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Abstract

In this thesis, we study several problems in extremal (hyper)graph theory.

We begin by investigating the problem of subgraph containment in the model of randomly
perturbed graphs. In particular, we study the perturbed threshold for the appearance of the
square of a Hamilton cycle and the problem of finding pairwise vertex-disjoint triangles.
We provide a stability version of these results and we discuss their implications on the
perturbed thresholds for 2-universality and for a triangle factor.

We then turn to the notion of threshold in the context of transversals in hypergraph
collections. Here the question is, given a fixed 𝑚-edge hypergraph 𝐹, how large the
minimum degree of each hypergraph 𝐻𝑖 needs to be, so that the hypergraph collection
(𝐻1, . . . , 𝐻𝑚) necessarily contains a transversal copy of 𝐹. We prove a widely applicable
sufficient condition on 𝐹 such that the following holds. The needed minimum degree is
asymptotically the same as the minimum degree required for a copy of 𝐹 to appear in each
𝐻𝑖 . The condition is general enough to obtain transversal variants of various classical
Dirac-type results for (powers of) Hamilton cycles.

Finally, we initiate the study of a new variant of the Maker-Breaker positional game,
which we call the (1: 𝑏) multistage Maker-Breaker game. Starting with a given hypergraph,
we play several stages of a usual (1: 𝑏) Maker-Breaker game where, in each stage, we
shrink the board by keeping only the elements that Maker claimed in the previous stage
and updating the collection of winning sets accordingly. The game proceeds until no
winning sets remain, and the goal of Maker is to prolong the duration of the game for
as many stages as possible. We estimate the maximum duration of the (1: 𝑏) multistage
Maker-Breaker game for several standard graph games played on the edge set of 𝐾𝑛 with
biases 𝑏 subpolynomial in 𝑛.
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1
Introduction

Broadly speaking, extremal combinatorics is concerned with the following question.

Question 1.0.1. How large (with respect to some parameter P) can a structure be without
containing a forbidden substructure?

The structures we are interested in here are graphs. A graph is a pair (𝑉, 𝐸), where 𝑉
is a set of vertices and 𝐸 is a set of pairs of vertices called edges. A generalisation of this
notion allows edges to join more than two vertices, in which case we call the pair (𝑉, 𝐸) a
hypergraph. For further explanations concerning notation, see Section 1.41.4. The origin of
(hyper)graph theory within mathematics dates back at least to Euler’s problem of the seven
bridges of Königsberg in the 18th century [4949], but experienced a significant growth in
the last century, with a wealth of applications in computer science, engineering and social
sciences. An early appearance of an extremal problem is given by Mantel’s Theorem.

Theorem 1.0.2 ([8787]). Let 𝐺 be a triangle-free 𝑛-vertex graph. Then the number of edges
of 𝐺 is at most ⌊𝑛2/4⌋.

Comparing this theorem with Question 1.0.11.0.1, the structure is a graph on 𝑛 vertices, the
forbidden substructure is a triangle, and the parameter P is the number of edges. This result
was later greatly generalised by Turán.

Answers to Question 1.0.11.0.1 lead to some additional natural questions: among all structures
forbidding a given substructure, what are the ones maximising P? These structures are
usually called the extremal structures. Going even further, we can ask if stability holds,
that is, if structures which do not contain the forbidden substructure and almost maximise
P are close to one of the extremal structures. Going back to Mantel’s theorem, it is easy to
show that the complete balanced bipartite graph 𝐾 ⌊𝑛/2⌋, ⌈𝑛/2⌉ with parts of size ⌊𝑛/2⌋ and
⌈𝑛/2⌉ is the unique triangle-free 𝑛-vertex graph with precisely ⌊𝑛2/4⌋ edges. Therefore
the graph 𝐾 ⌊𝑛/2⌋, ⌈𝑛/2⌉ is the unique extremal graph for this problem. A stability version of
Mantel’s Theorem is given by the famous Stability Theorem of Erdős and Simonovits [4545,
104104]: if the number of edges of a triangle-free 𝑛-vertex graph is close to 𝑛2/4, then the
graph must be close to the complete balanced bipartite graph. More precisely, the theorem
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states that if 𝐺 is a triangle-free 𝑛-vertex graph with ⌊𝑛2/4⌋ − 𝑜(𝑛2) edges, then it can be
transformed into the graph 𝐾 ⌊𝑛/2⌋, ⌈𝑛/2⌉ by changing only 𝑜(𝑛2) edges.

Question 1.0.11.0.1 investigates when the behaviour of a structure changes with respect to
the containment of a forbidden substructure. Therefore, a convenient way to describe and
answer it is through the notion of a threshold. Thresholds form the common thread in
the different parts of this thesis, though it will depend on the context what precisely we
mean by a threshold (which we shall make precise). Our contributions can be grouped in
three areas: the subgraph containment problem in randomly perturbed graphs (Chapters 33
and 44), the existence of transversals in hypergraph collections (Chapter 55), and the study
of a new multistage variant of the classical Maker-Breaker game (Chapter 66). We will now
briefly introduce each of these topics, before delving into more details in the subsequent
sections.

The randomly perturbed graph 𝐺𝛼 ∪ 𝐺 (𝑛, 𝑝) is a graph obtained by taking a graph
𝐺𝛼 on 𝑛 vertices with minimum degree at least 𝛼𝑛 and adding the edges of the random
graph 𝐺 (𝑛, 𝑝) on the same vertex set. This model was introduced by Bohman, Frieze,
and Martin [2222], who, by adding random edges to a dense graph, were interested in
understanding the interplay between the extremal and the probabilistic setting. The same
idea, though in a different form, also appeared around the same time in Computer Science:
Spielman and Teng [105105] coined the notion of smoothed analysis of algorithms and, by
randomly perturbing an input to an algorithm, they could interpolate between a worst-time
case analysis and an average case analysis.

For a fixed 𝛼 ∈ (0, 1), we investigate under which conditions on 𝑝 we have that, for
any graph 𝐺𝛼 with minimum degree 𝛼𝑛, asymptotically almost surely the perturbed graph
𝐺𝛼∪𝐺 (𝑛, 𝑝) contains a given subgraph, where, by asymptotically almost surely (a.a.s.), we
mean that the statement holds with probability tending to 1 an 𝑛 tends to infinity. We first
study the appearance of the square of a Hamilton cycle in Chapter 33. This is known when
𝛼 > 1/2, and we determine the exact perturbed threshold in all the remaining cases, i.e., for
each 𝛼 ≤ 1/2. Our result has implications on the perturbed threshold for 2-universality and
for triangle factors, where we also fully address all open cases. Moreover, in Chapter 44, we
study the problem of finding pairwise vertex-disjoint triangles in the same graph model. We
prove that a.a.s. 𝐺 ∪ 𝐺 (𝑛, 𝑝) contains at least min{𝛿(𝐺), ⌊𝑛/3⌋} pairwise vertex-disjoint
triangles, provided 𝑝 ≥ 𝐶 log 𝑛/𝑛, where 𝐶 is a large enough constant. This can be seen
as a perturbed version of an old result of Dirac. Additionally, we prove a stability version
of all the results mentioned above.

We then consider transversals in hypergraph collections. A hypergraph collection is
a collection of hypergraphs H = (𝐻1, . . . , 𝐻𝑚) with the same vertex set. An 𝑚-edge

2
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hypergraph 𝐹 ⊂ ∪𝑖∈[𝑚]𝐻𝑖 is a transversal if there is a bijection 𝜙 : 𝐸 (𝐹) → [𝑚] such that
𝑒 ∈ 𝐻𝜙 (𝑒) for each 𝑒 ∈ 𝐸 (𝐹).

For a fixed a hypergraph 𝐹, we want to estimate how large the minimum 𝑑-degree of
each 𝐻𝑖 needs to be, so that H necessarily contains a transversal copy of 𝐹. There is a
trivial lower bound: each 𝐻𝑖 in the collection could be the same hypergraph, hence the
minimum 𝑑-degree of each 𝐻𝑖 needs to be large enough to ensure that 𝐻𝑖 contains 𝐹.
When 𝐹 is a (2-uniform) Hamilton cycle, Joos and Kim [7070] showed that this lower bound
is tight. After their result, a growing body of work has shown that this is the case for several
other hypergraphs 𝐹. However, each such work uses specific and ad-hoc methods, which
does not allow much flexibility, hence is often not useful when trying to prove the same
behaviour for other hypergraphs.

In Chapter 55, we provide a unified approach to this problem by giving a widely applicable
sufficient condition on the hypergraph F for the trivial lower bound to be asymptotically
tight. The condition is general enough to recover many previous results in the area and
obtain novel transversal variants of several classical Dirac-type results for (powers of)
Hamilton cycles. For example, it can be used to prove a rainbow version of the minimum
𝑑-degree threshold for the containment of a 𝑘-uniform Hamilton ℓ-cycle, for several ranges
of the parameters 𝑘, 𝑑, ℓ ∈ N where 1 ≤ 𝑑, ℓ ≤ 𝑘 − 1. Moreover, it can also be used to
prove a rainbow version of the Pósa-Seymour conjecture on the minimum degree threshold
for the containment of the 𝑟-th power of a Hamilton cycle in graphs.

Finally, we introduce and discuss a new variant of the Maker-Breaker positional game,
which we call the multistage Maker-Breaker game. Given a hypergraph H = (𝑋, F ) and
a bias 𝑏 ≥ 1, the classical (1: 𝑏) Maker-Breaker game on H is played as follows. The
players, Maker and Breaker, alternately claim elements of X, with Maker moving first.
Maker claims one element per turn, while Breaker can claim up to 𝑏 elements. If Maker
manages to claim all the elements of set 𝐹 ∈ F , she is declared the winner. Otherwise,
Breaker wins.

The goal of our new variant is to initiate a different perspective on the so-called random
graph intuition: while in the (1: 𝑏) Maker-Breaker game, Maker’s graph is forced to be
sparse when Breaker’s bias is large, we want to force sparseness by playing multiple games
consecutively. More precisely, the (1: 𝑏) multistage Maker-Breaker game on H is played
in several stages as follows. Each stage is played as a usual (1: 𝑏) Maker-Breaker game,
until all the elements of the board get claimed by one of the players, with the first stage
being played on H . In every subsequent stage, the game is played on the board reduced to
the elements that Maker claimed in the previous stage, and with the winning sets reduced
to those fully contained in the new board. The game proceeds until no winning sets remain,
and the goal of Maker is to prolong the duration of the game for as many stages as possible.

In Chapter 66, we estimate the maximum duration of the (1: 𝑏) multistage Maker-Breaker

3
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game for some standard graph games played on the edge set of 𝐾𝑛 and with biases 𝑏 sub-
polynomial in 𝑛: the connectivity game, the Hamilton cycle game, the non-𝑘-colourability
game, the pancyclicity game and the 𝐻-game. We show that, while the first three games
adhere to a probabilistic intuition, it turns out that the last two games fail to do so.

Structure of the thesis. The rest of this chapter is intended to provide the relevant
history, formalise the concepts introduced above, add some more motivations, and state
our results for each of the three areas mentioned above. A collection of the general
definitions and the conventions for notation used throughout the thesis is included for an
easier consultation in Section 1.41.4. Chapter 22 discusses the relevant tools and methods from
the literature. We then proceed to the proofs of ours results in Chapters 33 to 66, which
will be respectively concerned with the square of a Hamilton cycle in randomly perturbed
graphs, triangles in randomly perturbed graphs, transversals in hypergraph collections, and
the Maker-Breaker multistage game. This thesis is then concluded in Chapter 77 with a
discussion of some of the open questions arising from our work.

1.1 Randomly perturbed graphs

Mantel’s Theorem answers Question 1.0.11.0.1 when we ask to maximise the number of edges
in a triangle-free 𝑛-vertex graph. When the forbidden substructure is spanning, it is natural
to consider maximising the minimum degree, rather than the number of edges. An easy
corollary of Mantel’s Theorem gives the corresponding version for the minimum degree:
any 𝑛-vertex graph 𝐺 with minimum degree larger than ⌊𝑛/2⌋ contains a triangle. This
minimum degree condition cannot be lowered as the complete balanced bipartite graph
𝐾 ⌊𝑛/2⌋, ⌈𝑛/2⌉ has minimum degree ⌊𝑛/2⌋, but it does not contain any triangle.

So far, we have been focusing on deterministic graphs, but Question 1.0.11.0.1 can be
considered for random structures as well, in which case we formulate it as follows.

Question 1.1.1. How dense can a random structure be before it contains a forbidden
substructure with high probability?

As a random structure, we will consider the binomial random graph 𝐺 (𝑛, 𝑝). Already
Erdős and Rényi [4747], in one of the early papers on random graphs, proved that if the
edge density 𝑝 is at least 𝐶𝑛−1, with 𝐶 being a large constant, then 𝐺 (𝑛, 𝑝) contains a
triangle with high probability. This is asymptotically best possible by an easy first moment
calculation: the expected number of triangles in 𝐺 (𝑛, 𝑝) is

(𝑛
3
)
𝑝3, which goes to zero if

𝑝 = 𝑜(𝑛−1). Therefore, if 𝑝 = 𝑜(𝑛−1), with high probability, 𝐺 (𝑛, 𝑝) does not contain any
triangle.

The study of the randomly perturbed graph model introduced above combines Ques-
tions 1.0.11.0.1 and 1.1.11.1.1. The natural question in this setting then is how large one can choose
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the minimum degree of the deterministic graph and the edge probability of the random
graph while avoiding the perturbed graph to contain a given forbidden substructure with
high probability.

Question 1.1.2. Given a real number 𝛼 ∈ [0, 1], how dense can 𝐺 (𝑛, 𝑝) be before, for
each 𝑛-vertex graph 𝐺𝛼 with 𝛿(𝐺𝛼) ≥ 𝛼𝑛, we have that a.a.s. 𝐺𝛼 ∪ 𝐺 (𝑛, 𝑝) contains a
forbidden substructure?

It is easy to answer Question 1.1.21.1.2 if the forbidden substructure is a triangle. When
𝛼 = 0, the graph 𝐺0 can be the empty graph, and thus we can only rely on random edges
coming from 𝐺 (𝑛, 𝑝). Therefore the model coincides with 𝐺 (𝑛, 𝑝) and a triangle appears
with high probability for 𝑝 ≥ 𝐶𝑛−1, as shown by Erdős and Rényi [4747]. When 0 < 𝛼 ≤ 1/2,
it is easy to see that we only need to add to 𝐺𝛼 a constant number of random edges and
thus 𝑝 ≥ 𝐶𝑛−2 suffices, where again 𝐶 is a large constant. This is asymptotically optimal,
as 𝐺 (𝑛, 𝑝) with 𝑝 = 𝑜(𝑛−2) a.a.s. is empty, while 𝐺𝛼 might contain no triangles. When
𝛼 > 1/2, by Mantel’s Theorem, the graph 𝐺𝛼 already contains a triangle and there is no
need to add random edges, which means we can take 𝑝 = 0.

We will consider Question 1.1.21.1.2 for several forbidden substructures: the square of a
Hamilton cycle, 𝑚 pairwise vertex-disjoint triangles, and the simultaneous containment of
every graph with maximum degree at most 2 (i.e. the property of being 2-universal). We
state our results in Sections 1.1.31.1.3 and 1.1.41.1.4. However, before doing that, we formalise the
question by introducing a notion of threshold in Section 1.1.11.1.1, and we overview the known
results in the area in Section 1.1.21.1.2.

1.1.1 Thresholds

As already mentioned, it is convenient to introduce a notion of threshold in order to have a
suitable language for Questions 1.0.11.0.1 to 1.1.21.1.2. We define such a notion for each of the three
models considered above (dense graphs, random graphs, and randomly perturbed graphs),
and we do that for a general graph property, rather than only when we want to forbid a
given substructure. We will say that a property is monotone if the addition of edges cannot
destroy the property. Many natural properties are monotone: for example, the property of
containing a given subgraph.

We start with the notion of a minimum degree threshold in dense graphs.

Definition 1.1.3 (Minimum degree threshold). Let P be a graph property. The minimum
degree threshold for P is defined as the infimum of the set of the real numbers 𝛿 such that
the following holds: let 𝐺 be any 𝑛-vertex graph with 𝛿(𝐺) ≥ 𝛿𝑛, then 𝐺 ∈ P.

Similarly, we can ask for which values of 𝑝 we have a.a.s. that 𝐺 (𝑛, 𝑝) has property P.
Observe that for monotone properties, the probability of the event ‘𝐺 (𝑛, 𝑝) ∈ P ′ increases
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with 𝑝. Therefore we might want to ask for a value 𝑝 such that if 𝑝 is much larger than 𝑝
a.a.s. 𝐺 (𝑛, 𝑝) ∈ P, while if 𝑝 is much smaller than 𝑝 a.a.s. 𝐺 (𝑛, 𝑝) ∉ P. This justifies
the following notion of threshold.

Definition 1.1.4 (Threshold in𝐺 (𝑛, 𝑝)). We say that 𝑝 = 𝑝(𝑛,P) is a threshold for property
P if the following two conditions hold:

(i) for any 𝑝 = 𝜔(𝑝), a.a.s. 𝐺 (𝑛, 𝑝) ∈ P, and

(ii) for any 𝑝 = 𝑜(𝑝), a.a.s. 𝐺 (𝑛, 𝑝) ∉ P.

Strictly speaking, a threshold is not uniquely determined and really is defined here only
within constant factors. Nevertheless, we will always talk about the threshold. It was
shown by Bollobás and Thomason [2424] that all nontrivial monotone properties admit a
threshold function, where by nontrivial we mean that the property is not satisfied by the
empty graph, and is satisfied by the complete graph, while by monotone we mean that the
addition of edges preserves the property.

Finally, Definition 1.1.41.1.4 can be adapted to the setting of randomly perturbed graphs as
follows.

Definition 1.1.5 (Perturbed threshold). Let 𝛼 ∈ [0, 1]. We say that 𝑝𝛼 = 𝑝𝛼 (𝑛,P) is the
perturbed threshold for property P at 𝛼 if the following two conditions hold:

(i) for any 𝑝 = 𝜔(𝑝𝛼) and for any sequence of 𝑛-vertex graphs (𝐺𝛼,𝑛)𝑛∈N with
𝛿(𝐺𝛼,𝑛) ≥ 𝛼𝑛, a.a.s. 𝐺𝛼,𝑛 ∪ 𝐺 (𝑛, 𝑝) ∈ P, and

(ii) for any 𝑝 = 𝑜(𝑝𝛼), there exists a sequence of 𝑛-vertex graphs (𝐺𝛼,𝑛)𝑛∈N with
𝛿(𝐺𝛼,𝑛) ≥ 𝛼𝑛 such that a.a.s. 𝐺𝛼,𝑛 ∪ 𝐺 (𝑛, 𝑝) ∉ P.

Observe that the property of containing a given subgraph in 𝐺𝛼 ∪𝐺 (𝑛, 𝑝) is monotone,
and thus the threshold exists. We remark that for all the results we will mention later, a
sharper threshold condition holds. Namely, there exist constants 𝐶 = 𝐶 (𝛼,P) > 0 and
𝑐 = 𝑐(𝛼,P) > 0 such that (i)(i) already holds for 𝑝 ≥ 𝐶𝑝𝛼 and (ii)(ii) already holds for 𝑝 ≤ 𝑐𝑝𝛼.
For 𝛼 = 0, the perturbed threshold is simply the usual threshold for purely random graphs,
and the perturbed threshold is 0 for any 𝛼 such that all graphs with minimum degree 𝛼𝑛
are in P. In this sense, randomly perturbed graphs interpolate between questions from
extremal graph theory and questions concerning random graphs. For small 𝛼 > 0, we
are trying to compare the threshold in 𝐺 (𝑛, 𝑝) with the one in 𝐺𝛼 ∪ 𝐺 (𝑛, 𝑝) and we are
asking how much random graph theory results are influenced by the fact that in a random
graph there may be vertices with relatively few neighbours. For small 𝑝 (of order 𝑛−1) and
hence values of 𝛼 close to the minimum degree threshold, we are asking how ‘atypical’
extremal graphs for the property are. However, more generally, we would like to determine
the evolution of the perturbed threshold, as 𝛼 ranges over the whole interval [0, 1].
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1.1.2 Overview of known results

Several strands of results regarding the properties of randomly perturbed graphs have
been studied over the years, particularly Ramsey properties [33, 44, 4040, 4141, 9696], Schur
properties [3939], and the containment of spanning structures. Here we focus on the latter
and we now highlight some of the knwon results, where we remark that much of the research
so far has been focusing on small 𝛼 and small 𝑝.

The main result of the original paper of Bohman, Frieze, and Martin [2222] deals with
Hamiltonicity and shows that for every 𝛼 > 0 there exists 𝐶 = 𝐶 (𝛼) > 0 such that, if 𝐺
is an 𝑛-vertex graph with 𝛿(𝐺) ≥ 𝛼𝑛 and we add 𝐶𝑛 random edges to 𝐺, then a.a.s. the
resulting graph is Hamiltonian. This is optimal for 𝛼 ∈ (0, 1/2): indeed if we add less than
(1−2𝛼) edges to the complete bipartite graph 𝐻𝛼 = 𝐾𝛼𝑛, (1−𝛼)𝑛, then the resulting graph is
not Hamiltonian. Therefore at least a linear number of additional edges is needed to make
𝐻𝛼 Hamiltonian, and thus for 𝛼 ∈ (0, 1/2) the perturbed threshold 𝑝𝛼 for Hamiltonicity
is 𝑛−1. For 𝛼 ≥ 1/2, the perturbed threshold is zero, as any 𝑛-vertex graph with minimum
degree at least 𝑛/2 is already Hamiltonian. For 𝛼 = 0, we are in the purely random model
and the threshold is 𝑛−1 log 𝑛, as proved by Pósa [9595] and Koršunov [7777], independently.
Comparing the threshold for 𝛼 = 0 and for small 𝛼 > 0, we can observe that the former
requires an additional (log 𝑛)-factor. This is necessary to guarantee that the minimum
degree in 𝐺 (𝑛, 𝑝) is at least 2, which is not needed in the randomly perturbed model, as
already the deterministic graph 𝐺𝛼 guarantees this minimum degree.

Krivelevich, Kwan, and Sudakov [7979] extended this result on Hamilton cycles to
bounded-degree spanning trees, which was in turn extended to a universality result by
Böttcher, Han, Kohayakawa, Montgomery, Parczyk, and Person [2525]. Böttcher et al. showed
that for each 𝛼 > 0 and Δ ∈ N, there exists 𝐶 = 𝐶 (𝛼,Δ) > 0 such that the following holds.
If𝐺 is an 𝑛-vertex graph with minimum degree at least 𝛼𝑛, then a.a.s. 𝐺∪𝐺 (𝑛, 𝑝) contains
every 𝑛-vertex tree with maximum degree at most Δ, provided 𝑝 ≥ 𝐶𝑛−1. The order of
magnitude of the bound on 𝑝 is optimal for 𝛼 ∈ (0, 1/2), as the complete bipartite graph
𝐻𝛼 requires a linear number of additional edges already to contain a perfect matching.
This shows the perturbed threshold 𝑝𝛼 is 𝑛−1 for 𝛼 ∈ (0, 1/2). On the other hand, the
threshold in 𝐺 (𝑛, 𝑝) is again 𝑛−1 log 𝑛, as proved by Montgomery [8989], and, again, we see
a decrease of a (log 𝑛)-factor in the perturbed threshold. Moreover, when 𝛼 > 1/2, there
is no need to add random edges and the threshold is zero, as proved by Komlós, Sárközy,
and Szemerédi [7575].

Another spanning structure which has received considerable attention is the 𝑟-th power
of a Hamilton cycle, with the case 𝑟 = 1 having been the main focus of [2222] as explained
above. These are relevant structures in extremal graph theory: indeed the square of a
Hamilton cycle often serves as a good concrete but reasonably complex special case when
results about the appearance of a more general class of structures are still out of reach. For
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example, a well-known conjecture by Pósa [4444] from the 1960s states that any 𝑛-vertex
graph𝐺 of minimum degree at least 2𝑛/3 contains the square of a Hamilton cycle. This was
solved in the 1990s for large 𝑛 by Komlós, Sarközy, and Szemerédi [7373], demonstrating the
power of the then new and by now celebrated Blow-Up Lemma. Only more than 10 years
later the analogous problem was settled for a more general class of spanning subgraphs [3030],
using the result for squares of Hamilton cycles as a fundamental stepping stone. For 𝑟 ≥ 3,
an analogous conjecture was formulated by Seymour [103103] and solved for large 𝑛 again by
Komlós, Sarközy, and Szemerédi [7474], who proved that the minimum degree threshold for
the 𝑟-th power of a Hamilton cycle is 𝑟𝑛/(𝑟 + 1).

In random graphs, the threshold for the containment of the 𝑟-th power of a Hamilton
cycle is 𝑛−1/𝑟 . For 𝑟 ≥ 3, this follows from a more general result of Riordan [9898] based on
the second moment method. However, for 𝑟 = 2 the problem proved to be much harder,
and the threshold was determined only very recently by Kahn, Narayanan, and Park [7171],
using tools from the pioneering work of Frankston, Kahn, Narayanan and Park [5252] on
fractional expectation-thresholds.

In the perturbed model a full picture is still missing. In the regime 𝛼 ≥ 𝑟/(𝑟 + 1),
where𝐺𝛼 alone contains the 𝑟-th power of a Hamilton cycle, Dudek, Reiher, Ruciński, and
Schacht [4343] showed that adding a linear number of random edges suffices to enforce the
(𝑟 + 1)-st power of a Hamilton cycle. This was improved by Nenadov and Trujić [9292] who
showed that one can indeed enforce the (2𝑟 + 1)-st power of a Hamilton cycle with these
parameters. When 𝛼 > 1/2, even higher powers of Hamilton cycles have been studied
by Antoniuk, Dudek, Reiher, Ruciński, and Schacht [66] and by Antoniuk, Dudek, and
Ruciński [77], although this last result is concerned with a different notion of threshold.

We conclude this section by discussing 𝐻-factors. Balogh, Treglown, and Wagner [1010]
proved that, for a fixed a graph 𝐻 and 𝛼 ∈ (0, 1/𝑣(𝐻)), the perturbed threshold for an
𝐻-factor satisfies 𝑝𝛼 = 𝑛−1/𝑚1 (𝐻) . If 𝐻 is a strictly-balanced graph, then the threshold
for an 𝐻-factor in 𝐺 (𝑛, 𝑝) is 𝑛−1/𝑚1 (𝐻) log1/𝑒 (𝐻) 𝑛 (this follows from Johansson, Kahn,
and Vu [6969], see Theorem 2.5.22.5.2), and thus we save a (log1/𝑒 (𝐻) 𝑛)-factor. However, if 𝐻
is non-vertex-balanced, then the threshold for an 𝐻-factor in 𝐺 (𝑛, 𝑝) is 𝑛−1/𝑚1 (𝐻) (this
follows from Gerke and McDowell [5353]), and thus having a few deterministic edges does
not provide any benefit: the perturbed threshold at 𝛼 = 0 and the one at small positive 𝛼
coincide.

More recently, Han, Morris, and Treglown [5757] started a more thorough investigation of
the intermediate regime for 𝛼when𝐻 is a clique. The perturbed threshold for a𝐾𝑟 -factor in
the purely random case follows from [6969] as above, and gives 𝑝0 = 𝑛−2/𝑟 log−2/(𝑟2−𝑟) 𝑛. In
the extremal setting, the theorems of Corrádi and Hajnal [3838] and Hajnal and Szemerédi [5555]
show that we have 𝑝𝛼 = 0 for any 𝛼 ≥ 1 − 1/𝑟 . Han, Morris, and Treglown, improving
on [1010], proved the following.
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Theorem 1.1.6 (Han, Morris, and Treglown [5757]). Let 𝑘 and 𝑟 be integers with 2 ≤ 𝑘 ≤ 𝑟 .
Then given any 1 − 𝑘

𝑟
< 𝛼 < 1 − 𝑘−1

𝑟
, the perturbed threshold for a 𝐾𝑟 -factor satisfies

𝑝𝛼 = 𝑛−2/𝑘 .

Observe that in Theorem 1.1.61.1.6 the value of 𝑝𝛼 demonstrates a jumping phenomenon:
for a fixed 𝑘 with 2 ≤ 𝑘 ≤ 𝑟, its value is the same for all 𝛼 ∈ (1− 𝑘

𝑟
, 1− 𝑘−1

𝑟
); however if 𝛼

is just above this interval its value is significantly smaller. Moreover, Theorem 1.1.61.1.6 almost
bridges the gap between Hajnal-Szemerédi and Johansson–Kahn–Vu for clique-factors,
leaving open only the boundary cases 𝛼 = 1 − 𝑘/𝑟 for each 𝑘 with 2 ≤ 𝑘 ≤ 𝑟 − 1.

1.1.3 New results: triangles

We now discuss our results related to the appearance of pairwise vertex-disjoint copies of
triangles.

As already mentioned in the previous section, the perturbed threshold for a triangle
factor is known for all 𝛼 ∈ [0, 1] \ {1/3}, with the boundary case 𝛼 = 1/3 being still open.
Observe that for𝐺1/3 ∪𝐺 (𝑛, 𝑝) to a.a.s. contain a triangle factor, we need 𝑝 ≥ 𝐶𝑛−1 log 𝑛.
To see this consider the complete bipartite graph𝐺 = 𝐻1/3, and denote the partition classes
by 𝐴 and 𝐵 with |𝐴| < |𝐵|. By Markov’s inequality, if 𝑝 ≤ 1

2𝑛
−1 log 𝑛, then a.a.s. there

are 𝑂 (log4 𝑛) triangles within 𝐵 and a.a.s. there is a polynomial number of vertices in the
class 𝐵 without any neighbours in 𝐵 [6868, Theorem 6.36]. However, for a triangle factor
to exist, for each triangle with at most one vertex in 𝐵, there must be at least one triangle
fully contained in 𝐵. In conclusion, a.a.s. 𝐺 ∪ 𝐺 (𝑛, 𝑝) does not contain a triangle factor.
We can show that 𝑛−1 log 𝑛 is indeed the perturbed threshold at 𝛼 = 1/3.

