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Abstract 

This thesis has been concerned with the neuromagnetic fields associated with the pro- 

cessing of faces and sentences in humans. In four, largely independent sub-projects, 

results were obtained using novel methods of analysis to extract neurophysiologically 

relevant information from magnetoencephalographic MEG readings. Using the MEG 
facility of the Helsinki University of Technology, Finland, the research has led to four 

main suggestions: a) there are early latency face-specific neural systems in humans 

that are predominantly in right inferior occipito-temporal cortex, b) MEG recordings 

are useful in the study of autism, in that autistic subjects exhibit different responses 

to normal subjects following face presentation, c) phase-locked y-band activity has a 

specific role in semantic processing of sentences in normal subjects, and d) the late 

components of responses to face images are modified by endogenous priming, which is 

detectable before stimulus arrival in normal subjects. 

In order to pursue these neuroscience objectives, new methods for treating MEG 

data were developed, implemented and used. These comprise: a) an improved param- 

eterisation of signal power over regions of interest, b) the use of re-sampling strategies 

to achieve statistical assessment of spectral coefficients within subjects, and c) a pre- 

stimulus method for the study of face processing using a tailored state-space represen- 

tation approach. 
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Chapter 1 

Introduction 

The human brain is certainly the most complex structure known to mankind. Through- 

out all centuries, it has attracted a staggering range of research activities of both fun- 

damental and clinical interest. The scale of investigations spans from the minutiae of 

atomic-sized ion channels in neural membranes to the macroscopic behaviour of human 

societies. All conceivable levels have been explored comprising the myriads of possi- 

bilities arising from combinations of biochemical, electrophysiological, and behavioural 

causes and effects under normal and pathological conditions. 

Recently, a new technique called magnetoencephalography MEG has been added 

to the repertoire of investigative methods. The technique allows the detection of minute 

magnetic fields associated with the neuronal activity outside the skull. The MEG 

was discovered in 1968, when Dr. Cohen, a physicist at the Massachusetts Institute of 

Technology, recorded alpha waves using coils placed near the head. Since then, MEG 
technology has been improved, and reached a stage of considerable complexity. Whole 

head systems allow the simultaneous measurement of magnetic fields emanating from 

all parts of the brain, within sophisticated experimental settings which relate the sig- 

nals to cognitive processes. The MEG opens another window into the macroscopic 

brain dynamics on a millisecond scale previously only accessible through electroen- 

cephalography EEG and related techniques [135]. 

This thesis centres on the use of MEG to study neural dynamics associated with 

the processing of faces and sentences in humans. Linked to this theme is the develop- 

ment of a number of new analysis tools. 

1 



1.1 From brains to signals 

1.1.1 Basic anatomy of the human brain 

MEG is most suited to the study of the cerebral cortex. This is the brain’s uppermost 

layer of gray tissue or nerve cell tissue, which has an average thickness of 1.5 to 4.5 mm 

and a total surface of ~2500cm’ .  It is folded in a complex way to fit into the cranial 

cavity forming gyri (folds) and sulci (fissures). The cortex as well a,s t,he whole brain 

consists of a left and a right hemisphere separated by the longitudinal fissure. Each 

half, in turn, is divided into lobes by deep grooves. The Sylvian fissure, which is almost 

horizontal, lies above the temporal lobe while the Rolandic fissure (or central sulcus) 

separates the frontal and parietal lobes. There are four lobes in each half of the cortex: 

the frontal, temporal, parietal and occipital lobe (Figure 1.1, adapted from [58]). 

Rolandic fissure 

lobe 

1X 

Rolandic fissure 

Cerebellum 

Brainstem 

Figure 1.1: Schematic side view of the human brain 

Many areas of the cortex have been mapped functionally, i.e. can be associated 

with projections from parts of the body’s sensory system or are accompanied by cir- 

cumscribed malfunctions if damaged. For example, visual information projects to an 

area in the occipital lobe known as the primary visual cortex, and auditory information 

projects to the primary auditory cortex in the temporal lobe and is buried within the 

depths of the Sylvian fissure. The primary somatosensory cortex receives information 

about touch, pressure, and joint position, and is found posterior to the central sul- 

2 



cus. Just anterior to the central sulcus is the primary motor or precentral cortex, the 

cortical area most concerned with the control of movement [52, 1461. 

1.1.2 

The human brain contains about 10” neurons, highly specialised cells forming a com- 

plicated network. The communication between the nerve cells is fundamentally linked 

to their electrical properties. In the resting state, a small dc voltage (x70mv)  is main- 

tained across the cell membrane, the inside of the cell being negative. Change in this 

membrane potential conveys information and, at suitable locations, can make a neuron 

fire, i.e. emit an action potential via its axon into the network. An action potential is 

associated with currents of ions giving rise to fluctuating magnetic fields with a typical 

time scale of xl ms and a field strength decreasing rapidly with the distance d from 

the locus of generation, as l/d3. 

The origin of neuromagnetic signals 

When an action potential reaches a synapse, the junction to the next neuron, a 

biochemical neurotransmitter is released. The substance transverses the synaptic cleft 

and opens selectively ion channels in the postsynaptic cell membrane of the target 

neuron. A postsynaptic potential is generated which is accompanied by a current flow, 

and gives rise to fluctuating magnetic fields with a typical time scale of about 10 to 

100ms and a field strength decreasing with the distance d from the locus of generation 

as ì / d 2 .  

It is generally agreed that the currents associated with the postsynaptic potentials 

constitute the principal sources of magnetic fields outside the head as well as the 

electrical signals measured on the scalp. The strength to distance relationship for post- 

synaptic potentials is more favourable than for action potentials, and the longer time 

scale facilitates a coherence, or summation over many thousands of neurons needed for 

a signal of detectable strength. Specifically, it is assumed that the main contribution 

to external signals stems from the pyramidal neurons in the cortex (Figure 1.2). The 

geometry of the cell’s apical dendrites supports a spatial summation of postsynaptic 

currents approximately orthogonal to the cortical surface [78, 1351. 

1.1.3 Signal phenomenology 

The coherent activity of many thousands of neurons produces signals detectable out- 

side the skull, which reflect the ongoing activity. Typically, spontaneous activity, when 

measured over many seconds, is characterised by a broad frequency spectrum contain- 

3 



.i1..F.IIYI.I 
surr.nt 

I -  AX""  

Figure 1.2: Pyramidal neuron 
The insets depict the propagation of an action potential along the neuron's axon (right), and the 
current flow associated with a postsynaptic potential at  a synapse at an apical dendrite (adapted 
from [135, 1571). 

ing well known spectral peaks in certain bands (Figure 1.3, left). Most commonly 

encountered in MEG and EEG observations are the û (4 to Í'Hz), cy (8 to 13Hz) ,  and 

B-bands (13 to 30Hz).  These bands relate variously to the degree of arousal, states 

of pathological abnormalities, or very general aspects of visual attention etc. Higher 

frequencies are referred to as the y-band, which is here defined as frequencies' above 

20Hz [137]. 

There are many ways of analysing neural activity: the so-called event-related 

approach is relevant in this thesis. Within some experimental setting, a stimulus is 

presented to a subject repeatedly. The appearance of a stimulus marks a point in 

'There is no generally used definition of the y-band. The range used here is common even though 
there is an overlap with the @-band. 
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Figure 1.3: Phenomenological signal types 
'Typical' spontaneous (left) and evoked (right) signals displayed as a function of time (upper) and 
frequency (lower). 

time, usually denoted by t = O, with respect to which a stretch of data is defined, 

denoted as an epoch. The epoch consists of two parts, the pre and post-stimulus 

interval. Conventionally, the signal s ( t )  in the post-stimulus interval is viewed as a 

sum 

s ( t )  = c ( t )  t E 

where c is assumed to be the same neural response for all stimuli under consideration, 

i.e. it depends only on t ,  and E denotes a Gaussian random process. It is well known 

that, with this assumption, c can be recovered from the sum by averaging over stimuli 

the data corresponding to the same time t with respect to each stimulus. This reduces 

the noise variance proportionally to the number of stimuli N .  The resultant waveform is 

usually called an evoked response. The process of averaging normally applies to a given 

site, or channel, of measurement, and a given subject. If the averaging is extended over 

several subjects, a grand mean waveform is obtained for a given site of measurement 

[49]. The spectral characteristics of an evoked response is usually dominated by low 

frequencies corresponding to the width of major deflections (Figure 1.3, right; data 

taken from the present work). 

This section is concluded by a brief comment on two commonly used techniques to 
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measure neural activity which complement MEG and EEG methods. Results obtained 

with such techniques will be referenced occasionally. 

Functional imaging techniques 

Neural activity is necessarily accompanied by a consumption of metabolic energy. The 

energy demand influences the regional cerebral blood flow rCBF, where local changes 

in energy demand (neural activity) are tightly linked in time with changes in rCBF, 

because of the brain’s limited capacity to maintain energy reservoirs. These changes 

in rCBF can he monitored with two functional imaging techniques known as: 

1) positron emission tomography PET. The technique is based on the detection of 

y-rays associated with the decay of radioactive positron emitting tracers whose distri- 

bution is a function of rCBF. 

2) functional magnetic resonance imaging M R I .  The technique is hased on the de- 

tection of changes in the magnetic resonance properties of hydrogen nuclei in mobile 

molecules. These properties depend on rCBF. 

PET and fMRI are based on vastly different physical principles, hut both allow 

the observation of local changes in blood flow with a high spatial resolution. However, 

the resolution in time is much less than is possible with MEG and EEG, being limited 

to of order minutes or seconds respectively [4, 761. 

1.2 Outline of the thesis 

The work on which this thesis is based is part of a long term project involving neu- 

romagiietic measurements which builds towards a better understanding of the electro- 

physiological correlates of autism. Autism is a complex disorder, involving a number 

of cognitive deficits. Therefore, it was necessary for the project to encompass a large 

set of experimental paradigms, in keeping with the complexityof the condition. In this 

project, studies have been carried out involving a variety of cognitive functions; ob- 

ject recognition (specifically faces), processing of words and sentences, motor memory 

sequence learning, and attention shift processes. Despite this overall framework, this 

thesis is not a dissertation on autism. Instead, the author has taken the opportunity 

to study brain dynamics within a setting motivated by the possible clinical usefulness. 



The work connects with existing paradigms and approaches, but it introduces new 

methods of analysis. 

A total of 9 research visits were made to the Neuromag-122 facility located at the 

Low Temperature Laboratory of the Helsinki University of Technology (HUT) where 

all the experiments were performed. The visits had to be fitted into the tight time 

schedule of an internationally acclaimed laboratory used by many groups from all over 

the world. Seven high-functioning autistic subjects as well as some of the 18 control 

subjects were transported from England to Finland and approximately 30 Gb (giga 

bytes) of sampled data were collected. The time available in the laboratory was mainly 

consumed by collecting the data, and, as a prerequisite, making the experimental 

protocols operational. Analysis was done at the laboratory only up to a preliminary 

level and, usually, in such a way that decisions could be made as to whether one should 

carry on with a particular experiment under given circumstances. 

Chapter 2 introduces the Neuromag-122 detector system, the tool used for mag- 

netoencephalographic investigations, and presents the technical aspects of the specific 

experiments presented in the thesis. These include the stimulus protocol system as 

well as the stimuli themselves. Included are remarks on artefacts, and (pre-)processing 

as well as the transfer of data. 

Chapter 3 deals with the responses involved in processing images of faces and 

other objects in normal subjects. A review of face processing is given followed by the 

presentation and discussion of results obtained from experiments designed to address 

questinns related to iinage class discrimination in tha context of a mrieky of speci6c 

tasks. The emphasis has been put on specific patterns of evoked responses at early 

latencies using a parameterisation scheme which extends previous work on root-mean- 

square averaged response classification. 

Chapter 4 continues the theme of Chapter 3 in the discussion of the data from 

7 autistic subjects. A short introduction to autism is followed by an analysis of the 

experiments presented in the previous chapter. As far as possible, the results are 

discussed in comparison to the normal controls. 

Chapter 5 attempts to combine two directions of research interest, namely the 

effects of semantic violations in language processing and the stimulus specificity of 

oscillatory dynamics. The chapter briefly introduces both and discusses results ob- 

tained from a sentence reading paradigm, where only normal subjects were measured. 

The method of Gabor spectrograms was employed extended by the use of statistical 

bootstrapping. 



Chapter 6 investigates the relationship between ongoing brain activity, as seen 

in pre-stimulus intervals, and the responses evoked by certain stimuli. The research 

on pre-stimulus states is briefly reviewed followed by an introduction to methods of 

nonlinear time series techniques. A classification scheme based on vector-embedding 

is proposed in which individual pre-stimulus epochs are viewed as instantiations of 

stationary, deterministic and possibly chaotic processes. The results of an experiment 

designed to probe for the possible influence of endogenous components are discussed. 

Here, only normal subjects were measured. 

Chapter 7 summarises the main conclusions of the thesis and points to future 

research. 

Finally, five appendices follow. In the first, details about the subjects are sup- 

plied. In the second, the basic numerical techniques used throughout the core part 

of the present work are listed. Two appendices follow in which the methods used in 

Chapter 3 are elaborated. In the final appendix, further details are provided of the 

methods used in Chapter 5 .  

A remark on software - The present work involved a considerable amount of software 

development carried out by the author. The algorithms used in this thesis were imple- 

mented using a data flow framework [2]. Details about the strategy of implementation 

and functionality are given in the author’s first year report (Physics Department, The 

Open University). 
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Chapter 2 

Instrument at ion 

In this chapter, a brief introduction is given to the magnetoencephalographic instru- 

ment Neuromag-122 used for the work of this thesis. The presentation is followed by a 

short description of the stimulus protocol system used to control the technical aspects 

of the experiments. This system developed at  the Open University is the only instru- 

mental contribution added to the equipment. The chapter continues with a description 

of the stimulus material (i.e. the images). Finally, some issues concerning the data 

acquisition and the control of artefacts are discussed. These issues are common to all 

experiments, and are not made explicitly in conjunction with a particular paradigm. 

2.1 The neuromagnetic instrument Neuromag-122 

SQUIDS 

The signal strength associated with neural activity is extremely small, typically one 

part in one thousand million of the Earth’s geomagnetic field. The detection of such 

a small field requires highly sensitive detectors. To date, the only instrument with the 

needed sensitivity is the Superconducting Quantum Interference Device SQUID. The 

device operates at the cryogenic temperature of liquid helium, where certain materials 

become superconductors. Two phenomena are utilised to convert tiny changes in the 

magnetic field into a voltage which can be further processed: a) the flux quantisation 

which ensures that the total flux through a loop of a superconducting wire is an integral 

multiple of the flux quantum Q0 = 2.07 x Vs, and b) the Josephson effect asso- 

ciated with the quantum mechanical tunnelling of electrons from one superconducting 

region to another separated by an insulating barrier (called a weak link or a Josephson 

junction). 
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A modern dc SQUID has two weak links (Figure 2.1). The flux is inductively 

coupled into the SQUID via a pickup coil which connects the device to  the experiment. 

The device is biased with a dc current above a threshold characteristic for the SQUID. 

A dc voltage is developed across the junctions which is a periodic function of the flux 

applied through the pickup coil. Using complex electronics, this output voltage is 

amplified and used to generate a feedback current. This current is coupled back into 

the SQUID loop to  null the applied signal flux. As a result, the device is locked at a 

single flux bias point, and the feedback current is a direct measure of changes in the 

flux applied to  the SQUID [9, 84, 1351 
................................................................................. ~.~~~ 

Cryogenic temperatures 
~ Pickupcoil Signal coil 

SQUID . ....................................................................... ~~~~~~~ ........ 

Figure 2.1: Coupled dc SQUID 
The solid ring symbolises the superconducting loop with the two junctions (arrows) across which a 
flux modulated dc voltage develops (adapted from [3]). 

Detectors 

For the Neuromag system', each pick-up coil is figure-of-eight shaped, and pairs of 

such coils are mounted orthogonally on a single chip (Figure 2.2 left). With this 

design, each pick-up coil becomes a 1st order gradiometer, sensitive to the spatial 

derivative of the local z-component of the magnetic field along the axis joining the 

coil centres. The gradiometer is a means of noise reduction in that magnetic fields 

originating from sources far away from the detector usually have very small spatial 

variations (gradients) over the extent of the coil. Each gradiometer chip houses the 

pick-up and coupling coils as well as the superconducting device for two channels. Due 

t o  the orthogonality', independent information is provided by the two gradiometers on 

each chip. 

'The main references for the system are [3, 1081, on which this section is based. 
2Strictly speaking, this holds for orthogonal lead fields in free space. 
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Figure 2.2: The Neuromag-122 system 
Left: the magnetometer probe comprising the dewar and the modular insert structure. The zoom 
inserts depict the helmet shaped array of 61 dual sensors, and one of the sensors (i.e. a planar 
gradiometer chip). The distance between the skull and the detectors a t  cryogenic temperatures is 
about 2.5cm. Each gradiometer defines an orthogonal local co-ordinate system, where the the x and 
y-axis are coincident with the plane of the chip. All measurements are with respect to the local co- 
ordinate systems (e.g. the solid black coil measures 8 ~ z / O z ) .  Right: the Neuromag-122 system. s: 
screen, LAN: local area network (adapted from: left [58], right [los]). 

System 

There are 61 gradiometer chips, or detector sites, arranged into a helmet shaped array 

of sensors. The array is held at cryogenic temperatures (liquid helium) within a dewar 

(Figure 2.2 left). The dewar resides in a p-metal shielded room (Figure 2.2 right). 

The shielded environment is the second provision to reduce external noise. There are 

a variety of connections between the inside and the outside of the shielded room, the 

most important of which is the link between the sensors, the SQUID electronics and 

the data acquisition unit DAQ. The latter constitutes the user interface and allows for 

technical control over an experiment. 

Signals 

The readout from the gradiometers is converted into a sampled time series by the data 

acquisition unit (DAQ). Each time series represents the local field gradient for a given 



where LY denotes either z or y. Calligraphic letters are used to denote either a single 

channel C or a detector site ’D, in which the signal S becomes a 2-vector 5’” used 

without vector notation. Assuming a single current dipole with parameters (qz,  qy,  qz) 

located at (O,  O, z ) ,  z # O with respect to the local co-ordinate system of a detector, the 

following relation holds between the (vector) reading and the parameter of the dipole: 

Strictly speaking, this equation only holds approximately because of the finite coil sizes. 

The quantity on the left of Equation 2.1 is referred to as the ’rotated gradient’ and 

is readily visualised in the detector’s local co-ordinate system. A plot containing the 

rotated gradients of all sites can be interpreted as a momentary representation of the 

sources directly underlying each detector. The plots are useful in the initial steps of 

the data analysis. They are given preference over the usual contour plots of gz which 

can be calculated from the data although doing so requires certain model assumptions. 

Head positioning 

In order to determine the sensor positions with respect to the head of a subject, a two 

step procedure is applied: 1) The positions of three fiducial points on the skull are 

measured with respect to an arbitrary co-ordinate system outside the shielded room 

using a commercially available 3D localisation system ISOTRAK IllS]. Additionally, 

the positions of 3 to 4 small coils attached to the skult are measured witk respect to the  

same co-ordinate system. 2) Once the subject’s head is under the dewar, the same coils 

are activated by currents making them sources of magnetic fields which are measured 

by the detectors. Based on the readings, the position of each coil is calculated with 

respect to the co-ordinate system of the dewar. 

Thus, the position of the coils is known in the two co-ordinate systems, and 

standard linear algebra can be used to transform between these. For all experiments 

relevant to  this thesis, the three fiducial points were chosen to be the nasion and the 

two pre-auricular points. These define an orthogonal head co-ordinate system given 

by: the line joining the two pre-auricular points (z-direction, x > O to the right), 

the line through the nasion perpendicular to the pre-auricular line (y-direction, y > O 

rostrally), and the line through’the intercept orthogonal to the plane just defined ( z -  

direction, z > O towards the vertex). This co-ordinate system is known as the PAN 

system from the names of the fiducial points used in its definition. 
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2.1.1 The array of detectors 

Throughout the thesis, the data has been referenced by channel numbers whenever 

appropriate. Below, 4 different views of the layout of the gradiometer sites are given 

(Figure 2.3). These views are convenient when relating the data to the location over 

the skull. Occasionally, the data from subsets of the 122 channels will be presented in 

a 2 dimensional projection representing approximately the anatomical location of each 

channel (Figure 2.4). 

Right Left 

Figure 2.3: 4 views of the helmet 
Each site is labelled with an even channel number. The channels are paired 1 and 2, 3 and 4 etc. 
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Nasion 

Inion 

Figure 2.4: Projection into 2 dimensions 
In data  displays, odd numbered channels are placed in the lower half of the square and even channels 
in the upper. It is convenient to divide the array into four quadrants along the longitudinal fissure 
and approximately along the central sulcus (dashed lines). 
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2.2 Stimulus protocol system 

The experiments were carried out using a script-based image display (SID) system 

developed in the department3. The production of a portable, tailored but still versatile 

system is convenient given that: a) the main preparatory work and 'dry' runs had 

to be carried out in the UK,  as work in the Finnish laboratory was often tightly 

scheduled, and b) subject responses via a keypad were not supported with the HUT- 
based equipment when the experimentation for the project began. The keypad is an 

important part of the experiments as it allows the monitoring of task performance 

and the measurement of reaction times. The scripts control the processing of the 

keypad data, the various parameters involved in the presentation of the images, and 

the trigger mechanism needed for the synchronisation between the stimulus onset and 

the acquisition of data. A script file can be executed repeatedly using exactly the same 

parameters, thereby ensuring the technical reproducibility of an experiment. 

The software uses palette swapping for image draw operations. This allows for 

smooth and fast transitions from background colour to image. Additionally, all image 

operations are synchronised with the vertical scan rate of the projection monitor to 

avoid flicker [145]. The software includes basic image manipulation tools like resizing, 

mirroring, changing of background colours, superposition of fixation points, and adjust- 

ment of mean luminosity. These tools are meant for on-site solving of minor problems 

under changing hboratory conditions and do not obviate the need for careful image 

selection or manipulation using more sophisticated software. The software produces 

a result file containing actual key presses made by the subject and the corresponding 

reaction times. 

The display program resides on a standard Laptop personal computer. It commu- 

nicates with the outside world via a standard Centronics printer port. This interface 

provides an easy-to-use, cost effective, and sufficiently fast solution [32]. The relation- 

ship between the SID and the Nenromag facility is shown in Figure 2.5. The images 

are displayed in the shielded room via a projector residing outside the room with its 

lens close to a hole in the wall. The light is reflected once by a mirror and then directed 

to a screen close to the subject. Trigger codes corresponding to the images are sent 

to the host facility for synchronisation purposes. Four trigger lines are used which are 

physically different from the lines for the keypad electronics 

3Coftware by the author; hardware by other members of the Physics Department of the Open 
University. 
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The non-magnetic keypad is located within comfortable reach of the subject4 in- 

side the shielded room. It is connected to the keypad electronics via optical fibres which 

are used instead of electrical connections to avoid disturbances. The core mechanism of 

the keypad consists of five simple switches, each of which interrupts a light path when 

the associated key is pressed. When the subject presses a key the electronics detects 

the interrupted light path and issues a hardware-interrupt to the Centronic port of the 

PC. Simultaneously, the key code is written to the port lines. The hardware interrupt 

mechanism is more effective than continuously interrogating the keypad electronics. 

For the experiments, interrupts are rare events handled within a few microseconds and 

this causes no timing problems. 

- ............ 2 

4 Key pad Averaging 1 
a I 

1 
I 
I 
l 

Trigger Codes I Key codes 
! Optic fibres 
I 
! 
I 
I 

- 

- PC -4 Key pad 

I Shielded Room 
DATA I I D A Q  ~l 

Figure 2.5: Hardware connections 

As accurate timing is important in MEG experiments, it is noted that personal 

computers are not real-time devices per se. In order to assess the accuracy of SID, an 

extensive survey was carried out using a variety of scripts. Assuming that all hard- 

ware is connected properly and the SID runs on a dedicated5 computer with sufficient 

memory to keep all images: 

1) the duration of an image is predictable up to an accuracy of 8% for a display period 

between 100 and 200ms. 

40nly a keypad for the right hand is currently available. 
‘Here, dedicated means: a) the display program is the only active user process, b) the port used 

by the keypad electronics is the only active one, and c) the pointer device (‘mouse’) is not being used 
during the run of an experiment. 
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2) the display of the image on the screen is delayed by 22.5f2.4ms with respect to the 

trigger signal. This delay is entirely due to the transmission path between the computer 

and the projector. The time lag was measured by detecting changes in luminance ac- 

companying the appearance of an image, and comparing the luminance signal with the 

transitions of the trigger line using equipment of the Finnish laboratory (Figure 2.6). 

It is noted that the fluctuations of luminance during the presentation of an image are 

imperceptible. 

Thus, the system’s performance is uncritical for most experiments, however, the 

last point introduces a limitation in the context of the language experiment LT as 

explained in Chapter 5. For all of the present work, the evoked responses have been 

shifted by 22 ms towards earlier latencies in order to compensate for the monitor delay. 

c) 

10 ms Time [ms] 

Figure 2.6: Monitor delay 
Snapshot of the delay between the trigger and the change of image on screen. The graph is reproduced 
from the screen dump of a digital storage oscilloscope. Upper trace: signal from the trigger port. Lower 
trace: luminance signal at  the screen centre showing fluctuations of the background (uniform gray 
image) due to the video rate of 70Hz. The arrow indicates the onset of the image which reaches 
maximum (photo-transistor overdrive) intensity about 5ms later. This trace has been amplified to fit 
conveniently on the screen together with the trigger line. 

17 



2.3 Images 

All visual stimuli were presented in the form of prepared (bitmap) images6 mapped to 

the screen. There were enough images in each category to run all experiments under 

consideration on one subject with either no or only a few repetitions of pictures. The 

different image categories are listed below (Figure 2.7). 

A 

C 

Figure 2.7: Images 
A: various image types used in the face processing experiments; adult face (2x), boy’s face (neutral, 
smiling), motor bike, dot pattern, coffee mug, and animal (left to right, upper to lower row). B: words 
forming a sentence. Each word is presented as a separate image. C: visual prompt signs. The black 
horizontal and vertical lines in A and B are drawn for clarity and are not part of the images. 

Adult faces (F) Photographs of adult Caucasians viewed full face. Pictures were 

selected from computer databases and other sources so as to ensure homogeneity of 

the picture’s background, absence of strongly distracting features (like skin colour, skin 

impairments, etc), and expression. Some photographs passed selection although the 

individuals wear glasses or have beards. However, in these cases, the features were 

‘Windows BMP-format 
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not considered as serious distractors. The pictures showed persons with a neutral or 

slightly smiling expression (according to subjective judgement). 

Boy’s faces (F) Photographs of UK-schoolboys aged 12 and 13 viewed full face. 

The pictures were taken by a professional photographer instructed to pay attention 

to visual homogeneity of the photographs. Specifically, the boys had their hair drawn 

back or covered by a cap (which is not obvious in the final image). Each child was asked 

to pose with an emotionally neutral and then a smiling expression. If clarification is 

needed, N or S (neutral/smiling) will be used in describing the images in this class. 

An ima l s  (A)  Photographs of various animals selected from similar sources as for the 

adult faces. Images were chosen to be naturalistic, thus showing different backgrounds 

(usually part of the animal’s habitat). Although the pictures show either predominantly 

the whole animal or the animal’s head/face, a clear distinction between animal and 

animal face is not possible. 

Motor bikes (m-bike, B) Photographs of common motor bikes selected from a 

catalogue. The pictures show a variety of motor bike types from various manufacturers 

in their standard, unrendered form (side view) without licence plates. 

Dot p a t t e r n s  (D) Computer generated images of randomly positioned filled circles 

with varying radius and grey shade. In contrast to all other image classes, only a 

restricted number of grey shades was used ( ~ 1 6 ) .  This provision became necessary to 

allow for a reasonably easy distinction between images in one of the experiments. 

Coffee mugs (M) Photographs of standard coffee mugs of about the same size. 

