union process of p+ 1 consecutive sets is stationary, distributed as

a (p+ 1)kDPP.

6.1.6 Sampling from Higher Order M-DPPs and M-kDPPs

To sample from a higher order MDPP, we first sample, we first sample Y1 from

a DPP with kernel L. We then sequentially select Yt given the previous samples

using

L(t) =
(

(M (t−1) + IY\Yt−1∪···∪Y1)−1
Y\Yt−1∪···∪Y1

)−1

− I . (6.44)
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for t = 2, . . . , p+ 1. From then onwards, we sample the subsequent sets using the

kernel

L(t) =
(

(M (p) + IY\Yt−1∪···∪Yt−p)
−1
Y\Yt−1∪···∪Yt−p

)−1

− I . (6.45)

We highlight this in Alg. 13.

To sample from a pth order Markov k-DPP, we first draw from the initial

distribution by sampling from a (p+ 1)k-DPP with kernel L and throwing away

pk of the resulting items at random. Subsequently, for t = 2, . . . , p+ 1 we sample

from a (p− t+ 2)kDPP with the conditional kernel given by

L(t) =
(

(L+ IY\Yt−1∪...∪Y1)−1
Y\Yt−1∪...∪Y1

)−1

− I . (6.46)

and we randomly throw away (p − t + 1)k of the resulting samples at random.

From then on, we sample from a k-DPP with conditional kernel

L(t) =
(

(L+ IY\Yt−1∪···∪Yt−p)
−1
Y\Yt−1∪···∪Yt−p

)−1

− I . (6.47)

We highlight this in Alg. 14.

6.2 Learning User Preferences

A broad class of problems suited to M-(k)DPP modeling are also applications in

which we would like to learn preferences from a user over time. Recall the news

headlines scenario. Here, the goal is to present articles on a daily basis that are

both relevant to the user’s interests and also non-redundant. With feedback from a

user in the form of click-through behavior, we can attempt to simultaneously learn

features of the articles that the user regards as preferable. While the diversity
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Algorithm 13 Sampling from a pth Order Markov DPP
Input: matrix L
Y1 ← dpp-sample(L) using Alg. 1
for t = 2, . . . , p+ 1 do
M (t−1) ← L(I − (t− 1)L)−1

L(t) ←
(

(M + IY\Yt−1∪,...∪Y1)−1
Y\Yt−1∪...∪Y1

)−1

− I
Yt ← dpp-sample(L(t)) using Alg. 1

M (p) ← L(I − pL)−1

for t = p+ 2, . . . , T do

L(t) ←
(

(M (p) + IY\Yt−1∪,...∪Yt−p)
−1
Y\Yt−1∪...∪Yt−p

)−1

− I
Yt ← dpp-sample(L(t)) using Alg. 1

Output: {Yt}

Algorithm 14 Sampling from a Higher Order Markov kDPP

Input: matrix L, size k
Z1 ← kdpp-sample(L, (p+ 1)k) using Alg. 2
Y1 ← random k of Z1

for t = 2, . . . , p+ 1 do

L(t) ←
(

(L+ IY\Yt−1∪,...∪Y1)−1
Y\Yt−1∪,...∪Y1

)−1

− I
Zt ← kdpp-sample(L(t), (p− t+ 2)k) using Alg. 2
Yt ← random k of Zt

for t = p+ 2, . . . , T do

L(t) ←
(

(L+ IY\Yt−1∪,...∪Yt−p)
−1
Y\Yt−1∪,...∪Yt−p

)−1

− I
Zt ← kdpp-sample(L(t), k) using Alg. 2

Output: {Yt}

offered by a M-DPP is intrinsically valuable for this task, e.g., to keep the user

from getting bored, in the context of learning it also has an important secondary

benefit: it promotes exploration of the preference space.

Consider the following simple learning setup. At each time step t, the algorithm

shows the user a set of k items drawn from some base set Yt, for instance, articles

from the day’s news. The user then provides feedback by identifying each shown

item as either preferred or not preferred, perhaps by clicking on the preferred ones.

The algorithm then incorporates this feedback and proceeds to the next round.

The learner has two goals. First, as often as possible at least some of the items
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shown to the user should be preferred. Second, over the long term, many different

items preferred by the user should be shown. In other words, the algorithm should

not focus on a small set of preferred items.