Theorem 1.1.7 (Triangle factor at 𝛼 = 1/3). Let 𝑝𝛼 be the perturbed threshold for a
triangle factor. Then we have 𝑝1/3 = 𝑛−1 log 𝑛.

This result closes the problem of determining, given 𝛼 ∈ [0, 1], the threshold for a
triangle factor in 𝐺𝛼 ∪ 𝐺 (𝑛, 𝑝) and we refer to Table 1.11.1 for a summary.

𝛼 𝛼 = 0 0 < 𝛼 < 1/3 𝛼 = 1/3 1/3 < 𝛼 < 2/3 2/3 ≤ 𝛼
𝑝𝛼 𝑛−2/3 log1/3 𝑛 𝑛−2/3 𝑛−1 log 𝑛 𝑛−1 0

Table 1.1: Triangle factor containment in 𝐺𝛼 ∪ 𝐺 (𝑛, 𝑝), where 𝛿(𝐺𝛼) ≥ 𝛼𝑛.

Theorem 1.1.71.1.7 is a special case of a more general result, where we answer the question
which minimum degree condition is needed in the randomly perturbed graph model with
𝑝 of order 𝑛−1 log 𝑛 to enforce 𝑚 vertex-disjoint triangles for any 1 ≤ 𝑚 ≤ ⌊𝑛/3⌋.

Theorem 1.1.8 (Triangles in randomly perturbed graphs). There exists𝐶 > 0 such that for
any 𝑛-vertex graph𝐺 we can a.a.s. find at least min{𝛿(𝐺), ⌊𝑛/3⌋} pairwise vertex-disjoint
triangles in 𝐺 ∪ 𝐺 (𝑛, 𝑝), provided that 𝑝 ≥ 𝐶𝑛−1 log 𝑛.
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Observe that Theorem 1.1.81.1.8 can be seen as a perturbed version of the following result
by Dirac.

Theorem 1.1.9 (Dirac [4242]). Any 𝑛-vertex graph 𝐺 with 𝑛/2 ≤ 𝛿(𝐺) ≤ 2𝑛/3 contains at
least 2𝛿(𝐺) − 𝑛 pairwise vertex-disjoint triangles.

Given an integer 𝑚 with 𝑛/2 ≤ 𝑚 ≤ 2𝑛/3, the tripartite complete graph with parts of
size 2𝑚 − 𝑛, 𝑛 − 𝑚, and 𝑛 − 𝑚 shows the result is best possible. Moreover, a stability
version of Theorem 1.1.91.1.9 was proved by Hladký, Hu, and Piguet [6666]. We are not aware of
other results in the randomly perturbed graph model that consider large but not spanning
structures. Theorem 1.1.81.1.8 is basically optimal in terms of the number of triangles, because
given 1 ≤ 𝑚 < 𝑛/3, then 𝐺 = 𝐾𝑚,𝑛−𝑚 has minimum degree 𝛿(𝐺) = 𝑚, and there can
be at most 𝑚 pairwise vertex-disjoint triangles using each at least one edge of 𝐺, and
at most 𝑂 (log4 𝑛) additional triangles solely coming from 𝐺 (𝑛, 𝑝). The bound on 𝑝 is
asymptotically optimal as it is in Theorem 1.1.71.1.7, but we remark that when𝑚 is ‘significantly
smaller’ than 𝑛/3, then already 𝑝 ≥ 𝐶𝑛−1 is sufficient to a.a.s. find 𝑚 pairwise vertex-
disjoint triangles in 𝐾𝑚,𝑛−𝑚 ∪ 𝐺 (𝑛, 𝑝). We will provide the proof of Theorem 1.1.81.1.8 in
Chapter 44.

Stability

We already discussed how the probability 𝑝 ≥ 𝐶𝑛−1 log 𝑛 can not be significantly lowered
in Theorem 1.1.81.1.8. However, we are able to show that when the minimum degree of 𝐺 is
linear in 𝑛, then with 𝑚 = min{𝛿(𝐺), 𝑛/3}, the complete bipartite graph 𝐾𝑚,𝑛−𝑚 is the
unique extremal graph for Theorem 1.1.81.1.8, in the sense that if the graph 𝐺 is not ‘close’
to 𝐾𝑚,𝑛−𝑚 then a.a.s. 𝐺 ∪ 𝐺 (𝑛, 𝑝) contains 𝑚 pairwise vertex-disjoint triangles already at
probability 𝑝 ≥ 𝐶𝑛−1 and we can even assume a slightly smaller minimum degree on 𝐺.
The next definition formalises what we mean by close.

Definition 1.1.10 ((𝛼, 𝛽)-stable). For 𝛼, 𝛽 > 0 we say that an 𝑛-vertex graph 𝐺 is (𝛼, 𝛽)-
stable if there exists a partition of 𝑉 (𝐺) into two sets 𝐴 and 𝐵 of sizes |𝐴| = (𝛼 ± 𝛽)𝑛 and
|𝐵| = (1 − 𝛼 ± 𝛽)𝑛 such that the minimum degree of the bipartite subgraph 𝐺 [𝐴, 𝐵] is at
least 𝛼𝑛/4, all but at most 𝛽𝑛 vertices from 𝐴 have degree at least |𝐵| − 𝛽𝑛 into 𝐵, all but
at most 𝛽𝑛 vertices from 𝐵 have degree at least |𝐴| − 𝛽𝑛 into 𝐴, and 𝐺 [𝐵] contains at most
𝛽𝑛2 edges.

We can show a stability version of Theorem 1.1.81.1.8.

Theorem 1.1.11 (Stability Theorem for triangles). For 0 < 𝛽 < 1/12 there exist 𝛾 > 0
and 𝐶 > 0 such that for any 𝛼 with 4𝛽 ≤ 𝛼 ≤ 1/3 the following holds. Let 𝐺 be an
𝑛-vertex graph with minimum degree 𝛿(𝐺) ≥ (𝛼 − 𝛾) 𝑛 that is not (𝛼, 𝛽)-stable. With
𝑝 ≥ 𝐶𝑛−1, a.a.s. the perturbed graph 𝐺 ∪ 𝐺 (𝑛, 𝑝) contains at least min{𝛼𝑛, ⌊𝑛/3⌋}
pairwise vertex-disjoint triangles.
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The result is best possible as 𝐺 can be bipartite and have no triangles, in which case we
need at least a linear number of edges from the random graph to find a linear number of
pairwise vertex-disjoint triangles in𝐺 ∪𝐺 (𝑛, 𝑝). On the other hand, the logarithmic factor
is needed for the extremal graph.

Theorem 1.1.12 (Extremal Theorem for triangles). For 0 < 𝛼0 ≤ 1/3 there exist 𝛽, 𝛾 > 0
and 𝐶 > 0 such that for any 𝛼 with 𝛼0 ≤ 𝛼 ≤ 1/3 the following holds. Let 𝐺 be
an 𝑛-vertex graph with minimum degree 𝛿(𝐺) ≥ (𝛼 − 𝛾) 𝑛 that is (𝛼, 𝛽)-stable. With
𝑝 ≥ 𝐶𝑛−1 log 𝑛, a.a.s. the perturbed graph𝐺 ∪𝐺 (𝑛, 𝑝) contains at least min{𝛿(𝐺), ⌊𝛼𝑛⌋}
pairwise vertex-disjoint triangles.

Indeed our argument will give slightly more. If 𝐺 is (𝛼, 𝛽)-stable with partition𝑉 (𝐺) =
𝐴∪ 𝐵 and |𝐴| ≥ 𝛼𝑛, then we can a.a.s. find ⌈𝛼𝑛⌉ if 𝛼 < 1/3 and ⌊𝑛/3⌋ if 𝛼 = 1/3 pairwise
vertex-disjoint triangles in 𝐺 ∪ 𝐺 (𝑛, 𝑝) (even when the minimum degree in 𝐺 is smaller
than 𝛼𝑛).

Moreover we prove the following when the minimum degree gets smaller than that in
Theorems 1.1.111.1.11 and 1.1.121.1.12

Theorem 1.1.13 (Sublinear Theorem for triangles). There exists 𝐶 > 0 such that the
following holds for any 1 ≤ 𝑚 ≤ 𝑛/512 and any 𝑛-vertex graph 𝐺 of minimum degree
𝛿(𝐺) ≥ 𝑚. With 𝑝 ≥ 𝐶 log 𝑛/𝑛 a.a.s. the perturbed graph 𝐺 ∪ 𝐺 (𝑛, 𝑝) contains at least
𝑚 pairwise vertex-disjoint triangles.

Observe that Theorem 1.1.81.1.8 easily follows from Theorems 1.1.111.1.11, 1.1.121.1.12, and 1.1.131.1.13.
We will prove Theorem 1.1.81.1.8 and Theorem 1.1.131.1.13 at the beginning of Chapter 44, and
Theorems 1.1.111.1.11 and 1.1.121.1.12 in Sections 4.34.3 and 4.24.2, respectively.

1.1.4 New results: the square of a Hamilton cycle

We now discuss our results related to the appearance of the square of a Hamilton cycle.
We determine the perturbed threshold for the containment of the square of a Hamilton

cycle for 0 < 𝛼 ≤ 1/2, which answers a question of Antoniuk, Dudek, Reiher, Ruciński
and Schacht [66] in a strong form. In the range 𝛼 ∈ (1/2, 2/3) the perturbed threshold for
squares of Hamilton cycles was determined by Dudek, Reiher, Ruciński, and Schacht [4343].
The case 𝛼 = 0, on the other hand, is the purely random graph case addressed in [7171], and
the range 𝛼 ≥ 2/3 is the purely extremal scenario addressed in [7373]. Therefore, our result
completely settles the question of determining the perturbed threshold for the square of a
Hamilton cycle for the whole range of 𝛼.

Theorem 1.1.14 (Square of a Hamilton cycle). Let 𝑝𝛼 be the perturbed threshold for the

11
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containment of the square of a Hamilton cycle. Then

𝑝𝛼 =



0 if 𝛼 ≥ 2
3 ,

𝑛−1 if 𝛼 ∈ [ 1
2 ,

2
3 ) ,

𝑛−(𝑘−1)/(2𝑘−3) if 𝛼 ∈ ( 1
𝑘+1 ,

1
𝑘
) for 𝑘 ≥ 2 ,

𝑛−(𝑘−1)/(2𝑘−3) (log 𝑛)1/(2𝑘−3) if 𝛼 = 1
𝑘+1 for 𝑘 ≥ 2 ,

𝑛−1/2 if 𝛼 = 0 .

The probabilities appearing in Theorem 1.1.141.1.14 have the following nice interpret-
ation: 𝑛−(𝑘−1)/(2𝑘−3) is the threshold in 𝐺 (𝑛, 𝑝) for a linear number of copies of
𝑃2
𝑘

(by a standard application of Janson’s inequality, see also Lemma 2.5.12.5.1), while
𝑛−(𝑘−1)/(2𝑘−3) (log 𝑛)1/(2𝑘−3) is the threshold in 𝐺 (𝑛, 𝑝) for the existence of a 𝑃2

𝑘
-factor

(this follows from [6969], see Theorem 2.5.22.5.2). The appearance of such probabilities will
become clearer while justifying the lower bounds and explaining our proof strategy in
Section 3.1.13.1.1. We will provide the proof of Theorem 1.1.141.1.14 in Chapter 33.

Observe that Theorem 1.1.141.1.14 implies that, as long as 𝛼 ∈ (1/3, 2/3) it suffices to add
a linear number of random edges to the deterministic graph 𝐺𝛼 for enforcing the square
of a Hamilton cycle, and for 𝛼 ≤ 1/3 the perturbed threshold 𝑝𝛼 (𝑛) exhibits ‘jumps’ at
𝛼 = 1

𝑘+1 for each integer 𝑘 ≥ 2, where an extra ((log 𝑛)1/(2𝑘−3) )-factor is needed at 𝛼
precisely equal to 1

𝑘+1 . To the best of our knowledge Theorem 1.1.141.1.14 is the first result
exhibiting a countably infinite number of jumps. Moreover, for 𝛼 tending to zero, the
threshold 𝑝𝛼 tends to 𝑛−1/2, which is precisely 𝑝0, i.e. the threshold is continuous at zero.

As already explained, the cases𝛼 = 0 and𝛼 > 1/2 follow from known results. Moreover,
the case 𝛼 = 1/2 will follow from the monotonicity of the perturbed threshold, once we
will have determined the perturbed threshold in the range 𝛼 < 1/2. Therefore, in the
remainder of this section, we can fix an integer 𝑘 ≥ 2 and assume 𝛼 ∈

[ 1
𝑘+1 ,

1
𝑘

)
.

Lower bounds and stability

The lower bounds in Theorem 1.1.141.1.14 on 𝑝𝛼 for 𝛼 ∈ ( 1
𝑘+1 ,

1
𝑘
) and 𝛼 = 1

𝑘+1 follows by taking
the graph 𝐻𝛼 as the deterministic graph 𝐺𝛼, where we recall that 𝐻𝛼 is the complete
bipartite graph with parts of size 𝛼𝑛 and (1 − 𝛼)𝑛.

Proposition 1.1.15 (Lower bounds for the square of a Hamilton cycle).

(i) Let 𝛼 ∈ ( 1
𝑘+1 ,

1
𝑘
). Then there exists 𝑐 ∈ (0, 1) such that 𝐻𝛼 ∪𝐺 (𝑛, 𝑝) a.a.s. does not

contain a copy of 𝐶2
𝑛, provided 𝑝 ≤ 𝑐𝑛−(𝑘−1)/(2𝑘−3) .

(ii) Let 𝛼 = 1
𝑘+1 . Then 𝐻𝛼 ∪ 𝐺 (𝑛, 𝑝) a.a.s. does not contain a copy of 𝐶2

𝑛, provided
𝑝 ≤ 1

2𝑛
−(𝑘−1)/(2𝑘−3) (log 𝑛)1/(2𝑘−3) .

12
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Proposition 1.1.151.1.15 shows that, compared to the threshold for 𝛼 ∈ ( 1
𝑘+1 ,

1
𝑘
), the additional

((log 𝑛)1/(2𝑘−3) )-factor in the threshold at 𝛼 = 1
𝑘+1 is needed in order to a.a.s. find the

square of a Hamilton cycle in𝐻1/(𝑘+1)∪𝐺 (𝑛, 𝑝). We can say more and prove a more general
stability version of Theorem 1.1.141.1.14: namely, that the graph 𝐻1/(𝑘+1) is the ‘only’ reason we
need the extra term, in the sense that this extra factor at 𝛼 = 1

𝑘+1 is only necessary when the
deterministic graph 𝐺𝛼 is close to 𝐻1/(𝑘+1) , where being close is again formalised by the
definition of (𝛼, 𝛽)-stable graphs introduced above (see Definition 1.1.101.1.10). The following
stability theorem treats the non-extremal case of Theorem 1.1.141.1.14.

Theorem 1.1.16 (Stability Theorem for the square of a Hamilton cycle). For every 𝑘 ≥ 2
and every 0 < 𝛽 < 1

6𝑘 , there exist 𝛾 > 0 and 𝐶 > 0 such that the following holds. Let
𝐺 be any 𝑛-vertex graph with minimum degree at least ( 1

𝑘+1 − 𝛾)𝑛 that is not ( 1
𝑘+1 , 𝛽)-

stable. Then 𝐺 ∪ 𝐺 (𝑛, 𝑝) a.a.s. contains the square of a Hamilton cycle, provided that
𝑝 ≥ 𝐶𝑛−(𝑘−1)/(2𝑘−3) .

Only when the graph𝐺 is stable we need the ((log 𝑛)1/(2𝑘−3) )-factor. This case is treated
by the following theorem.

Theorem 1.1.17 (Extremal Theorem for the square of a Hamilton cycle). For every 𝑘 ≥ 2
there exist 𝛽 > 0 and𝐶 > 0 such that the following holds. Let𝐺 be any 𝑛-vertex graph with
minimum degree at least 1

𝑘+1𝑛 that is ( 1
𝑘+1 , 𝛽)-stable. Then 𝐺 ∪𝐺 (𝑛, 𝑝) a.a.s. contains the

square of a Hamilton cycle, provided that 𝑝 ≥ 𝐶𝑛−(𝑘−1)/(2𝑘−3) (log 𝑛)1/(2𝑘−3) .

Together with the lower bounds provided in Proposition 1.1.151.1.15, Theorems 1.1.161.1.16
and 1.1.171.1.17 imply Theorem 1.1.141.1.14 for 𝛼 ∈ [ 1

𝑘+1 ,
1
𝑘
) with 𝑘 ≥ 2. We will prove The-

orem 1.1.141.1.14 and Proposition 1.1.151.1.15 at the beginning of Chapter 33, and Theorems 1.1.161.1.16
and 1.1.171.1.17 in Sections 3.33.3 and 3.23.2, respectively.

2-universality

Observe that the square of a Hamilton cycle is 2-universal, i.e. it contains every graph with
maximum degree at most 2. Therefore, as a corollary of Theorem 1.1.141.1.14 we also get the
following result, establishing the perturbed threshold for 2-universality for all 𝛼.

Corollary 1.1.18 (2-universality). Let 𝑝𝛼 be the perturbed threshold for 2-universality.
Then

𝑝𝛼 =



0 if 𝛼 ≥ 2
3 ,

𝑛−1 if 𝛼 ∈ ( 1
3 ,

2
3 ) ,

𝑛−1 log 𝑛 if 𝛼 = 1
3 ,

𝑛−2/3 if 𝛼 ∈ (0, 1
3 ) ,

𝑛−2/3(log 𝑛)1/3 if 𝛼 = 0 .
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The upper bound for the range 1/3 ≤ 𝛼 < 2/3 is a corollary of our Theorem 1.1.141.1.14,
while the lower bound can be justified again by taking the graph 𝐻𝛼 as the deterministic
graph with minimum degree 𝛼𝑛. This is indeed follows from the corresponding discussion
for triangle factors in Section 1.1.31.1.3, as if a graph is 2-universal, then it has to contain a
triangle factor.

The remaining cases of Corollary 1.1.181.1.18 follow from known results. For 𝛼 = 0, this is
due to Ferber, Kronenberg, and Luh [5151], for 𝛼 ≥ 2/3 to Aigner and Brandt [22], and for
𝛼 ∈ (0, 1/3) to Parczyk [9393].

Observe that the perturbed threshold for the containment of the square of a Hamilton
cycle and the perturbed threshold for 2-universality differ for 𝛼 < 1/3. This is due to the
fact that in this regime the structure of the deterministic graph 𝐺𝛼 may force us to find
many copies of the square of a short path in 𝐺 (𝑛, 𝑝) if we want to find the square of a
Hamilton cycle in 𝐺𝛼 ∪ 𝐺 (𝑛, 𝑝).

1.2 Transversal versions of Dirac-type theorems

A hypergraph collection on vertex set 𝑉 is a collection of hypergraphs 𝐻1, . . . , 𝐻𝑚, each
with vertex set 𝑉 , and it is denoted by H = (𝐻1, . . . , 𝐻𝑚). We call the collection a
graph collection if each hypergraph in the collection has uniformity two. Given an 𝑚-edge
hypergraph 𝐹 on 𝑉 , we say that H has a transversal copy of 𝐹 if there is a bijection
𝜙 : 𝐸 (𝐹) → [𝑚] such that 𝑒 ∈ 𝐻𝜙 (𝑒) for each 𝑒 ∈ 𝐸 (𝐹). In other words, a transversal
copy of 𝐹 is a copy of 𝐹 in

⋃
𝑖∈[𝑚] 𝐻𝑖 obtained by selecting exactly one edge from each

hypergraph. In addition, a transversal copy of 𝐹 can be thought as a rainbow copy of 𝐹.
Indeed, we can think of the edges of hypergraph 𝐻𝑖 to be coloured with colour 𝑖 and, in
this framework, a transversal copy of 𝐹 is a copy of 𝐹 in

⋃
𝑖∈[𝑚] 𝐻𝑖 with edges of pairwise

distinct colours.
We are interested in the following general question formulated originally by Joos and

Kim [7070].

Question 1.2.1. Let 𝐹 be an 𝑚-edge hypergraph with vertex set 𝑉 , H be a family of
hypergraphs, and H = (𝐻1, . . . , 𝐻𝑚) be a hypergraph collection on vertex set 𝑉 with
𝐻𝑖 ∈ H for each 𝑖 ∈ [𝑚]. Which conditions on H guarantee a transversal copy of 𝐹 in H?

By taking 𝐻1 = 𝐻2 = · · · = 𝐻𝑚, it is clear that such a property needs to guarantee
that each hypergraph in H contains 𝐹 as a subhypergraph. However, this alone is not
always sufficient, not even asymptotically. For example, Aharoni, DeVos, de la Maza,
Montejano and Šámal [11] showed that if G = (𝐺1, 𝐺2, 𝐺3) is a graph collection on [𝑛]
with 𝑒(𝐺𝑖) > ( 26−2

√
7

81 )𝑛2 for each 𝑖 ∈ [3], then G contains a transversal which is a triangle.
As shown in [11], the constant 26−2

√
7

81 > 1/4 is optimal. On the other hand, Mantel’s
theorem states that already any graph with at least 𝑛2/4 edges must contain a triangle.

14
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Instead of a lower bound on the total number of edges in each hypergraph, it is also
natural to investigate what can be guaranteed with a lower bound on the minimum degree.
It turns out that even in this more restrictive setting, there can be a discrepancy between the
uncoloured and the rainbow versions of the problem (see next section). On the other hand,
there are many natural instances where they coincide (at least asymptotically), e.g. [3232, 3333,
7070, 8484, 8585, 8686, 9090]. Although such results all show the same behaviour (the asymptotic
equivalence between the uncoloured and the rainbow problem), each of them requires an
ad-hoc proof. Therefore, it is natural to ask for a more flexible machinery to translate
uncoloured results into rainbow ones.

We make progress on this question and give a widely applicable sufficient condition
for the uncoloured and the rainbow versions to coincide asymptotically. This offers a
unified proof of several known rainbow Dirac-type results, as well as many new ones. We
formalise the problem and give an overview of the known results in Section 1.2.11.2.1. The
precise statement of the main theorem is technical and we postpone it to Chapter 55, together
with its proof. However, we state its applications in Section 1.2.21.2.2 and give some intuition
behind our main theorem in Section 1.2.31.2.3.

1.2.1 Overview of known results

We have been quite vague on what we mean by the uncoloured and the rainbow minimum
degree conditions being (asymptotically) equivalent. To make this more precise, we give
the following two definitions. We have already discussed the problem for the uncoloured
setting in Section 1.11.1, where we defined the minimum degree threshold for a graph property
to hold (Definition 1.1.31.1.3). In Definition 1.1.31.1.3 we require the minimum degree threshold to
be exact: any 𝑛-vertex graph with 𝛿(𝐺) ≥ 𝛿𝑛 has to satisfy the given property. However,
in view of the results of this section, it is more convenient to consider the weaker notion of
the asymptotic minimum degree threshold, where we only require that the given property is
satisfied by the 𝑛-vertex graphs with minimum degree at least (𝛿+𝛼)𝑛, where 𝛼 is a strictly
positive number which can be chosen arbitrarily small. We formalise that for families of
hypergraphs in the next definition. To avoid any confusion, we refer to this definition as
the uncoloured minimum degree threshold.

Definition 1.2.2 (Uncoloured minimum degree threshold). Let F be an infinite family of
𝑘-uniform hypergraphs. By 𝛿F,𝑑 we denote, if it exists, the smallest real number 𝛿 such
that for all 𝛼 > 0 the following holds for all but finitely many 𝐹 ∈ F . Let 𝑛 = |𝑉 (𝐹) | and
𝐻 be any 𝑛-vertex 𝑘-uniform hypergraph with 𝛿𝑑 (𝐻) ≥ (𝛿 + 𝛼)𝑛𝑘−𝑑 . Then 𝐻 contains a
copy of 𝐹.

Observe again that, if we allow 𝛼 = 0, Definition 1.2.31.2.3 is equivalent to Definition 1.1.31.1.3
with the (hyper)graph property being the containment of a hypergraph from the family
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F . For example, if F is the family of graphs consisting of a cycle on 𝑛 vertices for each
𝑛 ∈ N, then we have 𝛿F,1 = 1/2. Indeed, this follows from Dirac’s theorem (which in fact
gives the exact threshold). Similarly, we define the rainbow minimum degree threshold in
hypergraph collections.

Definition 1.2.3 (Rainbow minimum degree threshold). Let F be an infinite family of
𝑘-uniform hypergraphs. By 𝛿rb

F,𝑑 we denote, if it exists, the smallest real number 𝛿 such
that for all 𝛼 > 0 the following holds for all but finitely many 𝐹 ∈ F . Let 𝑛 = |𝑉 (𝐹) |
and H be any 𝑘-uniform hypergraph collection on 𝑛 vertices with |H| = |𝐸 (𝐹) | and
𝛿𝑑 (H) ≥ (𝛿 + 𝛼)𝑛𝑘−𝑑 . Then H contains a transversal copy of 𝐹.

If the two values are well-defined, it must be that 𝛿rb
F,𝑑 ≥ 𝛿F,𝑑 . Indeed, if 𝐻 contains

no copy of 𝐹, the collection H consisting of |𝐸 (𝐹) | copies of 𝐻 does not contain a
transversal copy of 𝐻 either. However, Montgomery, Müyesser, and Pehova [9090] made
the following observation which shows that 𝛿rb

F,𝑑 can be much larger than 𝛿F,𝑑 . Set
F = {𝑘 × (𝐾2,3 ∪𝐶4) : 𝑘 ∈ N}, where 𝐾2,3 ∪𝐶4 denotes the graph obtained by taking the
disjoint union of a copy of the complete bipartite graph 𝐾2,3 and a copy of the cycle 𝐶4,
while 𝑘 × (𝐾2,3 ∪𝐶4) denotes the graph obtained by taking 𝑘 vertex-disjoint copies of the
graph𝐾2,3∪𝐶4. It follows from a result of Kühn and Osthus [8080] that 𝛿F,1 ≤ 4/9. Consider
the graph collection H = (𝐻1, . . . , 𝐻𝑚) on 𝑉 obtained in the following way. Partition 𝑉
into two almost equal vertex subsets, say 𝐴 and 𝐵, and suppose that 𝐻1 = 𝐻2 = · · · = 𝐻𝑚−1

are all disjoint unions of a clique on 𝐴 and a clique on 𝐵. Suppose that 𝐻𝑚 is a complete
bipartite graph between 𝐴 and 𝐵. Observe that each 𝐻𝑖 in this resulting graph collection
has minimum degree ⌊|𝑉 |/2⌋. Further observe that if H contains a transversal copy of
some 𝐹 ∈ F , there is an edge of a copy of 𝐾2,3 or 𝐶4 that gets copied to an edge of 𝐻𝑚.
As any other edge of 𝐹 has both endpoints in either 𝐴 or 𝐵, this edge has to be a bridge (an
edge whose removal disconnects the graph) of that copy of 𝐾2,3 or 𝐶4. However, neither
𝐾2,3 nor 𝐶4 contains a bridge. Hence, 𝛿rb

F,𝑑 ≥ 1/2.
Nevertheless, there are several families F for which 𝛿rb

F,𝑑 and 𝛿F,𝑑 coincide.

Definition 1.2.4 (𝑑-colour blind families). Let F be a family of 𝑘-uniform hypergraphs
and 1 ≤ 𝑑 < 𝑘 . We say that the family F is 𝑑-colour-blind if 𝛿rb

F,𝑑 = 𝛿F,𝑑 , provided they
are both well-defined. In the case F is a family of graphs (and 𝑑 = 1), we just say that F
is colour-blind.

For example, Joos and Kim [7070], improving a result of Cheng, Wang, and Zhao [3434]
and confirming a conjecture of Aharoni [11], showed that, if 𝑛 ≥ 3, then any 𝑛-vertex graph
collection G = (𝐺1, . . . , 𝐺𝑛) with 𝛿(𝐺𝑖) ≥ 𝑛/2 for each 𝑖 ∈ [𝑛] has a transversal copy of
a Hamilton cycle. This generalises Dirac’s classical theorem and implies that the family
F of cycles is colour-blind11. There are many more families of colour-blind (hyper)graphs.

1In fact, in this particular case, the corresponding thresholds are exactly the same, and there is no need for an
error term. We discuss this aspect of the problem further in Section 7.27.2.
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In particular, matchings [3232, 8484, 8585, 8686], Hamilton ℓ-cycles [3333], factors [3232, 9090], and
spanning trees [9090] have been extensively studied.

Building on techniques introduced by Montgomery, Müyesser, and Pehova [9090], in our
main theorem we give a general sufficient condition for a family of hypergraphs F to be
colour-blind. The formal statement requires some more terminology and thus is postponed
to Chapter 55.

1.2.2 Applications

The power of our main theorem is its flexibility, which allows to prove rainbow Dirac-type
results in a unified and short way. The following theorem lists the applications we derive,
though we believe that our setting can capture even more families of hypergraphs.

Theorem 1.2.5. The following families of hypergraphs are all 𝑑-colour-blind.

(A) The family of the 𝑟-th powers of Hamilton cycles for a fixed 𝑟 ≥ 2 (and 𝑑 = 1).

(B) The family of 𝑘-uniform Hamilton ℓ-cycles for the following ranges of 𝑘 , ℓ, and 𝑑.

(B1) 1 < ℓ < 𝑘/2 and 𝑑 = 𝑘 − 2;

(B2) 1 ≤ ℓ < 𝑘/2 or ℓ = 𝑘 − 1, and 𝑑 = 𝑘 − 1;

(B3) ℓ = 𝑘/2 and 𝑘/2 < 𝑑 ≤ 𝑘 − 1 with 𝑘 even.

Theorem 1.2.51.2.5 (B2)(B2) when ℓ = 𝑘 − 1 was originally proven by Cheng, Han, Wang, Wang,
and Yang [3333], who raised the problem of obtaining the rainbow minimum degree threshold
for a wider range of ℓ ∈ [𝑘 − 2]. Moreover, the case of Hamilton cycles in graphs (i.e.
𝑘 = 2 and 𝑑 = ℓ = 1) was previously proven by Cheng, Wang, and Zhao [3434] (and their
result was sharpened by Joos and Kim [7070]). Theorem 1.2.51.2.5 is derived from our main
theorem in Section 5.55.5.