Mugs were mounted’ against a homogeneous background (support invisible) with the 

mug’s handle to the right. Not selected were mugs picturing words, or letter and 

symbol strings, or faces and persons in any form. However, some mugs show drawings of 

animals or clearly identifiable objects like buildings or common household commodities. 

Words (W) Computer generated images of words (articles, nouns, verbs, etc) pre- 

sented in sentences. Images are painted black on white within a grey background. 

They do not appear together with any of the above image classes. 

’The photographs were taken by the author of this thesis. 
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2.4 Data acquisition and data handling 

All data was acquired using the DAQ-program belonging to the HUT facility. The 

program allows for the setting of various control parameters and writes the data to 

mass storage devices in a format proprietary to Neuromag. This format, functional- 

image-format fif, is used by the various software packages on site, but has not been made 

public to external researchers. For data analysis outside HUT, software is available to 

convert unidirectionally fif-files into either standard ASCII or suitable binary' files. 

The software on site as well as the conversion programs allow access to the data from a 

certain level of pre-processing onwards. In this sense, the term 'raw' data refers to the 

output of the SQUID electronics, bandpass filtered (analog anti-aliasing) and digitised. 

For this work, all data was filtered between 0.01 and 130Hz before digitisation at a 

sampling rate of 373 Hz. 

2.5 Artefacts 

Artefacts: electro-oculogram EOG The moving eye generates strong time vary- 

ing magnetic fields due to the electric charge disparity between the corneal and retinal 

areas. It follows that eye-blinks can create strong artefactsg. Vertical eye movement 

was monitored in all experiments with two electrodes. The impedance between elec- 

trodes was always lower than 10 kR using the same equipment for all subjects. Stretches 

of data indicating strong eye blinks defined by an output voltage exceeding 12ûpV in 

absolute amplitude were rejected. The rejection was applied to all channels, and is 

the simplest possible method of eye-artefact handling. It is known that differences in 

electrode placement can influence the EOG's amplitude as well as its waveform [54], 

a fact to be considered for some paradigms. Here, however, the threshold of 120pV 

was found to he a stable criterion even with slightly varying electrode positions across 

subjects. 

Artefacts: head movement Movement of the head during or between runs of an 

experiment changes the position of the detectors with respect to the anatomical areas 

and can cause signal artefacts due to motor as well as muscle activity. The Neuromag 

facility allows head positioning only prior to the data acquisition making it difficult 

'ASCII files are written in the '%g'-format of the C-programming language providing 6-digit pre- 
cision [83]. Binary files reflect the output of the anolog-to-digital converter, and can only be used in 
conjunction with ASCII files specifying channel conversion factors. 

'Much of this section is considered common knowledge. A good general reference is [49] 
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to determine when precisely a movement occurred. Despite possible problems due to  

movements, most experiments had to be split into two parts (runs) with a break in 

order to achieve a bearable run time or to change control conditions. If the shift of 

head position (with respect to the dewar system) did not exceed 5mm, these two runs 

were merged, and viewed as resulting from one continuous acquisition. This criterion 

is compatible with the Neuromag software" requesting the user to restart the head 

positioning if distances between coils differ by more than 5 m m  as measured by the 

ISOTRAK and the MEG system respectively [108]. 

Artefacts: other The laboratory environment itself might give rise to various arte- 

facts". These were removed, usually with the help of the technical staff of the labo- 

ratory. The measurements were not begun or resumed until a satisfactory status had 

been reached. Attention was paid to avoid metal objects attached to the body or 

clothes". 

The heating heart is another source of magnetic activity (measured with tech- 

niques similar to the MEG and known as magnetocardiography, MCG) which might 

interfere with the brain's magnetic fields. Visual inspection only was employed to de- 

tect the well known traces of the heart activity within the readings of the brain signals. 

For this reason, one subject's datal3 had to be excluded altogether from the analysis 

due to strong overlap of MEG and MCG signals. Only weak and intermittent evidence 

for data corruption by MCG signals was found in all other subjects. 

Drift correction and channel variance (noise) Despite the high quality of the 

equipment, some changes (drifts) of the detectors' characteristics are unavoidable dur- 

ing the run of an experiment. In this thesis, the common technique of (adaptive) mean 

value correction has been chosen (the simple algorithm is explained in Appendix B, 

[N-3]). The method, which establishes a common 'zero' across signals, originated in 
EEG a n a l y ~ i s ' ~  where it is usually called baseline correction. However, the term base- 

line is reserved for a different context in this thesis, and drift correction is used instead. 

"This seems to reflect the ISOTRAK's maximal static accuracy of 2.4mm (rms, [lis]) 
"On one occasion, hours of measurement time were lost because the electronics for the keypad 

caused distortions, although it was at  its usual place within the stimulus cahinet (Faraday cage) 
outside the shielded room. By trial and error, a new location was eventually found solving the 
problem. 

12Volunteers as well as autistic patients were occasionally asked to change clothes. 
'3Suhject S19 participated in some of the experiments, but his data  has not been taken into con- 

''Normally, baselines play a more profound role in EEG. This is because the electrical signals can 
sideration for this thesis. 

only be measured with respect to some reference level. 
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There are no strict rules regarding where and how to apply the method for a given 

strategy of analysis, and the details are stated for each of the following chapters. 

For the purpose of this thesis, noise estimation is based on two data sets supplied 

by the staff of the laboratory corresponding to the dewar being 25% and 80% full, 

each comprising 40 seconds of an 'empty' (no subject) measurement under average 

experimental conditions (i.e. with visual or auditory stimulus presentation). From 

these sets, a mean channel variance was computed according to 

with Nt = 16000 (40s at 400Hz digitisation rate) and Nc = 122. The channel vari- 

ance is almost constant for these two sets (cv" '25% = 4654.1 ( f î /cm)2 and CvBTgo% = 

4646.5 (fT/cm)2). 
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Chapter 3 

Face processing 

This chapter reports on a study of the neural responses associated with the processing 

of images of faces and other objects. The design of the experiments follows established 

paradigms widely used in electrophysiological investigations of face processing, which 

have identified responses specific to faces at early latency. The aim of the present work 

is to provide some further evidence on how this differential activity is modulated by 

the nature of the face processing task. The quantification of the responses is achieved 

by a parameterisation of signal power which extends approaches using signal latencies 

and amplitudes. 

In what follows, a brief review of relevant neurophysiological studies of face pro- 

cessing is given, followed by a description of the experiments employed. The chapter 

continues with a presentation of the results. The method used for power pararneter- 

isation has been developed after unsuccessful initial attempts at signal quantification 

using standard methods. It is introduced at the appropriate position within the results 

section. The chapter finishes with a discussion of the results. 

3.1 Background on face processing 

The face holds a special place among visual objects. Any social animal must possess 

the aptitude to distinguish and recognise members of its group. In humans, the face 

is the most characteristic attribute for indexing identity reliably. A widespread inter- 

disciplinary research interest has concerned the issue as to whether face processing 

is ’special’, compared to the processing of other objects, in that it is accomplished 

using a dedicated and separate system. This dedicated system might be given in 

terms of dissociation by anatomical location as well as by the characteristics of neural 
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activation [45]. Typically, research has pursued two, partially overlapping approaches: 

the neuropsychological and the neurophysiological. The former emphasises the possibly 

unique status face of processing and its functional segregation into different stages. The 

latter emphasises neural substrate, where evidence is sought for localised neural systems 

specifically related to the processing of faces. 

Often cited observations which fall into the first category include: the preference 

to gaze at faces rather than other objects which may be developed by newborns at just 

30 minutes of age [105]; or the face inversion effect, which suggests that the recognition 

of a face turned upside down is significantly more difficult than the recognition of 

a general object turned upside down [45, 1591. Also often cited in this context is a 

rare disorder called prosopagnosia: the impaired recognition of previously known faces 

after brain damage. The disorder usually implies a difficulty in recognising objects 

other than faces, but the deficit can appear highly selective for faces [29, 1411. Several 

studies on prosopagnosia suggest that the right hemisphere might play the more crucial 

role [25, 1271. 

Following the lines of neuropsychological studies, a functional model of face recog- 

nition was introduced in 1986 and named after its inventors as the Bruce and Young 

model. Ever since than, the model has remained influential in guiding the interpreta- 

tion of results of face processing studies [23 ,  241. The model is based on an extensive 

survey of mainly psychological and neurological observations suggesting that the pro- 

cess of face recognition can be partially decomposed into a number of functionally 

related rnodules processing different kinds of 5nformation carrieri bx € ~ T P I  T ~ P  n>r&4 

assumes a principal processing pathway, aimed at detecting the personal identity. This 

pathway is paralleled by a number of independent satellite modules designed to elicit 

other kinds of information about faces. It it suggested that the information from these 

satellite modules remains available even when later stages of identification pathway are 

not accessible due to some neuropathology [25]. 

A simplified version of the model is shown in Figure 3.1. Modules are shown as 

boxes together with their functional specification. A simple arrow indicates information 

transfer necessary for the target module to be operational. A double arrow indicates 

an interaction which is usually linked to mutual gain of efficiency. Even the full version 

is only an approximation to reality in that it ignores an unspecified cognitive system 

interacting with the later stages of the identification pathway and the satellite modules. 

The neurophysiological approach has gained momentum over the last decade, 

during which time the whole palette of modern methods has been employed to study 
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Figure 3.1: A functional model of face recognition 
The graph shows a simplified version of the original Bruce and Young model. The person's semantic 
refers to information such as the person's occupation, or other context related information (adopted 
from [23, 251). 

face processing in humans. Although many individual aspects of face processing have 

been addressed, no systematic account is available as yet and the picture is very patchy. 

In the remainder of this section a brief review of reIevant studies is given according 

to the technique used. The notion of face specificity refers to a stronger response or 

activation of some kind following face presentation compared to the presentation of a 

non-face object. 

MEG 

The first MEG study of face processing was carried in 1991 [94]. Responses in normal 

subjects to face and bird images were compared. An early latency component at  150 ms 

was identified only in association with face stimuli. It was detected bilaterally over 

inferior occipito-temporal cortex. This observation of an early latency component has 

been confirmed in a recent study [133], however the face specific component appeared 

to be predominantly over the right hemisphere. 

Two linked studies have compared the responses to faces, scrambled (unrecognis- 
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able) faces and other images [57,97]. In the first study, a strong face specific equivalent 

dipole source was located in the right posterior fusiform gyrus or the fundus of the sul- 

cus between the fusiform and inferior temporal gyri. This dipole had maximum activity 

at 166 ms and 256 ms after the face presentation. The face specificity was verified by 

a subtraction method with scrambled faces as control images. The result was con- 

firmed in the second study using a different method of analysis. It was found that the 

source in the right occipito-temporal region corresponding to the response at 166ms 

was strongest for photographs of human faces and that there was no effect of image 

colour, gender or expression. Schematic and scrambled faces gave a reduced response, 

and other non-face images gave little if any response. In both studies, a similar if less 

clear pattern was observed at 166 ms in the left-occipito-temporal region. 

EEG 

Several scalp electrodes studies have demonstrated activity that is specific to faces 

compared with other object stimuli [14, 18, 19, 74, 1391. Dependent on the number of 

electrodes used, face specificity of varying degrees was found at the vertex (weak), and 

at posterior temporal electrode sites (strong). The latencies at which face specificity 

was observable ranged from z150ms to 180ms. The face specificity seen at the vertex 

was shown to be robust when using a variety of face images ranging from photographs 

to schematic line drawings. Only a few attempts have been made to localise possible 

neural generators underlying the face responses, suggesting sequential activation of 

ocdpjt31, lateral temporal, and rnesio-temporal brain ntnictum. Ir emlu&&, face 
specificity seemed to be stronger over the right hemisphere. 

Recent preliminary work has suggested that responses following face presentation 

can be specifically modified in tasks requiring the matching of face identity or facial 

expression [107]. 

Intracranial electrodes 

Subdural recordings on group of epilepsy patients indicated that face specific responses 

are most strongly found bilaterally in central regions of the fusiform gyrus [6]. The 
face-specific electrode sites were partially overlapping with those associated with colour 

perception, which were concentrated in the posterior fusiform gyrus. The responses to 

faces were maximal at a latency of approximately 200ms. The face specificity was 

verified through control images depicting other objects. 

Widespread activity following face presentation was found in a study on a similar 
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group of subjects [ 5 5 , 5 6 ] ,  with the most prominent post-primary signals in the occipito- 

temporal cortex at  latencies of 130, 180 and 240111s. Although this study lacked the 

control stimuli needed to provide unambiguous evidence of face-specific processing, the 

authors argued for such specificity in the fusiform gyrus, and noted the possibility of 

processing of face stimuli at longer latency. 

Functional imaging 

Using PET, a variety of cortical and subcortical areas have been found to be activated 

during face processing in normal subjects. The involvement of the ventral occipito- 

temporal cortex has been found most consistently [28,38,60,140,141]. Other activated 

areas included the anterior temporal cortex and the right lateral occipital cortex. These 

studies have also reported activity linked with the performance of specific tasks (i.e. 

face recognition or recognition of facial emotion) in several other areas, notably the 

prefrontal and anterior cingulate cortices. 

Using functional MRI, areas selectivity for both faces and scrambled faces has 

been identified in several areas including the ventral occipito-temporal cortex, the 

middle occipital gyri, and the superior temporal sulcus [26, 1231. No significant later- 

alisation was seen in these studies and face specific activity was only evident in some 

subjects. 

In summary, these various studies suggest directly and indirectly that there are 

neural systemi in humans that are specialised for processing face stimdi r\nd ikzt thee 

systems are, to some degree, localised. However, the degree of face specificity, the later- 

alisation and timing of the responses, the effects of level of attention and the complexity 

and nature of the face processing tasks have not been established unambiguously. 

3.2 The experiments 

Three experimental tasks were designed in order to provide some further evidence on 

the issues raised above with a particular emphasis on the nature of the early latency 

face-specific responses (Table 3.1 and Figure 3.2) .  Apart from the rationale to study 

possible face specificity under a variety of conditions, the design of tasks has been 

guided in part by the Bruce and Young model of face processing. The subjects had 
not seen any of the images before the experiments were carried out. 
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Task Description Numbers of images Cycles 

FT1 Identification of image class F:25, B:20, D:25, A:20 90 

FT2 Identification of identity F:23, D:20, M:20 pairs 63 

FT3 Identification of emotion N:23, S:23 46 

Table 3.1: Tasks 
The table shows an overview of all tasks denoted as FT1 to FT3 (face task 1 to 3). The tabulated 
number of cycles refers to one run. Each task was carried out twice. Images of adult Caucasians (F) 
were used in task FTI.  Non-face objects were motor bikes (B), dots (D),  animals ( A ) ,  and mugs (M). 
Images of boys faces (also shown as F) were used in all other tasks. Only neutral expressions were 
used for FT2. For FT3, two emotional expressions were used, denoted by N(eutra1) and S(miling). 
See Figure 2.7  for some examples. 

FT1 Four different classes of images were presented in a randomised order in two 

runs. Dot images were specified as the targets in the first run and images of adult faces 

as targets in the second run. Face responses were compared to responses following 

images of common objects with fine structured features (motor bikes), objects with 

simple geometric shapes (dot patterns), and animals. Animals were chosen because 

they are entities linked with human characteristics. The task has been designed as a 

simple object identification problem (i.e. is the image a dot pattern or a face?). 

FT2 Three different types of images were presented in a randomised sequence of 

pairs of images. Each pair either contained two identical or two differmt images e f t& 
same type. Matching and non-matching pairs were of equal probability. The type of 

images were boys’ faces, dots and mugs. The boys were ~ 1 2  years old with no major 

distracting features. Two identical runs were performed with pairs containing identical 

images of the same class as the target. Boys’ faces were selected because, at that age, 

their faces are blander than those of adults, preventing the use of detailed facial clues. 

The task has been designed to extend FT1 towards object recognition in the sense of 

identifying images within a class. 

FT3 Images of boys’ faces expressing either a neutral or a smiling expression (Ta- 

ble 3.1) were presented in a randomised order in two runs. Neutral images were speci- 

fied as the targets in the first run and smiling images in the second run. The smiling 

countenance was chosen as an easily recognisable, non-offending positive emotional ex- 

pression. The task has been designed to extend FT1 towards the identification of facial 
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Tasks 1 and 3 

/ / I l  1.5+/-0.3s I I 1.8+/-0.4s ,, 
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Image 

Task 2 

Cue 

// 
1.2 t/- 0.3 s 1.2 +/- 0.2 s 1.6+/-0.3s 

//i !o ms 100 ms 200 ms 

Image Image Cue 

Figure 3.2: Timings 
Shown are the two types of cycles used for the three tasks. Presentation periods of both the image 
stimuli and the visual cue (two vertical bars) were standardised. The cue was displayed for twice as 
long to differentiate it visually from the images. 

expression. 

The subjects were required to press a key once in each presentation cycle. Only 

two keys were used under the index and middle fingers of the right hand. The subjects 

either confirmed (index finger) or denied (middle finger) the appearance of a specified 

target image or target condition in the cycle. In each presentation cycle, the key press 

was explicitly requested by a visual cue appearing after the last visual stimulus. This 
served to separate the processes following the stimuli from the motor activity preceding 

the key press. 

Grey scale images were chosen to minimise possible interpretation problems linked 

with colour-processing in posterior fusiform gyrus [7]. All visual stimuli images were 

presented for 100 ms. This comparatively short period was chosen to prevent saccade 

scanning of image features through physical eye movement. A typical scanning latency 

is 250 to 300ms [137]. The short exposure does not eliminate the persistent retinal 

image; the effects of this process are not known. The period of 100ms is about 3 to 4 

times longer than the threshold needed for recognition of emotional expression [98]. 

3.2.1 Subjects 

A total of 15 subjects participated overall in these tasks, with 11 completing all three 

experiments (Table A. l ) .  If necessary, subjects were introduced to the laboratory 
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environment. They were briefed about the tasks to come and image types were named 

for each task. Target conditions were pointed out and the subjects were reminded to 

press a key only after the visual prompt. 

3.3 Results 

All subjects participated with the appropriate attention and dedication needed for 

these kinds of experiments. No problems were reported concerning the duration of the 

image, the use of the keypad, or the clarity of the instructions. Usually, volunteers felt 

reasonably comfortable within the environment of the shielded room and considered 

the experiments interesting. Only one subject was noticeably nervous before the first 

measurement. A truncated test run followed by an extended pause eased the nervous- 

ness and/or anxiety. No specific strategies were reported in coping with the tasks, 

although mouth and eye clues seemed to play a predominant role for FT3. 

The accuracy of performance of a given task is here defined in terms of the 

ratio between the number of correct key presses and the number of cycles (score). All 
subjects accomplished FT1 with negligibly few errors yielding a score of 0.97k0.01 

(cohort mean). The average performance was slightly lower in FT2 and FT3 with 

scores of 0.93*0.01 and 0.91zkO.01 respectively. Failure to reach the maximum score of 

1 is due to wrong rather than absent key presses, and is not correlated with a particular 

images class. 

Reaction tinies, in these experiments, seive as an inúÍcatar foi overall v++nc- 

and task attendance. They are given as the time elapsing between the visual cue and 

the button press. All subjects responded homogeneously across all tasks by pressing a 

key about 330ms after the visual cue. No particular modulation of the response time 

as a function of the task duration was noticed. 

All runs produced 'clean' data in that the subjects maintained a constant head 

position. If present, eye blinks followed the appearance of the visual cue. Unless stated 

otherwise, all results apply to the individuals evoked responses averaged over the two 

runs of each tasks, band-filtered between 0.8 (0.4 roll-off) and 48 (0.5 roll-off) Hz, and 

drift corrected between -200 and Oms with respect to stimulus onset (see Appendix B, 

[N-2] and Appendix B, (N-31). In the case of FT2, the averages for the second image in a 

pair were calculated without making a distinction between matching and non-matching 

second images. 
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3.3.1 Visual inspection: all tasks 

Average evoked field patterns for all subjects and across all tasks show that the pro- 

cessing of the image information is widespread. Typically, the stimulus is followed by 

strong activity in sensors located over the occipital cortex at about 100ms. Later ac- 

tivity is seen in occipito-temporal (inferior-temporal), temporal, parietal, frontal and 

somatomotor regions. 

Focusing on the posterior regions and early latencies, most salient are the average 

evoked response patterns over the right occipito-temporal region in the range 120- 

160ms with a typical peak value between 135 and 155ms. Here, in certain channels 

(varying only slightly across subjects) the responses in FT1 and FT2 to face images 

are distinguishable from all other responses (Figure 3.3 A ) .  The difference is clear in 

at least 8 subjects, and is marginal in a further 3 subjects. In one subject the same 

differential pattern of responses is present but the dominant face specific response is 

over the left hemisphere. 

Within this latency span, the signals’ morphologies are complex for all stimulus 

classes, as suggested by the rotated gradient plots (Figure 3.3 B). Despite this com- 

plexity, the same plots show that the bulk of the signal power is confined to a relatively 

small number of channels over right occipito-temporal regions. 

In all subjects widespread evoked activity is observed rostrally with regional peaks 

in power at latencies as early as 150ms. In a few subjects, there appears to be a large 

magnitude response in FT3 at about 150ms, mainly over the right anterior-temporal 

region. However, the signals from the anterior brain show a much greater dependence 

on the precise nature of the task, and the current analysis was not able to establish 

systematic behaviour across subjects. 
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3.3.2 Regional power 

As outlined above, visual inspection of the data suggests some differences between 

the face and non-face responses at latencies around 140 ms over mainly right occipito- 

temporal regions. However, efforts to quantify these observations on the basis of ampli- 

tudes or latencies failed. The latencies of clearly identifiable peaks corresponding to the 

different images classes over these regions do not vary strongly enough to distinguish 

the responses in the present data. The amplitudes show too much variability across 

subjects, and are not useful without further provision. Therefore, a different strategy 

was employed based on signal power pooled over a region of interest (ROI) instead of 

signal amplitudes in single channels. 

D Excursion: regional power measu re  The quantification of evoked activity 

within a specific region and latency span is achieved by calculating integrated and 

normalised regional signal power. The method extends the calculations of sums over 

squares of signals widely used in EEG and MEG investigations (e.g. [92, 931). Firstly, 

a measure of the regional field power as a function of time (activation curve) is given 

as: 

where S is the signal detected by a given channel. The subscript (u.) indicates the 
average over all epochs forming the evoked response, and C runs over all channels of 

a region of interest. The total power within a latency range of interest is takm lot'o 

consideration by integrating over the corresponding interval [t i ,  t z ]  

IRP = l:' RP(t)dt ( 3 . 2 )  

It is well known that unnormalised signal powers can be difficult to treat statistically 

when comparing the responses of different subjects because of considerable individual 

variability. This problem can be partially accounted for by fixing a time range of 

length b > O in the pre-stimulus interval, usually chosen as [-b,O], and introducing a 

normalised, dimensionless measure of integrated regional power: 

Assuming uncorrelated, zero-mean signals across channels for each t E [ -ó ,O] ,  the de- 

nominator in Definition 3.3 estimates the (integrated) ROI variance. Therefore, NIRP 
is analogous to the commonly used z-score. The issue concerning the baseline is fur- 

ther discussed in Appendix D together with other technical aspects associated with 
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this measure.4 

The quantification of signals was achieved by calculating normalised regional pow- 

ers for a group of 8 channels and a latency range between 115 and 1 ï5ms (Figure 3.3 

C) ,  denoted as as ROT for the right occipito-temporal group. This latency span and 

region' were chosen to include the majority of the significant power peaks for all sub- 

jects. Additionally, a second group of channels was chosen symmetrically with respect 

to ROT and with the same interval of integration, and denoted as LOT for the left 

occipito-temporal group. 

These two regions constitute a compromise made to pool the activity measured 

over occipito-temporal cortex across subjects. An extensive preliminary survey of re- 

gions and latency spans was carried out using this methods. The final choice yielded 

the most consistent results using the same detector sites for all tasks. The groups 

reflect the main results obtained from the visual inspection, and each group extends 

over an area of e 7 0  cm2. The choice does not preclude the existence of some clearly 

identifiable signal over regions outside these channel groups at similar latency. 

Attempts were made to parametrise differential signals over more anterior regions 

as well as at longer latency. Despite considerable efforts the attempts failed. At early 

latency, signals powers over the anterior brain are too variable and, essentially, too 

weak to establish systematic behaviour across subjects. This observation is consistent 

with a recent study using the same MEG facility [133]. A t  longer latency (>200ms), 
differential responses are seeii in some subjects. They are widespread thoush partic- 

ularly evident over right temporal regions. However, the variability across subjects is 

such that the significance of differences between responses at longer latency can only 

be achieved within a small subgroup (x5) of subjects selectively taken out of the full 

group. Thus, in what follows, only the groups LOT and ROT are considered. 

Analysis-of-variance ANOVA (Appendix B, [N-111) was used to assess the sig- 

nificance of differences between NIRP values of responses to different stimulus classes. 

Initially, the main emphasis is on within-task and within-channel group comparisons 

of NIRP values. 

3.3.3 NIRP analysis of separate face tasks 

The main observation is a significantly differential activation between responses fol- 

lowing face and non-face images over the right occipito-temporal region, in that faces 

'The baseline for the NIRP calculation was set to -200 to Oms, the interval used for drift correction. 
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evoke greater signal power than all other images. The effect is consistently seen in FT1 

and FT2. No such effect is evident over left occipito-temporal regions. The responses 

in task FT3 are not influenced by the facial expressions according to  the NIRP values. 

In what follows, the results of the statistical calculations are given for each task. 

10 
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Face responses are strongest in both the LOT and ROT groups, where significant 

differences are seen in region ROT (Figure 3.4). The face responses separate from motor 

bike and animal responses, and weakly separate from dot responses (HSD,,%=2.2). 

I 1 

Image class 

F B D A  F B D A  
3.1 2.3 2.2 1.6 6.9 3.8 4.6 3.1 

F 0.B 0.9 1.5 3.1 2.3 3.8 

B 0.1 0.7 0.8 0.7 

D 0.6 I .5 

Figure 3.4: FT1: NIRP 
Upper: graphical representation of the cohort means and standard deviations of NIRP values for 
the two channel groups LOT and ROT for the image classes of task FT1. Lower: numerical values 
of the cohort means together with the matrix of moduli of the differences between the mean values 
corresponding to the image classes. The statistical evaluation of the differences gives F3,52 = 1.5, p 
5 0.2 for LOT and F3,52 = 2.7, p 5 0.05, hsdo.03 = 2.5  for ROT. 

Face Task 2 

The differential activation in group ROT is present for both the first and the second 

image presentation in a pair (Figure 3.5). In both cases, face responses separate weakly 
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from dot responses, with (HSDl0%=2.0) and (HSDlo%=l.O) for first and second images 

respectively. The NIRP values were evaluated separately for first and second images 

in a pair, disregarding in the latter case the distinction between matching and non- 

matching images. The qualitative patterns are unaltered when taking into account this 

distinction. 

In group ROT there are differences in the latencies of the peaks of the power 

between responses following the first and second presentations face images within a 

pair. The 2nd face peaks are shifted with respect to the 1st face peaks towards lower 

latencies in the 9 subjects with clearly identifiable maxima in the activation curves. 

For these 9 subjects, the mean latencies are 149.3*3.5 ms and 143.013.6 ms for 1st and 

2nd faces images respectively. The difference of about 6 ms is significant (Ta = 5.2, p 

5 0.001). 

IS,  '- j 
2nd - 

Y 

F D M  F D M  

Image class 

F D M  F D M  

3 2.4 2.4 1.7 
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5.3 3.2 2.7 

F 0.0 0.7 I 2.1 2.6 

D 0.7 0.5 

0 

.- 
rn - 

4.4 3.3 2.2 

1.1 2.2 

D 0.3 1.1 

!i 2.6 2.4 2.1 

F 0.2 0.5 
E .- 
-2 
N 

Figure 3.5: FT2: NIRP 
The NIRP calculation were carried out separately for first and second images. The statistical evalua- 
tion of the differences gives: for first images F2.36 = 1.1, p 5 0.4 for LOT and F2.36 = 3.6, p 5 0.05, 
hsdo 05 = 2.3 for ROT; and for second images F2.x = 0.29, p 5 0.8 for LOT and F2.36 = 3.5, p 5 
0.05, hsdo 05 = 1.2 for ROT. 

