77 research outputs found

    The development of artificial neural networks for the analysis of market research and electronic nose data

    Get PDF
    This thesis details research carried out into the application of unsupervised neural network and statistical clustering techniques to market research interview survey analysis. The objective of the research was to develop mathematical mechanisms to locate and quantify internal clusters within the data sets with definite commonality. As the data sets being used were binary, this commonality was expressed in terms of identical question answers. Unsupervised neural network paradigms are investigated, along with statistical clustering techniques. The theory of clustering in a binary space is also looked at. Attempts to improve the clarity of output of Self-Organising Maps (SOM) consisted of several stages of investigation culminating in the conception of the Interrogative Memory Structure (lMS). IMS proved easy to use, fast in operation and consistently produced results with the highest degree of commonality when tested against SOM, Adaptive Resonance Theory (ART!) and FASTCLUS. ARTl performed well when clusters were measured using general metrics. During the course of the research a supervised technique, the Vector Memory Array (VMA), was developed. VMA was tested against Back Propagation (BP) (using data sets provided by the Warwick electronic nose project) and consistently produced higher classification accuracies. The main advantage of VMA is its speed of operation - in testing it produced results in minutes compared to hours for the BP method, giving speed increases in the region of 100: 1

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    The application of neural networks to non-destructive testing techniques

    Get PDF
    The low strain test method has become the prevalent method for integrity testing of cast in situ foundation piles. The automated interpretation of the sonic echo traces resulting from this test would prove beneficial to industry through the standardisation of the test method procedure and a reduction in the time spent analysing results. Therefore, in this research the generalisation and feature extraction strengths of artificial neural networks have been exploited to aid test trace interpretation. This study involved the identification of three multilayer networks considered most suitable for the heteroassociative function approximation task described above. Multilayer Perceptron (MLP) networks, Radial Basis Neural Networks (RBNN) and Wavelet Basis Neural Networks (WBNN) have all been trained using numerically generated data and their performances compared to identify the optimum network type. While each network presented similar strengths and weaknesses in fault diagnosis, statistical analysis suggested that the MLP network was marginally more successful in quantifying changes in cross-sections along the pile length. Field data from three test sites have confirmed that the network can identify, locate and quantify significant (±13%) changes in diameter along the pile length (within known test method limitations). The network has also diagnosed changes in diameter at the pile head. This task is notoriously difficult using conventional techniques and has been facilitated through the development of a novel pre-processing technique: the wavelet mobility scalogram

    Organising and structuring a visual diary using visual interest point detectors

    Get PDF
    As wearable cameras become more popular, researchers are increasingly focusing on novel applications to manage the large volume of data these devices produce. One such application is the construction of a Visual Diary from an individual’s photographs. Microsoft’s SenseCam, a device designed to passively record a Visual Diary and cover a typical day of the user wearing the camera, is an example of one such device. The vast quantity of images generated by these devices means that the management and organisation of these collections is not a trivial matter. We believe wearable cameras, such as SenseCam, will become more popular in the future and the management of the volume of data generated by these devices is a key issue. Although there is a significant volume of work in the literature in the object detection and recognition and scene classification fields, there is little work in the area of setting detection. Furthermore, few authors have examined the issues involved in analysing extremely large image collections (like a Visual Diary) gathered over a long period of time. An algorithm developed for setting detection should be capable of clustering images captured at the same real world locations (e.g. in the dining room at home, in front of the computer in the office, in the park, etc.). This requires the selection and implementation of suitable methods to identify visually similar backgrounds in images using their visual features. We present a number of approaches to setting detection based on the extraction of visual interest point detectors from the images. We also analyse the performance of two of the most popular descriptors - Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF).We present an implementation of a Visual Diary application and evaluate its performance via a series of user experiments. Finally, we also outline some techniques to allow the Visual Diary to automatically detect new settings, to scale as the image collection continues to grow substantially over time, and to allow the user to generate a personalised summary of their data

    Computer audition for emotional wellbeing

    Get PDF
    This thesis is focused on the application of computer audition (i. e., machine listening) methodologies for monitoring states of emotional wellbeing. Computer audition is a growing field and has been successfully applied to an array of use cases in recent years. There are several advantages to audio-based computational analysis; for example, audio can be recorded non-invasively, stored economically, and can capture rich information on happenings in a given environment, e. g., human behaviour. With this in mind, maintaining emotional wellbeing is a challenge for humans and emotion-altering conditions, including stress and anxiety, have become increasingly common in recent years. Such conditions manifest in the body, inherently changing how we express ourselves. Research shows these alterations are perceivable within vocalisation, suggesting that speech-based audio monitoring may be valuable for developing artificially intelligent systems that target improved wellbeing. Furthermore, computer audition applies machine learning and other computational techniques to audio understanding, and so by combining computer audition with applications in the domain of computational paralinguistics and emotional wellbeing, this research concerns the broader field of empathy for Artificial Intelligence (AI). To this end, speech-based audio modelling that incorporates and understands paralinguistic wellbeing-related states may be a vital cornerstone for improving the degree of empathy that an artificial intelligence has. To summarise, this thesis investigates the extent to which speech-based computer audition methodologies can be utilised to understand human emotional wellbeing. A fundamental background on the fields in question as they pertain to emotional wellbeing is first presented, followed by an outline of the applied audio-based methodologies. Next, detail is provided for several machine learning experiments focused on emotional wellbeing applications, including analysis and recognition of under-researched phenomena in speech, e. g., anxiety, and markers of stress. Core contributions from this thesis include the collection of several related datasets, hybrid fusion strategies for an emotional gold standard, novel machine learning strategies for data interpretation, and an in-depth acoustic-based computational evaluation of several human states. All of these contributions focus on ascertaining the advantage of audio in the context of modelling emotional wellbeing. Given the sensitive nature of human wellbeing, the ethical implications involved with developing and applying such systems are discussed throughout

    Visualisation of multi-dimensional medical images with application to brain electrical impedance tomography

    Get PDF
    Medical imaging plays an important role in modem medicine. With the increasing complexity and information presented by medical images, visualisation is vital for medical research and clinical applications to interpret the information presented in these images. The aim of this research is to investigate improvements to medical image visualisation, particularly for multi-dimensional medical image datasets. A recently developed medical imaging technique known as Electrical Impedance Tomography (EIT) is presented as a demonstration. To fulfil the aim, three main efforts are included in this work. First, a novel scheme for the processmg of brain EIT data with SPM (Statistical Parametric Mapping) to detect ROI (Regions of Interest) in the data is proposed based on a theoretical analysis. To evaluate the feasibility of this scheme, two types of experiments are carried out: one is implemented with simulated EIT data, and the other is performed with human brain EIT data under visual stimulation. The experimental results demonstrate that: SPM is able to localise the expected ROI in EIT data correctly; and it is reasonable to use the balloon hemodynamic change model to simulate the impedance change during brain function activity. Secondly, to deal with the absence of human morphology information in EIT visualisation, an innovative landmark-based registration scheme is developed to register brain EIT image with a standard anatomical brain atlas. Finally, a new task typology model is derived for task exploration in medical image visualisation, and a task-based system development methodology is proposed for the visualisation of multi-dimensional medical images. As a case study, a prototype visualisation system, named EIT5DVis, has been developed, following this methodology. to visualise five-dimensional brain EIT data. The EIT5DVis system is able to accept visualisation tasks through a graphical user interface; apply appropriate methods to analyse tasks, which include the ROI detection approach and registration scheme mentioned in the preceding paragraphs; and produce various visualisations
    corecore