Perhaps the most important consideration in this framework is balancing

showing articles that the user is known to like (exploitation) against showing a

variety of articles so as to discover new topics in which the user is also interested

(exploration). Neither extreme is likely to be successful. However, using the

L-ensemble kernel decomposition in Eq. (2.11), a DPP seeks to propose sets of

items that are simultaneously high quality and diverse. The M-DPP takes this a

step further and encourages diversity from step to step while maintaining DPP

margins, exposing the user to an even greater variety of items without significantly

sacrificing quality. Thus, we might expect that M-(k)DPPs can be used to enable

fast and successful learning in this setting.

The tradeoff between exploration and exploitation is a fundamental issue for

interactive learning, and has received extensive treatment in the literature on

multi-armed bandits. However, our setup is relatively unusual for two reasons.

First, we show multiple items per time step, sometimes called the multiple plays

setting [Anantharam et al., 1987]. Second, we use feature vectors to describe the

items we choose, allowing us to generalize to unseen items (e.g., new articles); this

is a special case of contextual bandits [Langford and Zhang, 2007]. Each of these

scenarios has received some attention on its own, but it is only in combination

that a notion of diversity becomes relevant, since we have both the need to select

multiple items as well as a basis for relating them. This combination has been

considered recently by Yue and Guestrin [2011], who showed an algorithm that

yields bounded regret under the assumption that the reward function is submodular.

Here, on the other hand, our goal is primarily to illustrate the empirical effects
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on learning when the items shown at each time step are sampled from a M-DPP.

To that end, we propose a very simple quality learning algorithm that appears to

work well in practice. Whether formal regret guarantees can be established for

learning with M-DPPs is an open question for future work.

6.2.1 Setup

To naturally accommodate user feedback and transfer knowledge across items, we

will consider algorithms that learn a log-linear quality model assigning item i the

score

qi = exp(θ>fi) , (6.48)

where fi ∈ Rm is a known feature vector for item i and θ ∈ Rm is the parameter

vector to be learned. Learning iterates between two distinct steps: (1) sampling

articles according to the current quality scores and (2) using user feedback to revise

the quality scores via updates to θ.

Let θ(t) denote the parameter vector prior to time step t and let q
(t)
i denote the

corresponding quality scores for the items i ∈ Yt. We initialize θ(1) = 0 so that

q
(1)
i = 1 for all i ∈ Y1. (At this point we are effectively in a purely exploratory

mode.) Denote the items preferred by the user at iteration t by {a(t)
i }Rti=1, and the

non-preferred items by {b(t)
i }Sti=1. Inspired by standard online algorithms, we define

the parameter update rule as follows:

θ(t+1) ← θ(t) + η

(
1

Rt

Rt∑
i=1

f
a

(t)
i
− 1

St

St∑
i=1

f
b
(t)
i

)
(6.49)

That is, we add to θ the average features of the preferred items, and subtract from

θ the average features of non-preferred items. This increases the quality of the
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former and decreases the quality of the latter. η is a learning rate hyperparameter.

We can then proceed to the next time step, computing the new quality scores

q
(t+1)
i = exp(θ(t+1)>fi) for each i ∈ Yt+1.

The updated quality scores are then used to select subsequent items to be

shown to the user. In order to separate the challenges of learning the quality scores,

which is not our primary interest, from the benefits of incorporating the M-DPP,

we consider five sampling methods:

• Uniform. We ignore the quality scores and choose k items uniformly at

random without replacement.

• Weighted. We draw k items with probabilities proportional to their quality

scores without replacement.

• kDPP. We sample the set of items from a kDPP with L-ensemble kernel L

given by the decomposition in Eq. (2.11), where φ is fixed in advance and qi

are the current quality scores.

• kDPP + heuristic (threshold). We sample the set of items from a

kDPP after removing articles whose similarity to the previously selected

articles exceeds a predetermined threshold. At threshold > 1, the heuristic

is equivalent to the kDPP.

• M-kDPP. We sample the set of items from the first order M-kDPP transition

distribution given the items selected at the previous time step. The L-

ensemble transition kernel is as in Eq. (6.22), with L defined as for the

kDPP.