37 



Face Task 3 

ROT 

1 1 ;  
1 

O 

Neutral faces evoke slightly stronger responses than smiling faces in both regions LOT 

and ROT, but the difference fell well short of statistical significance (Figure 3.6). 

N S 
3.0 2.6 

N 0.4 

N S 
5.1 4.9 

0.2 

Figure 3.6: FT3: NIRP 
The statistical evaluation of the differences gives F1,24 = 0.34, p <. 0.6 for LOT and F1,24 = 0.027, p 
5 0.9 for ROT. 

3.3.4 NIRP analysis comparing LOT and ROT responses 

In all tasks, the responses associated with a given stimulus are stronger in group ROT 
than in LOT according to the NIRP values. However, the differences are only significant 

in the case of all face stimuli, and the dot and animal images in FT1. 

3.3.5 The influence of target conditions on NIRP values 

In order to assess the impact of different target conditions on the results obtained for 

FT1 (targets are dots and faces) and FT3 (targets are neutral and smiling faces), the 

power analysis was repeated separately for the individual runs in each case. In these 

calculations: the NIRP values obtained are smaller mainly because of the reduced 

number of averages. However, the qualitative assessments stated above are exactly the 

same with respect to the significance or lack of significance between cohort means and 

the NIRP correlations. This holds true for both tasks. 
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3.3.6 Comparisons of NIRP values across tasks 

So far, consideration has been restricted to comparisons between the responses within 

a single task. The restriction makes the results less susceptible to artefact and more 

transparent. However, the consistency of the observations suggests that some inter-task 

comparisons are meaningful. To facilitate such comparisons, ratios of unnormalised 

regional power (IRP) were calculated for each subject and image class for the right 

channel group ROT (Table 3.2) using, in each case, both runs. It can be seen that the 

ratio of the responses to faces and dots is essentially the same in Tasks 1 and 2, even 

though the face images are different in the two cases. The ratio of the face response in 

Task 1 to that in Task 2 is the same as in the ratio of Task 1 to Task 3. There is some 

evidence that face responses are stronger in the first task than in the second and third 

according to this analysis. 

Comparison Mean power ratio 
FT1 F/FT1 D 1.7f0.3 
FT2 F Ist/FT2 D 1st 1.6+0.2 
FT1 F/FT2 1st 1.440.2 
FT1 F/FT3 N 1.5k0.2 
FT1 FjFT3 S 1.5k0.3 

Table 3.2: ROT: inter-task comparisons 

3.3.7 Reproducibility of NIRP values 

In four subjects, FT1 was repeated several times both on the same day and over 

several months with exactly the same image set. For one subject the luminosity was 

also varied systematically over a k30% range. These additional experiments confirmed 

that the data were consistent and insensitive to the parameter levels (for all reasonable 

variations in those parameters) to within the random noise. 

3.3.8 Source localisation using task FT1 data 

For each data set in task FT1, the optimum (best fit) equivalent dipole was sought 

within the latency span between 115 and 175ms using the procedure’ described in 

Appendix C. The analysis was restricted to FT1 because here the face responses are 

strongest. 

2For the calculations, two channel groups were chosen each covering the two hemispheres, excluding 
the anterior-frontal, vertex, and medial occipital channels. 
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Category 

F 

B 
D 
A 

F (left) 

Table 3.3:  Mean source parameters 
The mean source parameters are for the equivalent dipoles corresponding to the signals over the right 
hemisphere. The one dipole obtained for the subject with a dominant left hemispherical face response 
has been added for comparison. All values refer to FT1, and have been rounded to the nearest integer 
value. 

# Latency [ms] Strength [nAm] 

8 142 f 4 32 f 5 
1 146 37 
5 142 f 7 24 f 8 
5 149 f 4 21 f 4 
3 151 f 6 25 f 7 

For these five subjects, there are no significant difference between the source 

location3 and the latency of best fit for the different image classes. The face dipoles 

are significantly stronger than dot dipoles. The anatomical locamtion of face dipoles in 

most cases is approximately described as the inferior temporal lobe, as suggested by 

the superposition of the dipole location on the individual’s MRI scan (Figure 3 . 7 ) .  

3111 [148], a weakly significant result suggested that face dipoles were located anterior to motor 
hikes. That result did not include the use of an optimised sphere fitted to an MRI scan. With this 
refinement, the significance of the difference of positions disappears. 
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coronal sagittal f axial 

Figure 3.7: MRI Projection: face dipoles 
Shown are source estimates corresponding to face dipoles. A: the subject (S5) with the dominant face 
response over the left hemisphere, and B: a subject (S10) with the dominant face response over the 
right hemisphere. The two sources at  z = -23, y = -36, z = 39, and z = 36, y = -28, t = 48 for A 
and B respectively (in PAN co-ordinates; units in mm). 
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3.3.9 Correlation based analysis 

The above analysis was taken further by considering rank correlations between pairs 

of NIRP values across subjects (Table 3.4, see Appendix B, [N-l2]). The correlation 

is a measure of the consistency of the mapping of neural source systems onto signals. 

A high correlation implies that there are similar mechanisms operating across the 

subjects. A change in correlation implies a change in the source system linkage and 

therefore a change in the characteristics of the underlying generators. When this occurs 

across tasks, a modification of mechanisms by the varied conditions is suggested. The 

patterns which emerges from the analysis are complex. Currently, no more information 

is extracted than stating that the analysis suggests an influence of the task on the 

underlying mechanisms. 
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Table 3.4: NIRP correlations, all tasks 
The table shows the rank correlations coefficients ( e )  corresponding to pairs of response in FT1 to 
FT3. Each value specifies a significant positive correlation of at least p < 0.05 significance. Each 
entry is based on n = 14 (FT1) or 13 (FT2, FT3) pairs of NIRP values corresponding to the number 
of subjects participating in the tasks. 
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3.4 Discussion 

The main observation of the present study is the face-specific processing at early la- 

tencies in channels over the right occipito-temporal region. The specificity of responses 

following face presentation is identified as an increase in signal power compared to 

the responses following other stimuli. The increase in power is identified consistently 

across subjects by an analysis covering a time span of 60ms centred around 145ms. 

This latency will be used to label the face responses disregarding the variation in the 

individual peak latencies, which have a typical delay of x50 ms from the first major 

occipital component. 

The face-specific processing is reasonably consistent across tasks FT1 and FT2 

including the sub-tasks of the former and the image sub-categorisation of the latter. 

This suggests that the response is, to a first approximation, automatic, i.e. it is unlikely 

to be under conscious control. However, some task dependence is suggested by the 

observations that a) the strength of response varies appreciably between the two tasks, 

b) there is a latency shift between 1st and 2nd-faces in the majority of subjects in FT2, 

and c) the correlations of individual powers between face and non-face responses are 

influenced by the task. The shift in latency in FT2 is consistent with previous face 

studies (see [ 7 3 ] ) .  

In the case of FT3, the responses following neutral and smiling faces at  145ms 

are indistinguishable with the methods used, as suggested by the same regional powers 

and a high correlation between the two response types. The signals measured in this 

task are compatible in shape and latency with the face responses in FT1. The relative 

strengths of the responses in the two tasks are independent of the facial expression and 

are comparable to the relationship between FT1 and FT2 (1st image). 

It is not known why the responses to face images are greater in FT1 than in FT2 
or FT3, even though the latter tasks are more demanding (as judged by the scores) 

and arguably require the subject to scrutinise the images more closely. The difference 

may be because of additional activity that produces fields cancelling partially those 

generated in FT1 or be the result of inhibition of some part of the FT1 activity. 

In general, the latency of 145 ms is broadly consistent but somewhat earlier than 

the face-specific activity identified from other experiments. It is not known what 

causes the discrepancy, which could relate to different sensitivity characteristics of 

other techniques, or to the tasks parameters used here, specifically the brief exposure 

to the face stimuli which might involve a different range of processes. 
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The face-specific processing is predominantly seen over the right hemisphere. 

Indeed, the measure used here provides no statistically significant evidence for left 

hemisphere face-specific involvement across the subject group as a whole. The right 

hemisphere dominance of the face specificity effect is consistent with previous lesion 

and electrode studies. However, both the normalised powers and inspection of the 

evoked responses does provide clear indications of activity related to face and other 

objects at similar latencies over the left occipito-temporal region, although less in signal 

power for all image classes. Additionally, the pattern of correlations varies with the 

task condition suggesting a differential left hemispherical involvement in the processing 

besides a suggested right hemispheric specialisation for complex visual stimuli. 

The dipole sources identified for the face responses in FT1 are consistent with 
activity in the ventra1 occipita-temporal cortex and with sources oriented along the 

ventral-dorsal axis in most subjects. Both location and orientation are consistent with 

fusiform gyrus activation. However, the modeling issue is complicated by the probable 

coexistence of other sources within neighbouring cortical regions, and the individual 

variability and structural complexity of the brain geometry. This is indicated by the 

relatively modest success in fitting the data achieved by single equivalent dipole fits 

despite acceptable signal-to-noise ratios. 

The absence of significant differences between the source locations correspond- 

ing to faces and other objects is broadly consistent with a previous EEG study on 

face processing [19]. It is unclear whether the sources here reflect segregated cortical 

areas, as seen in a recent depth electrode stridy stiggesting tkat tke fusiform a y c i l s  

supports areas with a gradual change in dominant function [7]. Most probably, the 

regional power method opens a window into the general processing of complex objects 

in occipito-temporal cortex, where unspecific mechanisms co-exist with processes spe- 

cific to some degree to faces and possibly other objects as well. Tentatively, in this 

data, the dot pattern might be a candidate for such additional specificity. With regard 

to signal power, the dot responses are closest to faces on average, and strongest in 

4 out of 6 subjects in whom faces do not elicit the strongest responses in task FT1. 
The underlying mechanism seems to be independent of the richness of spatial features 

of an image, otherwise one might expect the motor-bikes, which are richer in spatial 

features4 than dots, to be closest to faces. 

The activation induced by non-face objects within the same latency span over 

same the areas seen in the present data is consistent with previous EEG, MEG, and 

4See Figure 2 .8 ,  
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depth electrode studies [6, 14, 1331. The most sparse explanation for the present data 

is that the activity at 145ms is a form of spatial encoding that depends on the nature of 

the image and partially at least on the visual demands of the task (a similar conclusion 

was reached recently [14]). The responses to faces are specific in that these images 

engender greater responses than other images. This might reflect a greater value of 

coherent cortical activity, or a different distribution of activity. 

The face-specific responses observed here could relate to  the face-specific activity 

representing the second structural encoding stage of the model of Bruce and Young 

(Figure 3.1) ,  acting as preparatory stages for the expression analysis or the face recog- 

nition units. The latter are presumably addressed indirectly in FT2. This assumption 

might explain the slight variations of the pattern of face specificity observed in the 

different tasks, without introducing dramatic changes. 

Conclusion 

It is suggested that a careful analysis of evoked signal power can efficiently probe 

responses associated with the processing of face and other objects. The results support 

the notion of face specificity in terms of increased coherent activity manifest as an 

increase in signal power over right occipito-temporal regions of the human brain at 

early latency. The early face specificity is approximately independent of the nature of 

the task, and indicates a right hemispherical preponderance of face processing networks. 
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Chapter 4 

Face processing - a note on the 

case of autism 

This chapter reports on a study of face processing in autistic subjects using MEG'. 

Seven autistic individuals were studied using the face processing tasks FT1 to  FT3, 
with a particular interest on the regions and early latencies where face-specific activity 

had been identified previously in the normal subject group. 

In what follows, a brief introduction to  autism is given, followed by some remarks 

about behavioural face processing studies into that disorder. The chapter continues 

with a presentation of the results and a discussion. 

4.1 Background on autism 

4.1.1 General 

The first acknowledged scientific account' of the disorder dates back to  the year 1943. 

At that time, Dr. Kanner, a psychiatrist at Johns Hopkins University, wrote the first 

publication using the term 'autism' to describe a group of children who had severe 

social, communication, and behavioural problems [79]. The term derives from Greek 

autos = self and the suffix ism = indicating a state or condition, and carries the 
connotation of being absorbed in oneself. The syndrome is rare, affecting approximately 

four children in 10000 and is about three times more likely to  affect males than females. 

Since the original account, the disorder has spurred an ever growing research 

'To the author's knowledge, this is first study of its kind. 
'Unless referenced explicitly, the remarks in this section have been assembled from [I l ,  1301. A 

review of EEG studies in autism unrelated to the present study can be found in [27, Chapter 161. 
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interest into autism in mainly the behavioural and medical sciences. Over the decades, 

this has led to a degree of consensus on a very complex disorder succinctly characterised 

as: 

... autism is a neurodevelopmental disorder, involving basic cognitive deficits, 

with genetic factors strongly predominant in etiology3 ... [132] 

To date, there is no physiological test to determine whether a person has autism, 

and the diagnosis of autism is based on behavioural characteristics. The diagnosis 

requires expert knowledge, and is only made if some behavioural features in each of 

three groups of symptoms co-occur before the age of 3 years. It is the number, severity 

and persistence of these features, given the age of the child, which may lead an expert, 

usually a psychologist or psychiatrist, to describe a child as autistic. The features are 

categorised into three groups4: 

Difficulties in social interaction 

feelings, or lack of understanding of the social conventions underlying friendship. 

Such as apparent unawareness of other people's 

Difficulties with language a n d  non-verbal communica t ion  Such as telegraphic 

speech, or unusual eye contact during conversation. 

Restricted range  of activities and interests Such as preoccupation with touching 

a particular object, or unusual insistence on preserving the sameness of the eaviroa- 

inent, e.g. by keeping an otject always in the same pface. 

Despite a consistent catalogue of diagnostic criteria, there is no single adjective 

which could be used to describe every type of person with autism. Each autistic 

individual has his or her own signature of needs, skills, and medical conditions. Many 

autistic individuals are intellectually impaired, some have exceptional skills, termed 

islets of ability, in one particular area such as music. Some develop epileptic seizures. 

In most cases autism is a life-long condition, where the pattern of difficulties may 

change or become less in adult life. 

Autism is a complex and severe disorder of development. The understanding of 

its nature has made advances. However, much has yet to be resolved: 

3developmental = affecting the development; etiology = the study of the causes of a disease or 
disorder; in similar definitions, 'neuro' + 'genetic factors' are alternatively specified as 'biological 
basis' [59]. 

4a detailed exposition of the diagnostic criteria can be found in [a, 164). 
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... it is also evident that the basic pathophysiology of autism remains 

unclear, the mode of inheritance is not known, and our ability to provide 

effective treatment is distinctly limited [132]. 

4.1.2 Face processing studies 

The issue of face processing capacities in autism has been addressed systematically 

over the last two decades in behavioural studies. Intuitively, it has been suspected that 

a relationship exists between those capacities and the deficits that affect the autistics’ 

social relations [34]. The following is a short summary5 of the linkage: 

It is generally agreed that autistic individuals are impaired on certain aspects of 

face perception. However, it is still unclear how specific this impairment is. Whereas, 

some studies have reported on a selective impairment in the recognition and production 

of facial expressions 163, 96, 1121, others have found a more general deficit in perceptual 

abilities [33 ] .  Other aspects of face perception have also been reported to be affected 

in autistic individuals, such as the memory for faces [34], specifically in the context 

of identifying recently seen, previously unfamiliar, faces [20]. Furthermore, autistics 

seem to pay relatively more attention to the lower part of the face [go], and a good 

performance has been found on tasks with photographs of faces turned up-side down 

[64, 90, 1-53], 

The latter findings have led to the suggestion that autistic individuals might make 

use of abnormal face proc.essing strategies, in that they might perceive faces in terms of 
their component properties alone (i.e. piecemeal processing), rather than viewiug the 

face as a whole (i.e. holistic processing; [103]). This could account for peculiarities in 

perception of both facial expression and identity. So far, no comprehensive theoretical 

framework exists to cover the observations, the detailed nature of which often depends 

on the chronological age, the severity of the syndrome, and the matching condition, 

i.e. the choice of what is considered as ’normal’ for comparison [33 ] .  

The present study has been motivated by previous work on face processing in 

autism, but should be seen as an independent approach, addressing the signal features 

of evoked responses at early latency. MEG experiments have their own requirements, 

often vastly different from behavioural studies. In terms of behavioural studies, the 

subject groups are not matched here. Nevertheless, the normal subjects studied in 

Chapter 3 will be referred to as the control group. 

5The account is based on a paper from the Proceedings of the 5th Conference on autism, Spain 
1997: Face processing strategies in autistic individuals, J .  Pieter. 
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4.2 The experiments 

The face processing tasks FT1, FT2, and FT3 were used as discussed in Chapter 3. 

The first task FT1 requires only the identification of an object as a face or non-face, 

and should be neutral with respect to possible impairments in face processing. FT2 

relates to a possible impairment in the recognition of recently seen, but previously 

unknown faces, and FT3 relates to  a possible impairment in the recognition of facial 

expression. Implicitly, if selective impairments are present in these autistic subjects, 

tasks FT2 and FT3 should be more difficult to cope with than FT1. 
In order to preclude the use of unusual face processing strategies, as far as this 

can be controlled by the parameters of the experiment, a brief presentation time has 

been chosen making serial scanning of the image virtually impossible. The use of boys’ 

faces with fewer prominent facial features than adult faces in FT2 and FT3 serves the 

same purpose in that it encourages subjects to use the face as a whole rather than a 

particular part of it in coping with the tasks. 

4.2.1 Subjects 

The subjects were seven high-functioning adult autistic individuals of British nation- 

ality. The profiles of the autistic subjects are given in Appendix A. 

4.3 Results 

All autistic subjects participated with reasonable attention and dedication. However, in 

contrast to  the smooth experimentation seen in normal subjects, a variety of problems 

occurred in the case of this subject group. The obstacles were never insurmountable, 

but reruns of one or more tasks were required in some cases6. Once initial difficulties 

had been overcome, the experiments were carried out in a relaxed atmosphere where 

even some enjoyment was perceptible. No session had to  terminated prematurely. In 

one case, the wish to  continue with the experiments without breaks exceeded the zeal 

of the investigators. 

The autistic subjects accomplished both FT1 and FT2 with few errors, yielding 

scores of 0.95f0.03 and 0.90f0.02 respectively, insignificantly different from the normal 

61t is understood that all results refer to the ’stable’ runs obtained for each autistic subject avoiding 
problems due to the first few epochs during which task confusion was fairly common. In the stable 
runs, the autistic subjects maintained constant head positions and avoided eye blinks. The averaging, 
filtering, and drift correction were the same as for the analysis of normal subjects’ data. 
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Figure 4.1: Reaction times versus task cycle 
Each point is the mean and standard deviation for the relevant subject group. The graphs demonstrate 
the near constancy of reaction time as a function of the cycle number for the autistic subjects in FTI 
(FT2 and FT3 similar). The data of the control group is shown for comparison. Normal subjects 
show a faster response. 

group. The incorrect key presses did not correlate with the image class in either task. 

In FT3, however, significantly more errors were made (0.8110.03). It is noted that a 

neutral expression was more often mistaken for a smiling expression than vice-versa, 

independent of the target condition. 

The profile of reaction times is very similar to the control group, and the qual- 

itative remarks stated earlier apply here as well. However, the response times are 

consistently slower across all tasks compared with the control group (Figure 4.1). 

4.3.1 Visual inspection: all tasks 

From the earliest stages at which signals are visible up to a latency of about 200ms, 

many of the comments made in the case of normal subjects hold true here as well. 

The stimulus is followed by strong activity in detectors over the occipital cortex at 

about 100 ms spreading to sites over the occipito-temporal, temporal, parietal, and 

somatomotor regions at later latency. 

A t  latencies around 145 ms, evoked responses, clearly distinguished from noise, 

are visible in the signals of all autistic subjects over the right occipito-temporal regions 

(Figure 4.2 A).  The consistency of signals is high across tasks and image classes within 

a subject, but varied across subjects. The inter-subject variability seems to be of the 
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same order as is observed in the control group. Indeed, the local signal waveforms 

can be matched between chosen pairs of autistic and normal subjects within the same 

channel (Figure 4.2 B). The morphology of signals around 145ms, as indicated by 

rotated gradient plots, is about the same as in most normal subjects (typically similar 

to that of S1 in Figure 3.3 A, lower plot). 

In summary, there is a considerable similarity between the signals of the autistic 

and control subjects with one important exception: for these autistic subjects there 

is no clear evidence for the differential effect between signal amplitudes following face 

and non-face stimuli that is readily identifiable in the data of most normal subjects. 
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4.3.2 Regional power 

In order to quantify the power content of signals within the latency span of interest, 

an analysis' exactly analogous to the control group was performed for the regions LOT 
and ROT (Figure 3.3 C). The results obtained above suggest that the approach is 

meaningful. In these data, there is no evidence that differential responses to faces 

and other objects might be present over other areas than covered by the group ROT. 

The remarks previously made about the regions of interest hold true here as well. As 

before, analysis-of-variance was used to assess the significance of differences between 

NIRP values of responses to different stimulus classes. Initially, the main emphasis is 

on within-task and within-channel group comparisons of NIRP values. 

4.3.3 NIRP analysis of separate face tasks 

The main observation in FT1 and FT2 is the absence of a significant difference between 

face and non-face response with respect to the power of the signals in group ROT. The 

patterns of NIRP values in group LOT are similar to the ones found in the normal 

subjects. This holds also in task FT3 for both regions. Ali values are specified in the 

following sections. 

Face Task 1 

As with the normal controls, face responses are stronger than any other ia both chaw 

riel sroups LOT and ROT (Figurc 4,3), How$wr bhc Wcrc~ma  t m  uvl. 11&#1~~&.y 

significant. 

Face Task 2 

As in the normal controls, there are differences in the latencies of the peaks of the power 

curves in group ROT between responses following the first and second presentations of 

a face image within a pair. The 2nd face peaks are shifted with respect to the 1st face 

peaks towards lower latencies in the 5 autistic subjects with clearly identifiable maxima 

in the activation curves. Restricted to these 5 subjects, mean latencies are 149.4f5.5 ms 

and 143.2k5.2ms for 1st and 2nd faces images respectively. The difference of about 

6 ms is significant (T4 = 5.6, p 5 0.01). These mean values almost exactly match the 

ones obtained in the control group. 

'See also Appendix D. 

53 



control - 1 10 L 
LOT 

7 

4 

1 
F B D A  F B D A  

Image class 

F B D A  F B D A  
2.4 1.6 2.1 1.5 5.3 4.5 3.8 3.9 

F 0.8 0.3 0.9 0.8 1.5 1.4 

B 0.5 0.1 0.7 0.6 

D 0.6 0.1 

Figure 4.3: FT1: NIRP (autistic subjects) 
Upper: graphical representation of the cohort means and standard deviations of NIRP values for the 
two channel groups LOT aiid ROT for the image classes of task FT1. The values for the control 
subjects have been added for comparison in ROT (see Figure 3.4). Lower: numerical values of 
the cohort means together with the matrix of moduli of the differences between the mean values 
corresponding to the image classes. The statistical evaluation of the differences gives F3.a = 0.89, p 
5 0.5 for LOT and F3,24 = 0.24, p 5 0.9 for ROT. 

The NIRP values shown in Figure 4.4 were evaluated separately for first and sec- 

ond images in a pair, disregarding, in the latter case, the distinction between matching 

and non-matching images. There are no significant differences. The qualitative pat- 

terns are unaltered when taking into account this distinction. 

Face Task 3 

As in normal controls, identification of emotional expression exerts no significant influ- 

ence on the signal power. Neutral faces evoke slightly stronger responses than smiling 

faces in both regions LOT and ROT (Figure 4.5). 

4.3.4 NIRP analysis comparing LOT and ROT responses 

In all tasks, the responses associated with a given stimulus are stronger in group ROT 

than in LOT according to the NIRP values. However, the differences are only significant 
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Figure 4.4: FT2: NIRP (autistic subjects) 
The NIRP calculations were carried out separately for first and second images. The statistical evalu- 
ation of the differences gives: for first images F2,is  = 1.1, p 5 0.4 for LOT and F2,,s = 0.017, p 5 1.0 
for ROT; and for second images F2,is = 0.28, p 5 0.8 for LOT and F2,,* = 0.12, p 5 0.9 for ROT. 

in the case of motor bike and animal images in FT1. 

4.3.5 The influence of target conditions on NIRP values 

As in the normals, the analysis according to target condition (e.g. dot patterns or faces 

in FT1) did not yield any quantitatively different results for both tasks FT1 and FT3. 

4.3.6 Coniparisons of NIRP values across tasks 

The inter-task comparisons show a consistency similar to normal subjects (Table 4.1). 

There is some evidence that face responses are stronger in the first task than in the 

third according to the individual’s ratio of unnormalised power (IRP). 
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Figure 4.5: FT3: NIRP (autistic subjects) 
The statistical evaluation of the differences gives F1,n = 1.0, p 5 0.4 for LOT and Fi , iz  = 0.0, p 5 
1.0 for ROT. 

ComDarison Mean Dower ratio 

FT1 F/FT1 D l . l f0 .2  
FT2 F Ist/FT2 D 1st 1,OhO.l 
FT1 F/FT2 1st l . l f0 .2  
FT1 F/FT3 N 1.3f0.1 
FT1 F/FT3 S 1.2f0.2 

Table 4.1: ROT: inter-task comparisons (autistic subjects) 

4.3.7 Reproducibility of NIRP values 

This issue was not systematically pursued in the case of the autistic subjects. 

4.3.8 Source localisation using task FT1 data 

As with the normal control group, source localisation based on equivalent current 

dipoles complemented the power analysis. The calculations were carried out according 

to the scheme for the normal subjects, no MRI images were available. Again, only 

a relatively low number of good fit sources emerged, with face responses being most 

easily modelled. The proportion of rejected dipoles are similar to the normal group 

making proper statistical analysis impossible due to the low number of autistic subjects 

measured. Within these limitations, the results do not suggest differences in location 
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between the dipole sources corresponding to responses following face and other object 

images. 

4.3.9 Correlation based analysis 

In order to complete the analysis, NIRP rank correlations were calculated between the 

pairs of images of a given task for regions LOT and ROT (Table 4.2). In general, there 

is a lower number of significant correlations compared with the control group. The 

patterns are modulated by the task or sub-task. As with the normals, the inter-subject 

variability is conserved in FT3 and group ROT 
- 
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Table 4.2: NIRP correlations, all tasks (autistic subjects) 
The table shows the rank correlations coefficients ( e )  corresponding to pairs of response in FT1 to 
FT3. Each value specifies a significant positive correlatioli of at least p < 0.05 significance. Each entry 
is based on i1 = 7 pairs of NIRP values corresponding to the number of autistic subjects participating 
in the tasks. 
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4.4 Discussion 

It is worth reiterating that 7 high-functioning autistic subjects were flown from the 

United Kingdom to Finland, and were subsequently administered 3 tasks designed to 

study the neural mechanisms associated with the processing of images of faces and 

other objects. All autistic individuals managed well within an environment atypical in 

terms of clinical studies. The occurrence of no more than moderate problems did not 

jeopardise significantly the experimental flow. This is a remarkable observation given 

that all 7 autistic subjects had no prior experience of MEG, in contrast to the majority 

of control subjects. 

All seven autistic subjects performed as well as the normal group in tasks FT1 
and FT2 with no correlation between wrong key presses and image classes. The task 

performance was below normal but well above chance level in FT3. This ohservation is 

broadly consistent with previous studies which have suggested a selective impairment 

in the recognition of facial expressions (see section 4.1.2 for references). The profile of 

the cued reaction times is similar to the normal group but is shifted towards higher 

values. 

The main observation concerning the MEG readings for this group is the absence 

of evidence for a differential effect in signal power between the responses following faces 

and other object over right occipito-temporal regions at latencies around 145ms. The 

effect is subtle. In general, the responses to all stimuli are comparable in waveform, 

latency, and amplitiide to the control group. All NIRP values are broadly comparable 

across the two groups of subjects, with similar mean values for the same task and 

stimulus for the two cohorts. The comparison with the normal data suggest that the 

absence of a differential effect is due to a reduced signal power of the face responses in 

this group of subjects. 