1.2.3 An introduction to the main theorem

As explained before, our main theorem concerning this topic (Theorem 5.2.15.2.1) is technically
complicated. Hence, we do not provide it in this introduction. Instead, we now outline
what it states and give some intuition for our approach. Firstly, Theorem 5.2.15.2.1 is concerned
with hypergraph families F with a ‘cyclic’ structure. That is, we assume there exists
a hypergraph A such that all 𝐹 ∈ F can be obtained by gluing several copies of A in
a Hamilton cycle fashion (see Definition 5.1.35.1.3). For example, for 𝑘-uniform Hamilton
cycles, A would be a single 𝑘-uniform edge (see Figure 5.15.1), whereas for the 𝑟-th power
of a Hamilton cycle, A would be a clique on 𝑟 vertices (see Figure 5.25.2). Most of the well-
studied problems in the uncoloured setting, including everything listed in Theorem 1.2.51.2.5,
fit into this framework.
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A common framework for embedding such hypergraphs with cyclic structure is the
absorption method. We will present this method in Section 2.22.2, showing the typical
structure of an absorption-based proof (see Step 1.Step 1. to Step 5.Step 5.). Our main theorem essentially
states that if there is such a proof that 𝛿 is the uncoloured minimum degree threshold for
some F with cyclic structure, then the rainbow minimum degree threshold of F is equal to
𝛿. Some partial progress towards such an abstract statement was already made in [9090]. In
fact, in [9090], it was remarked that, plausibly, transversal versions of other Dirac-type results
can be shown, provided that one can prove strengthened versions of the non-transversal
(uncoloured) embedding problem. In [9090], this strengthening took the form of embedding
trees with the location of a single vertex being specified adversarially (see Theorem 4.4
in [9090]). Using such a strengthening, one can translate each step of the uncoloured
absorption-based proof into a coloured setting. On the other hand, the main advantage
of our main theorem is that it eliminates the need to make ad-hoc strengthenings to the
uncoloured version of the result, allowing for a very short proof of Theorem 1.2.51.2.5. To
achieve this, we codify, through what we call properties Ab and Con, what it means for
there to be streamlined absorption proof for the uncoloured result, and we use the existence
of such a proof as a black-box. In our applications, to ensure that the relevant properties
hold, we rely on existing lemmas in the literature without having to do any extra work (see
Table 5.15.1).

In addition to properties Ab and Con which guarantee we can rely on a streamlined
absorption proof for the uncoloured result, we have one more hypothesis in the main
theorem, which we call property Fac. One reason why transversal versions of Dirac-type
results are more difficult is that every single hypergraph in the collection as well as every
single vertex of the host graph needs to be utilised in the target spanning structure (the
transversal). This is crucial as demonstrated by the construction given after Definition 1.2.31.2.3.
In this construction, the possibility of finding a transversal copy ofF is ruled out by showing
that a particular graph in the collection (namely the hypergraph 𝐻𝑚) cannot be used in
a transversal copy of a 𝐾2,3 or 𝐶4. Therefore, in addition to some properties which are
uncoloured, we require a coloured property which we call Fac. This roughly states that, in
any fixed, adversarially specified small set of hypergraphs from the collection, we can find
vertex-disjoint copies of A (the building block of the hypergraph we are trying to find) in
a rainbow fashion. This ensures that we never get stuck while trying to use up every single
colour/hypergraph that we start with. When A is just a single edge (as it will be the case for
Theorem 1.2.51.2.5 (B)(B)), the property Fac is essentially trivial to check (see Observation 5.1.55.1.5).
For powers of Hamilton cycles, however, this property is more delicate and, to verify Fac,
we rely on a result from [9090].
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1.3 Multistage Maker-Breaker game

A positional game is a perfect information game, played by two players, which can be
represented by a hypergraph H = (𝑋, F ) and a winning rule. The set 𝑋 is called the board
of the game, while the sets of the family F ⊆ P(𝑋) are called the winning sets of the game.
Both players alternate in claiming unclaimed elements of 𝑋 and the winner of the game
is determined according to the winning rule and the family F . Different winning rules
produce different games, and many variants have been considered over the time. One of the
most studied one is the so called Maker-Breaker game, which attracted a lot of attention in
the last few decades, starting with the seminal papers of Hales and Jewett [5656], Erdős and
Selfridge [4848], Chvátal and Erdős [3535] and Beck [1717, 1919]. The two players are called Maker
and Breaker, and, for simplicity, we assume them to be female and male, respectively. They
alternately claim one unclaimed element of 𝑋 , with Maker moving first. If Maker succeeds
in claiming all the elements of one of the winning sets 𝐹 ∈ F , she is declared the winner of
the game (we also say that she occupied this winning set). Otherwise, Breaker is declared
the winner. Observe that for Breaker to win the game, he has to claim at least one element
from each winning set.

Here we will formulate and study a new variant of the Maker-Breaker game, which
we call the multistage Maker-Breaker game. However, before doing that, we will give a
short history and an overview of the known results related to the (classical) Maker-Breaker
game in Section 1.3.11.3.1. This will also motivate our new variant, which we introduce in
Section 1.3.21.3.2. Finally, we state our results in Section 1.3.31.3.3.

1.3.1 Classical (1: 𝑏) Maker-Breaker game

Maker-Breaker games are played on various boards, but some of the most studied ones
are those played on the edge set of the complete graph on 𝑛 vertices. They will also be
our focus, and we will mainly look at the games defined by the hypergraphs C𝑛, HAM𝑛,
H𝐻,𝑛, PAN𝑛 and COL𝑛,𝑘 on the vertex set 𝑋 = 𝐸 (𝐾𝑛), with the hyperedges being the
edge sets of all spanning trees of 𝐾𝑛, all Hamilton cycles of 𝐾𝑛, all copies of a fixed graph
𝐻 in 𝐾𝑛, all pancyclic spanning subgraphs of 𝐾𝑛 and all subgraphs of 𝐾𝑛 with chromatic
number larger than 𝑘 , respectively. We refer to these games as the connectivity game,
the Hamiltonicity game, the 𝐻-game, the pancyclicity game, and the non-𝑘-colourability
game, respectively.

For hypergraphs defined on 𝐸 (𝐾𝑛) with winning sets corresponding to the subgraphs
of 𝐾𝑛 satisfying a certain graph property, it often happens that for 𝑛 large enough Maker
has an easy and fast winning strategy. In the 𝐾3-game, Maker is easily seen to win in
4 moves. In the connectivity game, Maker wins as well: by increasing the size of the
connected component of her graph by one at each move, Maker can build a spanning tree
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in 𝑛 − 1 moves. For these reasons, in order to even out this advantage of Maker, Chvátal
and Erdős [3535] introduced some game bias. Given an integer 𝑏 ≥ 1, the biased (1: 𝑏)
Maker-Breaker game on (𝑋,H) is the same game as the Maker-Breaker game on (𝑋,H),
except that, in each move, Breaker can claim up to 𝑏 unclaimed elements of the board,
while Maker is still only allowed to claim one element per move. Note that these rules
imply monotonicity in Breaker’s bias. In particular, there must be a threshold bias 𝑏H
such that Breaker wins if and only if 𝑏 ≥ 𝑏H . The size of such threshold biases has been
investigated for many standard graph games in recent years (see the books [1515, 6363]).

Already Chvátal and Erdős [3535] proved that the bias threshold for the connectivity game
is of order 𝑛

log 𝑛 , a quantity which is closely related to the concept of thresholds in random
graphs (see Definition 1.1.41.1.4). Namely, if Maker and Breaker are replaced by ‘random’
players who select their edges uniformly at random, the final subgraph of 𝐾𝑛 consisting
only of Maker’s edges is a random graph 𝐺 (𝑛, 𝑀) chosen uniformly among all graphs on
𝑛 vertices with 𝑀 = ⌊ 1

𝑏+1
(𝑛
2
)
⌋ edges, which is tightly linked to the 𝐺 (𝑛, 𝑝) model with

𝑝 = 1
𝑏+1 . As the threshold for connectivity in 𝐺 (𝑛, 𝑝) is (1 + 𝑜(1)) log 𝑛

𝑛
, Maker wins the

random game if and only if 1
𝑏+1 is significantly larger than log 𝑛

𝑛
, i.e. if 𝑏 is significantly

smaller than 𝑛
log 𝑛 , which is exactly the quantity found by Chvátal and Erdős [3535]. This

observation kicked off what is nowadays known as the random graph intuition: for many
values of the bias 𝑏, the outcome of the clever game is a.a.s. predicted by the corresponding
game where both Maker and Breaker play randomly.

As mentioned, the above intuition holds for the connectivity game. This was extended
by Krivelevich [7878] to the Hamilton cycle game, by showing that 𝑏HAM𝑛

= (1+𝑜(1)) 𝑛
log 𝑛 ,

with the threshold probability for the existence of a Hamilton cycle being (1 + 𝑜(1)) log 𝑛
𝑛

,
as proved by Pósa [9595] and Koršunov [7777], independently. Up to constant factors the same
holds for the game COL𝑛,𝑘 with 𝑘 being a constant, where Hefetz, Krivelevich, Stojaković,
and Szabó [6262] proved that 𝑏COL𝑛,𝑘

is of the order 𝑛
𝑘 log 𝑘 , while the probability threshold

for non-𝑘-colourability is (2+ 𝑜(1)) 𝑘 log 𝑘
𝑛

. Further instances of the random graph intuition
can be found in e.g. [1616, 3636].

On the other hand, the pancyclicity game and the 𝐻-game fail to satisfy the above
intuition. Indeed, Ferber, Krivelevich, and Naves [5050] proved that the threshold bias
𝑏PAN𝑛

of the pancyclicity game is close to
√
𝑛, while Cooper and Frieze [3737] proved that

the threshold probability for the pancyclicity property is (1 + 𝑜(1)) log 𝑛
𝑛

. Bednarska and
Łuczak [2121] proved that the threshold bias 𝑏H𝐻,𝑛

of the 𝐻-game is of the order 𝑛1/𝑚2 (𝐻) if
𝐻 has at least two edges, where 𝑚2(𝐻) = max

{
𝑒 (𝐹)−1
𝑣 (𝐹)−2 : 𝐹 ⊆ 𝐻 with 𝑣(𝐹) ≥ 3

}
. However

it is well known [2323] that the threshold probability for the random graph𝐺 (𝑛, 𝑝) to contain
a copy of 𝐻 is 𝑛−1/𝑚(𝐻) , where 𝑚(𝐻) = max

{
𝑒 (𝐹)
𝑣 (𝐹) : 𝐹 ⊆ 𝐻 with 𝑣(𝐹) ≥ 1

}
. Although

these two games provide examples for which the random graph intuition is not true, it
should be noted that a deep connection to random graphs still exists. In fact, in both cases
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it turns out that the results on the threshold biases are linked to resilience properties of
𝐺 (𝑛, 𝑝).

In the (1: 𝑏) Maker-Breaker game, large Breaker’s bias force Maker’s graph to be sparse.
We now force sparseness by playing multiple games consecutively, where each new game
shrinks the board on which the next game is allowed to be played. We provide the precise
rules of the game in the next section.

1.3.2 Multistage games

Given a hypergraph H = (𝑋, F ) and a bias 𝑏 ≥ 1, we define the multistage (1: 𝑏)
Maker-Breaker game on H as follows.

Definition 1.3.1 (Multistage (1: 𝑏) Maker-Breaker game). The game proceeds in several
stages, with each stage being played as a usual (1: 𝑏) Maker-Breaker game. For convenience
we define 𝑋0 = 𝑋 , F0 = F and H0 = H . Then, for 𝑖 ≥ 1, in the 𝑖-th stage, Maker and
Breaker play on the board 𝑋𝑖−1, consider the hypergraph H𝑖−1 = (𝑋𝑖−1, F𝑖−1), and alternate
in turns in which Maker occupies exactly one unclaimed element of 𝑋𝑖−1, and afterwards
Breaker occupies up to 𝑏 unclaimed elements of 𝑋𝑖−1, with Maker moving first. Once all
the elements of 𝑋𝑖−1 have been distributed among both players, we let 𝑋𝑖 ⊂ 𝑋𝑖−1 be the set
of all elements claimed by Maker in stage 𝑖, and we let F𝑖 = {𝐹 ∈ F𝑖−1 : 𝐹 ⊂ 𝑋𝑖} be the
set of all remaining winnings sets (from F ) that Maker managed to fully occupy in stage 𝑖.
Observe that this defines a new hypergraph H𝑖 = (𝑋𝑖 , F𝑖). We stop the game the first time
that there are no winning sets left anymore.

We stress that, as stated in Definition 1.3.11.3.1, each stage is played until all the elements
of the board have been claimed by either Maker or Breaker. In order to clarify the rules
of the game, we provide an example of a (1: 1) 𝐾3-game starting on the complete graph
on 6 vertices in Table 1.21.2. The initial hypergraph is H0 = (𝑋0, F0), where 𝑋0 = 𝐸 (𝐾6)
and F0 is the collection of all triangles in 𝐾6, i.e. F0 =

( [6]
3
)
. The first stage is played as

a classical (1: 1) game on H0. Suppose that, after all elements have been claimed, Maker
has claimed (in some order) the edges 12, 15, 16, 23, 24, 26, 34, 56. Then the set of these
element is the new board 𝑋1, while F1 is the collection of triangles whose edges are all in
𝑋1, i.e. F1 = {126, 156, 234}. Now the second stage starts and it is played as a classical
(1: 1) game on F1 = (𝑋1, F1). Suppose that, after all elements have been claimed, Maker
has claimed (in some order) the edges 12, 15, 16, 34. Then, the collection of these edges is
the new board 𝑋2. However, there are no triangles with all edges in 𝑋2 and thus F3 = ∅.
As there are no winning sets left anymore, the multistage game ends. Therefore this game
has lasted two stages.

The natural question arising in this new multistage setting is the following one.

Question 1.3.2. How long can Maker delay the stop of a given game?

21



1 Introduction

Stage 1 Stage 2
Beginning Beginning Beginning

1

23

4

5 6

1

23

4

5 6

1

23

4

5 6

F2 = {126, 156, 234} F2 = {126, 156, 234}
F0 = {123, 124, . . . } F2 = {126, 156, 234} F3 = ∅

End End

1

23

4

5 6

1

23

4

5 6

Table 1.2: A multistage (1: 1) 𝐾3-game on the edges of 𝐾6 lasting two stages. The red (resp. blue) edges are
the ones claimed by Maker (resp. Breaker).

We can formalise Question 1.3.21.3.2 by asking to estimate the following threshold para-
meter.

Definition 1.3.3 (Threshold parameter 𝜏). Given a hypergraph H and an integer 𝑏 ≥ 1, the
threshold parameter 𝜏(H , 𝑏) is defined to be the largest number 𝑠 such that, in the (1: 𝑏)
multistage Maker-Breaker game on the hypergraph H , Maker has a strategy to ensure
F𝑠 ≠ ∅ and thus to play at least 𝑠 stages.

1.3.3 New results

We answer Question 1.3.21.3.2 for several multistage games, by providing the asymptotic value
of the threshold 𝜏(H , 𝑏) defined in Definition 1.3.31.3.3. Before stating our results, we remark
that a random graph intuition in this setting corresponds to the assumption that a random
game is likely to last as long as a perfectly played game. If a multistage (1: 𝑏) Maker-
Breaker game on 𝐾𝑛 is played by two random players, then 𝑋𝑖 is the edge set of a uniform
random graph 𝐺 (𝑛, 𝑀) with roughly

(
1
𝑏+1

) 𝑖 (𝑛
2
)

edges. Therefore, if true, the random
graph intuition would suggest that Maker can maintain a spanning connected subgraph, a
Hamilton cycle, or a non-𝑘-colourable graph for roughly log𝑏+1(𝑛) − log𝑏+1(log 𝑛) stages.
We show this is indeed asymptotically the best that Maker can do.
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Theorem 1.3.4 (Multistage Hamilton cycle game ). If 𝑏 is subpolynomial in 𝑛, then

𝜏(HAM𝑛, 𝑏) = (1 + 𝑜(1)) log𝑏+1(𝑛) .

Corollary 1.3.5 (Multistage connectivity game). If 𝑏 is subpolynomial in 𝑛, then

𝜏(C𝑛, 𝑏) = (1 + 𝑜(1)) log𝑏+1(𝑛) .

Theorem 1.3.6 (Multistage non-𝑘-colourability game). If 𝑏 and 𝑘 are subpolynomial in 𝑛,
and 𝑘 ≥ 2, then

𝜏(COL𝑛,𝑘 , 𝑏) = (1 + 𝑜(1)) log𝑏+1(𝑛) .

However the random graph intuition fails for both the multistage 𝐻-game and
the multistage pancyclicity game. If played randomly, they would typically last(

1
𝑚(𝐻) + 𝑜(1)

)
log𝑏+1(𝑛) and (1 + 𝑜(1)) log𝑏+1(𝑛) stages, respectively, while we can show

the following, where we recall that 𝑚(𝐻) and 𝑚2(𝐻) denote the maximum density and the
maximum 2-density of 𝐻, respectively.

Theorem 1.3.7 (Multistage 𝐻-game). Let 𝐻 be a graph. If 𝑏 is subpolynomial in 𝑛, then

𝜏(H𝐻,𝑛, 𝑏) =
(

1
𝑚2(𝐻)

+ 𝑜(1)
)

log𝑏+1(𝑛) .

Theorem 1.3.8 (Multistage pancyclicity game). If 𝑏 is subpolynomial in 𝑛, then

𝜏(PAN𝑛, 𝑏) =
(
1
2
+ 𝑜(1)

)
log𝑏+1(𝑛) .

We will prove Theorem 1.3.41.3.4 and Corollary 1.3.51.3.5 in Section 6.26.2, and Theorems 1.3.61.3.6,
1.3.71.3.7, and 1.3.81.3.8 in Sections 6.36.3, 6.46.4, and 6.56.5, respectively.
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1.4 Notation

Here we discuss our conventions for notation, together with some general definitions. We
may introduce further notation in the subsequent chapters, but this will be used in the
respective chapter only.

Elementary notation

For real numbers 𝑎, 𝑏, 𝑐, we write 𝑎 = 𝑏± 𝑐 for 𝑏− 𝑐 ≤ 𝑎 ≤ 𝑏 + 𝑐. Given 𝑛 ∈ N, we denote
by [𝑛] = {1, 2, . . . , 𝑛} the set of the first 𝑛 positive integers. We denote by log the logarithm
with base 𝑒. Given a set 𝑉 and an integer 𝑘 ≥ 1, we let

(𝑉
𝑘

)
= {𝑈 ⊆ 𝑉 : |𝑈 | = 𝑘}. Finally,

given 𝑠 ≥ 1 and sets 𝑉1, . . . , 𝑉𝑠, when we say that a tuple belongs to
∏𝑠
𝑖=1𝑉

𝑘
𝑖

, we mean
that the tuple belongs to 𝑉 𝑘1 × · · · × 𝑉 𝑘𝑠 , i.e. it is of the form (𝑣𝑖, 𝑗 : 1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑗 ≤ 𝑘)
with 𝑣𝑖, 𝑗 ∈ 𝑉𝑖 for 𝑖 = 1, . . . , 𝑠, and 𝑗 = 1, . . . , 𝑘 .

Graphs

We use standard graph theory notation. A graph 𝐺 = (𝑉, 𝐸) is a pair consisting of a set 𝑉 ,
whose elements are called the vertices of 𝐺, and a set 𝐸 ⊆

(𝑉
2
)
, whose elements are called

the edges of 𝐺. Although edges are subsets of 𝑉 (𝐺) of size two, we write 𝑢𝑣 for the edge
{𝑢, 𝑣}, and we call 𝑢 and 𝑣 the endpoints of the edge. We write 𝑉 (𝐺) and 𝐸 (𝐺) for the
vertex-set and the edge-set of 𝐺, and we denote their sizes by 𝑣(𝐺) and 𝑒(𝐺), respectively.
Furthermore, given two disjoint sets 𝐴, 𝐵 ⊆ 𝑉 (𝐺), we let 𝑒𝐺 (𝐴) be the number of edges of
𝐺 with both endpoints in 𝐴 and 𝑒𝐺 (𝐴, 𝐵) be the number of edges of 𝐺 with one endpoint
in 𝐴 and the other one in 𝐵. When the graph 𝐺 is clear from the context, we drop the
subscript 𝐺. Given 𝐼 ⊂ 𝑉 (𝐺), we say that 𝐼 is an independent set if 𝑒(𝐼) = 0.
Neighbourhoods and degrees. Given a graph 𝐺, and two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺), we
say that 𝑣 is a neighbour of 𝑢 if 𝑢𝑣 ∈ 𝐸 (𝐺). Given a set 𝑈 ⊆ 𝑉 (𝐺), we define the
neighbourhood of 𝑣 in 𝑈 to be the set of all neighbours of 𝑣 which belong to 𝑈, and we
denote it by 𝑁𝐺 (𝑣,𝑈) = {𝑢 ∈ 𝑈 : 𝑢𝑣 ∈ 𝐸 (𝐺)}. Furthermore, the degree of 𝑣 in𝑈 is given
by deg𝐺 (𝑣,𝑈) = |𝑁𝐺 (𝑣,𝑈) |. Given a set of vertices 𝑇 ⊆ 𝑉 (𝐺), we define its common
neighbourhood in the set 𝑈 as 𝑁𝐺 (𝑇,𝑈) = ∩𝑣∈𝑇𝑁𝐺 (𝑣,𝑈), and we denote its size by
deg𝐺 (𝑇,𝑈) = |𝑁𝐺 (𝑇,𝑈) |. If 𝑈 is the whole vertex-set 𝑉 (𝐺), we omit the set 𝑈 in the
notation above. Similarly, if 𝐺 is clear from context, we drop the subscript 𝐺.
Minimum and maximum degree. Given a graph𝐺, we define its minimum and maximum
degree by 𝛿(𝐺) = min𝑣∈𝑉 (𝐺) {deg(𝑣)} and Δ(𝐺) = max𝑣∈𝑉 (𝐺) {deg(𝑣)}, respectively.
Subgraphs. Given two graphs𝐺 and 𝐻, we say that 𝐻 is a subgraph of𝐺 if𝑉 (𝐻) ⊆ 𝑉 (𝐺)
and 𝐸 (𝐻) ⊆ 𝐸 (𝐺). We denote this by 𝐻 ⊆ 𝐺. The subgraph 𝐻 is called spanning if
𝑉 (𝐻) = 𝑉 (𝐺). Given two disjoint sets 𝐴, 𝐵 ⊂ 𝑉 , we let 𝐺 [𝐴] be the subgraph of 𝐺
induced by 𝐴, i.e. 𝑉 (𝐺 [𝐴]) = 𝐴 and 𝐸 (𝐺 [𝐴]) = {𝑒 ∈ 𝐸 (𝐺) : 𝑒 ⊆ 𝐴}. Similarly, we let
𝐺 [𝐴, 𝐵] be the bipartite subgraph of 𝐺 induced by sets 𝐴 and 𝐵, i.e. 𝑉 (𝐺 [𝐴, 𝐵]) = 𝐴∪ 𝐵
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and 𝐸 (𝐺 [𝐴, 𝐵]) = {𝑒 ∈ 𝐸 (𝐺) : |𝑒 ∩ 𝐴| = 1 = |𝑒 ∩ 𝐵|}. More generally, given pairwise-
disjoint sets 𝑈1, . . . ,𝑈ℎ ⊆ 𝑉 , we let 𝐺 [𝑈1, . . . ,𝑈ℎ] be the induced ℎ-partite subgraph⋃

1≤𝑖< 𝑗≤ℎ 𝐺 [𝑈𝑖 ,𝑈 𝑗] of 𝐺.
Complete graphs, paths, cycles, stars, cherries. Given an integer 𝑟 ≥ 3, we let 𝐾𝑟
denote the complete graph on 𝑟 vertices, i.e. the graph on vertices 𝑣1, . . . , 𝑣𝑟 and edges
𝑣𝑖𝑣 𝑗 for each 𝑖, 𝑗 ∈ [𝑟] with 𝑖 ≠ 𝑗 . The graph 𝐾𝑟 is also called the clique on 𝑟 vertices.
Given an integer 𝑘 ≥ 2, we let 𝑃𝑘 denote the path on 𝑘 vertices, i.e. the graph on vertices
𝑣1, 𝑣2, . . . , 𝑣𝑘 and edges 𝑣1𝑣2, 𝑣2𝑣3, . . . , 𝑣𝑘−1𝑣𝑘 . Moreover, for an integer 𝑘 ≥ 3, we let
𝐶𝑘 denote the cycle on 𝑘 vertices, i.e. the graph on vertices 𝑣1, 𝑣2, . . . , 𝑣𝑘 and edges
𝑣1𝑣2, 𝑣2𝑣3, . . . , 𝑣𝑘−1𝑣𝑘 , 𝑣𝑘𝑣1. An Hamilton path (resp. cycle) in a graph is a spanning path
(resp. cycle). Given an integer 𝑔 ≥ 2, we define the star on 𝑔 + 1 vertices to be the graph
with one vertex of degree 𝑔 (this vertex is called the centre) and the other vertices of degree
one (these vertices are called leaves). In particular, a star with 𝑔 = 2 will be called cherry.
(Complete) Partite graphs. Given an integer 𝑘 ≥ 2, we say that a graph 𝐺 is 𝑘-partite
with parts 𝑉1, . . . , 𝑉𝑘 if 𝑉1, . . . , 𝑉𝑘 partition 𝑉 (𝐺) into 𝑘 independent sets. We say that 𝐺
is a 𝑘-partite complete graph if for each 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 and for each 𝑣𝑖 ∈ 𝑉𝑖 and
𝑣 𝑗 ∈ 𝑉 𝑗 , the edge 𝑣𝑖𝑣 𝑗 belongs to 𝐺. Further, we say that 𝐺 is the complete balanced
𝑘-partite graph if

��|𝑉𝑖 | − |𝑉 𝑗 |
�� ≤ 1 for each 𝑖, 𝑗 ∈ [𝑘]. Given 𝛼 ∈ (0, 1), we let 𝐻𝛼 denote

the complete bipartite graph with parts of size 𝛼𝑛 and (1 − 𝛼)𝑛.
Powers of graphs. The distance of two vertices 𝑢 and 𝑣 in a graph 𝐺 is the length of the
shortest path from 𝑢 to 𝑣 in 𝐺. Given an integer 𝑟 ≥ 1, we denote by 𝐺𝑟 the 𝑟-th power
of 𝐺, i.e. the graph obtained from 𝐺 by adding edges between all vertices of distance at
most 𝑟 in 𝐺. Given a copy 𝐹 of the square of a path on 𝑘 vertices 𝑃2

𝑘
, we let 𝑣1, 𝑣2, . . . , 𝑣𝑘

be an ordering of the vertices of 𝐹 such that its edges are precisely 𝑣𝑖𝑣 𝑗 , for each 𝑖, 𝑗 with
1 ≤ |𝑖− 𝑗 | ≤ 2. We call (𝑣2, 𝑣1) and (𝑣𝑘−1, 𝑣𝑘) the end-tuples of 𝐹, we refer to 𝑣𝑖 as the 𝑖-th
vertex of 𝐹, and we refer to 𝐹 as the square of the path 𝑣1, 𝑣2, . . . , 𝑣𝑘 . For simplicity we
will talk about tuples (𝑢, 𝑣) belonging to a set 𝑉 , when implicitly meaning to 𝑉2. Observe
that the choice of taking (𝑣2, 𝑣1) rather than (𝑣1, 𝑣2) as end-tuple is intentional. This is to
ensure that for both the end-tuples (𝑣2, 𝑣1) and (𝑣𝑘−1, 𝑣𝑘), it is always the second vertex,
i.e. 𝑣1 and 𝑣𝑘 respectively, to be an endpoint of the path 𝑣1, 𝑣2, . . . , 𝑣𝑘 .
Factors. For a fixed graph 𝐻, we say that a graph 𝐺 contains an 𝐻-factor if it contains
⌊𝑣(𝐺)/𝑣(𝐻)⌋ pairwise vertex-disjoint copies of 𝐻.
Universality. Given an integer 𝑘 ≥ 2, let F (𝑛, 𝑘) denote the family of all graphs on
𝑛-vertices with maximum degree at most 𝑘 . We say that a graph 𝐺 is 𝑘-universal if it
contains every graph of F (𝑛, 𝑘) as a subgraph.
Densities. Given a graph 𝐺, its density is defined by 𝑑 (𝐺) =

𝑒 (𝐺)
𝑣 (𝐺) and its max-

imum density by 𝑚(𝐺) = max {𝑑 (𝐹) : 𝐹 ⊆ 𝐺 with 𝑣(𝐹) ≥ 1}. Moreover, its 1-
density is defined by 𝑑1(𝐺) =

𝑒 (𝐺)
𝑣 (𝐺)−1 , and its maximum 1-density by 𝑚1(𝐺) =

max {𝑑1(𝐹) : 𝐹 ⊆ 𝐺 with 𝑣(𝐹) ≥ 2}. Similarly, its 2-density is defined by 𝑑2(𝐺) =
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𝑒 (𝐺)−1
𝑣 (𝐺)−2 , and its maximum 2-density by 𝑚2(𝐺) = max {𝑑2(𝐹) : 𝐹 ⊆ 𝐺 with 𝑣(𝐹) ≥ 3}.
Graph properties. A graph property P is a family of graphs, and thus the notation
‘𝐺 ∈ P ′ means that the graph 𝐺 is one of the graphs in P.

