22 research outputs found

    On the structure of graphs with forbidden induced substructures

    Get PDF
    One of the central goals in extremal combinatorics is to understand how the global structure of a combinatorial object, e.g. a graph, hypergraph or set system, is affected by local constraints. In this thesis we are concerned with structural properties of graphs and hypergraphs which locally do not look like some type of forbidden induced pattern. Patterns can be single subgraphs, families of subgraphs, or in the multicolour version colourings or families of colourings of subgraphs. ErdƑs and Szekeres\u27s quantitative version of Ramsey\u27s theorem asserts that in every 22-edge-colouring of the complete graph on nn vertices there is a monochromatic clique on at least 12log⁡n\frac{1}{2}\log n vertices. The famous ErdƑs-Hajnal conjecture asserts that forbidding fixed colourings on subgraphs ensures much larger monochromatic cliques. The conjecture is open in general, though a few partial results are known. The first part of this thesis will be concerned with different variants of this conjecture: A bipartite variant, a multicolour variant, and an order-size variant for hypergraphs. In the second part of this thesis we focus more on order-size pairs; an order-size pair (n,e)(n,e) is the family consisting of all graphs of order nn and size ee, i.e. on nn vertices with ee edges. We consider order-size pairs in different settings: The graph setting, the bipartite setting and the hypergraph setting. In all these settings we investigate the existence of absolutely avoidable pairs, i.e. fixed pairs that are avoided by all order-size pairs with sufficiently large order, and also forcing densities of order-size pairs (m,f)(m,f), i.e. for nn approaching infinity, the limit superior of the fraction of all possible sizes ee, such that the order-size pair (n,e)(n,e) does not avoid the pair (m,f)(m,f)