All remarks previously made about the signals’ near-independence of the task 

conditions hold true for this group as well. The relative differences between face r e  

sponse in the various tasks are less pronounced but qualitatively the same as in the 

control. Again, the face responses in FT3 are unaffected by the facial expression. 

As with the normal group, both the normalised powers and inspection of the 

evoked responses provide clear indications of activity related to face and other objects 

at similar latencies over the left occipito-temporal region. Exactly as before, the signal 

power is less over the left than over the right for all image classes in all tasks. However, 

the differences for face responses are not significant, most probably because of the 
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assumed reduction in power over the right hemisphere. 

The pattern of correlations varies with the task condition for both groups LOT 

and ROT, although there are fewer correlating pairs of NIRP values than in the control 

group. This may be linked to  the relatively low number of subjects in this group, 

making the significance of pair correlations volatile. It is noted that, as in normals, all 

significant correlations are positive. 

The small number of dipole locations obtained and the nonavailability of MRI 
scans precluded interpretations other than to reiterate that the results are broadly 

consistent with the normal group, and do not contradict the NIRP results. 

It is unclear what causes, in this group of individuals, the reduction, or absence 

of the differential effect in signal power between face and non-face responses, which has 

consistently been identified in the control group. If this means a (partial) lack of face 

specificity for which there are supporting observations in normal subjects, then the 

reduced coherent neural activity might signal a reduction i11 but not an abolishment 

of the use of pathways leading to  the processing of features specifically associated with 

faces. These might be not of preeminent importance for individuals who are self- 

absorbed, and for whom the face, or the individual represented by the face receives an 

object-centred status [115]. In this sense, the present results might be compatible with 

autistic individuals solving face tasks using different strategies akin to those used for 

objects other than faces as suggested by behavioural investigation. A lack of usage of 

face-specific attributes might feed through into higher order face processing deficits. 

Con c 1 us i on 

To date, only a weak conclusion can be drawn: the results suggest that the magne- 

toencephalographic approach is potentially useful in studying some neurophysiological 

aspects associated with the highly complex disorder of autism. It has to  be explored 

whether the present results can be replicated in this group or extended to  a larger group 

of individuals diagnosed autistic, or whether they might be specific to the disorder in 

general. 
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Chapter 5 

Oscillatory dynamics following 

semantic incongruity 

This chapter is a report of a study of the neural mechanisms associated with the 

processing of semantics conveyed in words and sentences. The study is based on a 

semantic violation paradigm which has often been used in neuroelectrical explorations 

of language processing, and which is known to elicit a robust evoked response. In 

this study an attempt is made to parameterise the y-band activity associated with the 

neural processes, and to study its relationship to evoked responses in the time domain. 

This approach lias been motivated by recent advances indicating a possibly specific 

role of higher frequency activity in language processing. 

In the first section, a brief overview of the  paradigm is given, foiIoweci by a 

description of the actual experiment. It 

centres around the technique of Gabor transforms recently introduced to the analysis 

of EEG and MEG signals. Then follow the presentation of the results and a discussion. 

The analysis method is developed next. 

5.1 Background on neuroelectrical studies of se- 

mantic processing 

Language is an essential characteristic of the human race, and has been studied by a 

variety of disciplines including psychology, biology, neurology, computer sciences, and 

philosophy (e.g. [ 5 2 ] ) .  Because of its complexity, researchers have addressed certain 

aspects of language separately, but the part-whole relationships have also attracted a 

considerable inter-disciplinary interest. These relationships are found at many levels: 

letters or units of sound (phonemes) combine into words, words make up sentences, 
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and sentences form discourse. Over many decades, research has suggested that the 

relationships are unlikely to proceed in a strictly serial manner from the simplest to 

the most intricate unit, either in language comprehension or production. Since the 

19GOs, there has been exploration of context effects which involve meaning and which 

operate at the level of interactions between sentences and words; e.g. a word which 

forms a congruous completion to a sentence is more likely to be identified with a brief 

exposure period and to receive a faster response than an incongruous completion (see 

[160] for an overview). 

At about the same time, event-related studies came into use as a means of in- 

vestigating language processing. However, it was not before 1980 that encouraging 

results were obtained which demonstrated clearly that event-related responses follow- 

ing linguistic stimuli are informative. In that year, it was shown that a late negative 

component around 400111s after stimulus onset, called the N400, was related specifi- 

cally to semantic context [SS]. The modulation of that component was demonstrated by 

recording the responses following semantically congruous and incongruous final words 

in sentences such as 

It was his first day at work and He spread the warm bread with socks. 

It was found that the N400 had a much larger amplitude when it followed the semanti- 

cally incongruous final word compared to the congruous control word. The specificity 

with rcspcct to ssiiimtics w w  iiuggciibsd ky 611s obss~yir.tjuii t113.I idis risponms irrairnb 

400ms were not different from the (congruous) control condition when the final words 

fitted into the context of the sentence but were of different letter size. 

The experiment sparked a huge interest in the N400 component. At least 100 

subsequent studies employing mainly EEG but also MEG have provided further evi- 

dence that the N400 is elicited by semantically incongruous words in various sentence 

positions, or by the second word in pair of words which is semantically unrelated to 

the first. It is also elicited by pseudowords like noom used as a replacement for moon, 

but not by true non-words, i.e. phonologically illegal words like lakb (see [77]). The 

N400 has been shown to vary as a function of the expectancy of a word (the so-called 

'doze' probability when used at the end of a sentence): the more probable is the oc- 

currence of a word in a given context, the smaller is the amplitude of the N400 [89]. 

This observation suggests that the N400 is more than a simple marker for semantic 

anomalies. 



The N400 component can be elicited in both the visual and the auditory modal- 

ities, and is spatially widespread [65]. It exhibits a complex topography with, depen- 

dent on the paradigm, the strongest effects observed over frontal, anterior temporal, 

or centro-parietal regions. Studies based on readings from intracranial electrodes have 

pointed to components at the same latency sharing characteristics with the N400. The 

depth studies have identified a variety of anatomically different structures involved in 

the generation of the depth N400, including a marked bilateral contribution from the 

anterior medial temporal lobe [55, 56, 1001. 

Despite intense research efforts, the role of the N400 component within semantic 

processing is not yet resolved. A hypothesis supported by several independent teams 

maintains that the N400 component signals the process of integration of the stimulus 

within its context after the stages of the word recognition. Accordingly, a semantic 

incongruity entails greater integration effort and is seen as a higher N400 amplitude 

(a brief review of current N400 hypotheses can be found in [35]). In this context, a 

few EEG studies have considered evoked responses outside the traditional N400 time 

window, and have reported on a family of late positive components (u700 to 1000 ins), 

in N400 experiments. There is preliminary evidence that these also reflects semantic 

context effects [i’i’, 991. 

The problems in interpreting components identified in language processing have 

led researcher to explore methods different from the usual analysis of latencies and 

amplitudes of evoked responses. Specifically, the methods of time-frequency localisation 

have gained momentum. In time-frequency localisation, a signal is represented via an 

integral transformation in terms of suitable basis functions, most commonly chosen 

to be similar to the well known Fourier basis. The representation yields coefficients, 

or spectral estimates as a function of time and frequency. The computed coefficients 

are related to the task and stimulus under consideration, and a significant change of 

a coefficient with respect to a baseline is usually interpreted as an oscillation at that 

frequency and time. 

Using these methods, recent studies on language processing have addressed the 

neural activity in the y-band as a possibly independent marker. It has been suggested 

that y-band power at 30 Hz is specifically suppressed following pseudoword presentation 

at latencies concomitant with the N400 [95, 1251. Other studies have pointed out that 
oscillatory activity at higher frequency might distinguish between the processing of 

language and non-language stimuli, thereby revealing specific hemispherical differences 

[44]. These studies indicate that it is potentially fruitful to leave the realm of the low 
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frequency evoked responses, and consider event-related activity at higher frequencies 

when studying language processing. 

The present study furthers this approach by considering the time-frequency lo- 

calisation of y-band activity elicited by congruous and incongruous words completing 

sentences. In an extension to previous work, not only the localisation of y-band power 

has been determined, but also the localisation of y-band phase-locking, i.e. the align- 

ment of phase with respect to the stimulus of certain frequency components at certain 

times. 

5.2 The experiment 

The chosen experimental design followed closely the original study in 1980 [88]. Specif- 

ically, the subjects read sentences displayed word by word on a screen (Figure 5.1). 

Each sentence’s final word was either semantically congruous or incongruous with re- 

spect to the preceding context. In order to maintain the subject’s attention in the 

sentence, the approach was reinforced by the target verification paradigm used in a 

more recent EEG study on the effects of semantic violation [46]. A target word fol- 

lowed the sentence. It was either a repetition of one of the words of the sentence or 

a new word. The subjects were requested to confirm or deny the target as being a 

repeated word by pressing with the index or middle finger respectively. The key press 

was cued by the appearance of a visual prompt. This kind of experiment has been a 

rcliable tool in  tieuro,,iiysiolo,i,,l ínvestigationc of semantic processing. S’oï the sakie 

of notation, the experiment will be referred to as the language task LT. 
Two examples are given below for each of the four possible combinations between 

the sentence’s final and target words: 

a )  s e m a n t i c a l l y  c o r r e c t  (C), target r e p e a t s  a word 

Those g l a s s e s  r e a l l y  s u i t e d  h i s  f a c e .  

The c u t  was s o  deep s h e  had t o  go t o  h o s p i t a l  

b )  s e m a n t i c a l l y  c o r r e c t  (C), target i s  a new word 

She g o t  i n t o  bed and t u r n e d  ou t  t h e  l i g h t .  

The baby c r i e d  a l l  through t h e  n i g h t .  

glasses 

c u t  

mass 

t r e n c h  
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c )  s e m a n t i c a l l y  incongruous ( I ) ,  t a r g e t  r e p e a t s  a word 

I t  r a i n e d  so hard  he put  up h i s  key.  

The i n t e r v i e w  went well and he go t  t h e  steam 

hard  

went 

d )  s e m a n t i c a l l y  incongruous ( I ) ,  target i s  a new word 

He bought a p i n t  of milk and a dozen gnomes. 

To keep warm Mark wore a s c a r f  and a f u r r y  glass.  

whale 

h o r s e  

1 2 1 2  1 3  1 4 5  6 

I 1st 

I Target word 
Final word 

I )  200 ms 
2 )  550 ms 
3) 1200 ms 

4) 1000 +/- 200 ms 
5 )  100 ms 
6) 1900 +/- 200 ms 

Figure 5.1: Timing of a sentence cycle 
The figure sketches one cycle of the language paradigm. The appearance and disappearance of an 
image on screen is denoted by a rectangular pulse. Horizontal (zero) lines symbolise intervals during 
which a grey background was displayed. A whole sentence was shown as a sequence of word images 
followed by a target word in red. Each cycle was completed by a visual cue promptingfor the key press. 
A central fixation point was displayed during each cycle's final periods (4, 5,  and 6).  The average 
duration of a cycle is 9.811.4s based on an average number of 8.9 words per sentence (including the 
target word). 

Each subject was presented with a total of 100 sentences with equal numbers ( 2 5 )  

corresponding to the four possible combinations. These were split evenly into blocks of 

50 sentences administered in two identical runs of the experiments. Four blocks were 

prepared from a data base of two hundred English sentences' of an average length of 

8.9f1.3 words. The minimum length of a sentence was 6 and the maximum 13 words. 

Each sentence's final word was a noun' and had a length of 5.311.4 characters on 

'Sentences were prepared by the English native speakers Drs Bailey and Swithenby. 
2The sentences were designed so that the final noun or noun-phrase was syntactically correct. 

Within the data base some ambiguous cases might be present given the high flexibility of the English 
grammar in converting almost freely between nouns and verbs. 
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average. Care was taken to keep the range of lengths as narrow as possible (minimum 

= 4, maximum = 9 characters). These two provisions were made to avoid possible 

complications in interpreting the data arising from the use of different word types or 

word lengths. The target word could be of any type, and was colourised to make it 

clearly distinct from the sentence final word. 

Subjects 

A total of 9 normal volunteers were recruited for this experiment, all of whom were 

native speakers of the English language (see Table A . l  for an overview). The group 

was slightly gender imbalanced with a proportion of 6 female to 3 male participants. 

Subjects S17 and S18 had no prior experience of MEG studies and were introduced 

to the laboratory environment including a demonstration of the keypad prior to the 

experiment. Informed consent was obtained from all subjects who were made aware 

that the study concerned the response to visually presented sentences with a particular 

interest in the processing of semantic context. The target condition was pointed out 

and the subjects were reminded to press a key only after the visual prompt with no 

particular need for a rapid reaction. 

5.3 Time-frequency localisation 

In order to investigate the possibility of localised spectral characteristics associated 

with the brain signals, the techniqueof Gabor transforms was &oxea. These transforms 

were recently added to the repertoire of neuroscience methods, and are similar to  the 

windowed Fourier transforms which have been used extensively to estimate spectral 

power densities in the basic frequency bands (B,a,p).  In contrast to the latter, Gabor 

transforms are optimal with respect to time-widthx band-width uncertainty. 

5.3.1 Gabor transforms 

In terms common to the signal processing community, the framework of time-frequency 

localisation is conveniently introduced by stating a family of integral transformations 

of 'inner-product' type [31, 1021: 

mapping a signal, s, to a (complex) coefficient dependent on two real numbers (a ,  b) 

and a (complex-valued) function of choice Q, Both s and Q are assumed to be square- 
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integrable (15'). In this general form, Equation 5.1 comprises a spectrum of methods 

by which the frequency analysis of a time-dependent signal can be effected locally in 

time, including the windowed Fourier, the Gabor and modern wavelet transforms. The 

case of Gabor transforms follows by associating the integration domain and a with the 

time variable t ,  b with the frequency variable f, and defining CJ as a Gaussian shaped 

wave packet 

g(t' - t ) ,  with g ( t )  = K > 0 , r ; l  > O ( 5 4  t , f  _,iîrft' 
@ o -  

where r; and K~ are related by the requirement 

This completes the definition of the transformation named after its inventor Dennis 

Gabor [48]. 

The normalisation condition sets the total power of the envelope function, g, 

equal to 1, and implies that the wave packet is characterised by a single parameter ( K ) .  

Combining the last two equations leads to the usual expression for the transform and 

yields the complex coefficient 

The signal, s, is completely determined by the Gabor coefficients via [30] 

where normalisation has been omitted. 

The Gabor transform is related to the windowed Fourier transform where the 

window function, g, is usually compactly supported that is, for practical purposes, 

vanishing outside an interval. It is the specific choice of g made in Equation 5.2 which 

endows the coefficients of Equation 5.4 with a strong localisation property making them 

optimal with respect to the resolution achievable simultaneously in time and frequency. 

The property derives from the observation that the Gaussian shape is reproduced under 

Fourier transformation 

where g is the envelope function.and normalisation constants have been omitted. From 

the standard expressions for the time-width and band-width [21] 
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From this equation A' may be interpreted as the (constant) ratio between the frequency 

and the resolution in frequency. By defining 
1 

o* = ~ 

2lrUf 
(5.9) 

the usual Gaussian shape is also obtained in the time domain, where the equations 

(5.10) 

hold. Thus, the calculation of the coefficients c ( t , f )  involves a family of transfor- 

mations, indexed by IC, where the resolution in time increases and the resolution in 

frequency decreases with increasing frequency. This choice of parameterisation reflects 

the purpose of the analysis which is to characterise the y-band activity in relation to 

the time course of the evoked (low-frequency) activity, without a particular need for 

a fine-grained resolution in frequency. For this work, the value of I< = 8 has been 

chosen, in accordance with the neurophysiological studies using this method. With 

this parameterisation, the transformation reads finally 

where the coefficients are evaluated on a discrete grid of values for the time and fre- 

quency variables3. Given equidistantly sampled data, the discrete times are chosen to 

be coincident with the sampling times, in which case the evaluation of Equation 5.11 

is conveniently achieved by standard discrete convolution techniques (see Appendix B, 
[N-4]). In Figure 5.2, an example is given of how a signal is represented in the time- 

frrquericy plane using the Gahor transform. 

5.3.2 Measures and statistics 

In order to use the Gabor coefficients to study spectral properties associated with 

event-related paradigms, three measures, or quantities, have been suggested. These 

measures are derived by simple algebra and take into account that the information 

sought is essentially carried by a number Ne of signal epochs belonging to a certain 

stimulus class. The measures are defined for a given channel as follows [144]: 

(synchronous activity) (5.12) 

3 1 ~ i  case of the MEG data here, the coefficient's units are [fï /cm H Z - " ~ ]  
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where the time variable t is defined with respect to stimulus onset for each epoch. The 

meaning of each measure is obvious from its definition, in that phase information is 

disregarded in the case of P, and amplitude information is not considered in the case 

of A. Both types of information are taken into account for the measure SY, which, as 

defined, is evaluated from the averaged response instead of using single epoch data. 

This simplification is possible because of the linearity of the coefficients in the signal s 

(Equation 5.11). All three measures refer to a given point in the time-frequency plane 

(t i  f), without making explicit this dependence. 

The measures P and A have been used previously in characterising y-band ac- 

tivity in terms of Gabor transforms, specifically in the context of EEG measurements 

employing visual stimuli (e.g. [150], see also [15, 161). These studies have indicated the 

need for statistical techniques to pinpoint relevant dissimilarities in the Gabor maps 

corresponding to different stimuli. The techniques used involved the analysis of base- 

line activity estimated from prestimulus intervals, and group statistics. In the present 

study, the use of prestimulus activity for statistical evaluation is precluded by the exis- 

tence of signal correlations preceding the congruous C and incongruous I events, most 

likely due to entrainment in a sequence of stimuli. This coherence of baseline activity 

renders it useless as an independent reference signal to which responses following dif- 

ferent types of stimuli could be related. Group statistics, at least in the early stages of 

the analysis, are equally inappropriate because of considerable inter-subject variability 

of the resultant maps. 

A further coni >lication arises in  using tlie m e a ~ u r e  A for a>i;llysing SpChrD&S?d 1 
activity. Preliminary calculations showed spurious cancellations where coefficients de- 

rived from reasonably strong signal amplitudes were eliminated by coefficients derived 

from signals close to system noise level through the normalisation to unit absolute 

value. Possibly, the variability of signals inherent to all measurements of brain func- 

tions is inore marked in very complex paradigms like the one investigated. This might 

lead to suppression of activity at times which in turn causes the cancellations. 

Thus the measures P and SY have been chosen as the main tools to investigate 

differences between C and I stimuli with respect to either asynchronous or synchronous 

y-band activity. SY seems to be the canonical choice when viewing synchronicity as an 

emergent (macroscopic) feature detected over many epochs. The approach attempts 

to emphasise individual over group statistics. 
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Statistics of the measure P 

The measure P is the mean of the IIci11* across epoch, and standard statistical reasoning 

can be applied. For each time-frequency point, let P(C) and P(1) denote the values of 

the measure corresponding to C and I stimuli respectively4. The statistical test reads 

in words 

T-P = T-value of the difference P(1) - P(C), DF=2(Ne - 1) (5.13) 

where the number of degrees of freedom DF apply to an unpaired test for equal variance. 

Statistics of the measure SY 

This case is more difficult to deal with in that the measure is a nonlinear function of 

the averaged signals. Additionally, the Gabor transform constitutes a complex ma- 

nipulation. Thus, finding appropriate statistics might be very cumbersome or even 

impossible given a lack of fundamental insight into the details of the brain dynamics. 

A solution to the problem was sought via a re-sampling strategy, which was introduced 

in 1979 and has become an accepted, powerful method to assign estimates of accuracy 

to measures in general. 

4A similar notation is used for measures SY and A. 
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b Excursion: A bootstrap method For present purposes, the most basic technique 

within the framework of so called bootstrapping methods has been chosen. Despite 

the huge amount of theoretical and practical research centring around the general 

framework, the basic application is intuitively appealing. It concerns the calculation of 

the standard error of a statistic (or function) operating on a sample of data and reads 

(based on [42]): 

A bootstrap algorithm for calculating standard errors (5.14) 

1. Given a sample = (zl, z2,. . . , z ~ )  of N observations of a variable X and a 

function (statistic) S = S(z), select randomly B independent bootstrap samples 

- xb, b = 1,. , . , Beach of size N . Each bootstrap sample is drawn with replacement 

from z (e.g. g1 = ( X I ,  z1,z2, z1,z3,. . . , xN)). 

2. Calculate the bootstrap replication for each bootstrap sample 

3. Calculate an estimation of the standard error (se) of the statistic S from the 

sample standard deviation of the B replications 

The algoritlim is heuristically justified by the otservatíon that, íftfie P~~ictr 'o~i $;s cho- 

sen to be the sample mean, seS converges5 by virtue of the weak law of large numbers, 

to the usual standard deviation6 of the mean as B + 00 [41]. Many numerical studies 

have shown that, for most applications, a value of B between 50 and 200 guarantees 

a reliable calculation of the standard error, assuming a sample size comparable to this 

study. However, no fixed prescriptions are available, and every application must in- 

volve consistency checks [42, 1621. a 

The bootstrap algorithm is applied to SY by identifying the sample with the 

set of all epochs (sample size = N e )  belonging to a given channel and stimulus, and 

by identifying the statistic S with the composite operation of forming the averaged 

'A quality uniform number generator is an essential ingredient for the algorithm. Here a standard 

'Precisely, convergence is given up to a normalisation factor equal to J;lv/cN-ïi where N is the 
library routine was used (Appendix B, [N-11). 

sample size. However, chis correction is usually omitted. 
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evoked response followed by the evaluation of the Gabor transform (symbolically: 

S = Gabor transform o average). In other words, SY is evaluated as defined in Equa- 

tion 5.12 based on a normal, average evoked response where each of the Ne epochs 

occurs exactly once. This procedure is then repeated i? times using an evoked re- 

sponse bootstrapped from a random selection of Ne epochs drawn with replacement 

from the original set. These B evaluations are then used accordingly to give a bootstrap 

standard error of the measure se(SY). 

Given two stimulus classes, it is possible to perform a statistical comparison 

between the two by simulating a T-test7 for a given time-frequency point according 

to: 
CY(1) - CY(C) 

T-SY = , (5.15) 
\ / [ ~ ~ S Y ( I ) ] ~  + [S~SY(C)I’ 

Essentially, this formula is the Pythagorean rule of the conventional T-statistic for 

unequal variances where empirical standard deviations are used. It is assumed that 

T-SY constitutes a valid statistic for the difference between SY(1) and SY(C) based 

on Ne epochs each, and that the statistic is characterised by a number of degrees of 

freedom between ( N e  - 1) and 2(N, - 1) (see Appendix B, [N-111). A visualisation of 

the procedure is given in Appendix E together with the results of various calculations 

to verify its consistency. 

For the sake of notation, the symbol I+ (I-) is used for positive (negative) differ- 

ences in conjunction with T-P and T-SY, i.e. the case where either measure assumes 

higher (lower) values for I-responses compared to C-responses. 

S ta t i s t ics  of the measure A 

Once time-frequency points exhibiting significant differences in SY have been located 

within individuals, the measure A is used to estimate the degree of angular alignment 

across epochs. The measure is evaluated separately for C and I responses without 

direct statistical comparison between the stimulus classes. In either case, a value of A 
is assumed to indicate significant phase alignment across epochs if the arcsin(SC,), i = 

1,. . . , N ,  distribute non-uniformly ( p  < 0.05) in [-T, 7r] according to a Kolmogorov- 

Smirnov test (Appendix B, [N-l3]), 

7The bootstrap theory provides algorithms of hypothesis testing based on conventional statistics. 
However, these require the knowledge of the observed value of that statistic, which is not the case in 
the context here. 
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5.4 Results: task performance and evoked responses 

Each of the 9 volunteers completed successfully two consecutive runs of the experiment 

showing appropriate attention. No problems were reported concerning the word display 

duration or understanding of the instructions given. The contamination of brain signals 

following the sentences’ final words due to  movement or eye artefacts was negligible 

across all subjects’, and the two data sets were combined as if obtained from a single 

run. 

The task performance as measured by scores was high for the subject group as 

a whole (0.95+0.01) and, individually, no exceptional deviations were found. It is 

noted that incorrect key strokes and no-press events occurred in about equal propor- 

tion. Evaluation of the reaction times (after the visual prompt) did not reveal any 

specific variation of vigilance during the run-time of the experiment’. Neither scores 

nor reaction times indicate a correlation with the sentence’s final word being a semantic 

violation. 

Signals following both types of final word class stimuli show complex morpholo- 

gies, and wide spread differences between the responses can be identified in all subjects 

by visual inspection. The differences are observed in a wide range of latencies froni 

180 to 1000 ms after stimulus onset and are located over the medial to anterior regions 

of the brain and more over the left than over the right. In an interval of approximate 

length of 300 ms centred around 400 ms, channels can be found in each subject where 

I-responses have higher amplitudes than C-responses. In order to further quantify the 

differences between the two waveforms, grand mean responses” were calculated from 

the data of all subjects together with with a T-test for each time slice to assess the 

significance of deviations between the C and I conditions. 

In general, as with the individual responses, the grand mean signals exhibit a 

complex spatial pattern around a latency of 400 ms as well as longer latencies. A total 

of 6 channels over mainly left anterior to left temporal regions can be identified where 

the differences between the C and I signals reach a significance level equal to or better 

than 5% within the time span of the N400m complex (Figure 5 . 3  A). For this group 

‘Not more than 4 out of 100 epochs had to be rejected per subject due to eye-blinks except for 
one subject, who had a higher rejection rate (10). Head locations immediately before and after each 
run differed by no more than the limits of accuracy of the positioning system. 

’A very small number of reaction times outside the interval 200 to 1200ms were not taken into 
consideration. 

“See remarks in Chapter 1. Prior to the grand mean calculations, the individual evoked responses 
were averaged, filtered (0.8 (0.4 roll-off) to 48 (0.5 roll-off) Hz, Appendix B, [N-2]), and drift corrected 
(-200 to Oms, Appendix B, [N-3]). 
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of channels, deviant N400m responses are very homogeneous in adjacent channels over 

left temporal areas with phase reversals occurring over left anterior and right temporal 

regions. The N400m complex is the most obvious difference between the signals, and 

two grand mean activation curves were calculated (see Equation 3.1) using the six 

detector sites containing the six channels (Figure 5.3 B). 
A first peak at ~ 1 6 0  ms after stimulus onset is identical for both response types. 

It is followed by a component at ~ 2 5 0 m s  in which C-responses evoke higher signal 

power than I-responses. This component is well represented by the channels exhibiting 

the N400m, but the significance of the differences is only evident in two channels. Next 

in the sequence is the strong N400m deviant response. A final complex of differential 

responses locates around 700 ms. Significant differences for this component are evident 

in as many channels as for the ru’400m. In this case the differential effects over the right 

hemisphere are more posterior than for the N400m and, therefore, are not optimally 

reflected in the particular grand-mean shown here. 
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5.5 Results: Gabor transform 

The Gabor coefficients were calculated from the data of all 9 subjects, separately for 

each channel and final word class using a wave-packet parameter of I í  = 8 and a 

frequency grid with an equidistant spacing of 1 Hz between 15 and 60 Hz. All signals 

had been corrected to zero mean prior to the calculations to eliminate unwanted offsets 

within an interval of interest from -200 to 1200ms with respect to the final word 

stimulus. For each measure (P, SY, and A), both sets of epochs corresponding to the 

two detectors at a given site were used jointly, thereby reducing the resultant number 

of Gabor maps by a factor of two (i.e. Ne = 100 for each stimulus class). The statistics 

associated with each measure were calculated as described above using a bootstrap 

replication number of B = 120 in the case of T-SY. In Appendix E, a summary is 

given of a nunierical survey to assess the robustness and applicability of the approach 

in this context. It is appreciated that the values of the measures and their statistics 

change upon modification of the parameters involved. However, the variations are small 

within the ranges of interest, so that the (mainly qualitative) results presented below 

are not affected. In what follows, T-values and the associated error probabilities are 

used interchangeably assuming a large number of degrees of freedoms (see Appendix B, 
[N-91 for the conversion between these descriptions). 