Hypergraphs

The notion of hypergraph generalises that of graphs, and allows edges to join more than
two vertices. More formally, a hypergraph H = (𝑉, F ) is a pair consisting of a set of
vertices 𝑉 and a set of edges F ⊆ 2𝑉 . For an integer 𝑘 ≥ 2, we say that the hypergraph H
is 𝑘-uniform if |𝑒 | = 𝑘 for each 𝑒 ∈ F . Observe that a graph is a 2-uniform hypergraph.
The definitions given for graphs easily generalise to hypergraphs, but we list below those
which require more caution.
(Minimum) degrees. Given 𝑓 ⊆ 𝑉 (H) with | 𝑓 | ∈ [𝑘 − 1], the degree of 𝑓 , denoted
by degH ( 𝑓 ), is the number of edges of 𝐻 that 𝑓 is contained in, i.e. degH ( 𝑓 ) =

|{𝑒 : 𝑒 ∈ 𝐸 (H) and 𝑓 ⊆ 𝑒}|. For a 𝑘-uniform hypergraph H and an integer 𝑑 ∈ [𝑘 − 1],
we let the minimum 𝑑-degree of H be 𝛿𝑑 (𝐻) = min{degH ( 𝑓 ) : 𝑓 ⊆ 𝑉 (H) and | 𝑓 | = 𝑑}.
Moreover, given two subsets of vertices 𝑇,𝑈 ⊆ 𝑉 (H) we denote by deg(𝑇,𝑈) the number
of𝑈 ′ ⊆ 𝑈 such that 𝑇 ∪𝑈 ′ is an edge of the hypergraph.
ℓ-cycles. Given integers 𝑘 ≥ 2 and 1 ≤ ℓ < 𝑘 , a 𝑘-uniform hypergraph is called an ℓ-cycle
if its vertices can be ordered cyclically such that each of its edges consists of 𝑘 consecutive
vertices and every two consecutive edges (in the natural order of the edges) share exactly
ℓ vertices. In particular, (𝑘 − 1)-cycles and 1-cycles are known as tight cycles and loose
cycles respectively.
Hypergraph collections. A hypergraph collection H = (𝐻1, . . . , 𝐻𝑚) on vertex set 𝑉
is a collection of (not necessarily distinct) hypergraphs 𝐻𝑖 , 𝑖 ∈ [𝑚], all with 𝑉 as vertex
set. We call the collection a 𝑘-uniform hypergraph collection if each hypergraph in the
collection is 𝑘-uniform; if 𝑘 = 2, we simply call it a graph collection. We set |H| to
denote the number of hypergraphs in the collection H = (𝐻1, . . . , 𝐻𝑚), that is |H| = 𝑚.
Moreover we denote the minimum 𝑑-degree of the collection by 𝛿𝑑 (H) = min𝑖∈[𝑚] 𝛿𝑑 (𝐻𝑖).
Given a hypergraph collection H = (𝐻1, . . . , 𝐻𝑚) with vertex set 𝑉 , and a set 𝑈 ⊂ 𝑉 , the
collection of hypergraphs 𝐻𝑖 [𝑈], 𝑖 ∈ [𝑚] induced on the vertex set𝑈 is denoted by H[𝑈].
Similarly, by H \𝑈 we denote the hypergraph collection H[𝑉 \𝑈]. We will think of the
edges of different hypergraphs in a collection as having different colours. In particular,
given a hypergraph collection H = (𝐻1, . . . , 𝐻𝑚), we consider each hypergraph 𝐻𝑖 to have
a colour 𝑖. Given a subgraph 𝐻 ⊂ ∪𝑖∈[𝑚]𝐻𝑖 , an edge 𝑒 ∈ 𝐸 (𝐻) can be assigned colour 𝑖
if 𝑒 ∈ 𝐸 (𝐻𝑖). When we say 𝐻 ⊂ ∪𝑖∈[𝑚]𝐻𝑖 is uncoloured, we emphasise that a colouring
has not yet been assigned.
Transversals. Given an 𝑚-edge hypergraph 𝐹 on 𝑉 , we say that a hypergraph collection
H on vertex set 𝑉 has a transversal copy of 𝐹 if there is a bijection 𝜙 : 𝐸 (𝐹) → [𝑚] such
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that 𝑒 ∈ 𝐻𝜙 (𝑒) for each 𝑒 ∈ 𝐸 (𝐹).

Random graphs

Given 𝑝 ∈ [0, 1], we let 𝐺 (𝑛, 𝑝) denote the binomial random graph model, which is the
probability space of all labeled graphs on the vertex set [𝑛], where the probability for such
a graph 𝐺 to be chosen is 𝑝𝑒 (𝐺) (1 − 𝑝) (𝑛2)−𝑒 (𝐺) . We can think of 𝐺 (𝑛, 𝑝) model as the
outcome of the following random experiment: each edge of 𝐾𝑛 is present with probability
𝑝 independently of all other choices. Similarly, given 𝑝 ∈ [0, 1], an integer 𝑘 ≥ 1 and
𝑘 pairwise-disjoint sets of vertices 𝑉1, . . . , 𝑉𝑘 , we denote by 𝐺 (𝑉1, . . . , 𝑉𝑘 , 𝑝) the random
𝑘-partite graph with parts 𝑉1, . . . , 𝑉𝑘 , where each pair of vertices in two different parts
forms an edge with probability 𝑝, independently of the other pairs. Moreover, for 𝑝 ∈ [0, 1]
and a set of vertices 𝑉 , we denote by 𝐺 (𝑉, 𝑝) the random graph on 𝑉 , where each pair of
vertices in 𝑉 forms an edge with probability 𝑝, independently of the other pairs. Further,
given an integer 𝑀 ≥ 1, we let 𝐺 (𝑛, 𝑀) denote the probability space of all labeled graphs
with vertex set [𝑛] and exactly 𝑀 edges, together with the uniform distribution. Next,
given 𝑝 ∈ [0, 1], we let

−→
𝐺 (𝑛, 𝑝) denote the binomial random directed graph on the vertex

set [𝑛], where each tuple (𝑢, 𝑣) ∈ [𝑛]2 of distinct vertices 𝑢 ≠ 𝑣 is a directed edge with
probability 𝑝 independently of all the other choices. If a graph 𝐺 is sampled according to
one of these models, we write 𝐺 ∼ 𝐺 (𝑛, 𝑝), 𝐺 ∼ 𝐺 (𝑛, 𝑀) and 𝐺 ∼ −→

𝐺 (𝑛, 𝑝), respectively.
Finally, for an event 𝐴 = 𝐴(𝑛) depending on 𝑛 ∈ N, we say that 𝐴 happens asymptotically
almost surely (a.a.s.) if P[𝐴] → 1 when 𝑛→ ∞.

Asymptotic notation

We use standard Landau notation for functions 𝑓 , 𝑔 : N→ R>0. We say that

• 𝑓 = 𝑂 (𝑔) if and only if there exist 𝑛0 ∈ N and 𝐶 > 0 such that 𝑓 (𝑛) ≤ 𝐶𝑔(𝑛) for all
𝑛 ≥ 𝑛0;

• 𝑓 = 𝑜(𝑔) if and only if for every 𝜀 > 0 there exist 𝑛0 ∈ N such that 𝑓 (𝑛) ≤ 𝜀𝑔(𝑛)
for all 𝑛 ≥ 𝑛0;

• 𝑓 = Ω(𝑔) if and only if 𝑔 = 𝑂 ( 𝑓 );

• 𝑓 = 𝜔(𝑔) if and only if 𝑔 = 𝑜( 𝑓 ).

We use standard hierarchical notation for constants, writing 0 < 𝑥 ≪ 𝑦 < 1 to mean
that there is a fixed positive non-decreasing function on (0, 1] such that the subsequent
statements hold for 𝑥 ≤ 𝑓 (𝑦). Where multiple constants appear in a hierarchy, they are
chosen from right to left.
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2
Methods and tools

The proofs presented in the thesis use a variety of techniques, and in this chapter we
discuss these tools. The majority of the results are well-known in the literature and are
stated without proofs. However, those who deviate from the literature or whose exact
precise statement has not appeared anywhere are given with a proof.

In Section 2.12.1, we present Szemerédi’s Regularity Lemma together with a few con-
sequences of the definition of regularity. Then we discuss the absorption method in
Section 2.22.2. We state some concentration inequalities in Section 2.42.4, and we discuss some
applications in Sections 2.52.5 and 2.62.6. Finally, in Section 2.72.7, we discuss a notion to describe
a collection of copies of a given graph 𝐾 which are clustered together.

2.1 The regularity method

The regularity method is currently one of the most powerful tools in extremal graph theory.
Its key ingredient is Szemerédi’s Regularity Lemma, which was originally motivated
by a famous conjecture of Erdős and Turán concerning the existence of long arithmetic
progressions in sets with positive (upper) density [107107, 108108]. It was first explicitly stated
in its current form in [109109], and, since then, it turned out to be essential in the resolution
of several long-standing open problems, see [7676] for a survey on the topic. We will use the
regularity method in Chapters 33 and 44.

The Regularity Lemma relies on the concept of regular pairs, for which we now introduce
the relevant terminology. Let 𝐺 = (𝑉, 𝐸) be a graph and 𝐴, 𝐵 ⊆ 𝑉 be two disjoint sets
of vertices. Then the density of the pair (𝐴, 𝐵) is defined by 𝑑 (𝐴, 𝐵) = 𝑒 (𝐴,𝐵)

|𝐴 | · |𝐵 | . The pair
(𝐴, 𝐵) is called 𝜀-regular if for all sets 𝑋 ⊆ 𝐴 and 𝑌 ⊆ 𝐵 with |𝑋 | ≥ 𝜀 |𝐴| and |𝑌 | ≥ 𝜀 |𝐵|
we have |𝑑 (𝐴, 𝐵) − 𝑑 (𝑋,𝑌 ) | ≤ 𝜀. We will often need a better control over the degree
of all the vertices. With 𝑑 ∈ [0, 1], a pair (𝐴, 𝐵) of disjoint sets of vertices is called
(𝜀, 𝑑)-super-regular if

• for all sets 𝑋 ⊆ 𝐴 and 𝑌 ⊆ 𝐵 with |𝑋 | ≥ 𝜀 |𝐴| and |𝑌 | ≥ 𝜀 |𝐵|, we have 𝑑 (𝑋,𝑌 ) ≥ 𝑑;

• for all 𝑎 ∈ 𝐴, we have deg(𝑎) ≥ 𝑑 |𝐵|;

• for all 𝑏 ∈ 𝐵, we have deg(𝑏) ≥ 𝑑 |𝐴|.
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We begin with some simple well-known facts about (super-)regular pairs. The first
lemma states that in an 𝜀-regular pair of density 𝑑, most vertices in one part have close to
the expected number of neighbours in any large enough subset of the other part.

Lemma 2.1.1 (Minimum Degree Lemma). Let (𝐴, 𝐵) be an 𝜀-regular pair with 𝑑 (𝐴, 𝐵) =
𝑑. Then, for every 𝑌 ⊆ 𝐵 with |𝑌 | ≥ 𝜀 |𝐵|, the number of vertices from 𝐴 with degree into
𝑌 less than (𝑑 − 𝜀) |𝑌 | is at most 𝜀 |𝐴|.

The second lemma states that an 𝜀-regular pair of density 𝑑 contains a large super-regular
pair with not too different parameters.

Lemma 2.1.2. Let (𝐴, 𝐵) be an 𝜀-regular pair with 𝑑 (𝐴, 𝐵) = 𝑑. Then there exist
𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵 with |𝐴′ | ≥ (1 − 𝜀) |𝐴| and |𝐵′ | ≥ (1 − 𝜀) |𝐵| such that (𝐴′, 𝐵′) is a
(2𝜀, 𝑑 − 3𝜀)-super-regular pair.

The third lemma, which can be easily proved using Hall’s Theorem, states that a super-
regular pair with parts of the same size contains a perfect matching.

Lemma 2.1.3. For any 𝑑 > 0 there exists 𝜀 > 0 such that any (𝜀, 𝑑)-super-regular pair
(𝑈,𝑉) with |𝑈 | = |𝑉 | contains a perfect matching.

We are now ready to state the degree form of the Szemerédi’s Regularity Lemma, which
can be derived from the original version [109109].

Lemma 2.1.4 (Degree form of the Szemerédi’s Regularity Lemma [7676]). For every 𝜀 > 0
and integer 𝑡0 there exists an integer 𝑇 > 𝑡0 such that for any graph𝐺 on at least 𝑇 vertices
and 𝑑 ∈ [0, 1] there is a partition of 𝑉 (𝐺) into 𝑡0 < 𝑡 + 1 ≤ 𝑇 sets 𝑉0, . . . , 𝑉𝑡 and a
subgraph 𝐺 ′ of 𝐺 such that

(P1) |𝑉𝑖 | = |𝑉 𝑗 | for all 1 ≤ 𝑖, 𝑗 ≤ 𝑡 and |𝑉0 | ≤ 𝜀 |𝑉 (𝐺) |;

(P2) deg𝐺′ (𝑣) ≥ deg𝐺 (𝑣) − (𝑑 + 𝜀) |𝑉 (𝐺) | for all 𝑣 ∈ 𝑉 (𝐺);

(P3) the set 𝑉𝑖 is independent in 𝐺 ′ for 1 ≤ 𝑖 ≤ 𝑡;

(P4) for 1 ≤ 𝑖 < 𝑗 ≤ 𝑡 the pair (𝑉𝑖 , 𝑉 𝑗) is 𝜀-regular in 𝐺 ′ and has density either 0 or at
least 𝑑.

The sets 𝑉1, . . . , 𝑉𝑡 are also called clusters and we refer to 𝑉0 as the set of exceptional
vertices. A partition 𝑉0, . . . , 𝑉𝑡 which satisfies (P1)(P1)–(P4)(P4) is called an (𝜀, 𝑑)-regular par-
tition of 𝐺. Given this partition, we define the (𝜀, 𝑑)-reduced graph 𝑅 for 𝐺, that is, the
graph on vertex set [𝑡], in which 𝑖 𝑗 is an edge if and only if (𝑉𝑖 , 𝑉 𝑗) is an 𝜀-regular pair in
𝐺 ′ and has density at least 𝑑.
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2.2 The absorption method

The absorption method has its origin in a work by Erdős, Gyárfás, and Pyber [4646], but
was codified as a versatile technique only later by Rödl, Ruciński, and Szemerédi [101101].
Nowadays it is an extremely useful tool in packing problems and several variants have been
developed to face some of the challenges that have emerged. We will make use of it in
Chapter 55.

At a very general high level, the method builds on finding some absorbing structure and
an almost perfect packing in the host graph. Then, whatever is leftover, together with the
absorber, can be perfectly packed into. The last step heavily depends on the special property
we require from the absorber, as well as on the properties of the leftover maintained through
the almost perfect packing process.

We illustrate the method supposing we wish to prove Dirac’s theorem: any 𝑛-vertex
graph𝐺 with minimum degree at least 𝑛/2 contains a Hamilton cycle. The key steps would
roughly be as follows.

Step 1. Set aside a vertex reservoir.
Let 𝑅 ⊆ 𝑉 (𝐺) be a small subset so that each vertex of 𝐺 has about |𝑅 |/2 many
neighbours in 𝑅.

Step 2. Find an absorber.
Show that 𝑉 (𝐺) \ 𝑅 contains a small subset 𝐴 and vertices 𝑣, 𝑤 ∈ 𝐴 so that for any
small enough subset 𝐿 ⊆ 𝑉 (𝐺) \ 𝐴, we have that𝐺 [𝐿 ∪ 𝐴] contains a spanning path
with endpoints 𝑣 and 𝑤. The set 𝐴 is called a vertex absorber.

Step 3. Almost cover the remainder with long paths.
Show that all but few vertices of 𝑉 (𝐺) \ (𝐴∪ 𝑅) can be covered by pairwise disjoint
long paths in 𝐺.

Step 4. Build an almost spanning path.
Using the good minimum degree to 𝑅, connect the paths found in Step 3 via short
paths to build a single path 𝑃 with endpoints 𝑣 and 𝑤, which is vertex-disjoint with
𝐴 \ {𝑣, 𝑤}, and covers all but a few vertices of 𝑉 (𝐺) \ 𝐴.

Step 5. Use the absorber.
Using the special property of the absorber 𝐴, the set 𝐿 = 𝑉 (𝐺) \ (𝐴 ∪𝑉 (𝑃)) can be
used together with 𝐴 to connect 𝑣 and 𝑤 via a path 𝑃′. Then 𝑃 ∪ 𝑃′ is the desired
Hamilton cycle.

The exact way Step 1.Step 1. to Step 3.Step 3. are performed is not relevant in this high level descrip-
tion, and thus we do not give further details. However, we remark that it is often the case
that the challenge of the method is to define an absorber which has the right property and,
at the same time, can be found in the host graph.
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2.3 The container method

The hypergraph container method can be used to bound the number of finite objects
with forbidden substructures, and was developed by Balogh, Morris and Samotij [88], and
independently by Saxton and Thomason [102102]. It has been used to prove a wealth of
results in extremal graph theory, Ramsey theory, additive combinatorics, number theory
and discrete geometry. We will use it in Chapter 66 while dealing with the multistage
Maker-Breaker 𝐻-game. We recall that the container method has been already used in the
context of (classical) Maker-Breaker 𝐻-games, for the first time in [9191].

The essence of the method is that the family of independent sets has some structure.
Indeed, roughly speaking, a version of the container method proves that, given a hypergraph
H whose edges are sufficiently evenly distributed, there exists a small number of almost
independent sets𝐶1, . . . , 𝐶𝑡 inH such that every independent set 𝐼 ofH is contained in one
of the𝐶𝑖’s. Here small means that 𝑡 is small, and almost independent means that 𝑒(H [𝐶𝑖])
is small. Of course, there is some interplay between how small 𝑡 and 𝑒(H [𝐶𝑖]) can be: for
a better bound on 𝑡, we have to lose on 𝑒(H [𝐶𝑖]). We use one of the formulations in [102102],
which needs the following notation. Given a set 𝑆, we define T𝑘,𝑠 (𝑆) as the following
family of 𝑘-tuples of subsets of 𝑆,

T𝑘,𝑠 (𝑆) =
{
(𝑆1, . . . , 𝑆𝑘)

��� 𝑆𝑖 ⊆ 𝑆 for 1 ≤ 𝑖 ≤ 𝑘 and
��� 𝑘⋃
𝑖=1

𝑆𝑖

��� ≤ 𝑠

}
.

Theorem 2.3.1 (Theorem 2.3 in [102102]). For any graph 𝐻 there exist constants 𝑛0, 𝑟 ∈ N
and 𝛿 ∈ (0, 1) such that the following is true. For every 𝑛 ≥ 𝑛0 there exist 𝑡 = 𝑡 (𝑛),
pairwise distinct tuples 𝑇1, . . . , 𝑇𝑡 ∈ T𝑟 ,𝑟𝑛2−1/𝑚2 (𝐻) (𝐸 (𝐾𝑛)) and sets 𝐶1, . . . , 𝐶𝑡 ⊆ 𝐸 (𝐾𝑛),
such that

(C1) each 𝐶𝑖 contains at most (1 − 𝛿)
(𝑛
2
)

edges,

(C2) for every 𝐻-free graph 𝐺 on 𝑛 vertices there exists 1 ≤ 𝑖 ≤ 𝑡 such that 𝑇𝑖 ⊆ 𝐸 (𝐺) ⊆
𝐶𝑖 , where 𝑇𝑖 ⊆ 𝐸 (𝐺) means that all sets contained in 𝑇𝑖 are subsets of 𝐸 (𝐺).

We remark that Theorem 2.3.12.3.1 is obtained by applying the container method described
above to the 𝑒(𝐻)-uniform hypergraph H whose vertices are the edges of 𝐾𝑛 and whose
edges are the 𝑒(𝐻)-subsets of 𝑉 (H) spanning a copy of 𝐻 in 𝐾𝑛. Indeed, the 𝐻-free
graphs on 𝑛 vertices correspond to the independent sets of H .

2.4 Concentration inequalities

In Chapters 33 to 55, we will often need to show that certain random variables are concentrated
around their expected value. We start by stating well-known concentration inequalities due
to Chernoff (see e.g. [6868, Corollaries 2.3 and 2.4] and [6767]).
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Lemma 2.4.1 (Chernoff’s inequality). Let 𝑋 be the sum of independent Bernoulli random
variables, then for any 𝛿 ∈ (0, 1) we have

P

[
|𝑋 − E[𝑋] | ≥ 𝛿 E[𝑋]

]
≤ 2 exp

(
−𝛿

2

3
E[𝑋]

)
and for any 𝑘 ≥ 7 ·E[𝑋] we have P[𝑋 > 𝑘] ≤ exp(−𝑘). More precisely, if 𝑝 is the success
probability and there are 𝑛 summands we get

P [𝑋 ≤ E[𝑋] − 𝛿𝑛] ≤ exp(−𝐷 (𝑝 − 𝛿 | |𝑝) 𝑛) ,

where 𝐷 (𝑥 | |𝑦) = 𝑥 log( 𝑥
𝑦
) + (1 − 𝑥) log( 1−𝑥

1−𝑦 ) is the relative entropy.

Lemma 2.4.12.4.1 is particularly useful when the random variable 𝑋 is of the form 𝑋 =∑
𝐹∈F 𝜒𝐹 , where F is a collection of pairwise edge-disjoint subgraphs of 𝐾𝑛 and 𝜒𝐹

denotes the indicator variable of the event ‘𝐹 ⊆ 𝐺 (𝑛, 𝑝)’. However, if the subgraphs in
F are not edge-disjoint, then {𝜒𝐹}𝐹∈F is not a family of independent random variables
anymore and Lemma 2.4.12.4.1 is not applicable. In that case, we can use the following Janson’s
inequality.

Lemma 2.4.2 (Janson’s inequality, Theorem 2.14 in [6868]). Let 𝑝 ∈ (0, 1) and consider a
family {𝐻𝑖}𝑖∈I of subgraphs of the complete graph on the vertex set [𝑛] = {1, . . . , 𝑛}. For
each 𝑖 ∈ I, let 𝑋𝑖 denote the indicator random variable for the event that 𝐻𝑖 ⊆ 𝐺 (𝑛, 𝑝)
and, write 𝐻𝑖 ∼ 𝐻 𝑗 for each ordered pair (𝑖, 𝑗) ∈ I × I with 𝑖 ≠ 𝑗 if 𝐸 (𝐻𝑖) ∩ 𝐸 (𝐻 𝑗) ≠ ∅.
Then, for 𝑋 =

∑
𝑖∈I 𝑋𝑖 , E[𝑋] =

∑
𝑖∈I 𝑝

𝑒 (𝐻𝑖) ,

𝛿 =
∑︁
𝐻𝑖∼𝐻 𝑗

E[𝑋𝑖𝑋 𝑗] =
∑︁
𝐻𝑖∼𝐻 𝑗

𝑝𝑒 (𝐻𝑖)+𝑒 (𝐻 𝑗 )−𝑒 (𝐻𝑖∩𝐻 𝑗 )

and any 0 < 𝛾 < 1 we have

P[𝑋 ≤ (1 − 𝛾)E[𝑋]] ≤ exp
(
− 𝛾2E[𝑋]2

2(E[𝑋] + 𝛿)

)
.

Moreover, if we know both the expected value and the variance of a random variable
and they are finite, then we can use the Chebyshev’s inequality.

Lemma 2.4.3 (Chebyshev’s inequality [6868]). Let 𝑋 be a random variable with finite
expected value and variance. Then for any 𝑎 > 0 we have

P( |𝑋 − E[𝑋] | ≥ 𝑎) ≤ Var[𝑋]
𝑎2 .

We also state a concentration inequality due to McDiarmid [8888], whose present formu-
lation can be found in [8383].
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Lemma 2.4.4 (Lemma 6.1 in [8383]). Let 𝑐 > 0 and let 𝑓 be a function defined on the set
of subsets of some set 𝑈 such that | 𝑓 (𝑈1) − 𝑓 (𝑈2) | ≤ 𝑐 whenever |𝑈1 | = |𝑈2 | = 𝑚 and
|𝑈1 ∩𝑈2 | = 𝑚 − 1. Let 𝐴 be a uniformly random 𝑚-subset of 𝑈. Then for any 𝛼 > 0 we
have

P
[
| 𝑓 (𝐴) − E[ 𝑓 (𝐴)] | ≥ 𝛼𝑐

√
𝑚

]
≤ 2 exp(−2𝛼2).

2.5 Embedding results

We give some embedding results that we will use in Chapters 33 and 44. A standard and
well-known application of Janson’s inequality gives the threshold for the property that any
linear sized set of vertices induces a copy of a given graph 𝐹 in 𝐺 (𝑛, 𝑝).

Lemma 2.5.1. For any graph 𝐹 and any 𝛿 > 0, there exists 𝐶 > 0 such that the following
holds for 𝑝 ≥ 𝐶𝑛−1/𝑚1 (𝐹) . In the random graph 𝐺 (𝑛, 𝑝) a.a.s. any set of 𝛿𝑛 vertices
contains a copy of 𝐹.

Note that 𝑚1(𝑃𝑘−1) = 1 and 𝑚1(𝑃2
𝑘−1) =

2𝑘−3
𝑘−1 and, therefore, the bounds on 𝑝 given by

Lemma 2.5.12.5.1 for the containment of a copy of 𝑃𝑘−1 and 𝑃2
𝑘−1 in any linear sized set are

𝑝 ≥ 𝐶/𝑛 and 𝑝 ≥ 𝐶𝑛−(𝑘−1)/(2𝑘−3) , respectively. Observe that a repeated application of
Lemma 2.5.12.5.1 allows to find a collection of vertex-disjoint copies of 𝐹 covering (1− 𝑜(1))𝑛
vertices of 𝐺 (𝑛, 𝑝), i.e. 𝑛−1/𝑚1 (𝐹) is the threshold in 𝐺 (𝑛, 𝑝) for an almost 𝐹-factor. If
we ask for an 𝐹-factor in 𝐺 (𝑛, 𝑝), rather than an almost 𝐹-factor, the situation is much
more complicated. The corresponding threshold is only known for some graphs 𝐹 (see [5353,
6969]). In particular we state a breakthrough result of Johansson, Kahn, and Vu [6969], who
determined the threshold for covering all vertices of 𝐺 (𝑛, 𝑝) with pairwise vertex-disjoint
copies of 𝐹, for any strictly 1-balanced graph 𝐹, i.e. those graphs with 1-density strictly
larger than that of any proper subgraph.

Theorem 2.5.2 (Johansson, Kahn, and Vu [6969]). Let 𝐹 be a graph such that 𝑚1(𝐹 ′) <
𝑚1(𝐹) for all 𝐹 ′ ⊆ 𝐹 with 𝐹 ′ ≠ 𝐹 and 𝑣(𝐹 ′) ≥ 2. Then the threshold for an 𝐹-factor in
𝐺 (𝑛, 𝑝) is 𝑛−1/𝑚1 (𝐹) (log 𝑛)1/𝑒 (𝐹) .

Note that, for any 𝑟 ≥ 3, the clique 𝐾𝑟 is a strictly 1-balanced graph, and so is the square
of a path on 𝑘 + 1 vertices. In particular, Theorem 2.5.22.5.2 holds for both of them.

While embedding the square of a Hamilton cycle in the randomly perturbed graph, we
will rely on a decomposition in random and deterministic edges (see Section 3.1.13.1.1). In
particular, in the proof of Theorem 1.1.161.1.16, we will find the squares of short paths in𝐺 (𝑛, 𝑝).
However, it will be often the case that we want to find combinations of these squares in
𝐺 (𝑛, 𝑝) such that their vertices satisfy some additional constraints; for that, we will use the
following lemma.
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Lemma 2.5.3. For all integers 𝑠 ≥ 1 and 𝑘 ≥ 2, and any 0 < 𝜂 ≤ 1, there exists 𝐶 > 0
such that the following holds for 𝑝 ≥ 𝐶𝑛−(𝑘−1)/(2𝑘−3) . Let 𝑉 be a vertex set of size 𝑛,
𝑉1, . . . , 𝑉𝑠 not necessarily disjoint subsets of 𝑉 , and 𝐻 be a collection of pairwise distinct
tuples from

∏𝑠
𝑖=1𝑉

𝑘
𝑖

. Then a.a.s. revealing Γ = 𝐺 (𝑛, 𝑝) on 𝑉 gives the following. For any
choice of 𝑊𝑖 ⊂ 𝑉𝑖 with 𝑖 = 1, . . . , 𝑠 such that 𝐻 ′ = 𝐻 ∩ ∏𝑠

𝑖=1𝑊
𝑘
𝑖

has size at least 𝜂𝑛𝑠𝑘 ,
there is a tuple (𝑣𝑖, 𝑗 : 1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑗 ≤ 𝑘) in 𝐻 ′ with pairwise distinct vertices 𝑣𝑖, 𝑗 ∈ 𝑊𝑖
for 𝑖 = 1, . . . , 𝑠, 𝑗 = 1, . . . , 𝑘 , such that in Γ for 𝑖 = 1, . . . , 𝑠 we have the square of a path
on 𝑣𝑖,1, . . . , 𝑣𝑖,𝑘 and for 𝑖 = 1, . . . , 𝑠 − 1 we have the edge 𝑣𝑖,𝑘𝑣𝑖+1,1.

Observe that the structure we get from Lemma 2.5.32.5.3 in 𝐺 (𝑛, 𝑝) is given by 𝑠 copies of
the square of a path on 𝑘 vertices and 𝑠 − 1 additional edges joining two consecutive such
copies. Moreover when 𝑘 = 2 the structure is a path on 2𝑠 vertices. In applications, we
will often define several collections of tuples 𝐻 𝑗 ⊆

∏𝑠
𝑖=1𝑉

𝑘
𝑗,𝑖

for 𝑗 = 1, . . . , 𝑚, and apply
Lemma 2.5.32.5.3 to 𝐻 =

⋃𝑚
𝑗=1 𝐻 𝑗 , where it is implicit that we apply it with 𝑉𝑖 =

⋃𝑚
𝑗=1𝑉 𝑗 ,𝑖 .

Also, we stress that, for a fixed 𝐻 and a typical revealed 𝐺 (𝑛, 𝑝), the conclusion of the
lemma holds for any large enough subset of the form 𝐻 ∩ ∏𝑠

𝑖=1𝑊
𝑘
𝑖

with 𝑊𝑖 ⊆ 𝑉𝑖 . In
particular, we will be able to claim the existence of a tuple in each subcollection 𝐻 𝑗 , again
provided they have the right size. This lemma is again a standard application of Janson’s
inequality. As this precise formulation is not stated in the literature, we include its proof.