The learning algorithm is summarized in Alg. 15.
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Algorithm 15 Interactive learning of quality scores

Input: learning rate η
θ(1) ← 0
for t = 1, 2, . . . do
q

(t)
i ← exp(θ(t)>fi) ∀i ∈ Yt

Select items to display given q
(t)
i

(using one of the methods described in Sec. 6.2.1)

Receive user feedback {a(t)
i }Rti=1 and {b(t)

i }Sti=1

θ(t+1) ← θ(t) + η
(

1
Rt

∑Rt
i=1 fa(t)

i
− 1

St

∑St
i=1 fb(t)i

)

6.2.2 Likelihood Based Alternatives

Instead of the additive learning rule proposed above, one could instead take

advantage of the probabilistic nature of the M-DPP and perform likelihood-based

learning, which has associated theoretical guarantees. In particular, based on

a sequence of user feedback, we could solve for the penalized DPP maximum

likelihood estimate of q(t) = [q
(t)
1 , . . . , q

(t)
N ] as:

arg max
q

t∏
t=1

Pq({a(t)
i } ⊆ Yt, {b(t)

i } ∩ Yt = ∅) + λ||q||2, (6.50)

where Pq is a DPP with L-ensemble kernel defined by quality scores q and λ is a

regularization parameter. We have

Pq({a(t)
i } ⊆ Yt, {b(t)

i } ∩ Yt = ∅)

=
(

1− Pq({b(t)
i } ⊆ Yt | {a(t)

i } ⊆ Yt)
)
· Pq({a(t)

i } ⊆ Yt), (6.51)

which has computable terms in a DPP given the quality scores q. The M-DPP has

obvious extensions. However, in both cases the objective function is not convex

so computations are intensive and only converge to local maxima. Due to its

simplicity and good performance in practice (see Sec. 6.3.2), we use the heuristic

algorithm described previously for illustrating the behavior of the M-DPP.
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6.3 Experiments

We study the performance of the M-kDPP for selecting daily news items from

a selection of over 35,000 New York Times newswire articles obtained between

January and June of 2005 as part of the Gigaword corpus [Graff and Cieri, 2009].

On each day of a given week, we display 10 articles from a base set of the roughly

1400 articles written that week. This process is repeated for each of the 26 weeks

in our dataset. The goal is to choose a collection of articles that is high quality

but also diverse, both marginally and between time steps.

To examine performance in the absence of confounding issues of quality learning,

we first consider a scenario in which the quality scores are fixed. Here, we measure

both the diversity and quality of articles chosen each day by the different methods.

We then turn to quality learning based on user feedback to examine how the

properties of the M-kDPP influence the discovery of a user’s preferences.

6.3.1 Fixed Quality

Similarity To generate similarity features φi, we first compute standard normal-

ized term frequency - inverse document frequency (tf-idf) vectors for document i.

For each term, t, in the corpus, we computed the term frequency:

TFi(t) =
Number of times term t appears in document i

Number of terms in document i
(6.52)

and the inverse document frequency:

IDFi(t) = log

(
Total number of documents corpus

Number of documents with term t in it

)
. (6.53)
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The element t of the tf-idf vectors for document i is then given by

TF -IDFi(t) = TFi(t)× IDFi(t). (6.54)

The idf scores are computed across all 26 weeks worth of articles. We then compute

the cosine similarity between all pairs of articles. Due to the sparsity of the tf-idf

vectors, these similarity scores tend to be quite low, leading to poor diversity if

used directly as a kernel matrix. Instead, we let the similarity features be given

by binary vectors where the jth coordinate of φi is 1 if article j is among the 150

nearest neighbors of article i in that week based on our cosine distance metric, and

0 otherwise.

Quality In the fixed scenario, we need a way to assign quality scores to articles.

A natural approach is to score articles based on their proximity to the other articles;

this way, an article that is close to many others (as measured by cosine similarity)

is considered to be of high quality (i.e. articles in popular topics). In this data

set, for example, we find that there is a large cluster of articles that talk about

politics and articles that fall under this topic generally have much higher quality

than articles that talk about, say, food. To model this, we compute quality scores

as qi = exp(αdi), where di is the sum of the cosine similarities between article i

and all other articles in our collection and α is a hyperparameter that determines

the dynamic range. We chose α = 5 for our data set, although a range of values

gave qualitatively similar results.

For each method, we sample sets of articles on a daily basis for each of the 26

weeks. To measure diversity within a time step, we compute the average cosine

similarity between articles chosen on a given day. We then subtract the result

from 1 so that larger values correspond to greater diversity. Diversity between
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Table 6.1: Average Diversity and Quality of Selected Articles

Method Marginal 1-step 2-step Quality
diversity diversity diversity

M-kDPP 0.899 0.849 0.843 0.654
k-DPP 0.896 0.786 0.779 0.668

k-DPP + heuristic (0.4) 0.904 0.849 0.804 0.651
k-DPP + heuristic (0.2) 0.946 0.891 0.889 0.587

Weighted Rand. 0.750 0.681 0.677 0.756
Uniform Rand. 0.975 0.949 0.947 0.457

time steps is obtained by measuring the average cosine similarity between each

article at time t and the single most similar article at time t+ 1 (or t+ 2 for 2-step

diversity), and again subtracting the result from 1. We also report the average

quality score of the articles chosen across all 182 days. All measures are averaged

over 100 random runs; statistical significance is computed by bootstrapping.