The presentation of results has been clipped to ranges between O and 950ms in 

the time domain, and between 20 and 45 Hz in the frequency domain. The larger array 

of coefficients calculated was wed to avoid boiindary effects due to the clipping. The 
reduced time span is sufficient to cover the Iatencies of the evoked responses associated 

with this paradigm. For frequencies much below 20Hz, interference with the spec- 

tral densities associated with the evoked responses becomes too strong. Towards the 

higher frequencies, an assessment based on phase-sensitive measure becomes increas- 

ingly unreliable because of the limited precision of the timing of stimulus presentation 

(see Appendix E). The range of frequencies presented here will be called the y-band. 

With a wave-packet parameter of h' = 8, the Gabor description is characterised by 

(2At ~ 9 0 m s ,  2Af ~ 3 . 5 H z )  and (2At ~ 4 0 m s ,  2Af ~ 8 H z )  at the lower and upper 

edge frequencies respectively. 

5.5.1 Statistical Gabor maps and threshold clustering 

Initially, a total of 1098 statistical Gabor maps, i.e. maps associated with T-P and 

T-CY, were calculated. The number corresponds to 9 subjectsxtwo measuresx61 de- 
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tector sites. Across all maps, no T-values were found outside the interval from -4.1 to 

4.9. Despite these relatively large extrema, the maps are dominated by non-significant 

differences as shown in Figure 5.4. The figure shows islets within the time-frequency 

planes where the T-values are of reasonably high significance, say p < 0.05, with a 

typical width of about 110ms in time and 4 H z  in frequency in the case of T-SY. For 

T-P maps, the widths are broadly similar, but, the rate of occurrence of islets is about 

4 times greater than for T-SY. 

Apart from these general observations, it is difficult to extract information about 

temporal or spatial structures from visual inspection alone. Inter-subject variability 

is considerable with respect to times, frequencies and detectors. In order to identify 

systematic behaviour, a scheme of threshold clustering has been developed. It proceeds 

in three steps: 1) all sets of contiguous time-frequency points reaching a given level 

significance are identified in each map separately according to the sign of the statisti- 

cal value, 2) each such set is identified with its ( t ,  f)-point of maximum significance, 

yielding clusters el for a given subject and detector site 

that are endowed with resolutions and angular alignments defined at the local maxi- 

mum, and 3) all clusters for all subjects and detectors are collapsed into one Gabor 

plane. 

Thus, for each threshold, four groups of clusters" are obtained corresponding 

to the .two measures used and the two possible signs for the differences between the 

measures (I+, I-). It is useful to define a measure of overlap OVLP of two clusters cli 

and clj in the Gabor plane, by 

(5.16) 
[ O otherwise 

This takes into account the resolutions in time and frequency at the local maximum. 

OVLP is only defined if the clusters el; and clj correspond to the same subject. 

Having defined the clusters, it is useful to consider profiles of the resultant popu- 

lations for each group by disregarding either the time or frequency domain. Essentially, 

those profiles are histograms where either only the f i  or the ti enter the calculations. 

However, simple histograms obtained by collecting the clusters of a given group into 

"For reasons of numerical stability, a cluster, c l , ,  is only accepted if the two T-values a t  ( t i - a ,  f i )  

and (tita,  fj) reach the same threshold as the maximal value at ( t i ,  j ; )  representing the cluster, where 
b denotes the sampling interval. 
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bins of constant width can be misleading and prone to  instabilities across different 

thresholds. Therefore, a function is suggested here which assigns to a point in time or 

frequency a number between O and 1 based on all N clusters in a given group. The 

function produces a stable histogram-like indicator of the cluster distribution. It will 

he called the Gabor density GDS and defined as: 

The upper case X denotes one out of three types of functions specified in Table 5.1. 

The types are: 1) distribution of clusters in time (X=T), 2) distribution of clusters in 

frequency (X=F) adjusted for the frequency-adaptive imbalance, and 3) distribution 

of clusters in time weighted by the angular measure A, where I+ and I- curves have 

weights A(1) and A(C) respectively. The lower case x denotes either the time or 

frequency variable, and w, is a weight function that varies with the choice of X. It is 

understood that both variables assume values only on a closed interval, which means 

here either [O, 9501 ms or [20,45] Hz. 

Table 5.1: GDS-X: types, variables and weights 

In what follows, all results were obtained using the threshold clustering as out- 

lined. Both measures P and SY and conditions (I+ and I-) were treated equally, but, 

the presentation emphasises the case of I+ differences where the most interesting and 

interpretable patterns have been obtained so far. The case of I- differences is unre- 

solved yet, and only a synopsis of observation is given for the sake of completeness. 

Currently, an interpretation in this case is too speculative and has been omitted. 
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5.5.2 Asynchronous y-band activity, I+ clusters 

The I+ clusters of the power measure, which reflect increased asynchronous y-band 

activity with semantic violation, show an unremarkable pattern with respect to time 

and frequency for cluster significance levels between p < 0.05 and p < 0.003 corre- 

sponding to  about 1500 and 140 clusters respectively. Within this range, all subjects 

are represented equally and the clusters are distributed over all detector sites. With 

respect to  frequency, the y-band is uniformly populated by the clusters as suggested 

by a constant GDS-F curve. The cluster density with respect to  time is also constant 

for most latencies, but is reduced at x160ms where there is a peak in the grand mean 

power curve and elevated around 700ms where late components are visible (Figure 5.5 
A).  For threshold levels better than p < 0.003 only a few isolated clusters are present 

up to a limit of p < 0.001. 

The T-P clusters are predominantly characterised by an increase of P(1) compared 

with P(C), with only a small proportion ( ~ 8 % )  of clusters having also a significant 

angular alignment with respect to the I stimulus. These power and phase enhanced 

clusters are found mainly during the late period of high temporal density. Clusters 

for which the phases align with the C stimuli are rare (<l%). Remarkable is the 

observation that the increase in power for I compared to  C stimuli at a cluster site is 

highly consistent across subjects independent of time and frequency, as evidenced by 

a rank correlation of Q = 0.98, p x O (Figure 5.5  B). 
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Figure 5.5: Summary statistics: asynchronous activity 
A: I+ cluster density as a function of time compared with the grand mean evoked response power 
following incongruous final words (summed power over the six channels in Figure 5.3) .  The curve 
GDS-T is based on w350 clusters found with a threshold level of p < 0.01. B: scatter plot of P(1) 
versus P(C) corresponding to the clusters (units (ff/cm)2/&). The correlation between the values 
is very high (e = 0.98), and the offset indicates that the power is greater for I than for C stimuli. 
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5.5.3 Synchronous y-band differences, I+ clusters 

For all subjects, there are clusters identified between 0 and 950ms. In contrast to the 

case of power differences, there is a distinct temporal segregation of areas in the Gabor 

planes populated by clusters. This emerges with increasing thresholds (Figure 5.6). 

Starting at p < 0.05, the density curves (GDS-T) smoothly transform until a stable 

pattern is reached at p < 0.01. This is characterised by three populated areas at 

early, intermediate, and long latency. The gap between the latter two is broad with a 

minimum density reached around 440ms. This pattern continues up to p < 0.005, but 

noise does not allow higher levels of significance to be supported by the data. 

Also shown in the graphs are the GDS-T curves for those clusters at each threshold 

for which there is no coincident T-P cluster of at least p < 0.05 significance. A 
coincidence is defined if the measure of overlap OVLP (Equation 5.16) evaluates to 

one for a T-SY and a T-P cluster both belonging to the same subject and detector 

site. The overlap is mainly present at less significant thresholds, specifically during the 

N400m window. At higher levels, the coincidences of changes in power are rare and 

isolated in time. 

These observations can be extended by considering the measure of angular align- 

ment A separately for C and I responses at the time-frequency points defined by the 

clusters for which there is no coincident change in y-band power (Figure 5.7).  Consis- 

tently across all thresholds, A assumes low values for C stimuli, and is characterised 

by a random distribution of phases (i.e. uniform in [-n,n]). In contrast, A assumes 

high values for I stimuli of about 0.25 increasing with heightened thresholds, where the 

distribution of phases is significantly non-random. Therefore, the pattern obtained for 

the measure SY, which emerges at higher levels of significance, is strongly linked to an 

increasing degree of alignment of phases with respect to the I but not the C stimuli. 

A summary of the findings is shown in Figure 5.8 for the p < 0.01 level. Only clus- 

ters without coincident change in power have been considered. There are two extended 

plateaus of elevated cluster density, correlated with increased angular alignment, and 

separated by a broad gap in nearly precise anti-correlation with the N400m response 

(Figure 5.8). A plateau at very early latencies, just after stimulus onset, might also 

be present. The profile of the density with respect to frequency suggests that the ef- 

fects are centred around 35Hz,  and slightly lower in case of the early synchronicity 

(Figure 5.8 C; the plateau at 28 Hz is dominated by the clusters up to 120 ms). 
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Figure 5.6: Population of Gabor planes 
Distribution of I+ clusters as a function of the significance threshold. Each point represents one 
cluster at  that  time and frequency. There are 346, 128, and 63 clusters in the maps. The curves 
show the cluster density with respect to time for all clusters at  a given threshold (solid), and the 
density for only those clusters which do not coincide with a T-P cluster within the range defined by 
the overlap measure (dashed). At higher thresholds, the difference between the two curves appear to 
be pronounced occasionally despite the rare coincidence in power changes. This is due to the small 
number of clusters and the normalisation. 
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Figure 5.7: Measure A versus the threshold 
The mean values and standard deviations refer to the clusters shown in Figure 5.6 evaluated separately 
for the C and I responses (the level p < 0.005 is not shown in that figure). 
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Figure 5.8: Summary statistics: synchronous activity 
A: distribution of clusters not coincident with a change in y-band power in relationship to the grand 
mean evoked response following I-responses (summed power over the six channels in Figure 5.3). B: 
scatter plot of A(I) versus A(C) corresponding to the clusters. There is no correlation because of the 
randomness of phases with respect to C-stimuli (Figure 5.7). C: density of clusters with respect to 
frequency. All graphs correspond to the p < 0.01 threshold. 
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Subject representa t ion  a n d  spa t ia l  d i s t r ibu t ion  

The analysis was taken a step further by slicing the time-frequency plane into three 

time segments according to the pronounced minima of the GDS-A curve (Figure 5.8 

A),  and investigating the resultant groups of clusters separately. Only clusters that 

are not coincident with a power change were considered. The following are general 

observations: 

Early latency plateau (O to 120ms) The representation of subjects is unclear. 

Even at p < 0.05, clusters are only found for 7 out of the 9 participants. A 

spatial pattern is not detectable. 

Middle latency pattern (120 to 450ms) All subjects are represented, but the rep- 

resentation is not balanced over the two hemispheres. A spatial pattern is not 

detectable in the group distribution. 

Late latency pattern (450 to 950ms) All subjects are represented with clusters 

in both hemispheres. At higher levels of significance, the spatial distribution 

suggests a reduced incidence of clusters over right anterior regions, and, possibly 

over occipital and medial areas (Figure 5.9 A and B).  In general, the clusters 

over the left hemisphere are distributed evenly over this latency span, whereas 

the clusters over the right are predominantly within the interval 500 to 750ms. 

There is some evidence for clusters coinciding in time and frequency across the two 

hemispheres. ‘ íhe (local) relationqhip between a cluster and the chacarteristics 

of the individual’s evoked responses at that time is unpredictable (Figure 5.9 C).  
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5.5.4 Synopsis: y-band activity of both measures, I- clusters 

In general, I- clusters have about the same rate of occurrence as their I t  counterparts 

for both measures. All remarks made for asynchronous clusters (T-P) hold basically 

here as well. The corresponding GDS-T curve exhibits even less fluctuations unrelated 

to the features of the grand mean power curves both for C and I responses. 

The case of T-SY is different from the situation encountered for I t  clusters: a) 

clusters are either found at very early latencies between O and x90ms or at latencies 

higher than x310ms, h) the density with respect to frequency peaks at 40Hz, c) 

the subjects are incompletely and inhomogeneously represented by the clusters, d) no 

spatial pattern is detectable, and e) cross hemispherical coincidences are only present 

at less significant levels. It is noted that the GDS-A curves show fluctuations broadly 

consistent with an a-rhythm for latencies greater than 500 ms. 

5.5.5 Global spectral characteristics 

The results obtained are local with respect to time, frequency, and position due to the 

properties of the Gabor transform and cluster approach. In order to complement the 

observations, a conventional spectral analysis" was performed to assess 'global' features 

with respect to both hemisphere and stimulus classes covering the whole post-stimulus 

interval (Figure 5.10). 
All spectral power curves indicate broad-band global activity between O and 

45Hz. Spectral peaks occur within the a-range, but ,  no significant differences he- 

tween the cohort means are evident for this as well as the /3, and O-ranges with respect 

to either hemisphere or stimulus classes. It is noted that, in 7 out of 9 subjects, the 

a-band power is greater over the right than over left hemisphere, and greater for C 
stimuli than for I stimuli. In the case of the y-band, the spectral power is consistently 

higher over right than over the left hemisphere in all subjects, however, the differences 

between the cohort means are not significant with respect to hemisphere or to stimulus 

classes. 

"All epochs were individually transformed into frequency space using a maximum entropy method 
(30 poles, Appendix B, [N-7]) applied to the epoch's full length (O to 950ms). For each individual, the 
spectral densities were averaged over all epochs corresponding to the same stimulus and all channels 
over the left and right hemisphere respectively. 
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Figure 5.10: Global spectral features 
Cohort means and standard deviations (n = 9) for the a and y-band obtained by integration between 
8 to 13Hz and 20 to 45Hz respectively. Inset: spectral curves for subject C2 
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rence exhibits a clear-cut pattern with respect to latency at higher significance levels 

(Figure 5.11). A first period of phase-locked activity starts as early as the onset of the 

stimulus and lasts up to about 100 ms, in general preceding all visible evoked responses. 

A possible explanation could be along the lines of recent studies. These have reported 

unspecific phase-locked y-band activity at ~ 1 0 0 m s  after a visual stimulus in a variety 

of paradigms unrelated to the present one, e.g. [151, 1521. However, in contrast to 

those results, the activity here is on average too early and too low in frequency to fit 
into previous observations. Most likely, what is seen here is predominantly related to 

the stimulus preceding the final word and not directly a consequence of the stimulus 

of interest. 

A second period of phase-locked activity follows between about 180 and 320ms, 

and is presumably the first directly related to the final word stimulus. The onset of 

this period is after the Nlm and covers the P2m. Components around these latencies 

are widely elicited and have been consistently reported in studies on semantics. In 

the present study, both components are seen. They agree in latency and region of 

predominant occurrence with previous EEG studies. The first (Nlm)  component does 

not distinguish between the two stimulus types in accordance with other studies. The 

possibility of a differential effect in the case of the second component (P2m) in this data 

is ~nreso lved '~ .  Unresolved as well is the meaning of the y-band activity in this latency 

span. Given a variety of sharply peaked evoked components at the individual level, it 

might be argued that the phase-locking in the y-band is, in part, an epiphe~iomeiion 

re la ted  to activity subs tan t ia l ly  coherent w i t h  respect to the s t i m u h s .  This coI~c-rt-nct- 

must be present in order to detect the evoked responses. 

The N400m window which follows is essentially free of y-band activity phase- 

locked to the I stimuli, and is followed by a third period of y-band activity from about 

520 to 950ms the end of the interval investigated. This third period coincides with 

evoked response components between about 650 and 850 ms which are significantly 

different for C and I stimuli. Here, these components have been termed late positive 

component operationally because of the similarity in time with components observed 

in EEG studies [77]. The result supports the notion of late, post-N400, differential 

evoked responses in semantic paradigms as reported previously. 

Currently, no explanation can be offered for the remarkable anti-correlation be- 

tween the N400m and the phase-locking. At  its peak latency, the N400m component is 

131t is possibly that the MEG readings here are more affected than EEG readings by a partial 
cancellation of the P2m through the strong N400m in the case of I stimuli. 
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observable over virtually all cortical regions, whereas y-band activity phase-locked to 

the I stimuli is almost completely absent. At later times, the phase-locked activity co- 

exists with strong evoked responses. It seems, therefore, unlikely that the observation 

can be accounted for by a simple dynamical, or physical effect independent of specific 

neural action. 

The mere existence of significant phase-locked activity at higher frequencies is 

equally intriguing. It requires a timing mechanism which can cope with the nontrivial 

variability of the stimulus set. Although the stimuli belong conceptually to the same 

class, they vary to some extent with respect to the word length, doze probability, 

semantic category (e.g. part of the body, a place to go, etc), and the number of 

preceding words. It might be argued that mechanisms at least partially independent 

of the semantic networks are involved to retain information about the stimulus onset. 

Studies in animals have pointed recently to synchronisation of oscillations of x35Hz in 

thalamocortical networks (e.g. [147]). Such mechanisms might be relevant here. 

In summary, the present study has repeated a well known observation, has given 

support to recent findings about late differential, semantic related evoked responses, 

and, most importantly, has provided at least some further evidence that y-band activity 

might play a specific, independent role within neural processing. In order to attempt 

a concluding suggestion for the late, highly significant phase-locked y-activity, a brief 

excursion is necessary: 

b Excursion: the temporal coding hypothesis It has been hypothesised that y- 

band activity may mediate a process called the temporal coding of distributed neural 

networks. The principle assumes that an individual assembly or neuron can partici- 

pate at different times in the representation of different objects, where the momentary 

context determines the significance or specificity of an individual (neuronal) response. 

Essentially, the principle is a model for a reintegration process of distributed activity 

in order to generate unambiguous representations of objects in the brain, without the 

need for highly selective centres (brain areas) of reconvergence. The hypothesis may be 

extended from object to other perception functionally specific higher order processes 

[143]. 

This idea has been conceptualised in a variety of models describing the interaction 

of neural assemblies (e.g. [40, 1241). However, such work suffers in practice from the 

ubiquity of y-band activity in brains [37]. Indeed, oscillations are commonplace in 

complex dynamical systems, and it is not a question of whether oscillatory activity is 
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present in general, but what specific role it plays if it is to be useful as a marker and/or 

mediator of cognitive processes. 

The temporal coding hypothesis is contentious, but has recently received some in- 

direct support, mainly through studies in animals. These investigations have suggested 

that y-band oscillations might show task and stimulus specific alterations, and zero-lag 

synchronicity across segregated cortical and sub-cortical areas, e.g. [128]. One study of 

the neural dynamics in the frontal cortex of monkeys performing a behavioural task has 

supported the notion that neurons can associate rapidly into a functional group. More- 

over, there was an indication that the transitions in the dynamics can occur without 

an accompanying change in the firing rate of the neurons [158]. The latter observation 

might point to mechanisms that are locally independent of changes in metabolic energy. 

These might underlie the phenomenon of power independent phase-locking observed 

macroscopically here. 

Observations in humans using EEG or MEG related to the hypothesis have been 

reported for y-band activity accompanying the (cognitive) P300 component (refer- 

enced in [143]), early y-band activity phase-locked to the stimulus [114, 151, 1521, and 

phase-locked between readings from different channels [37]. The studies on language 

processing referenced earlier have been guided in part too by the quest for signs that 

(macroscopic) y-band activity might be specifically modulated. o 

Within the framework of these ideas, it is hypothesised that the late phase-locked 

y-hand activity might signal the temporal coding of large scale semantic networks as 

they achieve functional specificity. The anti-correlation of phase-locked activity with 

the N400m might indicate the unfolding of a sequence, where this evoked response 

signals a pre-integration stage needed to initiate the reconvergence process. The per- 

sist,ent existence of y coherence over the left hemi~phere '~  is broa,dly consistent with 

the activation of large scale semantic networks seen in functional imaging studies [161]. 

The y-band activity over the right hemisphere is confined to a smaller area, parts of 

which cover regions that have been associated with the processing of words (fusiform 

and inferior temporal gyri [7]). On average, the activity over the right occurs earlier 

than over the left, and one might attribute the right hemispherical involvement to a 

(final) word recovery or reread strategy preceding further integration attempts. If the 

picture is correct, the late differential responses, might reflect some sort of control or 

inhibition processes, needed to dampen the y-band oscillations which mediated the 

I4It is assumed that the left hemisphere is language dominant in all subjects. 
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integration. 

Conclusion 

The results obtained from the present study suggest that an: ~:sis of cc :rent phase- 

locked y-band activity as proposed here might prove rewarding. Rewarding because 

the experimental evidence of its existence, specifically at long latency and related to 

the parameters of a paradigm, might constitute another window into the apparently 

infinite repertoire of dynamics available to neural systems. Information, so it seems, is 

available not only from the low-frequency evoked responses or the signal power at higher 

frequencies, but also from dynamical events where the brain does not need changes 

in (metabolic) energy which are detectable by other functional imaging techniques. 

Thus, the y-coherence might support the formation of theories aimed at describing 

the interaction of large scale networks, be they of cortical-cortical and/or cortical- 

subcortical nature. 

Rewarding also in that the analysis of phase-locked y-activity might contribute 

to the understanding of cognitive processes. Its relationship in time with respect to 

'marker' signals may indicate that these are embedded within a complex sequence of 

events. Thus, a question like 'what is the meaning of the marker signal X?' might have 

an useful extension such as 'what is the meaning of the marker signal X in relationship 

to subsequent changes in the neural activity of a different kind?' 
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Chapter 6 

Pre-stimulus states 

This chapter describes a further study on the neuroelectrical mechanisms underlying 

the processing of faces in humans. The motivation has been to learn more about the 

relationship between the activity evoked by face stimuli and the ongoing spontaneous 

activity in which it is embedded. The present study departs from conventional methods 

used in investigations of face processing in that the class of a particular stimulus is 

determined by the dynamical characteristics of the brain signals immediately preceding 

the presentation of that stimulus. To the knowledge of the author, this is a novel 

approach within the setting of face processing, although it is based on known design 

principles of experimentation and analysis. 

In the first section, the strategy of the analysis is explained. The chapter continues 

with a description of the experiment, followed by presentation of the results and a 
discussion. As far as possible, technical details have been taken out of the mainstream 

presentation, and been collected into an addendum following the conclusion. The 

ordering of the addendum follows the order of steps of the analysis. 

6.1 The approach: face responses and spontaneous 

activity 

The interest in the relationship between evoked activity and the ongoing spontaneous 

activity in which it is embedded dates back to the very early days of EEG. Usually, 

the interest derives from the assumption that the ongoing brain activity reflects a 

'functional state' of the brain which influences the fate of the incoming information 

(stimulus), thereby modulating the evoked responses thought to reflect the processing 

of the information [91]. In this sense, the internal functional state is assumed to 
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be defined by the neural dynamics and, therefore, reflected in certain features of the 

spontaneous activity. 

The spontaneous versus evoked relationship is a very broad issue amenable to 

However, only the so-called pre-stimulus many different methods of investigation. 

approach is relevant here': 

b Excursion: pre-stimulus studies In the pre-stimulus method, the relationship 

between the pre and post-stimulus activity is quantified by categorising the spontaneous 

activity within the pre-stimulus interval into two or more categories. This yields a 

number of sets of epochs which may be used to calculate selective evoked responses. 

Subsequently, the features of the selective responses are related to the categorisation. 

The approach is dynamical in nature in that the momentary neural activity sets the 

context for a stimulus. 

To date, a number of so called pre-stimulus studies have shown significant corre- 

lations between the ongoing and the evoked activity. These studies have tended to use 

power measures applied to EEG readings to classify the spontaneous activity within 

oddball paradigms where a rare stimulus elicits an endogenous component known as 

P300 around 300ms after stimulus onset. Specifically, it has been shown that there is 

a positive correlation between the pre-stimulus a-band power and the amplitude of the 

P300 component. The effect has been shown to exist in experiments using visual and 

auditory stimuli, and is independent of the physical properties of the stimulus. Also, a 

P300-like campanent associated with the frequent stimuli af act addbat¿ pacadigm has 

been shown to be dependent on the spatial distribution of the total signal power about 

30 to 60 ms before the arrival of the stimulus. 

These studies, as well as others, have given support to the notion that signif- 

icant interrelationships between the evoked activity and the ongoing activity can be 

detected, specifically at long latency. The results are correlational in nature and the 

underlying mechanisms have yet to be explored (the excursion is based on [ lo ,  67, 71, 

85, 91, 120, 1291). a 

In this chapter, the pre-stimulus activity will be described both as the pre- 

stimulus state PSS, and as part of the epoch. The latter term is unbiased but the 

'The concept of a functional state encompasses a variety of notions like level of alertness or vig- 
ilance, and physiological states like sleep. It has been studied using a variety of approaches to cor- 
relate behavioural and neurophysiological measures with the spontaneous activity. The pre-stimulus 
approach is the most accessible for the present study. 
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former niakes implicitly an assumption about the notion of a ’state’ having meaning. 

Following the traditional approaches of pre-stimulus analysis (see next section for 

the experiment), it became clear in preliminary calculations that power measures were 

not sufficient to yield information specific to the face experiment’. Therefore, a change 

in strategy was made and a different discriminator to classify the epochs was sought. 

The choice of a different measure has been motivated by the advances made in the 

analysis of neural signals using nonlinear approaches. Recently, interest in phenomeno- 

logical, mainly linear-stochastical models of the irregular signals emanating from the 

brain have been giving way to examinations of nonlinear, deterministic systems. Deter- 

minimi implies a system that may be described without stochastical terms, and which 

usually links to continuity and differentiability requirements. A deterministic system’s 

behaviour is predictable for all times if the initial conditions are known precisely. 

Mathematical theories have shown that nonlinear, deterministic systems defined 

in a low number of dimensions can exhibit a surprising variety of dynamical behaviour, 

from stable points, to a bifurcating hierarchy of stable cycles, to apparently random 

fluctuations. Despite the deterministic nature of the equations, predictability can be 

lost in a practical sense because of sensitive (i.e. exponential) dependence on initial 

conditions even for one dimensional systems [131]. 

Since the early 198Os, a powerful framework has been made available to the 

experimentalist providing rules and algorithms to partially reconstruct and investigate 

a system underlying a given time series. Essentially, a signal is converted into a set 

of vectors in Euclidean space, the dimension of which is determined by the dynarriical 

features of the signal. The process is called embedding and the dimension of the 

reconstructed space is denoted as the embedding dimension [149]. Measures exist to 

quantify the set of vectors with respect to certain, often very subtle, geometrical and 

dynamical features. The framework has gained importance in neuroscience over the last 

15 years, where studies in diverse areas of interest have suggested that this methodology 

may provide additional information [39, 43, 1011. 

The embedding framework is based on general mathematical assumptions, and is 

applicable to any time series. For the present purposes, a scheme has been developed 

to divide the epochs into two classes according to whether an epoch passes both of the 

following tests. 

2As demonstrated and discussed below, the P300 versus pre-stimulus a-power relation is confirmed 
by the data  from this experiment. The P300 is most clearly seen in oddball paradigms but is ubiquitous 
in all experiments requiring rapid decisions [75] 
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Test 1 Is the epoch stationary? 

Test 2 Is the epoch deterministic? 

The scheme emphasises fundamental properties of the signals. The first test is 

independent of the embedding. The test has been neglected in many studies, although 

the stationarity of a signal plays an important role within the framework [43]. The 

second test operates on the vectors of the reconstructed space, and implies a test of 

nonlinearity. For this test an auxiliary measure is needed to determine the optimal 

embedding dimension. The test follows recent recommendations of strategies with 

which to analyse brain signals in general [156]. 

It should be noted that the use of nonlinear techniques to analyse neural signals 

still has many loose ends where approaches are impossible to justify rigorously [SS]. 

The present scheme is an attempt to shed some light on the mechanisms involved in face 

processing by making a crude distinction as to whether the pre-stimulus signal reflects 

a stationary process which is not described appropriately by random fluctuations. 

Remark While developing this scheme, the author learned about an EEG investiga- 

tion carried out in 1994 [70], which has one feature in common with the strategy here, 

i.e. the use of an embedding technique for the analysis of pre-stimulus intervals. The 

study seems to be the only one of its kind, and is preliminary in nature. For one sub- 

ject, responses following visual stiniuli were analysed using a clustering method which 

gr.oriped vectov.: emhedried in 3 dirnrnsions. N o  inLcipici.at;un of the teiitat;ue .iesdt 

has been offered by the authors other than pointing to a strong correlation with the 
spectral power content of the epochs. Nevertheless, the author of this thesis considers 

the study to be a precursor to the present investigation. 