    Clique Factors: Extremal and Probabilistic Perspectives

    Get PDF
    A K_r-factor in a graph G is a collection of vertex-disjoint copies of K_r covering the vertex set of G. In this thesis, we investigate these fundamental objects in three settings that lie at the intersection of extremal and probabilistic combinatorics. Firstly, we explore pseudorandom graphs. An n-vertex graph is said to be (p,ÎČ)-bijumbled if for any vertex sets A, B ⊆ V (G), we have e( A, B) = p| A||B| ± ÎČ√|A||B|. We prove that for any 3 ≀ r ∈ N and c > 0 there exists an Δ > 0 such that any n-vertex (p, ÎČ)-bijumbled graph with n ∈ rN, ÎŽ(G) ≄ c p n and ÎČ â‰€ Δ p^{r −1} n, contains a K_r -factor. This implies a corresponding result for the stronger pseudorandom notion of (n, d, λ)-graphs. For the case of K_3-factors, this result resolves a conjecture of Krivelevich, Sudakov and SzabĂł from 2004 and it is tight due to a pseudorandom triangle-free construction of Alon. In fact, in this case even more is true: as a corollary to this result, we can conclude that the same condition of ÎČ = o( p^2n) actually guarantees that a (p, ÎČ)-bijumbled graph G contains every graph on n vertices with maximum degree at most 2. Secondly, we explore the notion of robustness for K_3-factors. For a graph G and p ∈ [0, 1], we denote by G_p the random sparsification of G obtained by keeping each edge of G independently, with probability p. We show that there exists a C > 0 such that if p ≄ C (log n)^{1/3}n^{−2/3} and G is an n-vertex graph with n ∈ 3N and ÎŽ(G) ≄ 2n/3 , then with high probability G_p contains a K_3-factor. Both the minimum degree condition and the probability condition, up to the choice of C, are tight. Our result can be viewed as a common strengthening of the classical extremal theorem of CorrĂĄdi and Hajnal, corresponding to p = 1 in our result, and the famous probabilistic theorem of Johansson, Kahn and Vu establishing the threshold for the appearance of K_3-factors (and indeed all K_r -factors) in G (n, p), corresponding to G = K_n in our result. It also implies a first lower bound on the number of K_3-factors in graphs with minimum degree at least 2n/3, which gets close to the truth. Lastly, we consider the setting of randomly perturbed graphs; a model introduced by Bohman, Frieze and Martin, where one starts with a dense graph and then adds random edges to it. Specifically, given any fixed 0 < α < 1 − 1/r we determine how many random edges one must add to an n-vertex graph G with ÎŽ(G) ≄ α n to ensure that, with high probability, the resulting graph contains a K_r -factor. As one increases α we demonstrate that the number of random edges required ‘jumps’ at regular intervals, and within these intervals our result is best-possible. This work therefore bridges the gap between the seminal work of Johansson, Kahn and Vu mentioned above, which resolves the purely random case, i.e., α = 0, and that of Hajnal and SzemerĂ©di (and CorrĂĄdi and Hajnal for r = 3) showing that when α ≄ 1 − 1/r the initial graph already hosts the desired K_r -factor.Ein K_r -Faktor in einem Graphen G ist eine Sammlung von Knoten-disjunkten Kopien von K_r , die die Knotenmenge von G ĂŒberdecken. Wir untersuchen diese Objekte in drei Kontexten, die an der Schnittstelle zwischen extremaler und probabilistischer Kombinatorik liegen. Zuerst untersuchen wir Pseudozufallsgraphen. Ein Graph heißt (p,ÎČ)-bijumbled, wenn fĂŒr beliebige Knotenmengen A, B ⊆ V (G) gilt e( A, B) = p| A||B| ± ÎČ√|A||B|. Wir beweisen, dass es fĂŒr jedes 3 ≀ r ∈ N und c > 0 ein Δ > 0 gibt, so dass jeder n-Knoten (p, ÎČ)-bijumbled Graph mit n ∈ rN, ÎŽ(G) ≄ c p n und ÎČ â‰€ Δ p^{r −1} n, einen K_r -Faktor enthĂ€lt. Dies impliziert ein entsprechendes Ergebnis fĂŒr den stĂ€rkeren Pseudozufallsbegriff von (n, d, λ)-Graphen. Im Fall von K_3-Faktoren, löst dieses Ergebnis eine Vermutung von Krivelevich, Sudakov und SzabĂł aus dem Jahr 2004 und ist durch eine pseudozufĂ€llige K_3-freie Konstruktion von Alon bestmöglich. TatsĂ€chlich ist in diesem Fall noch mehr wahr: als Korollar dieses Ergebnisses können wir schließen, dass die gleiche Bedingung von ÎČ = o( p^2n) garantiert, dass ein (p, ÎČ)-bijumbled Graph G jeden Graphen mit maximalem Grad 2 enthĂ€lt. Zweitens untersuchen wir den Begriff der Robustheit fĂŒr K_3-Faktoren. FĂŒr einen Graphen G und p ∈ [0, 1] bezeichnen wir mit G_p die zufĂ€llige Sparsifizierung von G, die man erhĂ€lt, indem man jede Kante von G unabhĂ€ngig von den anderen Kanten mit einer Wahrscheinlichkeit p behĂ€lt. Wir zeigen, dass, wenn p ≄ C (log n)^{1/3}n^{−2/3} und G ein n-Knoten-Graph mit n ∈ 3N und ÎŽ(G) ≄ 2n/3 ist, G_pmit hoher Wahrscheinlichkeit (mhW) einen K_3-Faktor enthĂ€lt. Sowohl die Bedingung des minimalen Grades als auch die Wahrscheinlichkeitsbedingung sind bestmöglich. Unser Ergebnis ist eine VerstĂ€rkung des klassischen extremalen Satzes von CorrĂĄdi und Hajnal, entsprechend p = 1 in unserem Ergebnis, und des berĂŒhmten probabilistischen Satzes von Johansson, Kahn und Vu, der den Schwellenwert fĂŒr das Auftreten eines K_3-Faktors (und aller K_r -Faktoren) in G (n, p) festlegt, entsprechend G = K_n in unserem Ergebnis. Es impliziert auch eine erste untere Schranke fĂŒr die Anzahl der K_3-Faktoren in Graphen mit einem minimalen Grad von mindestens 2n/3, die der Wahrheit nahe kommt. Schließlich betrachten wir die Situation von zufĂ€llig gestörten Graphen; ein Modell, bei dem man mit einem dichten Graphen beginnt und dann zufĂ€llige Kanten hinzufĂŒgt. Wir bestimmen, bei gegebenem 0 < α < 1 − 1/r, wie viele zufĂ€llige Kanten man zu einem n-Knoten-Graphen G mit ÎŽ(G) ≄ α n hinzufĂŒgen muss, um sicherzustellen, dass der resultierende Graph mhW einen K_r -Faktor enthĂ€lt. Wir zeigen, dass, wenn man α erhöht, die Anzahl der benötigten Zufallskanten in regelmĂ€ĂŸigen AbstĂ€nden “springt", und innerhalb dieser AbstĂ€nde unser Ergebnis bestmöglich ist. Diese Arbeit schließt somit die LĂŒcke zwischen der oben erwĂ€hnten bahnbrechenden Arbeit von Johansson, Kahn und Vu, die den rein zufĂ€lligen Fall, d.h. α = 0, löst, und der Arbeit von Hajnal und SzemerĂ©di (und CorrĂĄdi und Hajnal fĂŒr r = 3), die zeigt, dass der ursprĂŒngliche Graph bereits den gewĂŒnschten K_r -Faktor enthĂ€lt, wenn α ≄ 1 − 1/r ist