Table 6.3.2 displays the results for all methods. The M-kDPP shows a marked

increase in between-step diversity, on average, compared to the kDPP and weighted

random sampling. All of the differences are significant at 99% confidence. The

average marginal diversities for the M-kDPP and kDPP are statistically significantly

higher than for weighted random sampling, but are not statistically significantly

different from each other. This is to be expected since, as we have seen in Sec. 6.1,

the marginal distribution for the M-kDPP does not greatly differ from the kDPP

process. On the other hand, the uniform sampling shows much higher diversity

than the other methods, which can be attributed to the fact that it is a purely

exploratory method that ignores the quality of the articles it chooses.

Table 6.3.2 also shows the average quality of the selected articles. The weighted

random sampling chooses, on average, higher quality articles compared to the rest

of the methods since it does not have to balance issues of diversity within the set.

The kDPP on average chooses slightly higher quality articles than the M-kDPP,
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Figure 6.6: Performance of the methods at recovering the preselected preferred
articles. Solid lines indicate the mean over 100 random runs, and dashed lines
indicate the corresponding confidence intervals, computed by bootstrapping.

perhaps due to the additional between-step diversity sought by the M-kDPP;

however, the difference is not statistically significant. It is evident from Table 6.3.2

that the M-kDPP achieves a balance between the diversity of the articles it chooses

(both marginally and across time steps) and their quality.

As for the kDPP + heuristic baseline, our experiments show that by tuning the

threshold carefully we can mimic the performance of the M-kDPP, but without

the associated probabilistic interpretation and theoretical properties. When the

threshold is too low, quality degrades significantly.

6.3.2 Learning Preferences

We also study the performance of the M-kDPP when learning from user feedback,

as outlined in Sec. 6.2. For simplicity, we use only a week’s worth of news articles

(1427 articles). To create feature vectors, we first generate topics by running LDA

on the entire corpus [Blei et al., 2003]. We then manually label the most prevalent

10 topics as finance, health, politics, world news, baseball, football, arts, technology,
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entertainment, and justice, and associate each article with its LDA-inferred mixture

of these topics (a 10-dimensional feature vector fi). We define a synthetic user

by a sparse topic preference vector (0.7 for finance, 0.2 for world news, 0.1 for

politics, and 0 for all other topics), and preselect as “preferred” the 200 articles

whose feature vectors fi maximize the dot product with the user preference vector.

Similar to our previous experiment, we define the similarity features between

articles to be binary vectors based on 50 nearest neighbors using the tf-idf cosine

distances. The quality is defined as in Sec. 6.2, q
(t)
i = exp(θ(t)>fi), where fi is

the feature vector of article i (based on the mixture of topics) normalized to sum

to 1. We set the learning rate η = 2; however, varying η did not change the

qualitative behavior of each method, only the time scale at which these behaviors

became noticeable. We also note that although we base the similarity on 50 nearest

neighbors, the results were not sensitive to the size of this neighborhood.

The goal of this experiment is to illustrate how the different methods balance

between exploring the space of all articles to discover the 200 preselected articles

(recall) and exploiting a learned set of features to keep showing preferred articles

(precision). On one end of the spectrum, uniform sampling simply explores the

space of articles without taking advantage of the user feedback, leading to high

recall and low precision. On the other end, the weighted random sampling fully

exploits the learned preference in selecting articles, but does not have a mechanism

to encourage exploration. We demonstrate that the M-kDPP balances these two

extremes, taking advantage of the user feedback while also exploring diverse articles.

Results We use each method to select 10 articles per day over a period of 100

days, using the current quality scores q(t) on each day t. We measure recall by

keeping track of the fraction of preselected preferred articles (out of the 200 total)

that have been displayed so far. We also compute, out of the 10 articles shown on
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Figure 6.7: Cumulative fraction of preferred articles displayed to the user.

a given day, the fraction that are preferred. This serves as a measure of precision.

All measures are averaged over 100 random runs.