Proof of Lemma 2.5.32.5.3. Let 𝑠 ≥ 1 and 𝑘 ≥ 2 be integers and 0 < 𝜂 ≤ 1. Moreover let
𝐶 ≥ 26(𝑠𝑘)2𝑠𝑘𝜂−2 and 𝑝 ≥ 𝐶𝑛−(𝑘−1)/(2𝑘−3) .

Let 𝑉 be a vertex set of size 𝑛, 𝑉𝑖 be a subset of 𝑉 for 𝑖 = 1, . . . , 𝑠, and 𝐻 be a collection
of pairwise distinct tuples from

∏𝑠
𝑖=1𝑉

𝑘
𝑖

. Let 𝑊𝑖 ⊆ 𝑉𝑖 for each 𝑖 = 1, . . . , 𝑠 and assume
𝐻 ′ = 𝐻 ∩∏𝑠

𝑖=1𝑊
𝑘
𝑖

has size at least 𝜂𝑛𝑠𝑘 . Since the number of tuples from
∏𝑠
𝑖=1𝑉

𝑘
𝑖

which
contain a vertex more than once is 𝑂

(
𝑛𝑠𝑘−1) , there are at least 𝜂

2 𝑛
𝑠𝑘 tuples of 𝐻 ′ such

that their vertices are pairwise distinct. We restrict our analysis to the set of those tuples,
which, abusing notation, we still denote by 𝐻 ′.

For each tuple (𝑣𝑖, 𝑗 : 1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑗 ≤ 𝑘) in𝐻 ′, we consider the graph with vertex set𝑉
and the following edges. For 𝑖 = 1, . . . , 𝑠we have the square of the path on 𝑣𝑖,1, . . . , 𝑣𝑖,𝑘 and
for 𝑖 = 1, . . . , 𝑠 − 1 we have the edge 𝑣𝑖,𝑘𝑣𝑖+1,1. This gives a family {𝐻𝑖}𝑖∈[ |𝐻′ | ] of graphs
with vertex set 𝑉 and, using the same notation as in Lemma 2.4.22.4.2, a collection of random
variables {𝑋𝑖}𝑖∈[ |𝐻′ | ] . Note that for each 𝑖 = 1, . . . , 𝑠, we have 𝑒(𝐻𝑖) = 𝑠(2𝑘−3)+ (𝑠−1) =
2𝑠(𝑘 − 1) − 1, and thus, for 𝑋 =

∑
𝑖∈[ |𝐻′ | ] 𝑋𝑖 , we have E[𝑋] = |𝐻 ′ |𝑝2𝑠 (𝑘−1)−1 ≥

√
𝐶𝑛. To

compute the quantity Δ[𝑋] = ∑
𝐻𝑖∼𝐻 𝑗

𝑝𝑒 (𝐻𝑖)+𝑒 (𝐻 𝑗 )−𝑒 (𝐻𝑖∩𝐻 𝑗 ) , we split the sum according
to the number of vertices in the intersection 𝐸 (𝐻𝑖 ∩ 𝐻 𝑗). Suppose 𝐻𝑖 and 𝐻 𝑗 intersect in
𝑚 vertices. Then 2 ≤ 𝑚 ≤ 𝑠𝑘 − 1 and the largest size 𝑒(𝑚) of the intersection 𝐸 (𝐻𝑖 ∩𝐻 𝑗)
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is

𝑒(𝑚) =


𝑚
𝑘
(2𝑘 − 3) + 𝑚

𝑘
− 1, if 𝑚 ≡ 0 (mod 𝑘)

⌊𝑚
𝑘
⌋ (2𝑘 − 3) + ⌊𝑚

𝑘
⌋, if 𝑚 ≡ 1 (mod 𝑘)

⌊𝑚
𝑘
⌋ (2𝑘 − 3) + ⌊𝑚

𝑘
⌋ + 2

(
𝑚 − 𝑘 ⌊𝑚

𝑘
⌋
)
− 3, otherwise.

In particular, observing that 𝑒(𝑚) = 2𝑚 − 3 if 𝑚 < 𝑘 (as 𝑚 ≥ 2 we are in the third case)
and 𝑒(𝑚) ≥ 2𝑚 − 2𝑚

𝑘
− 1 if 𝑚 ≥ 𝑘 (the inequality follows from ⌊𝑚

𝑘
⌋ ≥ 𝑚

𝑘
− 1), we can

conclude that 𝑝−�̃� (𝑚)𝑛−𝑚 ≤ 𝐶−1𝑛−1 for each 2 ≤ 𝑚 ≤ 𝑠𝑘 − 1. Therefore,

Δ[𝑋] ≤
𝑠𝑘−1∑︁
𝑚=2

𝑚!
(
𝑠𝑘

𝑚

)2
𝑛2𝑠𝑘−𝑚𝑝 [2𝑠 (𝑘−1)−1]+[2𝑠 (𝑘−1)−1]−�̃� (𝑚)

≤
𝑠𝑘−1∑︁
𝑚=2

(𝑠𝑘)2𝑚 𝑛
2𝑠𝑘−𝑚

|𝐻 ′ |2
E2 [𝑋]𝑝−�̃� (𝑚)

≤ 4(𝑠𝑘)2𝑠𝑘−2𝜂−2
𝑠𝑘−1∑︁
𝑚=2
E2 [𝑋]𝑝−�̃� (𝑚)𝑛−𝑚

≤ 4(𝑠𝑘)2𝑠𝑘−1𝜂−2𝐶−1E2 [𝑋]𝑛−1 ≤ 1
8 𝑠

−1E2 [𝑋]𝑛−1,

where in the first inequality we used that there are at most 𝑚!
(𝑠𝑘
𝑚

)2
𝑛2𝑠𝑘−𝑚 choices for 𝐻𝑖

and 𝐻 𝑗 intersecting in 𝑚 vertices, in the second we used E[𝑋] = |𝐻 ′ |𝑝2𝑠 (𝑘−1)−1 ≥
√
𝐶𝑛,

and in the third we used 𝑛𝑠𝑘/|𝐻 ′ | ≤ 2/𝜂. Then with Lemma 2.4.22.4.2 applied with 𝛾 = 2−1/2,
we get that the probability that none of the graphs of the family {𝐻𝑖}𝑖∈[ |𝐻′ | ] appears in
𝐺 (𝑛, 𝑝) is bounded from above by

exp
(
− E2 [𝑋]

4(E[𝑋] + Δ[𝑋])

)
≤ exp

(
−1

8 min
{
E[𝑋], E

2 [𝑋]
Δ[𝑋]

})
≤ exp

(
− 1

8 min{
√
𝐶𝑛, 8𝑠𝑛}

)
≤ exp(−𝑠𝑛) .

Using a union bound over the at most 2𝑠𝑛 choices for the 𝑠 subsets 𝑊𝑖 with 𝑖 = 1, . . . , 𝑠,
we conclude that the lemma holds.

Next, we state a theorem which will allow us to find a directed Hamilton cycle in the
binomial random directed graph

−→
𝐺 (𝑛, 𝑝) and will be used in the proof of Theorem 1.1.171.1.17

in Chapter 33.

Theorem 2.5.4 (Angluin and Valiant [55]). There exists 𝐶 > 0 such that for 𝑝 ≥ 𝐶 log 𝑛/𝑛
a.a.s.

−→
𝐺 (𝑛, 𝑝) has a directed Hamilton cycle.

Finally, we prove the following lemma which allows us to find specific triangles in a
dense graph with additional random edges. This will be used in Chapter 44.

Lemma 2.5.5. For any 𝑑 > 0 there exists𝐶 > 0 such that the following holds. Let𝑈,𝑉,𝑊
be three sets of vertices of size 𝑛, 𝐺 be a bipartite graph on (𝑈,𝑊) with 𝑒(𝐺) ≥ 𝑑𝑛2,
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𝑝 > 𝐶/𝑛 and𝐺 (𝑈∪𝑊,𝑉, 𝑝) be the random bipartite graph. Then with probability at least
1 − 2−4𝑛/𝑑 there is a triangle in 𝐺 ∪ 𝐺 (𝑈 ∪𝑊,𝑉, 𝑝) with one vertex in each of𝑈,𝑉,𝑊 .

Proof of Lemma 2.5.52.5.5. Let 𝑑 > 0, 𝐶 > 68/𝑑3, and 𝑝 > 𝐶/𝑛. Let I = 𝐸𝐺 (𝑈,𝑊) ×𝑉 and,
for each 𝑖 = (𝑢𝑤, 𝑣) ∈ I, let 𝐻𝑖 be the path 𝑢𝑣𝑤 on the three vertices 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 and
𝑤 ∈ 𝑊 . We want to apply Lemma 2.4.22.4.2 to the family {𝐻𝑖}𝑖∈I . Using the same notation,
we have E[𝑋] = |I |𝑝2 ≥ 𝑑𝑛3𝑝2 and 𝛿 ≤ 𝑛2(2𝑛)𝑛𝑝3, as for 𝑖 = (𝑢𝑤, 𝑣) and 𝑗 = (𝑢′𝑤′, 𝑣′)
with 𝑖, 𝑗 ∈ I and 𝑖 ≠ 𝑗 we have 𝐻𝑖 ∼ 𝐻 𝑗 if and only if 𝑣 = 𝑣′ and precisely one of the
equalities 𝑢 = 𝑢′ and 𝑤 = 𝑤′ holds. Then the Janson’s inequality with 𝛾 = 1/2 gives

P

[
𝑋 ≤ E[𝑋]

2

]
≤ exp

(
−𝛾

2

2
𝑑𝑛3𝑝2

1 + 2𝑛𝑝/𝑑

)
≤ exp

(
− 1

17
𝑑2𝑛2𝑝

)
≤ 2−4𝑛/𝑑 ,

as 𝑝 > 𝐶/𝑛 and𝐶 > 68/𝑑3. Thus with probability at least 1−2−4𝑛/𝑑 we have 𝑋 > E[𝑋]/2
and there is at least one path 𝐻𝑖 on vertices 𝑢, 𝑣, 𝑤 for some 𝑖 = (𝑢𝑤, 𝑣) ∈ I in 𝐺 (𝑛, 𝑝).
As 𝑢𝑤 is an edge of 𝐺 by definition of I, we get a triangle in 𝐺 ∪ 𝐺 (𝑈 ∪𝑊,𝑉, 𝑝) with
one vertex in each of𝑈,𝑉,𝑊 , as required.

2.6 Preserving minimum degrees

In this section, we collect all the results which show that performing certain operations on
a (hyper)graph (collection) does not change its minimum degree too much. We will use
them in Chapter 55.

We begin with a trivial observation and a simple proposition.

Observation 2.6.1. Let H be a 𝑘-uniform hypergraph collection on𝑉 with 𝛿𝑑 (H) ≥ 𝛿𝑛𝑘−𝑑 .
Let 𝑆 ⊆ 𝑉 with |𝑆 | ≤ 𝜁𝑛. Then H \ 𝑆 has minimum 𝑑-degree at least (𝛿 − 𝜁)𝑛𝑘−𝑑 .

Proof of Observation 2.6.12.6.1. Let 𝐻 be a hypergraph in H and let 𝐷 be a set of size 𝑑
disjoint with 𝑆. For any vertex 𝑣 not in 𝐷, the set 𝐷 ∪ {𝑣} can have degree at most 𝑛𝑘−𝑑−1.
Therefore, there are at most 𝜁𝑛𝑘−𝑑 edges containing 𝐷 which are also incident to 𝑆. Hence,
𝐻 \ 𝑆 has minimum 𝑑-degree at least (𝛿 − 𝜁)𝑛𝑘−𝑑 , implying the observation.

Proposition 2.6.2. Let 0 ≤ 𝛼, 𝛿 ≤ 1, and 𝑑, 𝑘, 𝑚, 𝑛 ∈ N, with 1 ≤ 𝑑 ≤ 𝑘 − 1. Let H be a
𝑘-uniform hypergraph collection on vertex set [𝑛] with |H| = 𝑚 and 𝛿𝑑 (H) ≥ 𝛿𝑛𝑘−𝑑 . Let
K be the 𝑘-uniform hypergraph with vertex set [𝑛], where 𝑒 is an edge of K if 𝑒 ∈ 𝐸 (𝐻𝑖)
for at least 𝛼𝑚 values of 𝑖 ∈ [𝑚]. Then, 𝛿𝑑 (K) ≥ (𝛿 − 𝛼)𝑛𝑘−𝑑 .

Proof of Proposition 2.6.22.6.2. For each 𝑑 pairwise distinct vertices 𝑣1, . . . , 𝑣𝑑 ∈ [𝑛], we have

𝑚 · 𝛿𝑛𝑘−𝑑 ≤
∑︁
𝑖∈[𝑚]

deg𝐻𝑖
(𝑣1, . . . , 𝑣𝑑) ≤ 𝑚 · degK (𝑣1, . . . , 𝑣𝑑) + 𝑛𝑘−𝑑 · 𝛼𝑚,

36



2 Methods and tools

and therefore degK (𝑣1, . . . , 𝑣𝑑) ≥ (𝛿 − 𝛼)𝑛𝑘−𝑑 . Thus, 𝛿𝑑 (K) ≥ (𝛿 − 𝛼)𝑛𝑘−𝑑 , as wanted.

Next we show that the vertex set of a hypergraph collection can be partitioned into linear
sized sets, each preserving good minimum degree conditions in each of the hypergraphs
of the collection.

Lemma 2.6.3. Let 1/𝑛 ≪ 𝛼, 𝛽 and 𝑚 ≤ 𝑛2. Let 𝑡 ∈ N and 𝑛1, . . . , 𝑛𝑡 ≥ 𝛽𝑛 be integers
such that

∑𝑡
𝑖=1 𝑛𝑖 = 𝑛. Let H be a 𝑘-uniform hypergraph collection on vertex set [𝑛] with

|H| = 𝑚 and 𝛿𝑑 (H) ≥ (𝛿 + 𝛼)𝑛𝑘−𝑑 . Then there exists a partition of [𝑛] into 𝑉1, . . . , 𝑉𝑡

with |𝑉𝑖 | = 𝑛𝑖 for 𝑖 ∈ [𝑡] such that any 𝑆 ∈
( [𝑛]
𝑑

)
has degree at least (𝛿 + 𝛼/2)𝑛𝑘−𝑑

𝑖
into 𝑉𝑖

with respect to any of the 𝑚 hypergraphs in H.

We will show that a partition chosen uniformly at random has the properties required
from Lemma 2.6.32.6.3 with high probability. For that, we use the following consequence of
the McDiarmid inequality.

Lemma 2.6.4. Let 𝑘, ℓ ∈ N, 0 < 𝛿′ < 𝛿 < 1 and 1/𝑛, 1/ℓ ≪ 1/𝑘, 𝛿 − 𝛿′. Let 𝐻 be a
𝑘-uniform 𝑛-vertex hypergraph with vertex set 𝑉 and suppose that deg(𝑆,𝑉) ≥ 𝛿𝑛𝑘−𝑑 for
each 𝑆 ∈

(𝑉
𝑑

)
. Let 𝐴 ⊆ 𝑉 be a vertex set of size ℓ chosen uniformly at random. Then, for

every 𝑇 ∈
(𝑉
𝑑

)
we have

P
[
deg(𝑇, 𝐴) < 𝛿′ℓ𝑘−𝑑

]
≤ 2 exp(−ℓ(𝛿 − 𝛿′)2/2).

Proof. Let 𝑓 : P(𝑉) → R be defined by 𝑓 (𝑋) = deg(𝑇, 𝑋) for each 𝑋 ⊆ 𝑉 , and set
𝜀 = (𝛿 − 𝛿′)/(2𝛿) < 1/2. Observe that | 𝑓 (𝑈1) − 𝑓 (𝑈2) | ≤ ℓ𝑘−𝑑−1 for any 𝑈1,𝑈2 ∈ P(𝑉)
with |𝑈1 | = |𝑈2 | = ℓ and |𝑈1∩𝑈2 | = ℓ−1. Given an edge 𝑒 with𝑇 ⊆ 𝑒, the probability that
𝑒\𝑇 is contained in 𝐴 is at least (

𝑛−𝑘
ℓ−𝑘+𝑑)
(𝑛ℓ)

≥ (1−𝜀) ℓ𝑘−𝑑
𝑛𝑘−𝑑

, where we used 1/𝑛, 1/ℓ ≪ 1/𝑘, 𝛿−𝛿′.
So by linearity of expectation we have E[ 𝑓 (𝐴)] ≥ 𝛿(1 − 𝜀)ℓ𝑘−𝑑 = 𝛿+𝛿′

2 ℓ𝑘−𝑑 . We can
then apply Lemma 2.4.42.4.4 with 𝑐 = ℓ𝑘−𝑑−1, 𝑚 = ℓ and 𝛼 =

√
ℓ(𝛿 − 𝛿′)/2, and get that

P
[
𝑓 (𝐴) < 𝛿′ℓ𝑘−𝑑

]
≤ 2 exp(−ℓ(𝛿 − 𝛿′)2/2), as desired.

We are now ready to prove Lemma 2.6.32.6.3.

Proof of Lemma 2.6.32.6.3. Pick a partition of [𝑛] into 𝑉1 ∪ · · · ∪𝑉𝑡 uniformly at random from
all partitions which satisfy |𝑉𝑖 | = 𝑛𝑖 for all 𝑖 ∈ [𝑡]. Then by Lemma 2.6.42.6.4, we have
the probability that there are 𝑖 ∈ [𝑡], 𝑗 ∈ [𝑚] and 𝑆 ∈

( [𝑛]
𝑑

)
such that deg𝐻 𝑗

(𝑆,𝑉𝑖) <
(𝛿 + 𝛼/2)𝑛𝑘−𝑑

𝑖
is at most 𝑡 · 𝑚 ·

(𝑛
𝑑

)
· 2 · exp(−𝛼2𝛽𝑛/8) = 𝑜(1), where we have used that

𝑛𝑖 ≥ 𝛽𝑛 for each 𝑖 ∈ [𝑡], 1/𝑛 ≪ 𝛼, 𝛽, and 𝑚 ≤ 𝑛2. Therefore there exists a partition with
the desired properties.
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2.7 𝐾-collections

While proving Theorem 1.3.71.3.7 in Chapter 66, and given a graph 𝐾 , we will need a notion to
describe a collection of copies of 𝐾 in a graph 𝐺, which are clustered together. Stojaković
and Szabó [106106], while analysing games on random graphs, introduced this notion when
𝐾 is a clique. Here we generalise their definition and extend their related observations to
general graphs.

Definition 2.7.1 (𝐾-collection). Let 𝐺 and 𝐾 be graphs. We define the auxiliary graph
𝐺𝐾 to be the graph with vertices corresponding to the copies of 𝐾 in 𝐺, and two vertices
being adjacent if the corresponding copies of 𝐾 have at least two vertices in common.
Let K = {𝐾1, . . . , 𝐾𝑠} be the family of copies of 𝐾 in 𝐺 corresponding to a connected
component of 𝐺𝐾 . Then the subgraph of 𝐺 induced by

⋃
𝑖∈[𝑠] 𝐾𝑖 is called a 𝐾-collection,

and we denote its vertex set and its number of vertices by 𝑉 (K) =
⋃
𝑖∈[𝑠] 𝑉 (𝐾𝑖) and

𝑣(K) = |𝑉 (K)|, respectively.

Definition 2.7.2 (𝑠-bunch). Let (𝐾1, . . . , 𝐾𝑠) be a sequence of copies of 𝐾 . Then
⋃
𝑖∈[𝑠] 𝐾𝑖

is called an 𝑠-bunch if𝑉 (𝐾𝑖) \
(⋃

𝑗∈[𝑖−1] 𝑉 (𝐾 𝑗)
)
≠ ∅ and

���𝑉 (𝐾𝑖) ∩ (⋃
𝑗∈[𝑖−1] 𝑉 (𝐾 𝑗)

)��� ≥ 2,
for each 𝑖 = 2, . . . , 𝑠.

It is easy to observe that every large enough collection contains a large bunch.

Claim 2.7.3. Let𝐺 be a graph and 𝑡 ∈ N. Then every𝐾-collectionK of𝐺 on at least 𝑡𝑣(𝐾)
vertices contains an 𝑠-bunch 𝐵 of copies of 𝐾 with 𝑠 ≥ 𝑡 and 𝑡𝑣(𝐾) ≤ 𝑣(𝐵) ≤ (𝑡 + 1)𝑣(𝐾).

Proof of Claim 2.7.32.7.3. We start by taking any copy of 𝐾 in K and then construct the bunch
recursively as follows. If

⋃
𝑖∈[𝑚] 𝐾𝑖 is an 𝑚-bunch of copies of 𝐾 , we select another

copy 𝐾𝑚+1 of 𝐾 in the collection K, such that 𝑉 (𝐾𝑚+1) \
(⋃

𝑗∈[𝑚] 𝑉 (𝐾 𝑗)
)
≠ ∅ and���𝑉 (𝐾𝑚+1) ∩

(⋃
𝑗∈[𝑚] 𝑉 (𝐾 𝑗)

)��� ≥ 2. Note that this will give an (𝑚 + 1)-bunch of copies
of 𝐾 . Since the family K corresponds to a connected component of the auxiliary graph
𝐺𝐾 , we are able to find such new copy of 𝐾 if 𝑉 (K) \

(⋃
𝑖∈[𝑚] 𝑉 (𝐾𝑖)

)
≠ ∅, i.e. until

we cover all the vertices of K. In particular, since 𝑣(K) ≥ 𝑡𝑣(𝐾), we can construct an
𝑠-bunch 𝐵 =

⋃
𝑖∈[𝑠] 𝐾𝑖 of copies of 𝐾 with 𝑡𝑣(𝐾) ≤ 𝑣(𝐵) < (𝑡 + 1)𝑣(𝐾). Moreover, since

𝑡𝑣(𝐾) ≤ 𝑣(𝐵) ≤ 𝑣(𝐾) + (𝑠 − 1) (𝑣(𝐾) − 2), we get 𝑠 ≥ 𝑡.

Observe that for the 𝑠-bunch where any two copies of𝐾 intersect in the same two adjacent
vertices, we have 𝑑 (𝐵) = 𝑒 (𝐾)+(𝑠−1) (𝑒 (𝐾)−1))

𝑣 (𝐾)+(𝑠−1) (𝑣 (𝐾)−2) , which tends to 𝑒 (𝐾)−1
𝑣 (𝐾)−2 = 𝑚2(𝐾) as 𝑠 tends

to infinity. Using a similar argument as in [106106], we show that this is best possible in the
following sense.

Claim 2.7.4. Let 𝐾 be a graph such that 𝑑2(𝐾) = 𝑚2(𝐾), 𝑠 ∈ N and 𝛿 > 0 such that for
all 𝑥 ≥ 𝑠 − 1 we have 𝑒 (𝐾)+𝑚2 (𝐾)𝑥

𝑣 (𝐾)+𝑥 ≥ 𝑚2(𝐾) − 𝛿. Then for any 𝑠-bunch 𝐵 of copies of 𝐾 ,
we have 𝑑 (𝐵) ≥ 𝑚2(𝐾) − 𝛿.
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Proof of Claim 2.7.42.7.4. Let 𝐵 =
⋃
𝑖∈[𝑠] 𝐾𝑖 be any 𝑠-bunch of copies of 𝐾 . First observe

that for every 𝑆 ⊂ 𝐾 we have 𝑒 (𝑆)−1
𝑣 (𝑆)−2 ≤ 𝑒 (𝐾)−1

𝑣 (𝐾)−2 , which can be rearranged as 𝑒 (𝐾)−𝑒 (𝑆)
𝑣 (𝐾)−𝑣 (𝑆) ≥

𝑒 (𝐾)−1
𝑣 (𝐾)−2 = 𝑚2(𝐾), which in turn gives

𝑒(𝐾) − 𝑒(𝑆) ≥ 𝑚2(𝐾) · (𝑣(𝐾) − 𝑣(𝑆)) . (2.7.1)

Setting 𝑆𝑖 = 𝐾𝑖 ∩ (⋃ 𝑗∈[𝑖−1] 𝐾 𝑗) for each 𝑖 = 2, . . . , 𝑠, we have

𝑑 (𝐵) = 𝑒(𝐵)
𝑣(𝐵) =

𝑒(𝐾) + ∑
𝑖≥2(𝑒(𝐾𝑖) − 𝑒(𝑆𝑖))

𝑣(𝐾) + ∑
𝑖≥2(𝑣(𝐾𝑖) − 𝑣(𝑆𝑖))

(2.7.12.7.1)
≥

𝑒(𝐾) + 𝑚2(𝐾)
∑
𝑖≥2(𝑣(𝐾𝑖) − 𝑣(𝑆𝑖))

𝑣(𝐾) + ∑
𝑖≥2(𝑣(𝐾𝑖) − 𝑣(𝑆𝑖))

≥ 𝑚2(𝐾) − 𝛿 ,

where the last inequality follows from the assumption on 𝛿 and as
∑
𝑖≥2(𝑣(𝐾) − 𝑣(𝑆𝑖)) ≥

𝑠 − 1.
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3
The square of a Hamilton cycle in randomly
perturbed graphs

In this chapter, we discuss our results related to the perturbed threshold for the contain-
ment of the square of a Hamilton cycle, namely Theorems 1.1.141.1.14, 1.1.161.1.16 and 1.1.171.1.17.
The main Theorem 1.1.141.1.14 follows easily from the stability Theorem 1.1.161.1.16, the extremal
Theorem 1.1.171.1.17, and the lower bounds in Proposition 1.1.151.1.15. Therefore we prove The-
orem 1.1.141.1.14 already here.

Proof of Theorem 1.1.141.1.14. As already explained in the introduction, the cases 𝛼 = 0 and
𝛼 > 1/2 follow from known results, and the case 𝛼 = 1/2 will follow from monotonicity of
the perturbed threshold, once we will have determined the threshold in the range 𝛼 < 1/2.
Therefore we can assume 𝛼 ∈

[ 1
𝑘+1 ,

1
𝑘

)
for some integer 𝑘 ≥ 2.

Let 𝛼 ∈
(

1
𝑘+1 ,

1
𝑘

)
, then 𝛼 = 1

𝑘+1 + 𝜂 for some 0 < 𝜂 < 1
𝑘 (𝑘+1) . Let 𝐶 be given by

Theorem 1.1.161.1.16 on input 𝑘 and 𝛽 = 𝜂/5. Let 𝐺 be an 𝑛-vertex graph with 𝛿(𝐺) ≥ 𝛼𝑛

and observe that 𝐺 cannot be (1/(𝑘 + 1), 𝛽)-stable, due to its minimum degree condition.
Therefore, by Theorem 1.1.161.1.16, 𝐺 ∪𝐺 (𝑛, 𝑝) a.a.s. contains the square of a Hamilton cycle,
provided 𝑝 ≥ 𝐶𝑛−(𝑘−1)/(2𝑘−3) . Together with the lower bound in Proposition 1.1.151.1.15(i)(i), this
shows 𝑝𝛼 = 𝑛−(𝑘−1)/(2𝑘−3) .

Now we turn to the case 𝛼 = 1
𝑘+1 . Let 𝛽 > 0 and 𝐶 > 0 be given by Theorem 1.1.171.1.17

on input 𝑘; we can assume 𝛽 < 1/(6𝑘). Let 𝐺 be an 𝑛-vertex graph with 𝛿(𝐺) ≥
1
𝑘+1𝑛. If 𝐺 is ( 1

𝑘+1 , 𝛽)-stable, then, by Theorem 1.1.171.1.17, 𝐺 ∪ 𝐺 (𝑛, 𝑝) a.a.s. contains
the square of a Hamilton cycle, provided 𝑝 ≥ 𝐶𝑛−(𝑘−1)/(2𝑘−3) log1/(2𝑘−3) 𝑛. Otherwise
𝐺 is not ( 1

𝑘+1 , 𝛽)-stable and, under the same bound on 𝑝, the same conclusion holds
by Theorem 1.1.161.1.16. Together with the lower bound in Proposition 1.1.151.1.15(ii)(ii), this shows
𝑝 1

𝑘+1
= 𝑛−(𝑘−1)/(2𝑘−3) log1/(2𝑘−3) 𝑛.

The proof of Proposition 1.1.151.1.15 is standard, and thus we only give a sketch.

Sketch of the proof Proposition 1.1.151.1.15. Let 𝐴 and 𝐵 be the vertex classes of 𝐻𝛼 of size 𝛼𝑛
and (1 − 𝛼)𝑛, respectively.
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(i) Let 1
𝑘+1 < 𝛼 <

1
𝑘
, take 0 < 𝑐 < 1/𝑘−𝛼

2 , and observe that in 𝐵 there are a.a.s. at most
2𝑐𝑛 copies of 𝑃2

𝑘
(by an upper tail bound on the distribution of small subgraphs [110110]).

Assume for a contradiction that there is an embedding of𝐶2
𝑛 into𝐻𝛼∪𝐺 (𝑛, 𝑝). Then

𝐻𝛼∪𝐺 (𝑛, 𝑝) must contain 𝑛
𝑘

vertex-disjoint copies of 𝑃2
𝑘
, and only at most |𝐴| = 𝛼𝑛

of them have a vertex in 𝐴. Therefore there must be at least 𝑛
𝑘
− 𝛼𝑛 > 2𝑐𝑛 copies of

𝑃2
𝑘

in 𝐵, where the inequality follows from the choice of 𝑐. This gives a contradiction.

(ii) Let 𝛼 = 1
𝑘+1 and 𝑐 = 1

4𝑘 . A.a.s. (by the first moment method) 𝐵 contains at most
𝑛1−2𝑐 copies of 𝑃2

𝑘+1, and a.a.s. (by the second moment method) at least 𝑛1−𝑐 vertices
from 𝐵 are not contained in any copy of 𝑃2

𝑘
within 𝐵. Assume for a contradiction that

there is an embedding of 𝐶2
𝑛 into 𝐻𝛼 ∪𝐺 (𝑛, 𝑝). Then 𝐻𝛼 ∪𝐺 (𝑛, 𝑝) must contain a

𝑃2
𝑘+1-factor. Since |𝐵| = 𝑘 |𝐴|, the average size of the intersection of a copy of 𝑃2

𝑘+1
in such a factor with 𝐵 would be 𝑘 . However, given the restrictions above, it is not
possible to cover the vertices of 𝐺 (𝑛, 𝑝) [𝐵] with a family of squares of paths whose
average size is 𝑘 . This gives a contradiction.