    On some problems in extremal hypergraph theory

    Get PDF
    In this thesis, we study several problems in extremal (hyper)graph theory. We begin by investigating the problem of subgraph containment in the model of randomly perturbed graphs. In particular, we study the perturbed threshold for the appearance of the square of a Hamilton cycle and the problem of finding pairwise vertex-disjoint triangles. We provide a stability version of these results and we discuss their implications on the perturbed thresholds for 2-universality and for a triangle factor. We then turn to the notion of threshold in the context of transversals in hypergraph collections. Here the question is, given a fixed m-edge hypergraph F, how large the minimum degree of each hypergraph Hi needs to be, so that the hypergraph collection (H1, 
, Hm) necessarily contains a transversal copy of F. We prove a widely applicable sufficient condition on F such that the following holds. The needed minimum degree is asymptotically the same as the minimum degree required for a copy of F to appear in each Hi. The condition is general enough to obtain transversal variants of various classical Dirac-type results for (powers of) Hamilton cycles. Finally, we initiate the study of a new variant of the Maker-Breaker positional game, which we call the (1:b) multistage Maker-Breaker game. Starting with a given hypergraph, we play several stages of a usual (1:b) Maker-Breaker game where, in each stage, we shrink the board by keeping only the elements that Maker claimed in the previous stage and updating the collection of winning sets accordingly. The game proceeds until no winning sets remain, and the goal of Maker is to prolong the duration of the game for as many stages as possible. We estimate the maximum duration of the (1:b) multistage Maker-Breaker game for several standard graph games played on the edge set of Kn with biases b subpolynomial in n

    Rainbow triangles in three-colored graphs

    Get PDF
    ErdƑs and SĂłs proposed the problem of determining the maximum number F(n) of rainbow triangles in 3-edge-colored complete graphs on n vertices. They conjectured that F(n) = F(a) + F(b) + F(c) + F(d) + abc + abd + acd + bcd, where a + b + c + d = n and a, b, c, d are as equal as possible. We prove that the conjectured recurrence holds for sufficiently large n. We also prove the conjecture for n = 4k for all k ≄ 0. These results imply that lim F(n)/((n)(3)) = 0.4, and determine the unique limit object. In the proof we use flag algebras combined with stability arguments
    corecore