At this point, it may be helpful to read the Addendum in its entirety (Section 

6.5) so as to gain an overview of the the analysis method used. At later points in the 

chapter, individual parts of the the Addendum will be identified, as appropriate. 

6.2 The Experiment 

A face identification experiment was designed to probe the effects of pre-stimulus states 

on face processing. It will be referred to as FPT (face 'pre-stimulus' task). The task is 

similar to the second run of FT1 discussed in Chapter 3. It consists of a randomised 

sequence of 60 images each displayed for a constant, short period and separated by 
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extended inter-stimulus intervals ISIs (see Figure 6.1 for details of the timing). Each 

image either shows an adult face (30 images) or a distractor, non-face object (motor 

bikes and animals, 15 each, see Figure 2.7). The images are all different and previously 

unseen by the subjects. The target is always a face image. As before, the appearance 

of a target face requires the subject to press with the index finger (of the right hand) 

and to press with the middle finger for a non-face object. FPT differs from FT1 in 

three major aspects: 

100 ms 

Inter-stimulus interval Image 

Figure 6.1: Timings 
One presentation cycle is shown. A randomised, relatively long pre-stimulus interval (grey background] 
is followed by a short presentation of an image. The subjects press the appropriate button immediately 
after the image. 

Equal numbers of face and non-face images This provision is to ensure equal 

probabilities for target and non-target images, therefore avoiding the, well documented 

effect of stimulus probability on late components'. 'ihis effect may well interfere witli 

the effects assumed to arise from the pre-stimulus classification 

Absence of a visual cue The subjects are instructed to press the appropriate key 

immediately after the appearance of the image. This requirement links directly the 

pre-stimulus state and the behavioural response without an intervening, forced wait 

period and an additional visual stimulus, and makes it possible to measure a reaction 

time (RT). This facilitates the analysis of possible correlations between the behavioural 

and nonlinear measures. 

Prolonged inter-stimulus-interval Each IS1 contains the post-stimulus interval 

of the previous image followed by the pre-stimulus period of the next image during 

3Typically, P300 and, in the case of face stimuli, P300b responses are enhanced for low target 
probabilities. P300b is around 600ms after stimulus onset (e.g. [ 36 ] ) .  
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which the pre-stimulus state is measured. On the one hand, a long IS1 is desirable to 

ensure: separation of the transient brain activity following a stimulus from the pre- 

stimulus state preceding the next image, avoidance of unintended external priming4, 

and a sufficiently long data sequence to ensure robust analysis. 

On the other hand, a short IS1 is desirable to ensure the subject’s comfort and 

attendance and the stationarity of the signals. The value for the IS1 of 8 f 1 . 2 ~  (Fig- 

ure 6.1) is a compromise. Preliminary tests showed that the subjects found it increas- 

ingly difficult to maintain a relaxed gaze and to avoid unnecessary movements for an 

IS1 longer than 10 to 15 s in this paradigm and environment. 

6.2.1 Subjects 

A total of 6 normal volunteers were recruited for this investigation. All subjects had 

previously participated in face processing experiments (see Table A . l ) .  Preference 

was given to individuals who had shown a low incidence of eye blinks in the previous 

experiments. There was no selection on the basis of the subject’s evoked responses 

following face presentation. Informed consent was obtained from all subjects who were 

made aware that the study concerned the response to complex visual stimuli with a 

particular interest in face processing. The subjects were also aware that, this time, 

extended inter-stimulus intervals would occur. The subjects were instructed to press 

the button immediately after the presentation of the image. No specific instructions 

were given for subject behaviour for the period between images other than the need to 

direct gaze on the fixation p o d .  

6.3 Results 

Each of the six volunteers completed successfully one run of the FPT experiment. The 

same script for the task was used in all cases. Therefore, each subject was presented 

with exactly the same sequence of images and of intervals between images. Across the 

subjects, only 3 inappropriate key presses occurred. 

Eye blinks were unavoidable (in ~ 7 %  of all trials), however, all the corrupted data 

stretches were located well within the unused period between the transient evoked 

responses and the following pre-stimulus interval. All epochs associated with face 

4Studies have shown that, for ISIs longer than M ~ S ,  stimulus probability effects vanish [117]. 
Although these results are not directly applicable to the present paradigm, the threshold of 4 s  seem 
to be appropriate here as a means of compensating for possible inadequacies of the random sequence. 
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stimuli were useable for the analysis of transient components for latencies from O to 

650ms. Also, each epoch contained at least 5020ms of ’clean’ pre-stimulus data5. 

Therefore, the analysis of each PSS was based on the 5 seconds preceding the stimulus 

to achieve a homogeneous numerical treatment of all data. The post-stimulus data 

for non-face stimuli were of similar quality, but were only used to replicate the main 

finding obtained with face tasks FT1 and FT2 and otherwise discarded. Artefacts due 

to movement were not observed. Each subject maintained a constant head position 

during the run of the task. 

6.3.1 Replication of the early component’s face specificity 

Analysis of evoked signal power yielded results qualitatively similar to the ones ob- 

tained for FT1. As shown in Figure 6.2, face responses were significantly different from 

non-face responses according to the NIRP measure using the same integration interval 

at early latencies (145ms response) and the same channels over the right occipital- 

temporal region (ROT). However, for this task, late components around 400 ms follow- 

ing face presentation are more clearly identified in many channels within and in the 

vicinity of t,his region. Usually, these deflections are recognisable in the regional power 

curves as being clearly distinct from pre-stimulus levels (Figure 6.2). 

SHere, ’clean’ means uncorrupted by eye blink and other artefacts as well as separated from p r e  
ceding transient responses. The length of 5020ms corresponds to 1872 time slices at a sampling rate 
of 373Hz. 
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6.3.2 Classification of pre-stimulus states 

The pre-stimulus state classification was attempted for a set of detector sites consisting 

of the group ROT extended by surrounding channels (coloured sites in Figure 6.4). In 

these channels robust and specific face responses are found at early latencies as well as 

strong late and possibly cognitive components. The classification scheme is explained 

fully in the addendum. In Figure 6.3, an example of an epoch is shown. All epochs 

were corrected to zero mean, but not filtered prior to the classification analysis. 

300 1 channel 114 I 
1 O0 
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k 300 
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Figure 6.3: Epoch 
An example of a 2-vector epoch classified as deterministic (taken from 513). Visual inspection is of 
no value in predicting whether an epoch will pass or fail a particular test. 

A total of 1980 epochs (6 subjectsxl l  detector sitesx30 face cycles) were tested 

using the ST measure, yielding 307 epochs that were stationary and rapidly decorrelat- 

ing according to this measure. (The test is described in the first part of Section 6.5.2). 

The ST measures for these epochs exhibit a highly erratic behaviour as a function of 

the lag, a pattern that is broadly similar to that found for model systems used (Fig- 

ure 6.4 A). Usually, the onset of convergence (ST,, < 1, k > k,)  locates well before 

the threshold. The majority of epochs (1673, or N S5%), however, failed the criterion 

set. For these epochs, the ST-graphs show an erratic variation with lag, as before, but 

are overlaid with broad peaks of increased amplitude of the autocorrelation function. 

These peaks are usually about 200 lags wide, and are separated by 300 to  500 lags 

from each other. 

The distribution of stationary epochs is spatially inhomogeneous, as shown in 

Figure 6.4 B. Clearly, these epochs gravitate over the more temporal regions of the 

target group of sites analysed. This non-uniformity extends to  the individual level in 

that the subjects’ contributions to the number of accepted epochs differ vastly for a 
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dom signals or signals obtained by filtering noise. Exponential separation between the 

epoch's TRE and its surrogate replication's TRE is not detectable (in contrast to the 

model systems, Figure 6.18). 

2) The 2-TRE measure yields consistent values across the whole range of embed- 

ding dimensions for 20 or more surrogate replications, a behaviour that is compatible 

with the model systems (30 replications were used for all subsequent calculations). The 

Z-TRE values are less than 8 for this data. 

3) Many different patterns for Z-TRE are represented within the stationary data. 

It is even possible for surrogate data to have reduced translation errors for some epochs 

(e.g. R:3, green triangle, Figure 6.5 C). The information obtained from the F N N  
measure is crucial in many cases. For instance D:4 (red cross) would have failed the 

criterion if the dimension estimate had been 3 (compare with D:3, blue rhombus). 

Checks of consistency showed that the passed versus failed decision was unaltered by 

choosing longer embedding lags (up to a factor of two).  

After this step, a total of 131 epochs remained finally classified as both stationary 

and deterministic, collectively labelled D. Their counterparts, the rejected epochs R, 

failed either the the measure ST or had passed it but subsequently failed to meet the 

Z-TRE criterion. 

For each subject, D epochs are found in the signals of at least 3 detector sites. 

In five subjects there is only one site with six or more D epochs, and there are two 

such sites for the remaining subject6. Given this outcome and the requirement that 
inore than 5 eyoclis are iieeded for the reliable i d ~ ~ t i S ~ a t , t ; ~ n  O€ the e>&& respoms- 

components, analysis was subsequently restricted to the small set of 6 site-subject 

combinations shown in Table 6.1. The sites comprise a group that is comparable in 

location to the group ROT considered previously, but shifted anteriorly. The mean 

values of ic, (corresponding to the first zero of the autocorrelation function) are listed 

in the table for each subject and class. In four subjects, this shortest (linear) time 

scale seems to be dominated by cy-waves' for both D and R epochs. In two subjects, 

decorrelation is slower, particularly for R epochs. 

In summary, the analysis of the pre-stimulus interval has separated the epochs 

6For this subject the two sites have 16 and 10 pre-stimulus states classified as D with an overlap 

'A pure sine-wave has a cosine auto-correlation function. For a-frequencies between 8 and 13Hz, 
of 7 in the epochs to  which they refer. 

the first zero of the cosine function at rr/4 translates to an interval lying between 

= 19.2111s 
1 1 - = 31.3ms and 

4 x 8Hz 4 x 13Hz 
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Subject Site I #D zero [ms] 
I 

S3 4 
s9 114 
S10 114 
S12 4 
S13 112 
S15 2 

10 66 f 15 
9 3 2 f 2  

17 30 f 1 
16 22 f 2 
11 60 f 12 
13 26 i 1 

#R zero [ms] 

20 92 5 21 
21 31 f 2 
13 32 f 2 
14 24 & 2 
19 127 f 22 
17 26 f 1 

Table 6.1: ST and 2-TRE measures: summary statistics 
For each subject, the site (see also Figure 6.4) is given where at least 6 D epochs were found for that 
subject. In the case of C12, a second such site (site 112, 10 D epochs) exists. The number of epochs 
in each class is given in the #D and #R columns respectively, followed by the mean first zero lag 
(translated to a time scale). 

into those that are deterministic (denoted as D epochs) and those that are not (denoted 

as R epochs). The main thrust of the rest of the chapter will be the comparison of 

these two groups in the post-stimulus period. In making this comparison the precise 

technical details underlying the classification are not essential. 
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6.3.3 Selective averages 

Waveforms and signal power 

For all subjects and sites given in Table 6.1, post-stimulus averages were first calculated 

using all 30 epochs associated with a face stimulus. The resultant power waveforms 

exhibit all components typically found in face processing experiments over the occipito- 

temporal cortex (Figure 6.6 dotted curves). A clearly identifiable, strong peak around 

140 to 150ms (face-specific, Figure 6.2) is followed by a cascade of later components 

continuing up to 600111s after stimulus onset. As in the previous experiments, FT1 

to FT3, inter-subject variability is considerable, specifically for the evoked responses 

at higher latencies. In the case of S3, the early 'face' peak is of low amplitude in 

the particular channel chosen by the pre-stimulus state classification procedure. How- 

ever, the peak is identifiable in time because of much higher coincident peak-power in 

neighbouring sites. 

The selective averages corresponding to classes D and R are also shown in Fig- 

ure 6.6 (blue and red curves). There is a highly complex pattern of differences between 

the average signals within each subject. At times, the two averages for the classes 

exhibit very similar shapes The overall impression is that R epochs yield higher signal 

power than D epochs, though it is difficult to associate this phenomenon with a par- 

ticular latency span. The scenario is made even more complicated by the existence of 

isolated power peaks at times when there is virtually no signal present in the total av- 

erage. Several attempts, including bootstrap approaches, failed to assign significance 

to these observations on an individual levei due to the comparatively small number 

of epochs available. Therefore, the strictly individual and local approach pursued so 

far was abandoned by considering subject group statistics and ignoring the spatial 

distinctiveness of the four different detector sites. 

In order to reduce the data and establish any consistent differences between the 

D and R responses, the cohort mean of a dissimilarity measure of local signal power 

was calculated as a function of time, disregarding that the data applies to different 

sites. The measure is defined as: 

where the local power LP is given by 

The subscripts DIR denote the (selective) averages of signals over all epochs belonging 
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to either the D or R set. The DISSIM measures achieves within-subject normalisation 

of signal power, but it does not incorporate pre-stimulus data which are used here as a 

selection criteria. The measure’s modulus takes values between O and 1, corresponding 

respectively to the same activation in classes D and R and to an activation present in 

one class only. 

As shown in Figure 6.7, the use of the DICCIM measure revealed a remarkable fea- 

ture. Evoked responses corresponding to R pre-stimulus slates carry significantly more 

signal power than evoked responses following D states at latencies around 480ms. From 

about 360 ms to about 560 ms, the dissimilarity generally exceeds the 5% significance 

level with the peak achieving better than 0.5% significance. 

It is worth pointing to two observations without giving details: a) in the case of 

S12, a second site containing an useable number of D epochs yields differential effects 

fully compatible with the results presented, and b) in all subjects, the variance of the 

pre-stimulus signals decreases with an increasing number of averages independently of 

the D versus R classification. 

Spatial continuity of the effect on signal power 

Visual inspection without any further quantification revealed a degree of continuity of 

effects across sites. That is, the deviations between the D and R (power) waveforms 

are very similar across a number of sites within each subject, and not only found in the 

subject’s maximal site. A very clear example is shown in Figure 6.8. In other subjects, 

tlif o:~~iil,iiiiiit,y is Irls ~ l l ~ ~ n c ~ ~ l ~ ~ ~ ~ c d ,  I H I t ,  t,lirfc act: alwagi3 at leas  twn &r;r t;h& <?hQW A. 

pattern comparable with the maximal one. It is noted that, for random selections of 

epochs, continuity is less marked but does not vanish completely. 
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Figure 6.7: Dissimilarities in signal power 
Bottom: cohort means with standard deviations of the dissimilarity measure as a function of time. 
Top: significance level as a function of time (Ts; 10%-line without label). The highest significance is 
found at  about 480ms (Ts = 5.7,  p 5 0.003). A negative DISSIM value indicates more power in R 
than in D evoked responses. 
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Behavioural responses 

The only behavioural measures in this task were score and reaction times. As stated 

above, the subjects achieved scores indistinguishable from 100% making this measure 

useless for further analysis. This section will concentrate on reaction times. 

A 

1ooo3 >. 

B 

- * *  1 t 
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p < 0.05 

BOO p < 0.05 

Figure 6.9: Reaction times versus D/R epochs 
A: scatter plot of reaction times [all subjects) following face presentation versus (face) cycle for the 
30 epochs. B: selective means of reaction times according to the classification of the epochs (D left, 
R right). Significant difference are marked by probability levels (S10: Tzs = 2.2,  p 5 0.05, S13: T n  
= 2.4, p 5 0.05, and S15: T26 = 1.7, p 5 0.1). 

After each appearance of a face image, each subject responded within 300 to 

1000ms by pressing the appropriate button. The four reaction times that fell outside 

this range have been excluded from the analysis. The overall profile of reaction times as 

a function of (face) cycle is unremarkable (Figure 6.9 A ) .  However, averaging reaction 

times according to the dynamical classification of the preceding pre-stimulus state 

revealed a pattern (Figure 6.9 B). Each subject responded faster on average in D 
epochs. This difference is significant in two subjects and weakly significant in one 
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subject. 

O 100 200 300 400 500 600 

Time [ms] 

Figure 6.10: Signal power: classification according to RT 
Impact on signal power with classification according to high and low reaction times (10%-line without 
label). 

In order to assess further how strongly this correlation binds to the brain signals 

observed, a two-way classification of the 30 epochs according to fast and slow reaction 

times was performed. Each subject's epochs corresponding to the 15 lowest reaction 

times were grouped into one class and the ones corresponding to the 15 highest into a 

second class. For consistency with the evaluation above, the group of epochs associated 

with the 15 lowest (15 highest) reaction times entered the calculations as the 'D' ('R') 
CpOChS. Iii esselice, this 1s & p~Xt-StimUhS classificatismr USCd tS tcgt WkCthCf' V%f'j%Ckm 

in motor responses' are sufficient to explain the differential effect of signal power at 

long latency. 

Selective averaging of epochs with the reaction time classification gives the results 

shown in Figure 6.10. According to the DISSIM calculations, the pattern presented 

in Figure 6.7 is lost, i.e. there is no significant differences in the power curves at long 

latency. 

6.3.4 Investigation of correlations 

Having established a classification of the pre-stimulus state based on dynamical fea- 

tures, it is reasonable to ask whether this classification has any particular status in 

relation to the experiment, the brain signals and behaviour. Clearly, it is not possible 

'The variations are considerable in that the difference between the means of the low and high 
reaction time groups is highly significant for each subject. 
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to unambiguously prove the classification to be of unique relevance, given the large 

number of combinatorials possibilities. The following investigations focus on a set of 

questions the answers to which should reveal more about the meaning and status of 

the classification. 

Corre la t ion  with the image sequence 

Possible correlations of the classification with the details of the image sequence were 

analysed. The main findings are summarised in Figure 6.11. There is no indication that 

the D-R classification correlates with either the length of the time intervals between 

image presentations, or with the position of a face within the image sequence. The 

image class of the preceding stimulus is also uncorrelated to the classification. 

Despite the absence of any significant correlations, the idea of dissociations of 

effects was pursued a little further with respect to the proportion of images of each class 

in the preceding stimulus. Each subject's (face) epochs following the presentation of a 

(previous) face image" were grouped into one class and the ones following a (previous) 

non-face image into a second class. Selective averaging leads to the result shown in 

Figure 6.12. As is evident from the graphs, the DISSIM measure does not suggest any 

difference in signal power between the two classes of epochs, and the reaction times 

are not different for these groups. 

'For example, the number of ways of selecting 13 epochs randomly out of 30 without replacement 
is given by the (binomial) coefficient: 

( 1; ) Fsi 1.2 x 10s. 

"The ratio is 14:lö epochs instead of 15:15 due to randomisation 
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Figure 6.11: Epoch classification in relationship to the image sequence 
A: Distribution of the D epochs as a functioii of the cycle number for the 30 epochs. The probability 
is normalised to the total number of 76 D epochs. E: Distribution of D epochs as a function of the 
inter-stimulus interval (the length of the inter-stimulus interval is normalised to the total length over 
all 30 cycles). There is no significant relatiorisliip between the occurrence of a D epoch and the time 
elapsed since the last stimulus. C: the relative proportions of face and non-face images in the stimulus 
preceding D and R epochs. The quantity plotted is ( N ,  - N,,)/(N, + N,,)). Also shown are the 
cohort mean values, which are not significantly different from zero. 
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Iïlgure 6.12: Ilelationship to the preceding image t L s ~  
Effects on signal power (A) and reaction time (B) for a classification according to the nature of the 
preceding stimulus. In both cases, no differential effects are observable. 
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Correlations with spectral power 

Correlations were sought with respect to the spectral properties of the signals. Spectral 

power" was calculated in the a, 0, and û bands, separately for D and R epochs. 

The results of these calculations are given in Figure 6.13. There is no evidence 

that the dynamical classification correlates with the spectral power in that neither 

the D nor the R class of epochs is consistently associated with either higher or lower 

spectral power in any of the bands. 

Notwithstanding the absence of clear evidence for a correlation, the graphs might 

suggest that D epochs are characterised by higher spectral power, specifically in the 

a-band. This feature was further investigated by considering a classification according 

to the cy content of the epochs. Each subject's 15 epochs that were highest in a-band 

power were grouped into one class and the 15 lowest into a second class. For each 

subject, the difference between the means of the high and low a power groups is highly 

significant. 

Selective averaging according to this cy classification yielded the results given in 

Figure 6.14. The changes with respect to signal power are such that the consistent 

and significant pattern obtained initially is lost. In all but one subject, low a power is 

accompanied by faster key presses, however, the differences do not assume significance. 

For reasons to be explained below, the same analysis was carried using the pre- 

stimulus 0 instead of the a-band power. As with the cy power, the difference between 

the mean high and low û power is highly significant for each subject. The changes 
with respect tu signal poser ärë suëh th& thë p&ëÏfi 6btåai~~d j ~ í t i ~ l 2 ~  k&. The 
differences between the reaction times are neither significant nor consistent in sign 

across the subjects 

"Spectral band powers for each epoch were calculated using the periodogram method (Appendix B, 
[N-6]), separately for subjects and channels within the detector site designated. Thus, each detector 
contributed two spectral estimates for a given band, which were averaged. 
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Figure 6.13: Spectral content of D and R epochs 
Spectral content of D and R epochs in the a, 4, and 0 bands. For some individuals, differences between 
the two classes assume significance in the (I and 0 bands (a 513: Tm = 2.5, p 5 0.02, S15: Ts8 = 
2.8, p 5 0.01; ß S12: Tss = 2.3, p 5 0.05). 
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Figiirr G. 14: K,rla,tioriaRip fo fhr n-band powm 
Effects on signal power (A)  and reaction time (B) for a classification according to the pre-stimulus 
a-band power (high and low power). In general, the effects seen initially are not reproduced using 
this classification. 
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6.4 Discussion 

Late power 

Reaction time 

A classical measure of complexity in conjunction with a nonlinear framework has been 

used to identify a number of epochs from a large background group. These D epochs 

are stationary, at least within the 5s detection interval”, rapidly decorrelating, and 

deterministic as well as nonlinear according to the assumption of surrogate testing. The 

D epochs are detectable predominantly in a small number of detectors over occipito- 

temporal and temporal regions across all subjects. 

D R 
Post 

low high 

fast slow 

Figure 6.15: Summary of observations 

A pattern of significant differences in signal power between the selective evoked 

responses corresponding to D and R epochs has been obtained based on each subject’s 

site with the maximum number of D epochs. Using the same classification scheme, 

a consistent although only partially significant effect has been obtained for the be- 

havioural responses (reaction times) associated with the two classes of epochs, The 
G~idi~igs are SUIIIIII~I.;S~J in ‘I’dLIe 6.15 sApIifkxj so as lu L&&i the maIA pt.”%. 
The power difference is present at long latency and does not affect the face-specific 

response at early latency. 

Essentially, two questions arise from these results: a) what are the underlying 

neural mechanisms which have led to the distinction between D and R epochs, and 

b) what is the neurophysiological meaning of the effect observed for the post-stimulus 

signal power and reaction times? To date, only tentative answers can be offered because 

of the restriction of the analysis to one experiment only with a relatively small number 

of epochs. 

With respect to the first issue, the most parsimonious view is to consider that 

both classes, D and R, represent a whole variety of dynamical states, and a given class 

is not necessarily associated with the the same underlying process. Each individual 

epoch could represent a multitude of simultaneous, possibly deterministic and partially 

I2This is broadly consistent with reports that stationarity can be detected up to 30s (see [43]). 
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correlated processes. This could account for the recurrent broad bursts seen in the 

correlograms of the majority of R epochs. The multitude of processes could still be 

deterministic enough to make the epoch pass the second test as observed in numerical 

checks. Nevertheless, the processes in the two classes are distinct enough as a whole to 

cause a significant effect on the post-stimulus signals even though this is not reflected 

in pre-stimulus classifications based on conventional power methods or based on the 

parameters of the experiment. 

At present, it is not known what causes the seemingly spontaneous transitions 

between the D and R states. Clearly, the transitions are not induced by the sequence of 

images or other parameters of the task, but could be related to inevitable fluctuations 

in vigilance or task attendance, measured in term of the û-bandI3 activity according 

to conventional electroneurophysiology. As stated above, considerable fluctuations in 

6’-power have been found within each subject. However, neither the differences between 

the mean û power associated with the D and R epochs nor the classification according 

to low and high û suggest that the D versus R classification is related to fluctuations 

in vigilance according to these calculations. 

Regarding the second question, it is noted that the effect of P300 enhancement by 

high pre-stimulus a-power observed in previous studies is also detectable in the present 

study. The effect may be observed by comparing high and low ci epochs yielding a broad 

interval centred around 300ms where the high cr P300 amplitudes are greater than the 

corresponding low a P300 amplitudes, as predicted by previous studied4 (compare 

Figures 0,” arid fi. 14). Simiiltaii~ousiy, the rfkrt obrerved initially is destroyed, z k i t  
not completely because the classification has produced an imbalance where D states 

have slightly more a power than R epochs in some subjects. Thus, the two effects seem 

to be dissociated. 

Taken together, the results suggest that the phenomenon observed at long latency 

is not related to the task parameters, the fluctuations in vigilance, or the effects ob- 

served in previous pre-stimulus studies. In order to offer a hypothesis, a brief excursion 

is needed. 

D Excursion: the contextual modifications of face processing It is known that 

certain behavioural responses associated with word, or more generally language pro- 

I3Sorne researchers have included the &range above 1.5Hz [129]. For consistency, the same provision 
was used in calculations not reported here. The results are qualitatively identical t,o the case of using 
only û activity. 

14The channels determined by the classification are not optimal with respect to the P300 effect, 
which is more pronounced over other regions. 
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cessing extend to the processing of faces. Specifically, persistent repetition-priming" 

effects have been found in the behavioural responses to familiar faces that must either 

be identified or discriminated from unfamiliar faces. The effects are usually revealed in 

lower recognition thresholds, decreased reaction times, or increased accuracy of identi- 

fication of primed faces. An analogue of the semantic priming for words has also been 

shown to exist for faces, in that decisions of face familiarity are facilitated when the 

test face is preceded by a face to  which it is related (e.g. a familiarity decision for 

Oliver Hardy is facilitated by a previous image of Stan Laurel). 

Recently, electrophysiological studies of face processing have investigated whether 

these non-linguistic contextual effects are associated with changes in the neural activity. 

Specifically, EEG studies have given evidence that the late components in the responses 

following face presentation can be modulated by priming. These components are found 

between 320 and 560 ms after stimulus onset with potentials peaking around 450ins. 

In general, there is a complex, paradigm dependent topography which is widespread 

but mainly over bilateral temporo-parietal, and frontal regions. These components are 

reduced in amplitude when they follow the presentation of a primed face in paradigms 

requiring the subjects to  make a decision. 

These effects can be induced by repetition of identical faces with a time interval 

that may be less than a second but may be up to several minutes. Priming may also be 

induced by repetition of facial expression, where the second image of a pair of images 

presented sequentially is primed because the facial expression depicted matches the one 

of the first in,a.ge. The smme phenomenon i s  niso ohserved withiin a scmatk  c o r \ L e x L ,  

where, for instance, the amplitude of the late potential elicited by the face of a known 

politician is smaller when preceded by the face of another known politician than it is 

when preceded by the face of a known person belonging to a different semantic category 

(e.g. an actor). 