We are left to prove Theorems 1.1.161.1.16 and 1.1.171.1.17. Before doing that in Sections 3.23.2
and 3.33.3 respectively, we discuss the idea of our embedding strategy and give an overview
of both proofs, together with some auxiliary lemmas. An important novel ingredient in our
proofs is an embedding lemma in randomly perturbed graphs (Lemma 3.1.33.1.3).

3.1 Proof overview of the extremal and the non-extremal case

We recall that, given a copy 𝐹 of the square of a path on 𝑘 vertices, we let 𝑣1, 𝑣2, . . . , 𝑣𝑘

be an ordering of the vertices of 𝐹 such that its edges are precisely 𝑣𝑖𝑣 𝑗 , for each 𝑖, 𝑗 with
1 ≤ |𝑖− 𝑗 | ≤ 2. We call (𝑣2, 𝑣1) and (𝑣𝑘−1, 𝑣𝑘) the end-tuples of 𝐹, we refer to 𝑣𝑖 as the 𝑖-th
vertex of 𝐹, and we refer to 𝐹 as the square of the path 𝑣1, 𝑣2, . . . , 𝑣𝑘 . For simplicity we will
talk about tuples (𝑢, 𝑣) belonging to a set 𝑉 , when implicitly meaning to 𝑉2. We remark
again that the choice of taking (𝑣2, 𝑣1) rather than (𝑣1, 𝑣2) as end-tuple is intentional. This
is to ensure that for both the end-tuples (𝑣2, 𝑣1) and (𝑣𝑘−1, 𝑣𝑘), it is always the second
vertex, i.e. 𝑣1 and 𝑣𝑘 respectively, to be an endpoint of the path 𝑣1, 𝑣2, . . . , 𝑣𝑘 .

3.1.1 Strategy

Let 𝐺 be any 𝑛-vertex graph with minimum degree 𝛼𝑛 and 𝛼 ∈
[ 1
𝑘+1 ,

1
𝑘

)
. Our goal is to

find the square of a Hamilton cycle 𝐶2
𝑛 in the perturbed graph 𝐺 ∪ 𝐺 (𝑛, 𝑝) and therefore

we will use a decomposition of 𝐸 (𝐶2
𝑛) into ‘deterministic edges’ (to be embedded to 𝐺)

and ‘random edges’ (to be embedded to𝐺 (𝑛, 𝑝)). To get the square of a path we would like
vertex-disjoint copies 𝐹1, . . . , 𝐹𝑡 of 𝑃2

𝑘
in the random graph𝐺 (𝑛, 𝑝) such that the following

holds. For each 𝑖 = 1, . . . , 𝑡 − 1, if we denote by (𝑦𝑖 , 𝑥𝑖) and (𝑢𝑖 , 𝑤𝑖) the end-tuples of
𝐹𝑖 , then 𝑤𝑖𝑥𝑖+1 is also an edge in 𝐺 (𝑛, 𝑝). Moreover, there exist 𝑡 − 1 additional vertices
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3 The square of a Hamilton cycle in randomly perturbed graphs

𝑣1, . . . , 𝑣𝑡−1 such that, for 𝑖 = 1, . . . , 𝑡 − 1, all four edges 𝑣𝑖𝑢𝑖 , 𝑣𝑖𝑤𝑖 , 𝑣𝑖𝑥𝑖+1, 𝑣𝑖𝑦𝑖+1 are edges
in 𝐺. This gives the square of a path on 𝑡 (𝑘 + 1) − 1 vertices with edges from 𝐺 ∪𝐺 (𝑛, 𝑝)
(c.f. Figure 3.13.1).

𝑤3

𝑢3

𝑦3

𝑥3

𝑣2

𝑤2

𝑢2

𝑦2

𝑥2

𝑣1

𝑤1

𝑢1

𝑦1

𝑥1

Figure 3.1: The square of a path with end-tuples (𝑥1, 𝑦1) and (𝑢3, 𝑤3) with our decomposition into random
(dashed blue) and deterministic (black) edges for 𝑘 = 4 and 𝑡 = 3.

Note that by requiring the edge 𝑤𝑡𝑥1 from 𝐺 (𝑛, 𝑝) and adding another vertex 𝑣𝑡 joined
to 𝑢𝑡 , 𝑤𝑡 , 𝑥1, 𝑦1 in 𝐺, we get the square of a cycle on 𝑡 (𝑘 + 1) vertices. However for parity
reasons this may not cover all 𝑛 vertices. Hence in order to find the square of a Hamilton
cycle and for some additional technical reasons, our proof(s) will allow some of 𝐹1, . . . , 𝐹𝑡

to be the squares of paths of different lengths.

3.1.2 Extremal case

For the extremal case (Theorem 1.1.171.1.17), suppose that 𝐺 is an 𝑛-vertex (𝛼, 𝛽)-stable graph
with 𝛼 = 1

𝑘+1 , and let 𝑝 ≥ 𝐶 (log 𝑛)1/(2𝑘−3)𝑛−(𝑘−1)/(2𝑘−3) . The definition of stability
(Definition 1.1.101.1.10) gives a partition 𝐴 ∪ 𝐵 of 𝑉 (𝐺) in which the size of 𝐵 is roughly 𝑘
times the size of 𝐴, the minimum degree of 𝐺 [𝐴, 𝐵] is at least 𝛼𝑛/4, and all but few
vertices of 𝐴 (resp. 𝐵) are adjacent to all but few vertices of 𝐵 (resp. 𝐴). Our proof will
follow three steps.

In the first step, we would like to embed copies 𝐹𝑖 of 𝑃2
𝑘

into 𝐵 and vertices 𝑣𝑖 into 𝐴,
following the decomposition described above. However, this is only possible if |𝐵| = 𝑘 |𝐴|
and, therefore, we first embed squares of short paths of different lengths to ensure this
parity condition holds in the remainder. We find a family F1 of copies of squares of paths
with end-tuples in 𝐵, such that after removing the vertices 𝑉1 =

⋃
𝐹∈F1 𝑉 (𝐹) , we are

left with two sets 𝐴1 = 𝐴 \ 𝑉1 and 𝐵1 = 𝐵 \ 𝑉1 with |𝐵1 | = 𝑘 ( |𝐴1 | − |F1 |). Note that
we construct the family F1 in such a way that we have |𝐵1 | = 𝑘 ( |𝐴1 | − |F1 |) rather than
|𝐵1 | = 𝑘 |𝐴1 |, because each square path in F1 still needs to be connected into the final
square of a Hamilton cycle, and for each of these connections we shall use one vertex in 𝐴1.
The precise way we find F1 depends on the sizes of 𝐴 and 𝐵, but in all cases we will ensure
that the vertices in the end-tuples of each 𝐹 ∈ F1 are neighbours of all but few vertices of
𝐴. When |𝐵| > 𝑘

𝑘+1𝑛, the family F1 consists of copies of 𝑃2
𝑘+1 inside of 𝐵. Its existence is

guaranteed by the following lemma using the minimum degree of 𝐺 [𝐵].
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3 The square of a Hamilton cycle in randomly perturbed graphs

Lemma 3.1.1 (Embedding lemma in randomly perturbed graphs). For all integers 𝑘 ≥ 2
and 𝑡 ≥ 1, there exists 𝐶 > 0 such that the following holds for any 0 ≤ 𝑚 ≤ 𝑛/(32𝑘𝑡)
and any 𝑛-vertex graph 𝐺 of minimum degree 𝛿(𝐺) ≥ 𝑚 and maximum degree Δ(𝐺) ≤
𝑛/(32𝑘𝑡). For 𝑝 ≥ 𝐶 (log 𝑛)1/(2𝑘−3)𝑛−(𝑘−1)/(2𝑘−3) , a.a.s. the perturbed graph 𝐺 ∪𝐺 (𝑛, 𝑝)
contains 𝑡𝑚 + 𝑡 pairwise vertex-disjoint copies of the square of a path on 𝑘 + 1 vertices.

When |𝐵| ≤ 𝑘
𝑘+1𝑛, the family F1 consists of copies of 𝑃2

2𝑘+3 with all vertices in 𝐵, except
the (𝑘 + 1)-st and (𝑘 + 3)-rd, that belong to 𝐴.

Our second step is to cover the vertices in 𝐴1 and 𝐵1 that do not have a high degree to
the other part. For this we will find another family F2 of copies of squares of paths with
end-tuples in 𝐵. For any vertex 𝑣 in 𝐴1 with small degree into 𝐵1, we find a copy of 𝑃2

2𝑘+1
with 𝑣 being the (𝑘 +1)-st vertex and all the remaining vertices belonging to 𝐵1. Similarly,
for any vertex 𝑣 in 𝐵1 with small degree into 𝐴1, we find a copy of 𝑃2

3𝑘+2 consisting of three
copies of 𝑃2

𝑘
in 𝐵 connected by edges and two vertices from 𝐴1, where 𝑣 is in the middle

copy of 𝑃2
𝑘
. We need that 𝑣 is in the middle copy, because then we can again ensure that the

end-tuples of each 𝐹 ∈ F2 see all but few vertices of 𝐴. Moreover, with 𝑉2 =
⋃
𝐹∈F2 𝑉 (𝐹)

and 𝐴2 = 𝐴1 \𝑉2 and 𝐵2 = 𝐵1 \𝑉2, we have |𝐵2 | = 𝑘 ( |𝐴2 | − |F1 | − |F2 |).
At this point, each of the vertices in 𝐴2 (resp. 𝐵2) is adjacent to all but few vertices

of 𝐵2 (resp. 𝐴2) and we kept the parity intact. In the third step, we let F3 be pairwise
disjoint random copies of 𝑃2

𝑘
covering 𝐵2, which is possible by Theorem 2.5.22.5.2 with our 𝑝

and because |𝐵2 | is divisible by 𝑘 .
We let F = F1 ∪ F2 ∪ F3 and, for each 𝐹 ∈ F , denote its end-tuples by (𝑦𝐹 , 𝑥𝐹) and

(𝑢𝐹 , 𝑤𝐹). We now reveal additional edges of 𝐺 (𝑛, 𝑝) and encode their presence in an
auxiliary directed graph T on vertex set F as follows. There is a directed edge (𝐹, 𝐹 ′) if
and only if the edge 𝑤𝐹𝑥𝐹′ appears in 𝐺 (𝑛, 𝑝). It is easy to see that all directed edges in
T are revealed with probability 𝑝 independently of all the others and, therefore, we can
find a directed Hamilton cycle

−→
𝐶 in T with Theorem 2.5.42.5.4. We finally match to each edge

(𝐹, 𝐹 ′) of
−→
𝐶 a vertex 𝑣 ∈ 𝐴2 such that 𝑢𝐹 , 𝑤𝐹 , 𝑥𝐹′, 𝑦𝐹′ are all neighbours of 𝑣 in the graph

𝐺. Owing to the high minimum degree conditions, that this is possible easily follows from
Hall’s matching theorem. Thus we get the square of a Hamilton cycle, as wanted.

We will prove Lemma 3.1.13.1.1 in Section 3.63.6.

3.1.3 Non-extremal case

For the non-extremal case (Theorem 1.1.161.1.16), assume that 𝐺 is not ( 1
𝑘+1 , 𝛽)-stable and let

𝑝 ≥ 𝐶𝑛−(𝑘−1)/(2𝑘−3) . Then we apply the regularity lemma to 𝐺 and we obtain the reduced
graph 𝑅. By adjusting an argument of Balogh, Mousset, and Skokan [99], we can prove the
following stability result.

Lemma 3.1.2. For any integer 𝑘 ≥ 2, and 0 < 𝛽 < 1/12 there exists 𝑑 > 0 such that the
following holds for any 0 < 𝜀 < 𝑑/4, 4𝛽 ≤ 𝛼 ≤ 1/3, and 𝑡 ≥ 10/𝑑. Let 𝐺 be an 𝑛 vertex

43



3 The square of a Hamilton cycle in randomly perturbed graphs

graph with minimum degree 𝛿(𝐺) ≥ (𝛼 − 𝑑/2)𝑛 that is not (𝛼, 𝛽)-stable and let 𝑅 be the
(𝜀, 𝑑)-reduced graph for some (𝜀, 𝑑)-regular partition 𝑉0, . . . , 𝑉𝑡 of 𝐺. Then 𝑅 contains a
matching 𝑀 of size (𝛼 + 2𝑘𝑑)𝑡.

For completeness, we give the proof in a supplementary section of this chapter, Sec-
tion 3.73.7. With Lemma 3.1.23.1.2, it is not hard to show that the reduced graph 𝑅 can be
vertex-partitioned into copies of stars 𝐾1,𝑘 and matching edges 𝐾1,1, such that there are
not too many stars22. We would like to cover the clusters corresponding to each such star
and matching edge with the square of a Hamilton path, and then connect these square
paths to get the square of a Hamilton cycle. However, since we want to avoid the addi-
tional log-term in the probability we are working with, for this strategy to work in the
randomly perturbed graph, we need that in each star the centre cluster is larger than the
other clusters. Moreover, to ensure that we can connect the Hamilton paths, we need to
setup some connections between the stars and matching edges.

Therefore, we first remove some vertices from the leaf clusters of each star to make it
unbalanced and ensure that all pairs are super-regular. Then we label the stars and matching
edges arbitrarily as 𝑄1, . . . , 𝑄𝑠, and for 𝑖 = 1, . . . , 𝑠 find a copy 𝐹𝑖 of 𝑃2

6 to connect 𝑄𝑖 and
𝑄𝑖+1 (where indices are modulo 𝑠). More precisely, for each star 𝑄𝑖 , one end-tuple of 𝐹𝑖−1

and one of 𝐹𝑖 belong to the centre cluster of 𝑄𝑖 , while the other two end-tuples belong to
the same leaf cluster of 𝑄𝑖 . Moreover, for each matching edge 𝑄𝑖 , each of its two clusters
contains exactly one end-tuple, one from 𝐹𝑖−1 and the other from 𝐹𝑖 . We will refer to these
squares of paths as the connecting (squares of) paths. Let 𝑉0 be the set of vertices no
longer contained in any of the stars or matching edges. We cover each 𝑣 ∈ 𝑉0 by appending
𝑣 to one of the connecting paths. Here we use that any vertex 𝑣 ∈ 𝑉0 has degree at least
( 1
𝑘+1 − 𝛼)𝑛 and, as we do not have too many stars, the vertex 𝑣 has also many neighbours

in clusters which are not centres of stars. This is crucial, because it allows us to ensure that
the relations between the sizes of the sets in any star are suitable for an application of the
following lemma, which is the main technical ingredient in the proof.

Lemma 3.1.3 (Embedding lemma in randomly perturbed graphs). For any 𝑘 ≥ 2 and any
0 < 𝛿′ ≤ 𝑑 < 1 there exist 𝛿0, 𝛿1, 𝜀 > 0 with 𝛿′ ≥ 𝛿0 > 2𝛿1 > 𝜀 and 𝐶 > 0 such that
the following holds. Let 𝑉,𝑈1, . . . ,𝑈𝑘 be pairwise disjoint sets such that |𝑉 | = 𝑛 + 4,
(1 − 𝛿0)𝑛 ≤ |𝑈1 | = · · · = |𝑈𝑘 | ≤ (1 − 𝛿1)𝑛 and 𝑛 − |𝑈1 | ≡ −1 (mod 3𝑘 − 1). Suppose
that (𝑉,𝑈𝑖) is an (𝜀, 𝑑)-super-regular pair with respect to a graph𝐺 for each 𝑖 = 1, . . . , 𝑘 ,
and (𝑥, 𝑥 ′) and (𝑦, 𝑦′) are two tuples from 𝑉 such that both tuples have 𝑑2𝑛/2 common
neighbours in 𝑈𝑖 for each 𝑖 = 1, . . . , 𝑘 . Furthermore, let 𝐺 (𝑉, 𝑝) and 𝐺 (𝑈1, . . . ,𝑈𝑘 , 𝑝)
be random graphs with 𝑝 ≥ 𝐶𝑛−(𝑘−1)/(2𝑘−3) .

Then a.a.s. there exists the square of a Hamilton path in 𝐺 [𝑉,𝑈1, . . . ,𝑈𝑘] ∪𝐺 (𝑉, 𝑝) ∪

2We remark that covers of the reduced graph by stars were used in [1010, 7979]. However, in contrast to [1010], for
our purposes it is necessary that we cover the reduced graph by matching edges as well.
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𝐺 (𝑈1, . . . ,𝑈𝑘 , 𝑝) ∪ {𝑥𝑥 ′, 𝑦𝑦′} covering 𝑉,𝑈1, . . . ,𝑈𝑘 , and with end-tuples (𝑥, 𝑥 ′) and
(𝑦, 𝑦′).

It is worth to explain why the size of the leaf clusters needs to be slightly smaller than the
size of the centre cluster. Proposition 1.1.151.1.15 shows that if𝐺 is the complete bipartite graph
with parts of size 1

𝑘+1𝑛 and 𝑘
𝑘+1𝑛, then, in order for 𝐺 ∪𝐺 (𝑛, 𝑝) to a.a.s. contain the square

of a Hamilton cycle, we need 𝑝 ≥ 𝐶𝑛−(𝑘−1)/(2𝑘−3) log1/(2𝑘−3) for some constant 𝐶 > 0.
Suppose now that 𝑉,𝑈1, . . . ,𝑈𝑘 are pairwise disjoint sets all with the same size 𝑛 and that
(𝑉,𝑈𝑖) is an (𝜀, 𝑑)-super-regular pair with respect to a graph 𝐺 for each 𝑖 = 1, . . . , 𝑘 . If
we want 𝐺 [𝑉,𝑈1, . . . ,𝑈𝑘] ∪ 𝐺 ((𝑘 + 1)𝑛, 𝑝) to a.a.s. contain the square of a Hamilton
cycle, we need again 𝑝 ≥ 𝐶 ′𝑛−(𝑘−1)/(2𝑘−3) log1/(2𝑘−3) 𝑛 for some constant 𝐶 ′ > 0. In fact,
while we are only assuming that the pairs (𝑉,𝑈𝑖) are super-regular, the same bound on 𝑝 is
needed even when 𝐺 [𝑉,𝑈𝑖] is complete bipartite for each 𝑖 ∈ [𝑘] since, in that case, 𝐺 is
the complete bipartite graph with parts of size 𝑛 and 𝑘𝑛 and the lower bound on 𝑝 follows
from Proposition 1.1.151.1.15. The unbalanced setting is therefore crucial to avoid the log-term
in 𝑝 and allows us to prove the stability theorem with a lower edge-density.

Lemma 3.1.33.1.3 implies that for any star 𝑄𝑖 we can connect the end-tuples of 𝐹𝑖−1 and 𝐹𝑖
which belong to the centre cluster of 𝑄𝑖 , while covering all vertices in the clusters of 𝑄𝑖 .
Similarly for the matching edges we use the following lemma.

Lemma 3.1.4 (Embedding lemma in randomly perturbed graphs). For any 0 < 𝑑 < 1
there exist 𝜀 > 0 and 𝐶 > 0 such that the following holds for sets 𝑈,𝑉 with |𝑉 | = 𝑛 and
3
4𝑛 ≤ |𝑈 | ≤ 𝑛. Let (𝑈,𝑉) be an (𝜀, 𝑑)-super-regular pair with respect to a graph 𝐺, and
(𝑥, 𝑥 ′) and (𝑦, 𝑦′) be tuples from 𝑉 and 𝑈, respectively, such that the vertices from the
tuples have 1

2𝑑
2𝑛 common neighbours in 𝑈 and 𝑉 , respectively. Furthermore let 𝐺 (𝑈, 𝑝)

and 𝐺 (𝑉, 𝑝) be random graphs with 𝑝 ≥ 𝐶𝑛−1.
Then a.a.s. there exists the square of a Hamilton path in𝐺 [𝑈,𝑉] ∪𝐺 (𝑈, 𝑝) ∪𝐺 (𝑉, 𝑝) ∪

{𝑥𝑥 ′, 𝑦𝑦′} covering𝑈,𝑉 with end-tuples (𝑥, 𝑥 ′) and (𝑦, 𝑦′).

Together this gives the square of a Hamilton cycle in 𝐺 ∪ 𝐺 (𝑛, 𝑝). We will give the
proofs of Lemmas 3.1.33.1.3 and 3.1.43.1.4 in Section 3.53.5.

3.2 Proof of the extremal Theorem 1.1.171.1.17

Proof of Theorem 1.1.171.1.17. Given an integer 𝑘 ≥ 2, define 𝛾 = 1
32𝑘 (𝑘+1) . Then let 𝐶2 be

given by Lemma 3.1.13.1.1 on input 𝑘 and 𝑡 = 𝑘 + 1, and let 𝐶4 be given by Theorem 2.5.42.5.4.
Finally set 𝐶 = 4𝐶2 + 8𝑘𝐶4 + 8. Next, we let 0 < 𝛽 ≤ 1

100𝑘3 𝛾. Given 𝑛, let 0 ≤ 𝑎 ≤ 𝑘

be such that 𝑛 = (𝑘 + 1) ⌊ 1
𝑘+1𝑛⌋ + 𝑎 and 𝑝 ≥ 𝐶 (log 𝑛)1/(2𝑘−3)𝑛−(𝑘−1) (2𝑘−3) . We reveal a

subgraph of 𝐺 (𝑛, 𝑝) in four rounds 𝐺𝑖 ∼ 𝐺 (𝑛, 𝑝/4) for 𝑖 = 1, 2, 3, 4. By Lemma 2.5.12.5.1 and
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a union bound over all graphs on at most 4𝑘 vertices, we can a.a.s. assume that

𝐺1 contains a copy of the graph 𝐹 in any vertex-set of size at least 𝛽𝑛, (3.2.1)

where 𝐹 is any graph on at most 4𝑘 vertices with 𝑚1(𝐹) ≤ 𝑚1(𝑃2
𝑘
) = 2𝑘−3

𝑘−1 .
Let 𝐺 be an 𝑛-vertex graph with minimum degree at least 1

𝑘+1𝑛 that is ( 1
𝑘+1 , 𝛽)-stable.

Then there exists a partition of 𝑉 (𝐺) into 𝐴 and 𝐵 that satisfies Definition 1.1.101.1.10. As
outlined in Section 3.1.23.1.2 our proof will consist of three steps. We will successively build
parts of the square of a Hamilton cycle, first covering some vertices to balance the partition,
secondly covering vertices of low degree to the other side, and then covering the remaining
vertices. Finally we will connect these parts into the square of a Hamilton cycle.

Balancing the partition. Our goal is to find a family F1 of pairwise disjoint copies of
squares of paths with end-tuples in 𝐵, such that the size of the set 𝑉1 =

⋃
𝐹∈F1 𝑉 (𝐹) is

smaller than 3𝑘2𝛽𝑛, and after removing the vertices of 𝑉1 we are left with two sets

𝐴1 = 𝐴 \𝑉1 and 𝐵1 = 𝐵 \𝑉1 such that |𝐵1 | = 𝑘 ( |𝐴1 | − |F1 |) . (3.2.2)

We distinguish between the cases |𝐴| = ⌊ 𝑛
𝑘+1⌋ +𝑚 with 1 ≤ 𝑚 ≤ 𝛽𝑛 and |𝐴| = ⌊ 𝑛

𝑘+1⌋ −𝑚
with 0 ≤ 𝑚 ≤ 𝛽𝑛. Suppose first that |𝐴| = ⌊ 𝑛

𝑘+1⌋ + 𝑚 for some 1 ≤ 𝑚 ≤ 𝛽𝑛. In this
case we want |F1 | = 𝑚 and the family F1 will consist of 𝑚 − 1 copies of 𝑃2

3𝑘+2 and one
copy of 𝑃2

3𝑘+2+𝑎, such that for each of these 𝑚 copies, exactly three vertices are in 𝐴, both
end-tuples are in 𝐵 and each end-tuple has at least |𝐴| − 2𝛽𝑛 common neighbours in 𝐴.

We can do this greedily in 𝐺 ∪ 𝐺1. Assume that during this process we have to find
a copy of 𝑃2

3𝑘+2 or 𝑃2
3𝑘+2+𝑎, i.e. a copy of 𝑃2

3𝑘+𝑏 for some 2 ≤ 𝑏 ≤ 𝑘 + 2, such that the
above conditions are satisfied. There are three vertices 𝑣1, 𝑣2 and 𝑣3 in 𝑃2

3𝑘+𝑏, such that
none of them is in an end-tuple of 𝑃2

3𝑘+𝑏, they do not induce a triangle in 𝑃2
3𝑘+𝑏, and the

subgraph 𝐻 = 𝑃2
3𝑘+𝑏 \ {𝑣1, 𝑣2, 𝑣3} satisfies 𝑚1(𝐻) ≤ 𝑚1(𝑃2

𝑘
) (see Figure 3.23.2). We can

avoid an induced triangle because there are at least 3𝑘 + 𝑏 − 4 ≥ 4 vertices to choose from
that are not in end-tuples. Moreover we can guarantee the bound on the density because,
when distributing the three vertices evenly, the longest square of a path in 𝐻 has at most
⌈(3𝑘 + 𝑏 − 3)/4⌉ ≤ 𝑘 vertices. We remark that we can always ask {𝑣1, 𝑣2, 𝑣3} to be an
independent set in 𝑃2

3𝑘+𝑏 when 𝑘 > 2.

𝑣3

𝑣2𝑣1

Figure 3.2: Subgraph 𝐻 (solid red) obtained from 𝑃2
3𝑘+𝑏 after removing three vertices 𝑣1, 𝑣2, 𝑣3 (red) for

𝑏 = 𝑘 + 2 and 𝑘 = 3. The 1-density of 𝐻 is the same as 𝑃2
𝑘
.
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Then we find a copy of 𝑃2
3𝑘+𝑏 by embedding the vertices 𝑣1, 𝑣2, 𝑣3 in 𝐴 and the other

vertices in 𝐵 in the following way. Let 𝐴′ ⊆ 𝐴 be the set of vertices of 𝐴 that have degree at
least |𝐵|−𝛽𝑛 into 𝐵 and have not yet been covered, and observe that |𝐴′ | ≥ |𝐴|−𝛽𝑛−3|F1 | ≥
𝛽𝑛. Then, since 𝑚1(𝑃3) = 1 ≤ 𝑚1(𝑃2

𝑘
) and given (3.2.13.2.1), the random graph 𝐺1 [𝐴′]

contains a path on three vertices 𝑢1, 𝑢2, 𝑢3. Next, let 𝐵′ ⊆ 𝐵 be the set of vertices of 𝐵
that have degree at least |𝐴| − 𝛽𝑛 into 𝐴, are common neighbours of 𝑢1, 𝑢2, 𝑢3 and have
not yet been covered, and observe that |𝐵′ | ≥ |𝐵| − 𝛽𝑛 − 3𝛽𝑛 − (3𝑘 + 𝑘 + 2 − 3) |F1 | ≥ 𝛽𝑛.
Since 𝑚1(𝐻) = 𝑚1(𝑃2

𝑘
), using again (3.2.13.2.1), the random graph 𝐺1 [𝐵′] contains a copy of

𝐻, that together with the vertices 𝑢1, 𝑢2, 𝑢3 and some edges from 𝐺 gives a copy of 𝑃2
3𝑘+𝑏.

In particular, since each vertex in the end-tuples of 𝑃2
3𝑘+𝑏 is embedded in 𝐵′, then, by

definition of 𝐵′, each end-tuple has at least |𝐴| − 2𝛽𝑛 common neighbours in 𝐴. In view
of (3.2.23.2.2), we get that |𝐴1 | = ⌊ 𝑛

𝑘+1⌋ − 2𝑚,

|𝐵1 | = 𝑛 − |𝐴| − (3𝑘 − 1)𝑚 − 𝑎 = 𝑘

⌊ 𝑛

𝑘 + 1

⌋
− 3𝑘𝑚 = 𝑘 ( |𝐴1 | − |F1 |) ,

and |𝑉1 | = (𝑚 − 1) (3𝑘 + 2) + 3𝑘 + 2 + 𝑎 ≤ (4𝑘 + 3)𝑚 ≤ 3𝑘2𝛽𝑛.
Now suppose that |𝐴| = ⌊ 𝑛

𝑘+1⌋ − 𝑚 for some 0 ≤ 𝑚 ≤ 𝛽𝑛. In this case, the family F1

will consist of some copies of 𝑃2
𝑘+1 and some copies of 𝑃2

2𝑘+1, such that, for each copy,
all vertices are in 𝐵 and each end-tuple has at least |𝐴| − 8𝑘2𝛽𝑛 common neighbours in
𝐴; in particular, we do no touch the set 𝐴. We start from F1 = ∅ and let 𝐵★ = {𝑣 ∈ 𝐵 :
deg(𝑣, 𝐵) ≥ 4𝑘2𝛽𝑛} be the set of vertices in 𝐵 with high degree to 𝐵 in 𝐺. Since by
Definition 1.1.101.1.10 we have 𝑒(𝐺 [𝐵]) ≤ 𝛽𝑛2, then |𝐵★| ≤ 𝑛

2𝑘2 . Moreover if 𝑣 ∈ 𝐵 \ 𝐵★, then
deg(𝑣, 𝐴) ≥ 𝛿(𝐺)−deg(𝑣, 𝐵) ≥ 𝑛

𝑘+1−4𝑘2𝛽𝑛 ≥ |𝐴|−4𝑘2𝛽𝑛. With𝑚0 = max{𝑚−|𝐵★|, 0},
we have 𝛿(𝐺 [𝐵 \ 𝐵★]) ≥ 𝑚0, as

𝛿(𝐺 [𝐵 \ 𝐵★]) ≥ 𝑛

𝑘 + 1
− |𝐴| − |𝐵★| = 𝑛

𝑘 + 1
−

⌊ 𝑛

𝑘 + 1

⌋
+ 𝑚 − |𝐵★| ≥ 𝑚 − |𝐵★| .