Figure 6.6 shows the recall performance of the methods we tested. Uniform

sampling discovers the articles at a somewhat linear rate of about 5% per day;

given a larger base set relative to the size of the preferred set, however, we would

expect a slower rate of discovery. The methods that incorporate user feedback

discover a larger set of preferred articles more rapidly by harnessing learned features

of the user’s interests. The M-kDPP dominates both the kDPP and weighted

random sampling in this metric since it encourages exploration by introducing

both marginal and between-step diversity of displayed articles. In contrast, the

kDPP does not penalize repeating similar marginally diverse sets and the weighted

random sampling does not have any explicit mechanism for exploration. It takes

uniform random sampling nearly 100 time steps to discover the same number of

unique preferred articles as the M-kDPP. For the sake of clarity, we omit the results

of kDPP + heuristic with threshold 0.4 since they are not statistically significantly

different from the M-kDPP. Figure 6.8 shows the headlines of the articles shown
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Method Avg. marginal Between-step
diversity diversity

M-kDPP 0.766 0.738
k-DPP 0.753 0.512

Weighted Rand. 0.716 0.362
Uniform Rand. 0.975 0.964

Table 6.2: Diversity of the articles chosen on days 99 and 100.

on days 99 and 100 by all four methods during a single randomly selected trial.

Yellow highlighting indicates the article headlines that are in the preselected pool

of preferred articles, while the red borders indicate articles that appear on two

consecutive days.

We observe that weighted random sampling has high precision, with all articles

displayed in both days coming from the preselected pool. Notice, however, that five

articles are repeated within the the two days. Compare this with uniform sampling,

which did not display any articles twice in the two days, but only manages to

display two preselected articles each day. The kDPP has high precision, but again

suffers from a similar repeating of articles as seen in the weighted random sampling.

The M-kDPP on the other hand does a better job overall, having a high precision

for the two days without any repeat articles. Table 6.2 shows the marginal diversity

and the between-step diversity on those two days. We observe M-kDPP chooses

more diverse articles compared to the kDPP and weighted random sampling.

Fig. 6.7 shows the cumulative fraction of displayed articles that were preferred,

reflecting precision. All methods besides uniform sampling quickly achieve high

precision. Weighted random sampling displays the largest number of preferred

articles per day, almost always having precision of at least 0.9. However, as we

have observed, this large precision is at the cost of lower recall. In particular,

weighted random sampling quickly homes in on features related to a small subset
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ENERGY	  INDUSTRY	  MAY	  STILL	  BE	  WORTH	  TAPPING	  INTO	   ENERGY	  INDUSTRY	  MAY	  STILL	  BE	  WORTH	  TAPPING	  INTO	  
NEW	  OIL	  INVESTORS	  MAY	  BRING	  MORE	  VOLATILE	  PRICES	   NEW	  OIL	  INVESTORS	  MAY	  BRING	  MORE	  VOLATILE	  PRICES	  
OPEC	  STRIVES	  TO	  REGAIN	  CLOUT	  BY	  ADDING	  CAPACITY	   OPEC	  STRIVES	  TO	  REGAIN	  CLOUT	  BY	  ADDING	  CAPACITY	  

BOND	  INVESTORS	  FACE	  RATE	  THREAT	   BOND	  INVESTORS	  FACE	  RATE	  THREAT	  
RUNNING	  WITH	  THE	  BULLS	   RUNNING	  WITH	  THE	  BULLS	  

RELEASE	  OF	  FED	  MINUTES	  HURTS	  MARKET	   GLOBAL	  MARKETS	  POISED	  TO	  EXTEND	  THEIR	  GAINS	  
BEHIND	  THE	  BOUNCING	  BALL	  OF	  OIL	  PRICES	   FOR	  COMMODITIES,	  HOPE	  IS	  RISING	  

EDITORIAL:	  THE	  SAUDI	  SYNDROME	   FED	  NOTES	  DISCLOSE	  WORRIES	  THAT	  INFLATION	  MAY	  PICK	  UP	  
A	  RETURN	  TO	  NORMAL	   LET'S	  PLAY	  HEDGE	  FUND	  
KC-‐BLOCK-‐BUSINESS	   EMPLOYERS	  ADD	  157,000	  JOBS	  IN	  DECEMBER	  

(a) Weighted random sampling
ADVANCE	  FOR	  SUNDAY,	  JAN.	  9	  CORPORATE	  GADFLY	  PAYS	  