These late components are usually referred to as "400-like' or 'face-N4' in a func- 

tional sense, because of the similarity of some of the features with the much studied 

N400(m) component elicited by words. Depth electrode studies suggest that the face- 

N4 generation involves widely distributed cortical networks overlapping to some extent 

with networks participating in word-N4 generation. The functional significance of the 

N400-like components has not been resolved. According to the most common, though 

not unchallenged hypothesis, N400-like components are enhanced when the evoking 

15The term 'priming' is used in the sense of 'preparing' or 'providing with information beforehand'. 
Usually, 'repetition-priming' refers to a paradigm in which there is no explicit requirement for a 
decision to be made regarding context and/or meaning. 
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stimulus activates a memory representation other than one that has been primed (the 

excursion is based on [12, 13, 17, 36, 5 5 ,  56, 110, 1181). a 

One is tempted to postulate, on the basis of a simple comparison of the power and 

(weak) behavioural effects, an association between D and primed states on one side, 

and R a n d  unprimed states on the other. Then, one could interpret these mental states 

as states of varied expectation providing different contexts for incoming information, 

given that the correlations with respect to reaction times and signal power bear resem- 

blance with the priming phenomena observed in psychological and neurophysiological 

face studies. In this sense, deterministicD states are associated with some sort of expec- 

tation or context with respect to which the incoming face image is processed, yielding 

a small amplitude at high latencies and a speeded reaction time. Non-deterministic R 
states are then associated with the absence of expectation or context. In this interpre- 

tation, states of expectation might reflect a reduction of the system’s overall diversity 

by focusing on fewer processes, thereby inhibiting unnecessary activity. This in turn 

might have been detected as an increase in apparent determinism. 

With this interpretation, the absence of D states in the first 3 epochs shows that 

the occurrence of states of (face) expectation has low probability at the beginning of the 

experiment, which is intuitively reasonable. The data also suggest that the occurrence 

of a state of expectation was not influenced by the preceding image. This makes it 

unlikely that there is a simple relationship between the state and the memory imprint 

of tlie pi-cvious iniaEp. The stat- of erprrtation rn;t;ht act as a sort  of  ’trrnp$ate’ again& 

which the stimulus is primed and processed. It might be useful to label the D state as 

endogenous priming. 

As far as the spontaneous transitions between D and R states is concerned, the 

participation of large networks in occipito-temporal cortex is suggested by the spatial 

extent of deviations of post-stimulus waveforms as well as by the spatial extent of 

occurrence of deterministic epochs. Again, faces are a crucial ’entry point’ into social 

interactions, and the ever adapting brain might find useful a rhythm of waxing and 

waning anticipation of faces. 

Conclusion 

The results suggest that the late components associated with face processing contain 

significantly different ’histories’ not seen when using conventional techniques of aver- 

aging. Much has to be clarified, but there is some indication that the methods derived 
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from nonlinear theories are potentially useful in studying the neural dynamics asso- 

ciated with the processing of facial images. It is suggested that those methods in 

conjunction with the pre-stimulus approach may provide more information on the hid- 

den mechanisms in large scale networks which mediate the perception of faces within 

a variable context. 
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6.5 Addendum 

In this addendum, the dynamical approach chosen for the pre-stimulus classification 

is further specified. The approach emphasises two general properties of a signal rep- 

resenting an underlying process, namely stationarity and determinism. The latter is 

relatively unexplored [5, 106). The approach relies on the technique of state space 

reconstruction used in different neurophysiological contexts (e.g. [121]). 

In the first section of the addendum, the reconstruction method is introduced. 

In the second section, two tests are developed. These are used in turn to divide the 

epochs into two classes; rejected R and deterministic D,  where the latter contains only 

those epochs which pass both tests. The methods involved in the tests have been 

validated using known dynamical systems (referred to as model systems) derived from 

mathematical or physical considerations. They yield time series supposed to reflect 

generic dynamical properties, and are very common as test cases in all approaches 

using techniques similar to the ones here (e.g. [i]). In the example given below, one of 

these systems is named explicitly which is the Ikeda system or Ikeda map. The map 

iterates a vector in R2 (z.+~ = f(zn)) yielding a two component (2-vector) time series. 

The map is usually defined in terms of a complex variable z [66]. 

26.0 
Ikeda map: zn+i = 1 + 0 . 9 ~ ~  exp  

6.5.1 State space reconstruction 

The concept of state space reconstruction is based on the assumption that an exper- 

imentally observed time series has been generated by a low-dimensional dynamical 

system, i.e. a system which is described by the time evolution of a small number of 

variables forming a trajectory in some suitable space. The observed time series is seen 

as an 'image' of the trajectory under some function Q constituting the measurement 

process. The goal is to re-build the original trajectory by a set of vectors extracted 

from the time series. These vectors are usually defined as elements of an Euclidean 

space R. Mathematical theories are needed to specify under which conditions the re- 

construction is faithful, i.e. the reconstruction reflects the geometrical and dynamical 

characteristics of the underlying dynamical system [ I l l ] .  

R.ecently, a scheme called time-delay embedding has attracted considerable theo- 

retical and experimental interest [113,149]. It has been shown mathematically that the 

scheme yields faithful representations under fairly general assumptions regarding the 
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State space Time series 

Position 

Reconstructed space 

EBD= 1 EBD = 2 

Figure 6.16: State space reconstruction 
The figure visualises the embedding process using a one-dimensional simple harmonic motion as an 
example. The dynamics are characterised by a trajectory (circle) in a two-dimensional state space 
spanned by the position and velocity axes (upper left). The system is observed via a measurement 
process symbolised by C?, here arbitrarily chosen to be observation of the position. The measurement 
yields a discrete time series (upper right). The sequence of values measured is transformed into vectors 
(or points) of an Euclidean space of a given dimension EBD according to the embedding rule flower 
left and right). If faithful, thc trnnsformstian yidds n Fcc6riotFucted tfajectafy wtiich CZR be US&' tu 
study the dynamics of the system. 

underlying system and the map @ representing the measurement [136]. The time-delay 

embedding process is stated here as a rule [68, 1211 (see also Figure 6.16): 

Given an experimental time series (SI, s2, .  . . , S N ~ )  corresponding to mea- 

surements regularly spaced in time. Each measurement comprises v simul- 

taneous observations, i.e. si E R". From the si, a sequence of vectors (or 

points) z j  E R"" is obtained by taking 

There are Nt - (m  - l ) L  vectors, the value being dependent on the pa- 

rameters L and m known as the embedding lag and embedding dimension 

respectively. 
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In theory, there is a considerable freedom in choosing the embedding lag and the 

embedding dimension, requiring only a lower bound for the latter in order to achieve 

a faithful representation. In practice, given a finite data size, both parameters have to 

be estimated from the data as explained below. The embedding dimension m is also 

denoted by EBD. 

For the present work two simultaneous measurements are given by the field gra- 

dients aL?z/ax and afi.,/¿?y at each detector site, i.e. u = 2. This allows the use of 

a lpcal approach, where simultaneous measurements obtained from different sites are 

not considered [122]. 

For illustration, an embedding scheme is described here for a time series of length 

10 (Nt  = 10, si E R”) and L = 2. Chosing embedding dimensions of 3 and 4 generates 

6 (= lo  - (3  - 1) x 2) and 4 (=lo - (4 - 1) x 2) vectors respectively in the reconstructed 

3 and 4 dimensional spaces. 

51 = (S l ,S3>%) 1 

1 6  = ( S G ~ S S , S I O )  

The existence of these sets of vectors leads to three notions: 

Nearest neighbour (NN) of a vector xi E Rmy. The nearest neighbour of T, is the 

vector x i ,  i # j which is at the smallest Euclidean distance from xi. 

Time evolution of a vector xi. The time-ordered sequence of measurements gives rise 

to a trajectory in reconstructed space with time as a parameter: (xi H xi+& 

xi+*&. . .). Here, the increment 6 between successive vectors is chosen equal to 1, 

where xi+l is called the time image of x i .  

Dimensional image of a vector xi upon incrementing the embedding dimension by 

1. This is the higher-dimensional vector with the same index. If an index is 

available in dimension m but not in dimension m + 1, the dimensional image is 

not defined. 

In this context, it is convenient to introduce definitions for a centre and an extent 

of the data by considering an embedding of u dimensional data with m = 1. Obviously, 
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this yields Nt u-dimensional vectors zi for which for the centre and extent are defined 

as 

respectively. In the case of scalar measurements (u  = l ) ,  the usual mean and standard 

deviation of the time series are recovered 

Estimation of the embedding lag 

The choice of embedding lag L influences strongly the extent to which the embed- 

ded trajectory reflects the underlying system. A very low value promotes correlations 

between the vectors available and prevents the acquisition of information about tran- 

sitions between vectors. On the other hand, a very high value can either reduce dra- 

matically the number of vectors available, or decorrelate their components to such an 

extent that the initial dynamics is no longer represented by the finite number of vectors. 

According to the most commonly used method, the appropriate embedding lag may be 

calculated as the smallest positive integer ko for which the autocorrelation coefficient 
N 

, k > O  C i = f l ( S i + k -  < s >)(Si- < s >) 
EZ1(Si- < s > ) 2  

U k  = 

of a given scalar (u  = 1) time series is zero [I]. (Note that IC0 is synonymous with 

the previously defined embedding lag L.) It is well known that, on average over the 

observations, si and s;+ko are linearly independent. Thus, the suggested rule stipulates 

a lag corresponding to the shortest linear time scale inherent in the series. 

In the case of' a vector time series, it is suggested here that ak is estimated by 

Trace ( i h f T h f k )  
U k  = (6.4) Nt - 1 

where 

is the covariance matrix associated with the component time series standardised 

to zero mean and unit standard deviation (i = 1,. . . , Nt, j = 1,2). The matrix M 
is extended in the obvious way if v > 2 .  In effect, this new quantity neglects cross- 

correlations between the component time series. Its definition has been motivated by 

the properties of the detector system used, i.e. two gradiometers at each site which 

measure independent components of the fields. It is noted that ao = 1 holds in both 

cases. 

129 



Estimation of t h e  embedding dimens ion  EBD 

On theoretical grounds, the number of embedding dimension has to exceed a certain 

value if the system is to be recreated, but there is no upper bound. Practically how- 

ever, an embedding dimension close to the minimum needed for faithful embedding is 

desirable. This is because high dimensional spaces become very sparsely populated by 

the finite vectors making calculations prone to noise corruptions. 

The method chosen here to estimate the embedding dimension has become known 

under the name of the false nearest neighbours algorithm F N N  [l, 821. It is designed 

to seek an appropriate embedding dimension that is as low as possible. It is based on a 

simple geometrical consideration. In an embedding space that has too low a dimension 

to unfold the dynamics properly, points are found which are close to each other, but 

which move apart in the next higher dimensional space (see the two embeddings in 

Figure 6.16). The value of F N N  is calculated as follows (from [q). 

False nearest neighbour (FNN)  algorithm in m dimensions (6.6) 

1. Let z and z' be a vector and its nearest neighbour in the reconstructed space of 

dimension m. Denote the distance between the two vectors by D,  = 112 - ~ ' 1 1 .  

2. Compute the embedding for m + l  dimensions and identify the dimensional images 

of z and z' as y and y' respectively. Denote their separation by Dm+l = / / y  -y'l/. 

3. Decide whether the following three inequalities are true o r  false: 

(condl) 

D,  < cb << 3 >> (cond2) 

D m + ï  > 2cb < S >> (cond3) 

where c, cb are two thresholds and < s >> is as defined earlier. 

4. Count 5' as a false nearest neighbour if condition 1 is true and either but not 

both of conditions 2 and 3 are true. 

5 .  Repeat steps 1 to 4 for all vectors in m dimensions and calculate the measure 

number of false nearest neighbours 
N 

F N N  = 100 x 

where N denotes the number of vectors for which the corresponding dimensional 

images exist. 
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The condition condl quantifies the growth of distance with increase of the em- 

bedding dimension. The conditions cond2 and cond3 are corrections needed because 

of the finite data size in all practical applications, where nearest neighbours are not 

necessarily close to each other, specifically in higher dimensions. 

In order to estimate the appropriate value for the embedding dimension, the 

measure F N N  is calculated for m = 1 and then for successively higher values of m. 

The lowest dimension for which the percentage of false nearest neighbours becomes less 

than 1% is considered the minimal faithful embedding dimension. Extensive numerical 

studies have found c, = 20.0 and Cb = 0.8 to give robust and reliable dimension 

estimates i n  that they make the algorithm reasonably insensitive to variations of the 

embedding lag. 

2 3 4 5 6 7 8  
F N N  EBD [%] I 95.2 19.2 2.71 0.251 O O O O 

Table 6.2: FNN measure 
FNN method applied to a scalar embedding of the Ikeda map. A time series of a length of 2000 
points has been used to replicate a previous result indicating that a 4 dimensional space (FNN<l%) 
is needed to unfold the dynamics of this map from the its x-component (see remarks in [82, p 34081). 
In contrast, a (u  = 2) vector embedding of the Ikeda map gives FNN equal to O for all dimensions, 
indicating EBD = 1 according to the 1% rule. This exactly reproduces the map. 

The implementation of the algorithm has been verified using known dynamical 

systems. Typically, a profile of false nearest neighbours is obtained as shown for the 

Ikeda map in Table 6.2. An extensive survey using data from the experimeBt showed 

that embedding dimensions higher than 5 were not needed, and the maximum dimen- 

sion considered was limited to 8. 

6.5.2 The tests 

Test of stationarity 

The purpose of this test is to give an indication as to whether an epoch can be con- 

sidered as stationary in the sense that its mean, variance, and autocorrelation remain 

constant over time. A time series with this property is usually called weakly station- 
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aryl6 [86]. The test uses the measure ST defined as: 

STk = ka i ,  k 2 O ,  

and is based on the observation that 

h. 
lim STk < 1 implies 
k+m ti+m 

iim c a i  is finite 
k = l  

for the autocorrelation coefficients a k  using a standard convergence argument. The 

expression on the right is a sufficient condition for weak stationarity in the case of a 

scalar time series [51]. The same argument is applied here for the a vector time series 

thereby neglecting cross-correlations of the component time series. 

Length 1000 1500 2000 2500 3000 10000 
k,/Length (mean) 0.82 0.84 0.84 0.85 0.85 0.87 

Table 6.3: ST: onset of convergence 
For each of 1000 examples of the 2-vector Ikeda map of the lengths listed, the value IC, for which 
STk < 1 holds for all lags greater than k ,  was calculated. The Table lists the means normalised to 
the lengths. In each case the standard deviation was e0.002. 

Following this reasoning, a test of stationarity amounts to a test as to whether the 

measure ST is bounded by 1 for large k. In order to establish how to interpret ’large’ 

in the case of finite data size, an extensive survey was carried out using model time 

series with lengths between 1000 and 10000 points. For each system, the number kc 

which serves as the minimum lag which conforms to the ’large’ criterion was established 

empirically by studying 1000 examples, i.e. the mean value for which STk < 1 holds for 

all k > kc was computed. For the span of lengths relevant to the present study ( x ~ O O O ) ,  

the mean of the ratios between k ,  and the length of the time series are approximately 

constant (Table 6.3). Based on this observation, the calculation were repeated for a 

length of 1872 points corresponding to the epoch available, yielding a maximum ratio 

very close to 0.9. This ratio, called the onset of convergence, was taken to establish 

the rule for the first test: 

Test 1: Given un epoch, clussify i t  as non-stationary if STk > 1 holds fo r  some oalue 

of k greater than un empirical maximum determined as 0.9 times the length of 

the epoch. 

“The condition reads in standard notation for continuous times t and 1’: 

E[X(t)] = p ,  E[X(t) - p]’ = u’, E [ ( X ( t )  - p ) ( X ( t  - t ’ )  - p ) ]  = u’p(t ’ ) ,  for all t and t’ 

with the expectation E, and a function, p> only dependent on the lag t‘ .  
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The test is uncritical in that the onset of convergence is the lower the more a 

signal is corrupted by noise. Stationary epochs enter the next test. 

Test of determinism 

The quantitative assessment of an epoch’s inherent determinism is based on its rep- 

resentation in reconstructed space, and comprises three steps. In the first step, each 

epoch is assigned a measure which quantifies the amount of determinism (or continuity, 

or lack of stochastic behaviour) present in the dynamics. The measure is called the 

translation error TRE [163]. 

In the second step, a number of surrogate replications is constructed from the 

epoch. The surrogating chosen here is a shuffle operation applied to the data such that 

if the original data is compatible wi th  a Gaussian process observed via some nonlinear 

function, than the amount of determinism will not change significantly upon shuffling. 

The surrogate method has become known under the name Amplitude Adjusted Fourier 

Transform AAFT [155]. 

In the third step, the measure TRE is calculated for each of the surrogate repli- 

cations to yield an empirical estimate of the amount of determinism which can be 

achieved with a correlated noise process compatible with the original data. The signifi- 

cance of the difference between the estimate and the initial TRE value is then assessed 

with a simple z-score like expression. 

All three steps are repeated for a successive number of embedding dimensions, and 

the epoch is accepted as representing a proress that< ia significantly dc:termjoistic if iba 

TRE values are different from the surrogate replications for all embedding dimensions 

equal t o  or greater than the one needed for faithful representation. 
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The t r ans l a t ion  error TRE The measure reads (adapted from [163]): 

Translation error (TRE) algorithm in m dimensions (6.8) 

1. Let z and z’ be a vector and its nearest neighbour in the reconstructed space. 

Denote their time images by y and y’ respectively. 

2. Define translation vectors u = y - z and u’ = y’- 2‘ and calculate the mean value 
I I .u = - (u  tu’). 
2 

3. The local translation error at z is then defined as: 

4. Repeat steps 1 to 3 for all vectors in m dimensions and calculate a global trans- 

lation error as the mean over all local ones: 
. N  
1 ” 

TRE = - TRE(zi) 
N i = l  

where N denotes the number of vectors for which the corresponding time images 

exist. 

Essentially, the measure quantifies the normalised mean squared displacement 

experienced by the vectors in m dimensions under the action of the (hypothetical) 

function x r, y(= f(z)). Assuming that this function is continuous, the translation 

errors become arbitrarily small if z and 5’ are sufficiently close together, which imme- 

diately follows from the t, &definition of continuity in normed spaces: 

for 115 - 5/11 + O ,  which entails 

llu - u‘ll -+ o, 

In contrast, a translation error cannot become arbitrarily small on average for 

a system with a stochastic content. The random walk problem is an example. For a 

random walk (in one dimension) the mean squared displacement is proportional to the 

number of steps of the walk (E[zZ] = 1 upon normalisation for one step). 

The measure TRE is zero for the case of a constant map z r, x + c  for some vector 

c. It is 1 if the mean squared displacement equals the squared mean displacement, and 

can assume any higher value up to a maximum set by the finite set of vectors. 

134 



The amplitude adjusted Fourier transform AAFT This technique allows for 

testing against the null hypothesis that the data measured is linearly autocorrelated 

Gaussian noise observed through a static, nonlinear transform. The amplitude spec- 

trum of the data is left unaltered by the AAFT method. The frequency spectrum is left 

unaltered only for large sample sizes [138, 1551. The AAFT algorithm used to generate 

a surrogate replication of a time series is visualised in Figure 6.17. It consists of three 

simple steps employing rank matching between the data and Gaussian noise. 

original original follows 

Gaussian noise noise follows original phase shuffled 

Figure 6.17: AAFT scheme 
Left: a scalar time series (si, i = 1, .  . . , N )  and a Gaussian signal ( s i ,  i = 1, .  . . , N )  generated to be 
of the same length. 
Middle: the noise is matched according to the rank of s to give a noise signal j obtained from g. For 
example, ifs, is the 3rd largest value of the series s, than j ,  is chosen as the 3rd largest value of the 
series j .  
Right: j is phase shuffled by randomising the phases of the Fourier coefficients (lower), and s is 
matched according to the rank of the phase shuffled noise signal (upper), yielding the desired surrogate 
replication s' of the original time series. 
The illustration uses an evoked (face) response from FT1. Pre-stimulus epochs which 'look' too much 
like noise, are useless for a visual demonstration. 

The z-score statistic for the translation error Z-TRE Following general recom- 

mendations (e.g. [126]), a z-score like quantity Z-TRE is used here for the comparison 

between the translation errors associated with the data and its surrogate replications: 

TRE,,., - TRE 
ATRE,,, 

Z-TRE = 

where TRE,,, and ATRE,,, denote the mean surrogate's translation error and the 

corresponding standard deviation of the samples respectively. It is generally agreed 

that expressions like this are best suited for surrogate comparisons, where one instan- 

tiation of a measure is compared against a mean obtained from replications. However, 

currently no precise prescriptions exist. 
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6.5.3 A remark on the implementation 

Despite the subtlety of the underlying mathematical theories, the algorithms used here 

are numerically straightforward in general, with the implementations following directly 

the expositions given above. Only the search for nearest neighbours is computationally 

very demanding. Algorithms exist and have been used to alleviate the - N 2  problem 

of finding the nearest neighbours for all vectors in a given reconstructed space [47]. 

However, these algorithms are optimised for a situation with one space and a huge 

number of searches, whereas, for this work, many spaces have to be considered. The 

problem is not yet resolved, and has posed a limitation on what could be achieved for 

this thesis. In particular, it has restricted the number of sites that could be investigated 

thoroughly. 
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Chapter 7 

Conclusion and future work 

This thesis has been concerned with the neuromagnetic fields associated with the pro- 

cessing of faces and sentences in humans. In four, largely independent sub-projects, 

results were obtained using novel methods of analysis to extract neurophysiologically 

relevant information. 

The research has led to four main suggestions: 

there are early latency face-specific neural systems in humans that are predomi- 

nantly in right inferior occipito-temporal cortex. 

MEG recordings are useful in the study of autism in that autistic subjects exhibit 

different responses to normal subjects following face presentation. 

phase-locked y-band activity has a specific role in semantic processing. 

the late components of responses to face images are modified by endogenous 

priming, which is detectable before stimulus arrival. 

The new methods for treating magnetoencephalographic data comprise: 

an improved parameterisation of signal power over regions of interest. 

the use of re-sampling strategies to achieve statistical assessment of spectral co- 

efficients within subjects. 

a pre-stimulus approach for the study of face processing using a tailored state- 

space representation approach. 
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A detailed discussion of these issues has been given in the previous chapters. It 

remains to point to the weakness of a particular approach, suggestions for improvement, 

and what should be done in the future. 

Face processing 

The precise processing role of the strong face-specific response is unclear. Nor is it clear 

how unspecific responses at earlier latencies evolve into the face-specific ones that are 

observed. Studies that are not reported in this thesis have been started with the aim 

of establishing the extent to which the face-specific component reflects a structural 

encoding mechanism in the cortex. A variant of task FT1 has been used in which 

several types of (partial) face images as well as images of control objects are presented. 

The partial faces are based on the boys’ faces in association with ellipsoidal masks 

such that either the inner features of the face (eyes, nose, mouth), or the outer features 

of the face (lower part of the chin, upper part of the forehead, ears) are visible. The 

preliminary analysis of the data suggests a differential effect between the full and inner 

faces. 

For the future, experiments are planned involving more face-like control stimuli, 

e.g. moderately scrambled, but identifiable faces, cartoon faces and images showing 

only a person’s eyes or mouth. The use of Mooney faces is also planned [104]. A 

Mooney face is a peculiar ’silhouette’ face which has the remarka,ble property that 

the perception of the face is strongly reduced when the image is tnrned upside down 
ar~d !,herdore must to some extent decouple thc îacc y ~ c e  1 ,t frrxm standard &trii~t>>~a\ 

encoding. It is hoped that this kind of stimulus might be a sensitive probe for face- 

specific responses (see also [72]). 
Turning to the technique, the method of integrated regional power analysis has 

proven to be reliable for the present work, yielding robust results across subjects and 

tasks. However, the method is tightly linked at present to the specific arrangement 

of detectors used and it’s extension to other MEG systems has not been considered. 

Extension to EEG measurements is a further attractive possibility. For this to happen, 

the integrated power measure can be converted readily into an integrated variance 

measure which would be independent of the particular choice of reference electrode 

(for reference free measures see [92]). 
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Face processing: au t i s t ic  subjec ts  

The main conclusions of the study of face processing in autistic subjects have been spelt 

out at the end of Chapter 4. Significant limitations are the restricted numbers of autis- 

tic subjects and the lack of appropriate controls. In short, the results require further 

validation before they could be considered to be particular to autism and therefore in- 

formative about the specific condition. The controls should include most importantly, 

IQ matching. Additional insights would be provided by extending the study to related 

disorders, e.g. Asperger’s syndrome, and by investigating the development of face 

specificity in normal childhood. As an aside, there is already considerable language 

task data on (some) of the autistic subjects but the coverage is not yet sufficiently 

complete to be reported. 

Oscil latory dynamics 

The language experiment reported has only dealt with a fairly dramatic form of seman- 

tic incongruity (a violation), although it is known that semantic effects are a graded 

function of expectation [89]. An obvious extension is to study phase-locking at higher 

frequencies in the context of graded incongruity, i.e. as a function of cloze probability. 

In addition, analysis has already started of data from a task similar to LT, but using 

homographs as final words. Homographs are words which, with the same spelling, have 

separate meanings which are defined by the context, e.g.’ bank’ as in ’river bank’ and 

’bank account’. These homographs have been used to probe semantic range, mainly 

through observation of N400 effects [löO]. 

A significantly unexplored issue in the data from the present language task LT is 

the phase-locked activity following semantically correct final words. Although there is 

no a-priori reason why phase-locking should not occur as part of a process of semantic 

closure, the lack of systematic behaviour in the present subject group suggests the need 

for both more subjects and alternative approaches to the analysis. 

The present analysis method needs strengthening towards a better control over 

the possible spurious occurrence of clusters of phase-locked y-band activity. So far, the 

approach is based on standard (T-test) statistical reasoning. It is planned to augment 

the current approach by techniques recently developed within the bootstrap framework 

which allow more rigorous error bounds associated with the statistics used [42]. This 

should establish better rejection rules than the ones employed here. 
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Pre-stimulus states 

The approach presented in this thesis is very restricted and leaves open many questions 

concerning the underlying neural dynamics. For example, how many classes of pre- 

stimulus state should be assumed beyond the two postulated here? There is, after all, 

no reason to  expect all variation to  lie within two discrete sets. 

A technical but crucial problem is the huge volume of calculations needed to 

carry out a more comprehensive analysis including all channels and the classification 

of pre-stimulus epochs preceding non-face control objects. This is compounded by the 

need for more data with longer sequences and more subjects. This will automatically 

improve the statistical basis of the conclusions. 

Although not initially anticipated, the analysis of FPT data has led to  the notion 

of semantic processing of non-linguistic stimuli. Thus, it is conceivable that a combi- 

nation, in some form, of state analysis and the analysis of oscillatory dynamics might 

prove fruitful. 

Endpiece 

Having contributed minute but, hopefully at least, slightly relevant insights into the 

neural processes in the human brain, the author of this thesis is left in confusion. The 
brain, in an attempt to understand itself, seems to  create machines which are designed 

to compound the enigma. 
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Appendix A 

Subjects 

This appendix lists information on the subjects, normal controls as well as autistic 

patients, who participated in the experiments. In case of the normal volunteers, the 

details are slightly fuller than is usually found in the method sections of EEG and 

MEG publications. For the autistic subjects, attempts have been made to include 

some relevant behavioural observations made during the measurements. 

A . l  Control subjects 

A total of 18 normal volunteers were recruited either on site in Helsinki or from the 

{Jnited Kingdom. All subjects were free of any neurological history and under no 

medication at the time of measurement. In each case, no IQ scores were available and 

the handedness was determined by the subject’s self-assessment. No iuforinatíon were 

available concerning the subject’s language dominant hemisphere. The vision of each 

subject was either normal or corrected to normal. The overview given in Table A . l  

refers to the experiments (tasks) as discussed in Chapter 3 (face tasks FT1 to FT3), 
Chapter 5 (language task LT), and Chapter 6 (face task 1, pre-stimulus version FPT). 

After each experimental session, subjects were briefly and informally interviewed about 

the strategies they used in solving a particular task. 
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Subject Age Gender Nationality Occupation 

s1 39 M English 1 
s2 35 F English 2 
s3 25 F English 3 
S4L 26 M Australian 1 
S5" 31 F German 1 
S6" 51 F American 1 
sï 55 F English 5 
S8" 35 M Finnish 1 
S9" 29 M Finnish 1 
S10" 29 F Finnish 1 
S11 24 M English 3 
s12  36 M German 4 
S13 35 M German 1 
S14" 37 F Finnish 1 
S15" 46 M English 1 
SI6 52 F English 5 
S17L 24 F English 6 
S18 31 F English 7 

FT1 FT2 FT3 

X X X 
X X X 
X X X 
X X 
X . - 
X X X 
X X X 

X X 

X X X 

X X 
X X X 

. 