Moreover, by definition of 𝐵★, we have Δ(𝐺 [𝐵 \ 𝐵★]) ≤ 4𝑘2𝛽𝑛 ≤ 𝛾 |𝐵 \ 𝐵★|, where the
last inequality follows from the choice of 𝛽 and |𝐵 \ 𝐵★| ≥ ( 𝑘

𝑘+1 −
1

2𝑘2 )𝑛. Therefore we can
use Lemma 3.1.13.1.1 with parameters 𝑘 and 𝑡 = 𝑘 + 1 and we a.a.s. find (𝑘 + 1)𝑚0 + 𝑎 pairwise
disjoint copies of 𝑃2

𝑘+1 in (𝐺 ∪ 𝐺2) [𝐵 \ 𝐵★], which we add to F1. All the vertices of
such copies belong to 𝐵 \ 𝐵★ and thus in particular each end-tuple has at least |𝐴| − 8𝑘2𝛽𝑛

common neighbours in 𝐴.
Next we want to find 𝑚 − 𝑚0 ≤ min{|𝐵★|, 𝑚} copies of 𝑃2

2𝑘+1 in 𝐵 disjoint from any
graph already in F1. First observe that the graph 𝐻 obtained by taking the disjoint union
of two copies of 𝑃2

𝑘
with the addition of the edge between the last vertex of the first copy

and the first vertex of the second copy satisfies 𝑚1(𝐻) ≤ 𝑚1(𝑃2
𝑘
). The graph 𝐻 will be

embedded in 𝐺1 and we will turn that into an embedding of 𝑃2
2𝑘+1, by adding a vertex and

four edges of 𝐺. We can again do this greedily in 𝐺 ∪ 𝐺1. First we remove vertices from
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3 The square of a Hamilton cycle in randomly perturbed graphs

𝐵★ such that |𝐵★| = 𝑚 −𝑚0 ≤ 𝑚 ≤ 𝛽𝑛. Then we let 𝐵′ be the set of vertices in 𝐵 with less
than |𝐴| − 𝛽𝑛 neighbours in 𝐴, and note that |𝐵′ | ≤ 𝛽𝑛. We then pick a vertex 𝑤 from 𝐵★,
not yet covered, and denote by 𝑁𝑤 the set of neighbours of 𝑤 in 𝐵 \ (𝐵★∪ 𝐵′) in the graph
𝐺, that have not yet been covered. Then

|𝑁𝑤 | ≥ 4𝑘2𝛽𝑛 − |𝐵′ | − |𝐵★| − ((𝑘 + 1)𝑚0 + 𝑎) (𝑘 + 1) − (𝑚 − 𝑚0) (2𝑘 + 1 − 1) ≥ 𝛽𝑛 .

Therefore, since 𝑚1(𝐻) ≤ 𝑚1(𝑃2
𝑘
) and using (3.2.13.2.1), the random graph 𝐺1 [𝑁𝑤] contains

a copy of this 𝐻, that together with 𝑤 and four edges from 𝐺, gives a copy of 𝑃2
2𝑘+1 as

desired. The end-tuples of this copy belong to 𝐵 \ 𝐵′ and thus each of them has at least
|𝐴| − 2𝛽𝑛 common neighbours in 𝐴. Once this is done, in view of (3.2.23.2.2), we indeed get
|𝐴1 | = |𝐴| = ⌊ 1

𝑘+1𝑛⌋ − 𝑚,

|𝐵1 | = 𝑛 − |𝐴| − (𝑘 + 1) ((𝑘 + 1)𝑚0 + 𝑎) − (2𝑘 + 1) (𝑚 − 𝑚0)

= 𝑘

( ⌊ 𝑛

𝑘 + 1

⌋
− 𝑎 − 2𝑚 − 𝑘𝑚0

)
= 𝑘 ( |𝐴1 | − |F1 |) ,

and |𝑉1 | = ((𝑘 + 1)𝑚0 + 𝑎) (𝑘 + 1) + (𝑚 − 𝑚0) (2𝑘 + 1) ≤ (𝑘 + 1)2𝑚 + 𝑘 (𝑘 + 1) ≤ 3𝑘2𝛽𝑛.
This finishes the first step of our proof.

Covering low degree vertices. In this step the goal is to find a family F2 of pairwise
disjoint copies of 𝑃2

2𝑘+1 and 𝑃2
3𝑘+2 that cover all vertices from 𝐴 (respectively 𝐵) that do

not have high degree to 𝐵 (respectively 𝐴) and such that, for each copy, each end-tuple is
in 𝐵 and has at least |𝐴| − 16𝑘2𝛽𝑛 common neighbours in 𝐴. We will do this such that
after removing 𝑉2 =

⋃
𝐹∈F2 𝑉 (𝐹) we are left with two sets 𝐴2 = 𝐴1 \ 𝑉2 and 𝐵2 = 𝐵1 \ 𝑉2

such that

|𝐵2 | = 𝑘 ( |𝐴2 | − |F1 | − |F2 |) . (3.2.3)

We let 𝐴′ = {𝑣 ∈ 𝐴1 : deg(𝑣, 𝐵) ≤ |𝐵|−𝛽𝑛} and 𝐵′ = {𝑣 ∈ 𝐵1 : deg(𝑣, 𝐴) ≤ |𝐴|−8𝑘2𝛽𝑛},
and note that |𝐴′ | ≤ 𝛽𝑛 and |𝐵′ | ≤ 𝛽𝑛. Let F2 = ∅. We start by taking care of the vertices
in 𝐴′ and we cover each of them with a copy of 𝑃2

2𝑘+1 with all other vertices in 𝐵1 \ 𝐵′.
For 𝑢 ∈ 𝐴′, let 𝑁𝑢 be the set of neighbours of 𝑢 in 𝐵1 \ 𝐵′ in 𝐺 that are not yet covered by
any graph in F2 and observe that

|𝑁𝑢 | ≥ deg(𝑢, 𝐵) − |𝐵 \ 𝐵1 | − |𝐵′ | − 2𝑘 |F2 | ≥ 𝑛
4(𝑘+1) − 3𝑘2𝛽𝑛 − 𝛽𝑛 − 2𝑘𝛽𝑛 ≥ 𝛽𝑛 ,

where we used that deg(𝑢, 𝐵) ≥ 𝑛
4(𝑘+1) as𝐺 is ( 1

𝑘+1 , 𝛽)-stable (see Definition 1.1.101.1.10). Note
that the graph 𝐻 obtained by taking the union of two copies of 𝑃2

𝑘
with the addition of an

edge between two end-vertices satisfies 𝑚1(𝐻) ≤ 𝑚1(𝑃2
𝑘
). Therefore, using (3.2.13.2.1), the

random graph 𝐺1 [𝑁𝑢] contains a copy of 𝐻 and together with 𝑢 and four edges of 𝐺, this
gives the desired copy of 𝑃2

2𝑘+1. Both end-tuples of this copy of 𝑃2
2𝑘+1 belong to 𝐵1 \ 𝐵′
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3 The square of a Hamilton cycle in randomly perturbed graphs

and, thus, have at least |𝐴| − 16𝑘2𝛽𝑛 common neighbours in 𝐴. We add this copy of 𝑃2
2𝑘+1

to F2 and we continue until we cover all vertices of 𝐴′.
Now we cover each vertex from 𝐵′ with a copy of 𝑃2

3𝑘+2, where each copy uses one
vertex from 𝐵′, two vertices from 𝐴1 \ 𝐴′ and the other 3𝑘 − 1 vertices from 𝐵1 \ 𝐵′. Let
𝑤 ∈ 𝐵′ and 𝑢1, 𝑢2 ∈ 𝐴1 \ 𝐴′ be vertices not yet covered. We denote by 𝑁𝑤 the subset of
𝐵1 \ 𝐵′ which contains the common neighbours of 𝑤, 𝑢1, 𝑢2 in 𝐺 that are not yet covered.
Observe that the definitions of 𝐴′ and 𝐵′ give

|𝑁𝑤 | ≥ (𝛿(𝐺) − deg(𝑤, 𝐴)) − (|𝐵| − deg(𝑢1, 𝐵)) − (|𝐵| − deg(𝑢2, 𝐵))+

− |𝐵 \ 𝐵1 | − 3𝑘 |𝐵′ | − 2𝑘 |𝐴′ |

≥ 𝑛
𝑘+1 − (|𝐴| − 8𝑘2𝛽𝑛) − 𝛽𝑛 − 𝛽𝑛 − 3𝑘2𝛽𝑛 − 3𝑘𝛽𝑛 − 2𝑘𝛽𝑛 ≥ 𝛽𝑛 .

Similarly as above, using (3.2.13.2.1), the random graph 𝐺1 [𝑁𝑤] contains a copy of a graph
𝐻 on 3𝑘 − 1 vertices, that together with 𝑤, 𝑢1, 𝑢2 and some edges from 𝐺, gives a copy
of 𝑃2

3𝑘+2. The end-tuples of the copy of 𝑃2
3𝑘+2 belong to 𝐵1 \ 𝐵′ and, thus, have at least

|𝐴| − 16𝑘2𝛽𝑛 common neighbours in 𝐴. We add the copy of 𝑃2
3𝑘+2 to F2 and repeat until

all of 𝐵′ is covered. We then get (3.2.33.2.3), because of (3.2.23.2.2) and since for each graph added
to F2 the ratio of vertices removed from 𝐴1 and 𝐵1 is one to 2𝑘 or two to 3𝑘 . Moreover,
we have deg(𝑣, 𝐵2) ≥ |𝐵2 | − 𝛽𝑛 for 𝑣 ∈ 𝐴2, deg(𝑣, 𝐴2) ≥ |𝐴2 | − 8𝑘2𝛽𝑛 for 𝑣 ∈ 𝐵2, and
|𝑉2 | ≤ 6𝑘𝛽𝑛, which implies |𝐴2 | ≥ |𝐴| − |𝑉1 | − |𝑉2 | ≥ 𝑛

2(𝑘+1) .
Covering everything and connecting. In this step we first cover 𝐵2 with copies of 𝑃2

𝑘
.

Then, using the uncovered vertices in 𝐴2, we connect all the copies of squares of paths
found so far, to get the square of a Hamilton cycle. Observe that after the cleaning steps, 𝑘
divides |𝐵2 | by (3.2.33.2.3) and thus Theorem 2.5.22.5.2 implies that a.a.s the random graph 𝐺3 [𝐵2]
has a 𝑃2

𝑘
-factor. We denote the family of such copies of 𝑃2

𝑘
by F3, and observe that (3.2.33.2.3)

implies |F3 | = |𝐴2 | − |F1 | − |F2 |.
We let F = F1∪F2∪F3 be the family of all the squares of paths that we have constructed

and, for each 𝐹 ∈ F , denote the end-tuples of 𝐹 by (𝑦𝐹 , 𝑥𝐹) and (𝑢𝐹 , 𝑤𝐹). Note that by
construction, each pair 𝑥𝐹 , 𝑦𝐹 and 𝑢𝐹 , 𝑤𝐹 has at least |𝐴2 | − 16𝑘2𝛽𝑛 common neighbours
in 𝐴2. We now reveal the edges of𝐺4 and construct an auxiliary directed graph T on vertex
set F as follows. Given any two 𝐹, 𝐹 ′ ∈ F , there is a directed edge (𝐹, 𝐹 ′) if and only if
the edge 𝑤𝐹𝑥𝐹′ appears in 𝐺4. Since all directed edges in T are revealed with probability
1
4 𝑝 independently of all the others, T is distributed as

−→
𝐺 ( |F |, 1

4 𝑝). Then, as |F | ≥ 1
2𝑘 𝑛

and 1
4 𝑝 ≥ 𝐶4

log |F |
|F | , there a.a.s. is a directed Hamilton cycle

−→
𝐶 in T by Theorem 2.5.42.5.4.

In order to get the desired square of a Hamilton path, it remains to match the edges
(𝐹, 𝐹 ′) of

−→
𝐶 to the vertices 𝑣 ∈ 𝐴2 such that 𝑢𝐹 , 𝑤𝐹 , 𝑥𝐹′, 𝑦𝐹′ are all neighbours of 𝑣 in the

graph𝐺. Observe indeed that |𝐸 (−→𝐶 ) | = |F1 | + |F2 | + |F3 | = |𝐴2 |, the cycle
−→
𝐶 gives a cyclic

ordering of the squares of paths in F , and between consecutive copies (𝐹, 𝐹 ′) we have the
edge 𝑤𝐹𝑥𝐹′ (by definition of the graph T ) and the matching will give a unique vertex 𝑣

49



3 The square of a Hamilton cycle in randomly perturbed graphs

incident to 𝑢𝐹 , 𝑤𝐹 , 𝑥𝐹′ and 𝑦𝐹′. For that we define the following auxiliary bipartite graph
B with classes 𝐸 (−→𝐶 ) and 𝐴2. There is an edge between (𝐹, 𝐹 ′) ∈ 𝐸 (−→𝐶 ) and 𝑣 ∈ 𝐴2 if and
only if 𝑢𝐹 , 𝑤𝐹 , 𝑥𝐹′, 𝑦𝐹′ are all neighbours of 𝑣 in the graph 𝐺. The existence of a perfect
matching in B easily follows from Hall’s condition, as the minimum degree of B is large:
by the choice of 𝛽 and the lower bound on |𝐴2 |, the degree of (𝐹, 𝐹 ′) ∈ 𝐸 (−→𝐶 ) in B is at
least |𝐴2 | − 32𝑘2𝛽𝑛 ≥ 1

2 |𝐴2 | and the degree of 𝑣 ∈ 𝐴2 in B is at least |𝐴2 | − 4𝛽𝑛 ≥ 1
2 |𝐴2 |.

This finishes the proof.

3.3 Proof of the stability Theorem 1.1.161.1.16

Proof of Theorem 1.1.161.1.16. Let 𝑘 ≥ 2 and 0 < 𝛽 < 1/6𝑘 . We obtain 𝑑 > 0 from
Lemma 3.1.23.1.2 with input 𝑘 and 𝛽, and let 0 < 𝛿′ < 2−12(𝑘 − 1)−2𝑑2𝑘2 and 𝛾 = 𝑑/(𝑘 − 1).
Next we obtain 𝛿0, 𝛿, 𝜀

′ > 0 and 𝐶1 from Lemma 3.1.33.1.3 with input 𝑘 , 𝛿′, and 𝑑/2 such that
𝛿′ ≥ 𝛿0 > 2𝛿 (𝛿 plays the role of 𝛿1 in the lemma). We additionally assume that 𝜀′ is
small enough for Lemma 3.1.43.1.4 with input 𝑑/2 and also obtain 𝐶2 from this. Then we let
0 < 𝜀 < 𝜀′/8. The constant dependencies can be summarised as follows:

𝜀 ≪ 𝜀′ ≪ 𝛿 ≪ 𝛿0 ≪ 𝛿′ ≪ 𝑑 ≪ 𝛽 < 1/6𝑘 .

We now apply Lemma 2.1.42.1.4 with input 𝜀 and 𝑡0 = 𝑑/10, and get 𝑇 . Further, let the
following parameters be given by Lemma 2.5.32.5.3: 𝐶3 for input 3 (in place of 𝑠), 2 (in place
of 𝑘), and 𝛿(𝑘𝑇)−6 (in place of 𝜂); 𝐶4 for input 2𝑘 , 𝑘 , and 𝛿(𝑘𝑇)−2𝑘2 ; 𝐶5 for input 4, 2,
and 𝛿(𝑘𝑇)−8; and 𝐶6 for input 1, 2, and 𝛿(𝑘𝑇)−2. Then let 𝐶 be large enough such that
with 𝑝 ≥ 𝐶𝑛−(𝑘−1)/(2𝑘−3) the random graph 𝐺 (𝑛, 𝑝) contains the union

⋃6
𝑖=1𝐺𝑖 , where

𝐺1 ∼ 𝐺 (𝑛, 𝐶1 ·2(𝑘−1)𝑇𝑛−(𝑘−1)/(2𝑘−3) ),𝐺2 ∼ 𝐺 (𝑛, 𝐶2 ·2(𝑘−1)𝑇𝑛−1),𝐺3 ∼ 𝐺 (𝑛, 𝐶3𝑛
−1),

𝐺4 ∼ 𝐺 (𝑛, 𝐶4𝑛
−(𝑘−1)/(2𝑘−3) ), 𝐺5 ∼ 𝐺 (𝑛, 𝐶5𝑛

−1), and 𝐺6 ∼ 𝐺 (𝑛, 𝐶6𝑛
−1).

Let 𝐺 be an 𝑛-vertex graph with vertex set 𝑉 and minimum degree 𝛿(𝐺) ≥ ( 1
𝑘+1 − 𝛾)𝑛

that is not ( 1
𝑘+1 , 𝛽)-stable. We apply the regularity lemma (Lemma 2.1.42.1.4) to 𝐺 and get

a subgraph 𝐺 ′ of 𝐺, a constant 𝑡 with 3 < 𝑡 + 1 ≤ 𝑇 , and an (𝜀, 𝑑)-regular partition
𝑉 ′

0, . . . , 𝑉
′
𝑡 of 𝑉 , satisfying (P1)(P1) – (P4)(P4). Consider the (𝜀, 𝑑)-reduced graph 𝑅 for 𝐺 and

observe 𝛿(𝑅) ≥ ( 1
𝑘+1 − 2𝑑)𝑡, as, otherwise, in 𝐺 ′ there would be a vertex of degree at

most ( 1
𝑘+1 − 2𝑑)𝑡 𝑛

𝑡
+ 𝜀𝑛 < ( 1

𝑘+1 − 𝛾)𝑛 − (𝑑 + 𝜀)𝑛 in contradiction to (P2)(P2). As outlined in
Section 3.1.33.1.3, the proof will consist of four steps. We will cover the reduced graph with
copies of stars isomorphic to 𝐾1,𝑘 and 𝐾1,1, connect those stars with the squares of short
paths, cover the exceptional vertices, and finally cover the whole graph with the square of
a Hamilton path.

Covering 𝑅 with stars. We start by covering the vertices of 𝑅 with vertex-disjoint
stars, each with at most 𝑘 leaves; then we will turn this into a cover with copies of stars
isomorphic to 𝐾1,𝑘 and 𝐾1,1. We let 𝑀1 be a largest matching in 𝑅 and, with Lemma 3.1.23.1.2,
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we get that |𝑀1 | ≥
(

1
𝑘+1 + 2𝑘𝑑

)
𝑡 since 𝐺 is not ( 1

𝑘+1 , 𝛽)-stable. By the maximality of
𝑀1, the remaining vertices 𝑋1 = 𝑉 (𝑅) \ 𝑉 (𝑀1) form an independent set in 𝑅; moreover
only one endpoint of each edge in 𝑀1 can be adjacent to more than one vertex from 𝑋1

and the endpoints of each edge in 𝑀1 cannot have different neighbours in 𝑋1. For each
𝑖 = 2, . . . , 𝑘 , we greedily pick a maximal matching 𝑀𝑖 between 𝑋𝑖−1 and 𝑉 (𝑀1) and we
set 𝑋𝑖 = 𝑋𝑖−1 \ 𝑉 (𝑀𝑖). Observe that, using the properties coming from the maximality
of 𝑀1 outlined above, the matching 𝑀𝑖 covers at least min{|𝑋𝑖−1 |, 𝛿(𝑅)} vertices of 𝑋𝑖−1.
Since 2|𝑀1 | + (𝑘 − 1)𝛿(𝑅) ≥ 𝑡, we have 𝑋𝑘 = ∅ and the union

⋃𝑘
𝑖=1 𝑀𝑖 covers all vertices

of 𝑅 with stars, each isomorphic to one of 𝐾1,1, . . . , 𝐾1,𝑘 . Moreover note that the number
of 𝐾1,𝑘 is at most |𝑀𝑘 | ≤ 𝑡 − 2|𝑀1 | − (𝑘 − 2)𝛿(𝑅) ≤

(
1
𝑘+1 − 2𝑘𝑑

)
𝑡.

For simplicity we only want to work with stars isomorphic to 𝐾1,𝑘 and 𝐾1,1. To obtain
this, we split each cluster 𝑉 arbitrarily into 𝑘 − 1 parts 𝑉1, . . . , 𝑉 𝑘−1 of the same size,
where we move at most 𝑡 (𝑘 − 1) vertices to 𝑉 ′

0 for divisibility reasons. Note that from
any (𝜀, 𝑑)-regular pair we get (𝑘 − 1)2 pairs that are (𝑘𝜀, 𝑑 − 𝜀)-regular. We denote this
new partition by 𝑉0 = 𝑉 ′

0, 𝑉1, . . . , 𝑉𝑡′ with 𝑡 ′ = 𝑡 (𝑘 − 1) and denote the reduced graph for
this partition by 𝑅′. We now show that we can cover 𝑅′ with copies of stars isomorphic
to 𝐾1,𝑘 and 𝐾1,1. Any copy of 𝐾1,1 or 𝐾1,𝑘 in 𝑅 immediately gives 𝑘 − 1 copies of
𝐾1,1 or 𝐾1,𝑘 in 𝑅′, respectively. Moreover given any copy 𝑉,𝑈1, . . . ,𝑈𝑖 of 𝐾1,𝑖 in 𝑅,
with 𝑉 being the centre cluster and 2 ≤ 𝑖 ≤ 𝑘 − 1, we find 𝑖 − 1 copies of 𝐾1,𝑘 and
𝑘 − 𝑖 copies of 𝐾1,1 in 𝑅′ in the following way. For each 𝑗 = 1, . . . , 𝑖 − 1, the clusters
𝑉 𝑗 ,𝑈1

𝑗
, . . . ,𝑈𝑘−1

𝑗
,𝑈

𝑗

𝑖
give a copy of 𝐾1,𝑘 in 𝑅′, and for each 𝑗 = 𝑖, . . . , 𝑘 − 1 the clusters

𝑉 𝑗 ,𝑈
𝑗

𝑖
give a copy of 𝐾1,1 in 𝑅′. Therefore, we have covered the vertices of 𝑅′ with a

collection K of copies of 𝐾1,𝑘 and 𝐾1,1. We remark that we can still upper bound the
number of copies of 𝐾1,𝑘 in K as follows. Since each copy of 𝐾1,𝑖 in the original cover
gives 𝑖 − 1 copies of 𝐾1,𝑘 in K, we get the largest number of copies of 𝐾1,𝑘 in K when the
total number of stars in the original cover is minimal. The original cover of 𝑅 had at most
( 1
𝑘+1 − 2𝑘𝑑)𝑡 copies of 𝐾1,𝑘 , and the remaining 𝑡 − (𝑘 + 1) ( 1

𝑘+1 − 2𝑘𝑑)𝑡 = 2𝑘 (𝑘 + 1)𝑑𝑡
vertices can give at most 2𝑘 (𝑘+1)𝑑𝑡

𝑘
= 2(𝑘 + 1)𝑑𝑡 copies of 𝐾1,𝑘−1. Therefore the collection

K has at most (𝑘 − 1) ( 1
𝑘+1 − 2𝑘𝑑)𝑡 + (𝑘 − 2)2(𝑘 + 1)𝑑𝑡 ≤ ( 1

𝑘+1 − 4𝑑
𝑘−1 )𝑡

′ copies of 𝐾1,𝑘 .
We let 𝑛0 = |𝑉1 | = ⌊|𝑉 ′

1 |/(𝑘 − 1)⌋ be the size of the clusters in 𝑅′ and observe that
(1 − 2𝜀)𝑛/𝑡 ′ ≤ 𝑛0 ≤ 𝑛/𝑡 ′.

For convenience we relabel the clusters as follows. We let I ⊆ [𝑡 ′] be the set of indices
of those clusters of 𝑅′ that are the centre cluster in a copy of 𝐾1,𝑘 in K, and for 𝑖 ∈ I we
denote by 𝑈𝑖,1, . . . ,𝑈𝑖,𝑘 the clusters of 𝑅′ that, together with 𝑉𝑖 , create a copy of 𝐾1,𝑘 in
K. Then we let J ⊆ [𝑡 ′] be any set of indices with the following property: each index in
J corresponds to a cluster of a copy of 𝐾1,1 in K, and for each copy of 𝐾1,1 in K, exactly
one of its clusters has its index in J . Moreover, for each 𝑖 ∈ J , we let 𝑈𝑖,1 be the cluster
of 𝑅′ that, together with 𝑉𝑖 , creates a copy of 𝐾1,1 in K.

We would like to apply Lemma 3.1.33.1.3 and Lemma 3.1.43.1.4 to the clusters corresponding to
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the copies of 𝐾1,𝑘 and 𝐾1,1, respectively. However we first need to make each regular pair
super-regular and unbalance some of the clusters to allow an application of Lemma 3.1.33.1.3.
For that we arbitrarily move 𝛿𝑛0 + 4(1 − 𝛿) vertices from each cluster 𝑈𝑖, 𝑗 with 𝑖 ∈ I and
𝑗 = 1, . . . , 𝑘 to𝑉0. Observe this ensures that |𝑈𝑖,𝑘 | ≤ (1− 𝛿) ( |𝑉𝑖 | −4). Next we repeatedly
use Lemma 2.1.22.1.2 and move at most 𝑘2𝜀𝑛0 vertices from each cluster to𝑉0, to ensure that all
edges of 𝑅′ within a copy of 𝐾1,𝑘 or 𝐾1,1 from K are (2𝑘𝜀, 𝑑 − 4𝑘𝜀)-super-regular. When
doing this we can ensure that for each 𝑖 ∈ I all clusters 𝑉𝑖 have the same size, and that for
𝑗 = 1, . . . , 𝑘 all clusters 𝑈𝑖, 𝑗 have the same size, except the cluster 𝑈𝑖,1 that has two more
vertices than the other𝑈𝑖, 𝑗’s. Additionally, we can ensure that for each 𝑖 ∈ J , the clusters𝑉𝑖
and𝑈𝑖,1 have the same size. Moreover, by moving only at most 3𝑘 additional vertices from
each𝑈𝑖, 𝑗 to𝑉0 (which do not harm the bounds above), we can ensure that for 𝑖 ∈ I we have
|𝑉𝑖 | − 4 − |𝑈𝑖,𝑘 | ≡ −1 (mod 3𝑘 − 1), again in view of a later application of Lemma 3.1.33.1.3.
Note that at this point we have |𝑉0 | ≤ 𝜀𝑛 + 𝑡 (𝑘 − 1) + 𝑡 ′𝛿𝑛0 + 𝑡 ′𝑘2𝜀𝑛0 + 𝑡 ′3𝑘 ≤ 2𝛿𝑛.

Connecting the stars. In this step, we fix an arbitrary cyclic ordering of the copies of
𝐾1,𝑘 and 𝐾1,1, and we connect each consecutive pair using the square of a short path. For
the rest of the proof, we will refer to these (squares of) short paths as the connecting paths.
We first explain the connection between two copies of 𝐾1,𝑘 and assume without loss of
generality that 1, 2 ∈ I; when at least one of the copies is 𝐾1,1, the connection is similar
and will be explained later. We use the square of a path on six vertices with end-tuples
within 𝑉1 and 𝑉2, such that, again in view of Lemma 3.1.33.1.3, the end-tuples have many
common neighbours into the other clusters 𝑈1, 𝑗 and 𝑈2, 𝑗 for 𝑗 = 1, . . . , 𝑘 , respectively.
Recall that both 𝑈1,1 and 𝑈2,1 contain two more vertices than the other leaf clusters, one
of which will be used for this connection.

𝑥1𝑥2 𝑦1 𝑦2

𝑧1 𝑧2

𝑉1 𝑉2

𝑈1,1

𝑈1,2

𝑈1,3

𝑈1,4

𝑈2,1

𝑈2,2

𝑈2,3

𝑈2,4

Figure 3.3: Construction of the square of a path with end-tuples (𝑥1, 𝑥2) and (𝑦1, 𝑦2) that connects two copies
of 𝐾1,𝑘 in the cluster graph 𝑅′. The dashed blue edges come from the random graph and the black
edges from the deterministic graph.

We want to find 𝑥1, 𝑥2 ∈ 𝑉1, 𝑧2 ∈ 𝑈2,1, 𝑧1 ∈ 𝑈1,1, and 𝑦1, 𝑦2 ∈ 𝑉2 such that the following
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holds (see Figure 3.33.3):

(A1) the tuples (𝑥1, 𝑥2) and (𝑦1, 𝑦2) have at least 3
4𝑑

2𝑛0 common neighbours in each of
𝑈1,1, . . . ,𝑈1,𝑘 and𝑈2,1, . . . ,𝑈2,𝑘 in the graph 𝐺, respectively;

(A2) 𝑥1𝑧1, 𝑥2𝑧1, 𝑦1𝑧2, and 𝑦2𝑧2 are edges of 𝐺;

(A3) 𝑥2, 𝑥1, 𝑧2, 𝑧1, 𝑦1, 𝑦2 is a path in 𝐺3.

For that we use Lemma 2.5.32.5.3 on the following collection 𝐻 of tuples. We pick subsets 𝑋 in
𝑉1,𝑌 in𝑉2, 𝑍1 in𝑈1,1, and 𝑍2 in𝑈1,2, all of size 𝑛0/3, and we let𝐻 be the set of those tuples
(𝑥2, 𝑥1, 𝑧2, 𝑧1, 𝑦1, 𝑦2) ∈ 𝑋 ×𝑋 × 𝑍2 × 𝑍1 ×𝑌 ×𝑌 which satisfy the properties (A1)(A1) and (A2)(A2).
Note that 𝐻 contains enough tuples for an application of Lemma 2.5.32.5.3 as, from regularity,
we get that for all but at most 2𝜀𝑛0 vertices 𝑥1 ∈ 𝑋 , all but 4𝑘𝜀𝑛0 vertices 𝑥2 ∈ 𝑋 have at
least 3

4𝑑
2𝑛0 common neighbours in𝑈1,1, . . . ,𝑈1,𝑘 and at least 1

4𝑑
2𝑛0 common neighbours

in 𝑍1 with respect to𝐺 and similarly for𝑌 with𝑈2,1, . . . ,𝑈2,𝑘 and 𝑍2. Therefore,𝐻 has size
at least 𝑑42−12𝑛6

0 ≥ 𝛿(𝑘𝑇)−6𝑛6. Now we reveal the edges of 𝐺3 [𝑋 ∪ 𝑍2 ∪ 𝑍1 ∪𝑌 ] and with
Lemma 2.5.32.5.3 and given the choice of 𝐶3, we a.a.s. find a tuple (𝑥2, 𝑥1, 𝑧2, 𝑧1, 𝑦1, 𝑦2) ∈ 𝐻
satisfying the property (A3)(A3) as well. This will give the desired connecting square of a path.
We then remove the vertices 𝑧1 and 𝑧2 from𝑈1,1 and𝑈2,1, respectively.