STEEP	  PRICE	  TO	  SEEK	  JUSTICE	  
NO	  'SMOKING	  GUN'	  IN	  THE	  INQUIRY	  INTO	  IRAQ'S	  PREWAR	  OIL	  

SALES	  
GENZYME	  PUTS	  ITS	  MONEY	  ON	  CANCER	  DRUGS	   BRISTOL-‐MYERS	  SEEKS	  TO	  SELL	  EXCEDRIN	  LINE	  

KC-‐GARMIN	  -‐-‐	  BUSINESS	   2	  SHOWS	  OFFER	  FEAST	  OF	  VISUALS	  FROM	  FAR	  EAST	  
'TOO	  MUCH	  LIGHT	  MAKES	  THE	  BABY	  GO	  BLIND':	  DON'T	  BLINK,	  

YOU	  MAY	  MISS	  THE	  SHOW	  
CHANGE	  OF	  COURSE	  IN	  HOUSE	  ETHICS	  RULE	  MEANS	  DELAY	  

WOULD	  LOSE	  LEADERSHIP	  POST	  IF	  INDICTED	  BY	  TEXAS	  GRAND	  
JURY	  

1-‐3-‐05	  WINTER	  TIME	  TO	  PLAN,	  PRUNE,	  AND	  EVEN	  PLANT	   CUPID	  COMES	  CALLING	  65	  YEARS	  LATER	  COUPLE	  REKINDLES	  
ROMANCE	  DECADES	  AFTER	  THEIR	  FIRST	  AND	  ONLY	  DATE	  

AMERICANS	  LET	  THEIR	  TASTE	  TROT	  THE	  GLOBE	   SHIRLEY	  CHISHOLM,	  80,	  FIRST	  BLACK	  CONGRESSWOMAN	  
IRAQ	  WAR	  PUSHES	  U.S.	  NATIONAL	  GUARD	  INTO	  NEW	  ROLES	   IN	  DICK	  CLARK'S	  ABSENCE,	  OTHERS	  FILL	  THE	  VACUUM	  

CDC	  SENDS	  CREW	  TO	  HELP	  AFTER	  QUAKE	   HILLS	  OF	  TENNESSEE	  TOUGH	  PLACE	  TO	  TAKE	  A	  WHIZZER	  
'THE	  WILL':	  ONE	  AGING	  RICH	  GUY,	  10	  HEIRS,	  MACHINATIONS	  

AND	  PLASTIC	  SURGERY	  
TRIAL	  BEGINS	  FOR	  SIX	  MEN	  ACCUSED	  OF	  PLOTTING	  TO	  BOMB	  

U.S.	  EMBASSY	  
USC	  MOVING	  TOWARD	  A	  DYNASTY	   SHARED	  IN	  SRI	  LANKA	  

(b) Uniform random sampling
NEW	  OIL	  INVESTORS	  MAY	  BRING	  MORE	  VOLATILE	  PRICES	   NEW	  OIL	  INVESTORS	  MAY	  BRING	  MORE	  VOLATILE	  PRICES	  

GLOBAL	  MARKETS	  POISED	  TO	  EXTEND	  THEIR	  GAINS	   GLOBAL	  MARKETS	  POISED	  TO	  EXTEND	  THEIR	  GAINS	  
OPEC	  STRIVES	  TO	  REGAIN	  CLOUT	  BY	  ADDING	  CAPACITY	   OPEC	  STRIVES	  TO	  REGAIN	  CLOUT	  BY	  ADDING	  CAPACITY	  

ECONOMY	  ADDED	  157,000	  JOBS	  IN	  DECEMBER	   IN	  NATURAL	  RESOURCES	  FUNDS,	  HOW	  LONG	  WILL	  THE	  
BATTERIES	  LAST?	  

RUNNING	  WITH	  THE	  BULLS	   A	  RETURN	  TO	  NORMAL	  
ENERGY	  INDUSTRY	  MAY	  STILL	  BE	  WORTH	  TAPPING	  INTO	   KC-‐BLOCK-‐BUSINESS	  

DRUBBING	  OF	  THE	  DOLLAR:	  DANGEROUS	  OR	  THERAPEUTIC?	   CHINESE	  AUTOMAKER'S	  PLAN	  TO	  SELL	  CARS	  IN	  U.S.	  FACES	  
HURDLES	  