. 

. . . 

X X X 
X X X 
X X X 
X X X 
- . 

- . - 

Mean age: 36 i 10 years C I 1 4  13 1 3 1 9 1 6  

LT 

X 

X 
X 
X 
. 

X 
. 

. 

. 

. 

. 

X 
X 
X 

X 

Table A.l :  Overview: control subjects 
' left handed subject (all other: right handed). MR-images available. The age given refers to 
the subject's first participation (usually in FT1). Experiments FT1 to FT3 were performed by each 
subject within one session. However, gaps between this group of tasks and others were as long as 1 
year in some cases. 
Profession codes: 1) academic working in the field of neuroscience with at  least some MEG experience, 
2) academic working in the field of neuroscience without any prior contact with MEG, 3) academic 
working in a field unrelated to neuroscience, 4) engineer with MEG experience, 5 )  secretary, 6) social 
worker, and 7) employee in academic administration. Mostly, a minus sign indicates 'not measured', 
but can also mean that rejection due to artefacts precluded any meaningful analysis. 

FPT 

. 

. 

X 
. 

- 
- 
. 

. 

X 

X 
. 

X 
X 
. 

X 
. 

- 
- 
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A.2 Autistic subjects 

Seven high-functioning autistic subjects of English nationality were recruited. All were 

diagnosed during childhood and have either been monitored over the years at the 

Maudsley Hospital, London, or were ascertained during an epidemiological twin study. 

The diagnosis has been confirmed in all cases using the Autistic Diagnostic Interview. 

Occasional medication as well some weak epileptic symptom were not entirely ruled 

out within this group, but severe forms of either have not been reported. Also, to the 

knowledge of the author, there is no evidence for the existence of neuropathologies in 

these patients which could alter the emergent brain signals in a way not specifically 

linked to autism itself. The patients were flown to Helsinki and measured between mid 

1995 and spring 1997. With one exception, they were always accompanied by a person 

of their confidence (usually the mother or a non-autistic sibling). 

The overview given in Table A.2 refers to Chapter 4 (face tasks FT1 to  FT3, 

performed by A l  to  A7). The gender disparity in the occurrence of autism was reflected 

in this group, whose ages lay within a normal span. As with the control subjects, vision 

was either normal or corrected to normal. 

Patient Age Gender Occupation FS V P 

A l  29 M second chef in an old peoples home 83 84 88 
A2 28 M trolley collector in a supermarket 89 91 90 
A3 32 M warehouse and delivery person 76 86 66 

A5 35 M artist, university degree 92 96 89 
A6 37 M artist (protected environment) 102 106 97 
A7 33 M charcoal burner (protected environment) 88 88 76 

Mean age: 32 f 3 years 

A4 30 F secretary, current unknown 90 91 94 

Table A.2: Overview: autistic subjects 
Handedness: A2 to A5 right handed, A l  and A6 left handed, and A7 semi-ambidextrous. The age 
given refers to the subject's first participation (FT1). All IQ scores were based on the Wechsler scale 
(FS: full scale, V: verbal, and P: performance; norm data: 100k15 for the respective mental age). It 
is noted that A3's performance score was in the mental handicap range. A5 is currently unemployed 
and found it difficult to cope with a job despite his degree. A I  is an identical twin, but the cotwin 
is unaffected. AZ is an identical twin, and the cotwin is also diagnosed autistic. No MRI-scans were 
available for these individuals. 

Some behavioural observations Each of the seven patients was accompanied by 

a psychiatrist while performing the experiments within the shielded chamber. For each 

subject, behavioural responses were noted during the preparation period and running 
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of the experiments. Additionally, interviews' were conducted after each experimental 

session. This data has been briefly scanned to  give a profile for each autistic subject 

(tasks not mentioned were fully understood and performed without any problems). 

A l  Showed a slight misunderstanding of FT2. Initially, he expected the two images 

simultaneously. He tried to use clues such as hair style and hair grey shade (as far as 

visible) and found the dots the hardest. He had to be reminded to  press a key within 

the first few trials of FT3 where he used mouth clues only. He found the right-handed 

keypad 'strange' in the very first trials of FT1, but he reported no subsequent problems. 

A2 He had no problems at all, but reported FT2 and FT3 to be harder than FT1. He 

looked at all the face to solve FT3 (reported that, for smiling faces, lips were stretched 

without the teeth showing up and cheeksleyes were altered). 

A3 Because of a profoundly hunched posture, several head-to-dewar positioning prob- 

lems occurred within the first session, most probably annoying A3. These were sorted 

out eventually, but repetitions of some tasks became necessary in later sessions. He 

reported the use of facial clues ranging from all of the face to only the mouth to  solve 

FT3. However, reports were inconclusive and conflicting upon repetition of this task. 

A4 She reported that she looked at all the face. 

Seeing the boy's teeth could have been important in identifying the smiling expression. 

An unremarkable performance. 

A5 He was very anxious during the beginning of the first run of FTI. He made some 

premature key presses and was confused about which button to  press. He had to  be 

re-instructed during the first 5 or so trials but provided an unremarkable and good 

performance afterwards. He reported no particular strategies. 

A6 Outstanding performance. He found identification of emotional expression 'easy'. 

He looked at the whole face but concentrated on the eyes, and commented on subtle 

frowns on some of the faces. He did not encounter problems with the right-handed 

keypad. 

A7 He was initially very anxious and needed a practice run in which he had trouble 

timing the key press to  the visual prompt. However, he provided an unremarkable 

'The interviews were informal, but more elaborated than for the control subjects. 
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performance afterwards. He found dot patterns difficult to distinguish in FT2 and 

reported some expressions as borderline in FT3. He reported no particular strategies. 
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Appendix B 

Auxiliary numerical algorithms 

A variety of supplementary algorithms drawn from diverse fields of numerical mathe- 

matics have been used for the analysis of the data in this thesis. In most cases, only a 

reference has been given in the main text and details have been omitted. This appendix 

provides further details of these methods. Whenever possible, existing code has been 

used, and routines have been taken from three commercially available sources: 

FORTRAN object-code library routines provided by the Numerical Algorithm 

Group NAG [154]. These routines are specified as: NAG-routine 

o C source-code routines provided in Numerical Recipes [119]. These routines are 

specified as: NR-routine 

HP-41C programming language routines provided by a Hewlett-Packard statisti- 

cal package [62]. These routines are specified as: HP-routine. 

The first two sources are considered accessible within a physics research environment 

and references given in the documentation for a particular routine are not repeated. 

However, in the case of the third source appropriate references are repeated. As far 

as these algorithms are concerned, only minor, if any modifications were made upon 

implementation. 

Random numbers 

[N-1] Random number generators Uniform distribution: standard C-library function 

'random', and Gaussian distribution: NAG-GO5DDF. 
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Filtering and drift correction 

[N-2] Fourierfilter (based on NAG-COGEAF, NAG-COGEBF, and NAG-COGGBF: Dis- 

crete Fourier transform DFT and its inverse transform). The algorithm imple- 

ments the recommendations given in [119, p 5581 by applying the DFT to the 

data, multiplying the Fourier coefficients by a real and even bandpass filter func- 

tion (3t(f)), and inverse transforming the coefficients via an inverse DFT. The 

bandpass function (or bandstop by considering 1 - 3t(f)) is defined in terms of 

two transition frequencies as: 

where f~ denotes the Nyquist frequency. 

through the transition is -8dB at f - A f / 2 ,  -3dB at f, and -1dB at f + A f / 2 .  

The roll-off of the spectral power 

[N-31 Drift correction Let ( Z I , Z ~ , .  . . , ZN) be a sequence of equidistantly sampled, 

possibly pre-processed data and I = [i l ,&],  1 5 i , , i z  5 N an index subset. The 

drift c,orrcct,cà time seri,, is then defined as 

This correction is widely used in MEG and EEG data analysis to ensure a zero- 

mean reference signal. When the interval I is located within the pre-stimulus 

interval, the operation is commonly called baseline correction, but the use of this 

term has been avoided throughout the thesis. Chosing I to be equal to the full 

index range, yields the usual mean of signal correction. 

The methods IN-21 and IN-31 are compatible with the Neuromag software [log]. 
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Summation 

[N-41 Discrete convolution (based on NAG-COGEKF). Calculation of circular convo- 

lutions of type 
N 

Zk = C x i Y k - i ,  i , k  = 1,.  . . , N 
i=1  

where the time series x and y are assumed to be of period N .  This has to be 

taken into account when evaluating discrete convolution integrals. 

[N-51 Time series integration (based ou NAG-DOíGAF: four point finite-difference 

formula due to Gill and Miller). The routine approximates the definite integral 

I = s,:” y(z)dz 

for a time series given as N pairs (y<, zi) where the sequence si is either in as- 

cending or descending order. 

SDectral densitv estimation 

[N-61 Spectral power densities - periodograrn (based on NR-spctrrn). Consecutive, 

overlapping segments of a given tinie series are subjected to a DFT (NAG- 

COFECF) and the resulting norm-squared Fourier coefficients are summed ac- 

cording to the periodogram rule. The individual data segments are multiplied by 

a (triangular) Bartlett-Window function prior to the calculations. The spectral 

estimates P ( f )  are normalised according to: 

P ( f ) d f  = mean square value of data ( f ~ N y q u i s t  frequency) 
2 s,” 

where the integral is evaluated using the trapez rule applied to the routines 

output. Parseval’s identity (J s(t) ’dt = J P ( f ) d f )  is used to establish units. 

Integrated densities (band power) are obtained by using the integration method 

in [N-51. 

[N-7] Spectral power densities - rnazirnurn entropy (based on NR-merncof and NR- 

evlrnern). A linear prediction technique for increasing the resolution in frequency 

of short time series. The algorithm requires the specification of a parameter (or- 

der of prediction), which is chosen according to the recommendation given in 
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[119, p 5741. Normalisation and band power calculation is the same as for [N-61. 

Methods [N-61 and [N-7] do not comprise a time-frequency analysis, in that the 

resultant spectral coefficients are time independent. 

Spatial power of images 

[N-81 Spatial frequency analysis (based on NAG-COGFUF Fast Fourier transform FFT 

in 2 dimensions). Used in conjunction with image properties only. Each (grey- 

scale) pixel value ( p )  of the image is viewed as a complex number, which in turn 

gives a complex coefficient: 

with m = 180 and n = 225. Averaging / z /  both rowwise and columnwise (over 

the range m/2, n / 2  because of the symmetry given by real pixel values) yields 

periodogram estimates of the mean power spectral density as a function of cy- 

cles/image in the x and y-direction. 

Statistical reasoning is found throughout this thesis. With one exception, a two- 

tailed view has been adopted to reject a corresponding null hypothesis (e.g. same 

means, no correlation; no effect in general) up to an error probability of Type- 

I (a;  reject null hypothesis although true). Significance is accepted for values 

Q 5 0.05. Occasionally, effects are considered with 0.05 < a 5 0.1 denoted as 

’weakly significant’. If meaningful, the lack of significant effects is denoted by ’not 

significant’. Attempts have been made to avoid sophistication of statistical tech- 

niques, and the methods have been chosen for their robustness against violation 

of underlying model assumptions (e.g. normality and equality of variances). 

In the much employed T-test, violations of the assumption of equal variances (F- 

test) occurred occasionally. Calculations were then repeated using the T-test for 

non-equal variances leaving the statistical inference unaltered in most situations 
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(up to a difference of 0.01). If a formerly (weakly) significant result turned into 

a non-significant one, the null hypothesis has not been rejected [22, 61, 811. 

T 

P 

- 

[N-91 Asymptotic, DF > 30 probabilities o f t h e  Student t-distribution [22]. The values 

are reproduced here for the sake of convenience. 

1.645 1.960 2.241 2.326 2.576 2.807 2.968 3.090 3.291 

0.100 0.050 0.025 0.020 0.010 0.005 0.003 0.002 0.001 

Table B.l: Asymptotic t-distribution 

[N-101 Normal scores (based on NAG-GûíDBF). When normal scores are plotted 

against the standardised and ordered data, the degree of linearity in the resultant 

graphs provides an indication of the normality of the distribution of the data (see 

also NAG-GOfAHF). The test is not as rigorous as other methods (e.g. [N-13]), 

however, in the case of small sample sizes, it is very useful when deciding whether 

an approach based on normality assumptions can be justified. 

[N-111 T-test and analysis-of-variance (ANOVA) (based on NAG-GûíEBFtail proba- 

bility of the t-distribution, NAG-GUlFBFdeviate associated with tail probability 

of the t-distribution, NAG- GU4AEF one-way analysis-of-variance classification, 

and NAG-GûfFMFdeviate associated with tail probability of the distribution of 

the Studentized range statistic). 

Sewmi vitrimts of tiis T-tcsk (pai& mid unpitirzd ubscrmicw< ~ G J J ~ I  and I X -  

equal variances) are used to assess the significance of the difference between two 

mean values. If the two groups of observations are of the same sample size N the 

unpaired tests for equal and unequal variances yield the same numerical value for 

the T statistic. However, the latter operates on a reduced, usually non-integral 

number of degrees of freedom DF (derived from 1119, p 6171): 

where u, and Vb denote the (empirical) variances of the two groups of observations. 

For u, = ub, the value of DF = 2 ( N  - 1) for the standard test is recovered. 

Otherwise, 1 5 F < 2 holds true ( F  -f 1 if either u, << Vb or Vb << va). 

In the case of more than two treatment groups, ANOVA is used in conjunction 

with Tukey's honestly significant difference (HSD) to allow for a post-hoc com- 

parison of group mean values. For convenience, the definition of HSD is repeated 
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here. Given a total of N observations in íi groups of Ni observations, HSD is 

calculated as: 

where qa denotes the deviate of the Studentized statistic for N - It' degrees of 

freedom and I í  groups at a level, cy, not more significant than the result of the 

preceding ANOVA. The residual' within groups is denoted by rss .  A one-way 

ANOVA is equivalent in statistical inference to a two-tailed, unpaired T-test in 

the case of two treatment groups. 

[N-121 Rank correlation coeficient, Spearman's e (based on HP-CSPEAR, nonpara- 

metrical statistics [SO]). The implementation uses integer rank numbers greater 

than O. The significance of e is evaluated by using a corresponding T-statistic: 

T = l~ ldDF/ ( i  - e2), DF = 'number of rank pairs' - 2. 

The associated T-test is independent of the original distribution of the data to a 

good approximation [119]. 

[N-131 Test of uniformity (based on NAG-G08CBF, one sample Kolmogorov-Smirnov 

test). The implementation uses only one feature of this multi-purpose routine, 

i.e. a test against the null hypothesis that the data are a random sample of 

observations from a uniform distribution on a bounded interval [bj,bl]. Unless 

known from theoretical considerations (e.g. -?r and 7r in case of phase riieasures), 

the bounds are estimated by the routine based on the data supplied. 

'If yi,j are the observations (i  5 i 5 I<, 1 5 j 5 N i ) ,  then 
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Appendix C 

Source localisation 

Estimation of neural generators underlying the magnetic fields measured outside the 

head was carried out for the responses in task FT1. The approach was based on the sin- 

gle equivalent current dipole ECD model assuming a homogeneous sphere as a volume 

conductor [134]. This model has been extensively used in previous MEG studies, and 

is provided by the Neuromag software [log]. Using this software, a two step procedure 

has been adopted as follows: 

1) determination of the latency within an interval of interest where the ECD best de- 

scribes (best fit) the measured magnetic fields using the origin of the individual’s PAN 
system as the the origin of the sphere. The best fit is defined as the maximum of a 

quantity called goodness-of-fit (gof) which assumes values 5 1. The Lest fit dipole is 

only accepted if a) the gof is at least 0.7 (this is above what can be achieved for noise, 

[142]), and b) the 95% dipole-position confidence volume of fit is not more than 1 cubic 

centimeter. 

2) if MRI-scans are available, step one is repeated this time chosing a best fit sphere 

that approximates the curvature of the skull in the vicinity of the source’s location. 

A current dipole constitutes a first order Taylor expansion of the Biot-Savart law 

of electrodynamics, assuming that the magnetic fields measured originate from a single 

source area G, the spatial extent of which is small compared with distances to the 

detectors ISSI. In this approximation, the dipole can be viewed as the spatial average 

of all impressed currents within G. The impressed currents are due to the electromotive 

forces impressed by biological activity in conducting tissue. They are different from the 
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(compensatory) Ohmic currents which do not contribute to the magnetic fields outside 

the volume conductor in this model. .4part from this mathematical consideration, the 

approach can be partially justified on neurophysiological grounds [80]. 

154 



Appendix D 

Regional power analysis 

This appendix lists the results obtained from various preliminary calculations carried 

out to verify the consistency of the normalised integrated regional power NIRP ap- 

proach. The definition of the measure is repeated here for convenience: 

IRP( t i ,  t z )  NIRP = 
IRP( - b, O) ’ 

where IRP denotes the integrated regional power (sum over squares) of the interval of 

interest ( [ t l , t z ] )  and b denotes the length of the pre-stimulus baseline. 

The choice of the baseline 

In general, there are no fixed rules for chosing a resting, or baseline state in relation 

to whic,h act,ivity is measured. Any method relying on a ratio or subtraction may 

suffer from a non-trivial interaction between the processes under consideration and the 

baseline activity. The present approach follows common practice in that the activity 

in a predefined interval preceding the stimulus has been chosen as a baseline related in 

time to the processes associated with the stimulus (e.g. [87]). 

In this context, it seems reasonable to require that IRP is approximately a linear 

function of the baseline length for suitable values of b. IRP measures a general power 

background against which the individual signals are quantified, where the total (back- 

ground) power should be proportional to the time span of observation. An extensive 

survey has shown that the NIRP values scale according to 

NIRP rn b P .  cy N 1 

for choices of b between about 80 and 300ms using real data. There is a similar func- 

tional dependence using noise data at lower NIRP values (Figure D.l  A). This depen- 

dency of NIRP on b is consistent with zero-mean, uncorrelated and constant variance 
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Appendix E 

The Gabor transform 

In this appendix, the results obtained from a series of preliminary calculations are listed. 

In order to evaluate differences between the two stimuli for the measures P and SY, 
extensions to  current approaches have been introduced. As it was not known initially 

what ranges of values and what degree of robustness would be achieved, the procedures 

were validated carefully. The presentation below is complemented by Figure E.l  which 

explains the bootstrap procedure devised for the present study. I t  is convenient to 

think in operations applied to Gabor maps as object entities, however, all calculations 

are based on individual coefficients, and no matrix algebra is involved. 

Tests of validity 

An pxtensive siirvry was carried out using simulated signals between 20 and 1DDBz 
under conditions comparable to the real experiments. Both statistical approaches T-P 
and T-SY identify reliably sinusoidal bursts superimposed on a sinusoid signal against 

the same signal without bursts (see Figure 5.2). The identification is accepted at 

p < 0.05. In the cases of T-SY, more than 60 boostrap replications are needed for 

robust results. Typically, a burst with a duration of 100ms at 35Hz superimposed on 

a 12Hz sine wave with a ratio of amplitudes of 1:lO can be identified up to a level of 

noise corruption of SNR = 5 (signal-to-noise ratio in [dB]) with respect to the ongoing 

sine wave. 

Using real data, T-SY is robust for a number of bootstrap replications B > 100 

with respect to the threshold clustering in that upon re-evaluation of the same map: a) 

the same clusters of the same type (I+,I-) are identified for all significance levels equal 

to or better than p < 0.1, b) the position of the maximal (t,f)-point which identifies 

a given cluster does not vary by more than 3 times the sampling interval in time or 
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The choice of channel  versus site based analysis 

Higher levels of significance and more robust estimates are obtained when the measures 

of Equation 5.12 are evaluated for a set of epochs comprising the readings of both chan- 

nels of a given detector site ( i  = 1,. . . ,2N,).  This result was unexpected for measures 

SY (as well as A). This observation suggests that each pair of channels reflects the 

neural processes underlying the y-band more appropriately than the separate channel 

data. 

The p rob lem of oversampling the G a b o r  p lane  

According to Equation 5 .5 ,  signals can, in principle, be constructed to sample each 

(t,f)-point independently. In the discrete case, one would expect e x h  plane to be 

divided into a number of independent tiles 

- TATAF (see Equation 5.7) #tile N -- - AT A F  
2At 2Af 

where AT and A F  denote the time and frequency ranges under consideration. With the 

parameters used here, it follows that #tile % ?r x 1 s x 25 Hz N 78. Thus, at the 5%-level 

using random signals, %4 clusters are expected for each plane. In order to counteract 

this statistical effect, a cluster cli is only accepted if there is a cluster clj of at least 

p < 0.1 significance such that the measure of cluster overlap OVLP (Equation 5.16) 
evaluates to 1, where both clusters belong to the same subject but adjacent detector 

sites. With this data, the amount of cluster rejections varies between ES% and =L5% 

dependent on a given data set, most probably due to general fluctuations in the signal- 

to-noise ratios. 

Additionally, the calculations presented in the chapter were repeated in part using 

a) random signals, and b) real data but replacing the phases of the Gabor coefficients 

by random values. Consistently more synchronous clusters were obtained in both cases 

compared with the original data. These clusters were homogeneously distributed in 

time. This has been taken as a piece of further evidence that the inhomogeneously 

distributed phase-locked activity observed in the real data is related to the neural 

activity. 

The effect of s t imu lus  j i t t e r  

A jitter in phases is inevitably present because of experimental constraints and neu- 

rophysiological variability. A precise assessment of the effects taking into account all 
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Abbreviat ions/Keywords 

a-band 

ß-band 

O-band 

r-band 

At x A j  

R" 
e 
A 

A 

Anumber 

AAFT 

ANOVA 
aut ism 

autistic subject 

B 

B 

behavioural response 

bootstrap 

: fundamental spectral component of neural activity; 

8 to 13Hz 

13 to 30 Hz 

4 to í "z  

higher frequency components of neural activity; 

here: operationally defined as 20 to 45 Hz 

: uncertainty product in time and frequency 

associated with spectral transforms; 

= I for Gahor transforms 4n 

: unknown mapping symbolising the process of 

measurement 

: n-dimensional Euclidean space 

: Spearman's rank correlation coefficient 

: image of an animal 

: angular measure 

: denotes an autistic subject 

: amplitude-adjusted Fourier transform 

: analysis-of-variance 

: a developmental disorder affecting behaviour 

: here: high-functioning individuai diagnosed as autistic 

: image of a motor-bike 

: number of hootstrap replications 

: either reaction time or task performance score 

: (epoch) re-sampling method for estimating the standard 

error of a measure 

Bruce and Young model : influential neuropsychological model describing the stages 

of identification and recognition of face information 

: denotes terminal word congruity and the associated C 
neural responses 

doze : psycholinguistics: to complete a pattern (altered 

from close). Here: related to the likelihood 

of a word to be a terminal word of a sentence 
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congruity 

D 

D 

DAQ 
deterministic 

DF 

dimensional iniage 

DISSIM 

EBD 

ECD 

EEG 
EOG 

epoch 

evoked response 

evoked component 

F 
F 

face processing 

face specificity 

fMRI 

FNN 
FT1 

FT2 

FT3 

(usually called cloze-probability) 

: refers to the property of a terminal word being 

related in meaning to the preceding sentence 

: image of a dot pattern 

: refers to an epoch which is classified as stationary 

and deterministic 

: data acquisition 

: here: indicating a process without a stochastic content 

: degrees of freedom 

: image of a vector under the operation of incrementing 

the embedding dimension 

: baseline independent measure of the difference 

between evoked signal powers at time t 

: embedding dimension 

: equivalent current dipole 

: electroencephalography 

: electro-oculogram 

: stretch of brain signals time-locked to an external 

stimulus 

: signal obtained from several epochs by averaging 

time-slice by time-slice; here: synonymous with 

event-related response 

: any clearly identifiable peak (possibly extended) 

of an evoked response 

: image of a face (adult or boy) 

: frequency (lower case falso used) 

: neural mechanisms related to the perception of 

face information 

: distinction of face responses from responses to other 

objects according to a given measure 

: functional magnetic resonance imaging 

: false nearest neighbours method 

: face task 1 (identification of image class) 

: face task 2 (identification of identity) 

: face task 3 (identification of emotion) 
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FPT 

Gabor spectrogram 

GDS-X 

gof 
gradiometer 

HSD 
HUT 

I 

I+lI- 

image 

IRP 

IS1 

ISOTRAK 

K 

language processing 

L 

LPC 

LOT 

LT 

M 

MCG 

MEG 

MRI 

N1 

N400 

: face pre-stimulus task (identification of image 

class) 

: time-frequency map (or matrix) obtained from 

a signal by Gabor transform 

: Gabor density function for calculating sections 

of spectrograms; X can be T (time), F (frequency), 

or A (angular alignment) 

: goodness-of-fit 

: detector (pick-up coil) for measuring spatial first 

derivatives of the magnetic field 

: Tukey’s honestly significant difference 

: Helsinki University of Technology 

: denotes terminal word incongruity and the associated 

neural responses 

: condition where y-band phase-locking is significant 

following I-stimuli (C-stimuli) 

: grey-scale bitmap presented as a visual stimulus 

: integrated regional power 

: inter-stimulus interval 

: 3D positioning system 

: parameter of the Gabor transform determining the 

resolution in time and frequency 

: here: neural mechanisms related to  the perception of 

word and sentence information 

: embedding lag 

: late positive evoked component (mainly EEG) 

: left occipitetemporal channel group 

: language task; terminal word (in)congruity 

: image of a mug 

: magnetocardiography 

: magnetoencephalography 

: magnetic resonance imaging 

: evoked component commonly seen in many EEG and 

MEG paradigms 

: late evoked component, specifically related to the 
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Neuromag- 122 

NF 

NIRP 

normal subject 

oscillatory dynamics 

OVLP 

P 

P 
P2 

P300 

PAN 

processing of semantic information (mainly EEG) 

: magnetoencephalographic facility at HUT 

: image of a non-face object 

: normalised integrated regional power 

: control subject without any known neuropathological 

history 

: here: y-band activity well localised in time 

: measure of overlap between points in a Gabor 

spectrogram 

: a measure of power 

: probability (error of type I) 

: evoked component commonly seen in many EEG and 

MEG paradigms 

: cognitive evoked component (EEG and MEG) 
: head co-ordinate system (pre-auricular + nasion) 

PET : positron emission tomography 

phase-locked : characterising y-band activity phase-locked to the 

stimulus (upon repetition) 

pre-stimulus state : ’hypothetical’ characterisation of an epoch before 

PSS 
R 

rCBF 

response 

ROI 

ROT 

RP 
RT 
rotated gradient 

Snumber 

SC 

SU 

stimulus arrival 

: pre-stimulus state 

: refers to an epoch which is either classified as 

non-stationary or nou-deterministic 

: regional cerebral blood flow 

: mainly: brain signals related to a stimulus; 

also: behavioural response 

: region of interest 

: right occipito-temporal channel group 

: regional power 

: reaction time 

: arrow plot visualising the reading from two 

orthogonal gradiometers 

: denotes a normal subject 

: signal detected by a given gradiometer (channel) 

: 2-vector composed of the signals measured at a given 
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SID 

signal power 

SNR 
spontaneous activity 

ST 

stationary 

SQUID 

surrogate data 

SY 
synchronous activity 

T 

T-measure 

time image 

TRE 

w 
Z-TR.E 

detector site 

: script-based image display system 

: square of the signal amplitude 

: signal-to-noise ratio 

: here: synonymous with raw or unprocessed activity 

: measure of stationarity (based on the trace of 

the covariance matrix) 

: indicating convergence of autocorrelation 

: superconducting quantum interference device 

: replacement data sharing certain (generic) features 

with the original signals; used for hypothesis testing 

: measure of synchronous y-band activity 

: same as phase-locked activity 

: time 

: T-test associated with a given measure, e.g. P, SY 

: image of a (embedded) vector in reconstructed 

space under time evolution 

: translation error associated with an epoch (TRE is 

bounded from below for signals with a stochastic 

content 

: image of a word 

: z-score associated with the TRE measure 

180 