SUGHED:	  GET	  READY	  FOR	  HIGHER	  HOME	  INSURANCE	  BILLS	   FED	  NOTES	  DISCLOSE	  WORRIES	  THAT	  INFLATION	  MAY	  PICK	  UP	  
FOR	  COMMODITIES,	  HOPE	  IS	  RISING	   BOND	  INVESTORS	  FACE	  RATE	  THREAT	  
EDITORIAL:	  TROUBLE	  IN	  THE	  FORESTS	   AS	  GEOPOLITICS	  TAKES	  HOLD,	  CHEAP	  OIL	  RECEDES	  INTO	  PAST	  

(c) kDPP
MARKET	  WORRIES	  ARE	  WANING,	  ANALYSTS	  SAY	   FED	  NOTES	  DISCLOSE	  WORRIES	  THAT	  INFLATION	  MAY	  PICK	  UP	  

A	  RETURN	  TO	  NORMAL	   EDITORIAL:	  THE	  SAUDI	  SYNDROME	  
EMPLOYERS	  ADD	  157,000	  JOBS	  IN	  DECEMBER	   FOR	  COMMODITIES,	  HOPE	  IS	  RISING	  

ONLINE	  EXIT	  INTERVIEWS	  REVEAL	  MORE	  HONESTY	   IN	  NATURAL	  RESOURCES	  FUNDS,	  HOW	  LONG	  WILL	  THE	  
BATTERIES	  LAST?	  

ENERGY	  INDUSTRY	  MAY	  STILL	  BE	  WORTH	  TAPPING	  INTO	   NEW	  OIL	  INVESTORS	  MAY	  BRING	  MORE	  VOLATILE	  PRICES	  
MARKET	  PLACE:	  CASH	  FLOW	  IN	  '04	  FOUND	  ITS	  WAY	  INTO	  

DIVIDENDS	  
ECONOMY	  ADDED	  157,000	  JOBS	  IN	  DECEMBER	  

NETWORTH	  -‐-‐	  COLUMN	  INTEREST	  RATES	  EXPECTED	  TO	  RISE	   ARCHIPELAGO	  MAKES	  BID	  FOR	  PACIFIC	  EXCHANGE	  
RUNNING	  WITH	  THE	  BULLS	   LET'S	  PLAY	  HEDGE	  FUND	  

U.S.	  IS	  FACING	  A	  CHOICE	  AND	  AN	  OPPORTUNITY	  AT	  AID	  TALKS	  
IN	  JAKARTA	  

OPEC	  STRIVES	  TO	  REGAIN	  CLOUT	  BY	  ADDING	  CAPACITY	  

FUNDS	  LEARN	  TO	  GAUGE	  THE	  DOLLAR	   ECONOMIC	  VIEW:	  BEHIND	  THE	  BOUNCING	  BALL	  OF	  OIL	  PRICES	  

(d) M-kDPP

Figure 6.8: Headlines selected on days 99 (left) and 100 (right). Yellow highlighting
indicate articles from the preselected pool of preferred articles and red boxes outline
repeated articles chosen on both days.
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Figure 6.9: The fraction of preferred articles displayed to user at each time step
for a single trial.

of preferred articles, thereby increasing the probability of them being repeatedly

selected with no force to counteract this behavior. As expected, by only requiring

marginal diversity, the kDPP achieves slightly higher precision than the M-kDPP

on average (both typically above 0.8), but again at the cost of reduced exploration.

Overall, the differences in precision between these methods are not large. In many

applications, having 8 out of 10 results preferred may be more than sufficient. For

a single trial, Fig. 6.9 shows the fraction of articles displayed to the user at each

time step that are in the preselected pool.

Finally, to examine the balance between exploration and exploitation, we

compute a metric based on the idea of marginally decreasing utility. Under this

metric, at every time step, the user experiences a utility of 1 for each preferred

article shown for the first time. If a previously displayed preferred article is once

again chosen, the user gets a utility of 1
l+1

where l is the number of times that

article has appeared in the past. The underlying assumption is that a user benefits

from seeing preferred articles, but in decreasing amounts as the same articles are
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Figure 6.10: Performance measured by a marginally decreasing utility function.

repeatedly displayed. Figure 6.10 shows the performance of the methods under

this utility metric; the M-kDPP scores highest.

6.4 Conclusion

We introduced the Markov DPP, a combinatorial process for modeling diverse

sequences of subsets. By establishing the theoretical properties of this process,

such as stationary DPP margins and a DPP union process, we showed how our

construction yields sets that are diverse at each time step as well as diverse

jointly for p consecutive time-steps, making it appropriate for interactive tasks like

news recommendation. Additionally, by explicitly connecting with DPPs, further

properties of M-DPPs are straightforwardly derived, such as the marginal and

conditional expected set cardinality.

We showed how to efficiently sample from a M-DPP, and found empirically that

the model achieves an improved balance between diversity and quality compared

to baseline methods. We also studied the effects of the M-DPP on learning, finding
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significant improvements in recall at minimal cost to precision for a news task with

user feedback.
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Chapter 7

Conclusion

We have presented a variety of algorithms, extensions and theoretical results for

determinantal point processes in both discrete and continuous spaces. We believe

that our contributions will enable DPPs to be used in practice for many real-world

machine learning and statistical applications. In Chapter 3, we introduced low-rank

approximation algorithms for sampling large-scale discrete DPPs and provided

variational error bounds associated with our methods. We then extended this

algorithm to the continuous case in Chapter 4, enabling sampling to be performed

for a wide range of kernels that previous algorithms can’t handle. We provided

theoretical bounds in this case as well. In addition, for a fixed-sized kDPPs, we

presented a Gibbs sampling-type algorithm that can be executed efficiently using

Schur’s determinantal formula. We then proposed Bayesian algorithms to learn

the kernel parameters of DPPs in Chapter 5. We showed how these algorithms can

be modified to enable the efficient learning of large-scale discrete and continuous

DPPs, even in cases where the likelihood cannot be computed exactly but rather,

can be only be bounded arbitrarily tight. In Chapter 6, we also introduced our

construction of the Markov -DPP/kDPP that defines a stationary process that

mantains individual diversity as well as diversity throughout time. Throughout
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this thesis, we illustrated these methodologies with real-world applications such as

motion capture video summarization, repulsive mixture modelling, latent clustering

of social network, human motion synthesis, diabetic neuropathy based on nerve

fibers clustering, exploration of human judgement of image diversity and news

articles retrieval.

7.1 Future Work

We briefly suggests a few threads for future work.

Improved Low-Rank Approximation Bounds. In this thesis, we provided

analysis of variational error by bounding the error in probability distribution for

each possible subset. These bounds rely heavily on the condition that the resulting

error kernel, E(x,y) = L(x,y) − L̃(x,y) is positive semi-definite. While many

approximation techniques such as Nyström and power iteration methods satisfy this

condition, others such as random Fourier features approximation do not. Future

work includes developing bounds that do not assume this condition. Furthermore,

the bounds we presented can possibly be improved by considering the properties of

the kernels beyond their eigenvalues. For example, the full characteristics of their

eigenstructure, including properties such as their coherence, can be possibly be

harnessed to provide tighter bounds. It is not clear at this point how they can be

incorporated and this leaves an interesting avenue for future research.

Hierarchical and Multiresolution DPP. Thus far, we considered models that

separate the points into repulsed clusters using the repulsive mixture models. An

interesting thread of research is in considering a hierarchical DPPs such that diverse

data points can be sampled from a repulsed set of clusters. An example of a real
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life application is sampling of a diverse set of news articles generated from a diverse

set of topics. Another possible thread is in considering multiresolution models

where points cluster if they are within some range ε between each other but repulse

when they are far apart.

Attractive Processes While DPPs are useful in modeling repulsive processes,

another class of processes called Permanental Point Processes (PPPs) can be used

to model attractive processes. So far, however, little is known about them besides

their definition as being distributed proportional to the permanent of the submatrix

of a kernel:

P(A) ∝ per(LA). (7.1)

An interesting thread of future research is in developing theories and algorithms

for PPPs and perhaps combine them with DPPs to build more complex models.

Time-Varying Kernel. We presented our construction of Markov DPPs to

provide subset selection methods that select diverse sets across time. In our

construction. however, we assumed that the kernel is time-invariant. In more

realistic settings, such as in news retrieval, items stream in and out of the base

collection (think in terms of news articles collection updated daily). An interesting

extension would be in modeling a temporal extension that allows for this evolution

in the kernel items/parameters.

Other Applications. We presented a myriad of different real world machine

learning tasks in this thesis. We believe that our algorithms can be applied to

problems beyond the scope of tasks done in this thesis. For example, incorporating

DPPs into statistical methods such as particle filters and other MCMC-type

algorithms where diversity is key should be explored in the future. Other machine
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learning tasks such as active learning would also benefit from the applications of

DPPs as well. In short, we believe that there are a wide variety of interesting

applications that have not previously been studied that can be enabled by our

extension to large-scale, continuous and temporal DPPs.
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