Given an arbitrary cycling ordering of the indices fromI and J , we use this construction
to connect all neighbouring pairs (𝑖, 𝑗). If 𝑖, 𝑗 ∈ I we proceed as described above for the
pair (1, 2); if 𝑖 ∈ J , we let 𝑈𝑖,1 take the role of all 𝑈1,1, . . . ,𝑈1,𝑘 ; and if 𝑗 ∈ J , we let
𝑈 𝑗 ,1 take the role of 𝑉2 and 𝑉 𝑗 the role of all 𝑈2,1, . . . ,𝑈2,𝑘 . As we pick sets 𝑋 , 𝑌 , 𝑍1 and
𝑍2 of size 𝑛0/3 and each cluster is involved in at most two distinct connections, we can
choose disjoint sets for each connection and avoid clashes. Therefore each edge of 𝐺3 is
revealed at most once and, as there are at most 𝑡 ′ connections, we a.a.s. get all the desired
edges of 𝐺3. Observe that the choices done so far are needed for a later application of
Lemma 3.1.33.1.3 and Lemma 3.1.43.1.4. Indeed for 𝑖 ∈ I there are two end-tuples of connecting
paths in 𝑉𝑖 , and for 𝑖 ∈ J there is one end-tuple of a connecting path in each of 𝑉𝑖 and
𝑈𝑖,1; moreover, for 𝑖 ∈ I, since 𝑈𝑖,1 is involved in exactly two connections, during this
construction we removed exactly two vertices from 𝑈𝑖,1, and now all 𝑈𝑖, 𝑗’s have the same
size for 𝑗 = 1, . . . , 𝑘 .

Covering 𝑉0. In the next step we cover all vertices of 𝑉0 by extending the connecting
paths that we have already constructed, where we recall that |𝑉0 | ≤ 2𝛿𝑛. It is crucial for
the rest of the argument (in particular for the applications of Lemma 3.1.33.1.3 and 3.1.43.1.4) that
the conditions on the relation between the sizes of the clusters are still satisfied and that
the end-tuples remain in the same clusters, i.e. if we extend the square of a path with
one end-tuple in a cluster 𝑉𝑖 , then the extended path needs to have the new end-tuple in
the same cluster 𝑉𝑖 . We will again make use of Lemma 2.5.32.5.3, with a suitable collection
of tuples 𝐻. Before giving a precise description, we refer to Figure 3.43.4 and illustrate the
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extension when 𝑘 = 3 and we want to cover a vertex 𝑣 ∈ 𝑉0 by extending the square of a
connecting path with end-tuple (𝑥1, 𝑥2) in the centre cluster 𝑉𝑖 of a copy of 𝐾1,3. We will
find 24 additional vertices as drawn in Figure 3.43.4, where we stress the following conditions.
The vertices 𝑣3,1, . . . , 𝑣3,6 are all neighbours of 𝑣 in 𝐺 (which will be guaranteed by the
minimum degree condition), the blue edges are random edges (which will be guaranteed
by Lemma 2.5.32.5.3), while the black edges are from the graph𝐺 (which will be guaranteed by
regularity). Thus we extend the connecting path into the square of a path with end-tuples
(𝑥2, 𝑥1) and (𝑥 ′2, 𝑥

′
1) still in 𝑉𝑖 . Moreover, since six new vertices have been covered from

each cluster, the relation between their sizes still holds.

𝑥1

𝑥2

𝑣1
𝑤1
𝑣2
𝑤2

𝑥′1 𝑥′2

𝑣

𝑣1,1
𝑣1,2

𝑣1,3

𝑣1,4
𝑣1,5

𝑣1,6

𝑣2,1
𝑣2,2

𝑣2,3

𝑣2,4
𝑣2,5

𝑣2,6

𝑣3,1

𝑣3,2 𝑣3,3

𝑣3,4𝑣3,5

𝑣3,6

𝑥1
𝑥2

𝑥′1

𝑥′2

𝑣1,1
𝑣1,2

𝑣1,3

𝑣1,4
𝑣1,5

𝑣1,6

𝑣2,1
𝑣2,2

𝑣2,3

𝑣2,4
𝑣2,5

𝑣2,6

𝑣3,1
𝑣3,2

𝑣3,3

𝑣3,4
𝑣3,5

𝑣3,6

𝑣1

𝑤1

𝑣2

𝑤2

𝑣

Figure 3.4: Covering one vertex 𝑣 ∈ 𝑉0 by the square of a path for a copy of 𝐾1,𝑘 in K for 𝑘 = 3. We keep the
position of the end-tuples in𝑉𝑖 and the sizes of the clusters balanced. The edges within the clusters
(dashed blue) come from the random graph and the edges between the clusters (black) come from
regularity.

We will now give the details of these constructions and we start by defining the collections
of tuples we will use for the applications of Lemma 2.5.32.5.3. For 𝑖 ∈ I, we let 𝐻1,𝑖 be the
set of those tuples in

∏𝑘
𝑗=1(𝑈𝑘𝑖, 𝑗 × 𝑈𝑘𝑖, 𝑗) such that the 2𝑘2 vertices in each tuple have at

least 1
2𝑑

2𝑘2
𝑛0 common neighbours in 𝑉𝑖 in 𝐺. Then we let 𝐻1 =

⋃
𝑖∈I 𝐻1,𝑖 . Similarly,

for 𝑗 ∈ J , we let 𝐻2, 𝑗 be the set of those tuples in 𝑉8
𝑗
∪ 𝑈8

𝑗 ,1 such that the 8 vertices
in each tuple have at least 1

2𝑑
8𝑛0 common neighbours in the other set in 𝐺. Then we let

𝐻2 =
⋃
𝑗∈J 𝐻2, 𝑗 . Moreover, for 𝑖 ∈ I, we let 𝐻3,𝑖 be the set of those tuples in𝑉2

𝑖
such that
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the 2 vertices in each tuple have at least 3
4𝑑

2𝑛0 common neighbours in each of the sets𝑈𝑖, 𝑗
for 𝑗 = 1, . . . , 𝑘 . For 𝑗 ∈ J , we let 𝐻3, 𝑗 be the set of those tuples in 𝑉2

𝑗
∪𝑈2

𝑗 ,1 such that
the 2 vertices in each tuple have at least 3

4𝑑
2𝑛0 common neighbours in the other set in 𝐺.

Then we let 𝐻3 =
⋃
𝑖∈I 𝐻3,𝑖 ∪

⋃
𝑗∈J 𝐻3, 𝑗 . With the constants specified in the beginning

of the proof for obtaining 𝐶4, 𝐶5, and 𝐶6, we apply Lemma 2.5.32.5.3 to 𝐻1 with the random
graph 𝐺4, to 𝐻2 with 𝐺5, and to 𝐻3 with 𝐺6. Given the choice of the constant 𝐶 done at
the beginning, we can a.a.s. assume that

𝐺4,𝐺5 and𝐺6 are all in the good event of Lemma 2.5.32.5.3 for the application
above.

(3.3.1)

Now we explain how we cover the vertices of 𝑉0 and we show that suitable subsets of
𝐻1, 𝐻2 and 𝐻3 are large enough for Lemma 2.5.32.5.3, i.e. larger than 𝛿(𝑘𝑇)−𝑠𝑘𝑛𝑠𝑘 where
𝑠𝑘 = 2𝑘2, 8, 2, respectively.

Given a vertex 𝑣 ∈ 𝑉0, we insist that the neighbours of 𝑣 that we use to cover 𝑣 do not
come from any of the centre clusters𝑉𝑖 with 𝑖 ∈ I, because in this case we could not ensure
to use the same number of vertices from each cluster in the copy of 𝐾1,𝑘 and we would
unbalance the star, creating issues for a later application of Lemma 3.1.33.1.3. Observe that,
as we have |𝑉0 ∪ (⋃𝑖∈I 𝑉𝑖) | ≤ 2𝛿𝑛 + ( 1

𝑘+1 − 4𝑑
𝑘−1 )𝑡

′𝑛0 ≤ ( 1
𝑘+1 − 𝛾)𝑛 − 2𝑑

𝑘−1𝑛, every vertex
in 𝐺 has at least 2𝑑

𝑘−1𝑛 neighbours outside of 𝑉0 ∪ (⋃𝑖∈I 𝑉𝑖) in the graph 𝐺. Moreover,
for each vertex 𝑣 ∈ 𝑉0, we will use at most max{2𝑘 (𝑘 + 1), 22} ≤ 6𝑘2 vertices outside of
𝑉0. During the process of covering 𝑉0, we let 𝑉∗ ⊆ 𝑉0 be the set of vertices of 𝑉0 already
covered and𝑊 be the set of vertices outside of 𝑉0 that we already used to cover 𝑉∗; at the
beginning 𝑉∗ = ∅ and 𝑊 = ∅. Note that we have |𝑊 | ≤ 6𝑘2 |𝑉∗ | ≤ 12𝑘2𝛿𝑛. Then we let
T ⊆ I ∪ J be the set of those indices 𝑖 ∈ I ∪ J such that 𝑈𝑖,1 intersects 𝑊 in at least√
𝛿𝑛0 vertices and note that the bound on |𝑊 | implies that |T | ≤ 12𝑘2√𝛿𝑡 ′. We recall that

at the beginning of the process for each 𝑖 ∈ I all the clusters 𝑈𝑖, 𝑗’s had the same size for
𝑗 = 1, . . . , 𝑘 . Similarly, for each 𝑖 ∈ J the clusters 𝑉𝑖 and 𝑈𝑖,1 had the same size as well.
Since throughout the process we always cover the same number of vertices in each cluster
of a copy of 𝐾1,1 or 𝐾1,𝑘 , if 𝑖 ∉ T , then𝑊 intersects each cluster of the copy corresponding
to the index 𝑖 in less then

√
𝛿𝑛0 vertices. Moreover, notice that as each 𝑣 ∈ 𝑉0 has at least

2𝑑
𝑘−1𝑛 neighbours outside of 𝑉0 ∪ (⋃𝑖∈I 𝑉𝑖), there are at least 𝑑

𝑘−1 𝑡
′ clusters that are not

the centre cluster of a copy of 𝐾1,𝑘 and such that 𝑣 has at least 𝑑
𝑘−1𝑛0 neighbours in it.

Therefore, for every 𝑣 ∈ 𝑉0 \ 𝑉∗ there exists 𝑖(𝑣) ∈ (I ∪ J) \ T and some 𝑗 (𝑣) such that
𝑣 has at least 𝑑

𝑘−1𝑛0 neighbours in𝑈𝑖 (𝑣) , 𝑗 (𝑣) \𝑊 with respect to 𝐺.
Fix any 𝑣 ∈ 𝑉0 \ 𝑉∗ and let 𝑖 = 𝑖(𝑣). We start discussing the case 𝑖 ∈ I; the case

𝑖 ∈ J is conceptually simpler and will be treated afterwards. Without loss of generality
we can assume 𝑗 (𝑣) = 𝑘 . Let (𝑥1, 𝑥2) and (𝑦1, 𝑦2) be the end-tuples in𝑉𝑖 of the connecting
paths found in the previous step, and recall that 𝑥1 and 𝑥2 have at least 3

4𝑑
2𝑛0 common

neighbours in𝑈𝑖, 𝑗 for each 𝑗 = 1, . . . , 𝑘 . We will extend the square of the connecting path
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ending in (𝑥1, 𝑥2), without using neither 𝑦1 nor 𝑦2. Moreover, we will make sure that the
new end-tuple (𝑥 ′2, 𝑥

′
1) will still belong to 𝑉𝑖 , and that 𝑥 ′1 and 𝑥 ′2 will have at least 3

4𝑑
2𝑛0

common neighbours in𝑈𝑖, 𝑗 for each 𝑗 = 1, . . . , 𝑘 .
Let 𝑍1 be the set (𝑁𝐺 (𝑥1,𝑈𝑖,1)∩𝑁𝐺 (𝑥2,𝑈𝑖,1)) \ (𝑊∪{𝑦1, 𝑦2}), let 𝑍 𝑗 be the set𝑈𝑖, 𝑗 \𝑊

for 𝑗 = 2, . . . , 𝑘 − 1, and let 𝑍𝑘 be the set 𝑁𝐺 (𝑣,𝑈𝑖,𝑘) \𝑊 . Observe that |𝑍1 | ≥ 1
2𝑑

2𝑛0

since 𝑥1 and 𝑥2 have at least 3
4𝑑

2𝑛0 common neighbours in𝑈𝑖,1, |𝑍 𝑗 | ≥ (1 −
√
𝛿)𝑛0 ≥ 𝑑𝑛0

for 𝑗 = 2, . . . , 𝑘 − 1, and |𝑍𝑘 | ≥ 𝑑
𝑘−1𝑛0 by the choice of 𝑖 = 𝑖(𝑣). Using the regularity

properties, analogously as above, it is easy to see that there are at least 𝛿(𝑘𝑇)−2𝑘2
𝑛2𝑘2 tuples

in
∏𝑘
𝑗=1(𝑍 𝑘𝑗 × 𝑍 𝑘𝑗 ) such that the 2𝑘2 vertices in each tuple have at least 1

2𝑑
2𝑘2
𝑛0 common

neighbours in 𝑉𝑖 in 𝐺. These tuples are in 𝐻1,𝑖 ⊆ 𝐻1 as well and thus (3.3.13.3.1) guarantees
that we find one of such tuples (𝑣 𝑗 , 𝑗′ : 1 ≤ 𝑗 ≤ 𝑘, 1 ≤ 𝑗 ′ ≤ 2𝑘) in

∏𝑘
𝑗=1(𝑍 𝑘𝑗 × 𝑍 𝑘𝑗 ) where

𝑣 𝑗 , 𝑗′ ∈ 𝑍 𝑗 , such that in 𝐺4 we have the square of a path on 𝑣 𝑗 ,1, . . . , 𝑣 𝑗 ,𝑘 , the square of a
path on 𝑣 𝑗 ,𝑘+1, . . . , 𝑣 𝑗 ,2𝑘 , and the edges 𝑣 𝑗 ,𝑘𝑣 𝑗 ,𝑘+1 and 𝑣 𝑗 ,2𝑘𝑣 𝑗+1,1.

Let 𝑍 ⊆ 𝑉𝑖 \ (𝑊 ∪ {𝑦1, 𝑦2}) be the common neighbourhood of the vertices 𝑣 𝑗 , 𝑗′ with
1 ≤ 𝑗 ≤ 𝑘 and 1 ≤ 𝑗 ′ ≤ 2𝑘 in 𝑉𝑖 , and observe |𝑍 | ≥ 1

4𝑑
2𝑘2
𝑛0. Again using regularity,

there are at least 𝛿(𝑘𝑇)−2𝑛2 tuples in 𝑍2 ∩ 𝐻3, and thus (3.3.13.3.1) guarantees that there is
a tuple (𝑥 ′1, 𝑥

′
2) ∈ 𝑍2 ∩ 𝐻3 such that 𝑥 ′1𝑥

′
2 is an edge of 𝐺6 and 𝑥 ′1 and 𝑥 ′2 have at least

3
4𝑑

2𝑛0 common neighbours in each𝑈𝑖, 𝑗 for 𝑗 = 1, . . . , 𝑘 . We then greedily pick additional
2(𝑘 − 1) vertices 𝑣1, 𝑤1, . . . , 𝑣𝑘−1, 𝑤𝑘−1 in 𝑍 and we claim that

𝑥1, 𝑥2, 𝑣1,1, . . . , 𝑣1,𝑘 , 𝑣1, 𝑣1,𝑘+1, . . . , 𝑣1,2𝑘 , 𝑤1,

𝑣2,1, . . . , 𝑣2,𝑘 , 𝑣2, . . . , 𝑤𝑘−1, 𝑣𝑘,1, . . . , 𝑣𝑘,𝑘 , 𝑣, 𝑣𝑘,𝑘+1, . . . , 𝑣𝑘,2𝑘 , 𝑥
′
2, 𝑥

′
1

is the square of a path with end-tuples (𝑥2, 𝑥1) and (𝑥 ′2, 𝑥
′
1) that contains 𝑣. Indeed, 𝑥1

and 𝑥2 are common neighbours of 𝑣1,1 and 𝑣1,2, while 𝑥 ′1 and 𝑥 ′2 are common neighbours
of 𝑣𝑘,2𝑘−1 and 𝑣𝑘,2𝑘 ; moreover the vertex 𝑣 is a common neighbour of 𝑣𝑘,𝑘−1, 𝑣𝑘,𝑘 , 𝑣𝑘,𝑘+1

and 𝑣𝑘,𝑘+2, the vertex 𝑣 𝑗 is a common neighbour of 𝑣 𝑗 ,𝑘−1, 𝑣 𝑗 ,𝑘 , 𝑣 𝑗 ,𝑘+1 and 𝑣 𝑗 ,𝑘+2, and the
vertex 𝑤 𝑗 is a common neighbour of 𝑣 𝑗 ,2𝑘−1, 𝑣 𝑗 ,2𝑘 , 𝑣 𝑗+1,1 and 𝑣 𝑗+1,2. This fills the gaps left
after the initial construction above where we used Lemma 2.5.32.5.3 with the graph 𝐺4. We
now add 𝑣 to 𝑉∗ and all the other used vertices 𝑣 𝑗 , 𝑗′ for 1 ≤ 𝑗 ≤ 𝑘 and 1 ≤ 𝑗 ′ ≤ 2𝑘 , 𝑣𝑖 , 𝑤𝑖
for 1 ≤ 𝑖 ≤ 𝑘 − 1, and 𝑥1 and 𝑥2 to 𝑊 . Note we do not add 𝑥 ′1 and 𝑥 ′2 to 𝑊 as (𝑥 ′2, 𝑥

′
1) is

the end-tuple of the extended square of a path. Observe that we used 2𝑘 (𝑘 + 1) vertices to
cover 𝑣 and that we covered exactly 2𝑘 vertices from each cluster of the copy of 𝐾1,𝑘 .

Now we move to the construction for the case 𝑖 = 𝑖(𝑣) ∈ J . We will use always the
same construction regardless of the value of 𝑘 as illustrated in Figure 3.53.5 in a similar way
as Figure 3.43.4 earlier. By assumption we have 𝑗 (𝑣) = 1 and thus |𝑁𝐺 (𝑣,𝑈𝑖,1 \𝑊) | ≥ 𝑑

𝑘−1𝑛0.
Let (𝑥1, 𝑥2) ∈ 𝑉2

𝑖
and (𝑦1, 𝑦2) ∈ 𝑈2

𝑖,1 be the end-tuples of the connecting paths found in the
previous step, and recall that 𝑥1 and 𝑥2 have at least 3

4𝑑
2𝑛0 common neighbours in𝑈𝑖,1. We

will extend the square of the connecting path ending in (𝑥1, 𝑥2), without using neither 𝑦1
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𝑣

𝑥1

𝑥2

𝑥11

𝑥15

𝑥17

𝑥21

𝑥12

𝑥14

𝑥18

𝑥20

𝑥5

𝑥24 𝑥25

𝑥3

𝑥7

𝑥9

𝑥4

𝑥6

𝑥10

𝑥13
𝑥16
𝑥19

𝑥22 𝑥23

𝑥1

𝑥2

𝑥3 𝑥5 𝑥7 𝑥9 𝑥11 𝑥13 𝑥15 𝑥17 𝑥19 𝑥21 𝑥23 𝑥25

𝑥4 𝑥6 𝑥10 𝑥12 𝑥14 𝑥16 𝑥18 𝑥20 𝑥22 𝑥24𝑣

Figure 3.5: Covering one vertex 𝑣 ∈ 𝑉0 by the square of a path for a copy of 𝐾1,1 in K. We keep the position
of the end-tuples in𝑉𝑖 and the sizes of the clusters balanced. The edges within the clusters (dashed
blue) come from the random graph and the edges between the clusters (green and black) come
from regularity.

nor 𝑦2, by constructing the square of a path on pairwise distinct vertices 𝑥1, 𝑥2, . . . , 𝑥24, 𝑥25,
where 𝑥8 = 𝑣. Moreover, we will make sure that the new end-tuple (𝑥24, 𝑥25) will still
belong to 𝑉𝑖 , and that 𝑥24 and 𝑥25 will have at least 3

4𝑑
2𝑛0 common neighbours in 𝑈𝑖,1.

Let 𝑍3 = 𝑍4 be the common neighbourhood of 𝑥1 and 𝑥2 in 𝑈𝑖,1 \ (𝑊 ∪ {𝑦1, 𝑦2}) and
𝑍6 = 𝑍7 = 𝑍9 = 𝑍10 be the neighbourhood of 𝑣 in 𝑈𝑖,1 \ (𝑊 ∪ {𝑦1, 𝑦2}), and note that
|𝑍3 | ≥ 1

2𝑑
2𝑛0 and |𝑍6 | ≥ 𝑑

𝑘−1𝑛0 − 2. Using regularity, it is easy to see that for at least
𝛿(𝑘𝑇)−8𝑛8 tuples in 𝑍3 × 𝑍4 × 𝑍6 × 𝑍7 × 𝑍9 × 𝑍10 ×𝑈𝑖,1 ×𝑈𝑖,1 the common neighbourhood
of their vertices in 𝑉𝑖 has size at least 1

2𝑑
8𝑛0 (where we added the set 𝑈𝑖,1 twice only for

the following application of Lemma 2.5.32.5.3). Thus (3.3.13.3.1) guarantees we find a path in 𝐺5

on six vertices 𝑥3, 𝑥4, 𝑥6, 𝑥7, 𝑥9, 𝑥10 (we ignore the two vertices in 𝑈𝑖,1) with 𝑥 𝑗 ∈ 𝑍 𝑗 and
such that the set 𝑍 of the common neighbours of 𝑥3, 𝑥4, 𝑥6, 𝑥7, 𝑥9, 𝑥10 in𝑉𝑖 \ (𝑊 ∪ {𝑥1, 𝑥2})
has size |𝑍 | ≥ 1

4𝑑
8𝑛0. We let 𝑥5 be any vertex of 𝑍 . Again using regularity, there are

at least 𝛿(𝑘𝑇)−8𝑛8 tuples in (𝑍 \ {𝑥5})8 such that the eight vertices in the tuple have at
least 1

2𝑑
8𝑛0 common neighbours in 𝑈𝑖,1. These tuples are in 𝐻2 as well and thus (3.3.13.3.1)

guarantees we find in 𝐺5 a path on eight vertices 𝑥11, 𝑥12, 𝑥14, 𝑥15, 𝑥17, 𝑥18, 𝑥20, 𝑥21 such
that these eight vertices belong to 𝑍 \ {𝑥5} and the set 𝑍 ′ of their common neighbours
in 𝑈𝑖,1 \ (𝑊 ∪ {𝑦1, 𝑦2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥9, 𝑥10}) has size |𝑍 ′ | ≥ 1

4𝑑
8𝑛0. We let 𝑥13, 𝑥16,

and 𝑥19 be any three vertices of 𝑍 ′. Again with (3.3.13.3.1), we find an edge 𝑥22𝑥23 of 𝐺6

such that 𝑥22, 𝑥23 ∈ 𝑍 ′ \ {𝑥13, 𝑥16, 𝑥19} and their common neighbourhood 𝑍 ′′ in 𝑉𝑖 \ (𝑊 ∪
{𝑦1, 𝑦2, 𝑥1, 𝑥2, 𝑥5, 𝑥11, 𝑥12, 𝑥14, 𝑥15, 𝑥17, 𝑥18, 𝑥20, 𝑥21}) has size at least 1

2𝑑
2𝑛0. With another

application of (3.3.13.3.1) we find an edge 𝑥24𝑥25 of 𝐺6 such that 𝑥24, 𝑥25 ∈ 𝑍 ′′ and they have
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at least 3
4𝑑

2𝑛0 common neighbours in 𝑈𝑖,1. This gives the square of a path on the vertices
𝑥1, . . . , 𝑥7, 𝑣, 𝑥9, . . . , 𝑥25. We add 𝑣 to 𝑉∗ and 𝑥1, . . . , 𝑥7, 𝑥9, . . . , 𝑥23 to𝑊 and remark that
we do not remove neither 𝑥24 not 𝑥25 as (𝑥24, 𝑥25) is the end-tuple of the extended square of
a path. Observe that we used 22 vertices to cover 𝑣 and that we covered exactly 11 vertices
from each cluster 𝑉𝑖 and𝑈𝑖,1.

We keep covering the vertices of 𝑉0 in this way until 𝑉∗ = 𝑉0, then we remove the
vertices in𝑊 from the clusters.

Completing the square of the Hamilton cycle. Before finishing the proof, we sum-
marise what we have done so far, and, abusing notation, we still denotes the clusters by
𝑉𝑖 ,𝑈𝑖,1, . . . ,𝑈𝑖,𝑘 for 𝑖 ∈ I and 𝑉𝑖 ,𝑈𝑖,1 for 𝑖 ∈ J , even if we removed several vertices from
them in the previous steps of the proof while connecting stars and covering 𝑉0. We have
covered all vertices of 𝐺, except those that are still in the clusters of a copy of 𝐾1,1 or 𝐾1,𝑘 ,
with the squares of short paths with the following properties. Their end-tuples belong to
some 𝑉𝑖 with 𝑖 ∈ I, or some 𝑉 𝑗 or some 𝑈 𝑗 ,1 with 𝑗 ∈ J . Moreover, for each 𝑖 ∈ I, the
cluster 𝑉𝑖 contains exactly two of such tuples, say (𝑥1, 𝑥2) and (𝑦1, 𝑦2), such that 𝑥1 and 𝑥2

have at least 3
4𝑑

2𝑛0 −
√
𝛿𝑛0 ≥ 1

2𝑑
2𝑛0 common neighbours in𝑈𝑖, 𝑗 for 𝑗 = 1, . . . , 𝑘 , and the

same holds for 𝑦1 and 𝑦2. Additionally, for each 𝑗 ∈ J , the clusters 𝑉 𝑗 and 𝑈 𝑗 ,1 contain
exactly one such tuple each, say (𝑥1, 𝑥2) and (𝑦1, 𝑦2) respectively, such that 𝑥1 and 𝑥2 have
at least 1

2𝑑
2𝑛0 common neighbours in 𝑈 𝑗 ,1, and 𝑦1 and 𝑦2 have at least 1

2𝑑
2𝑛0 common

neighbours in 𝑉 𝑗 . Therefore, it remains to cover the clusters by extending the squares of
paths we already have.

Let 𝑖 ∈ I. Note that we still have that |𝑈𝑖,1 | = · · · = |𝑈𝑖,𝑘 | and |𝑉𝑖 | − 4 − |𝑈𝑖,𝑘 | ≡ −1
(mod 3𝑘−1) for 𝑖 ∈ I. Recall that we removed 𝛿𝑛0 vertices from each𝑈𝑖, 𝑗 at the beginning.
Moreover, while making the regular pairs super-regular and during the previous step, we
removed the same number of vertices from each cluster of a copy of 𝐾1,𝑘 , and at most
2
√
𝛿𝑛0 vertices from each. Therefore, using that 2𝛿 < 𝛿0, we get |𝑈𝑖, 𝑗 | ≥ (1− 𝛿0) ( |𝑉𝑖 | −4)

for 𝑗 = 1, . . . , 𝑘 . Note that also |𝑈𝑖,𝑘 | ≤ (1 − 𝛿) ( |𝑉𝑖 | − 4) still holds. Now let (𝑥1, 𝑥2) and
(𝑦1, 𝑦2) be the two end-tuples in 𝑉𝑖 of connecting paths and recall they both have at least
1
2𝑑

2𝑛0 common neighbours in𝑈𝑖, 𝑗 for each 𝑗 = 1, . . . , 𝑘 . We apply Lemma 3.1.33.1.3 with the
random graph 𝐺1 to 𝑉𝑖 ,𝑈𝑖,1, . . . ,𝑈𝑖,𝑘 and get the square of a path with end-tuples (𝑥2, 𝑥1)
and (𝑦2, 𝑦1), covering all vertices in 𝑉𝑖 ∪𝑈𝑖,1 ∪ · · · ∪𝑈𝑖,𝑘 .

For 𝑖 ∈ J we proceed similarly. We have |𝑉𝑖 | = |𝑈𝑖,1 | and two end-tuples (𝑥1, 𝑥2) in
𝑉𝑖 and (𝑦1, 𝑦2) in 𝑈𝑖,1 of connecting paths. Since 𝑥1 and 𝑥2 have at least 1

2𝑑
2𝑛0 common

neighbours in 𝑈𝑖,1, and 𝑦1 and 𝑦2 have at least 1
2𝑑

2𝑛0 common neighbours in 𝑉𝑖 , we can
apply Lemma 3.1.43.1.4 with the random graph 𝐺2 to 𝑉𝑖 ,𝑈𝑖,1, and get the square of a path with
end-tuples (𝑥2, 𝑥1) and (𝑦2, 𝑦1), covering all vertices in 𝑉𝑖 ∪𝑈𝑖,1.

This completes the square of a Hamilton cycle covering all vertices of 𝐺, and finishes
the proof.
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3.4 Regularity in auxiliary graphs

The aim of this section is to prove the main technical lemma behind the embedding
Lemma 3.1.33.1.3, whose proof is provided in the next section. In Lemma 3.1.33.1.3, we have to
find the square of a Hamilton path (subject to additional conditions), where we can use
both deterministic and random edges. Here we look at the edges coming from the random
graph and show that we can find many disjoint copies of the square of a short path in the
random graph, with some additional properties with respect to the deterministic graph,
which guarantee we can then nicely connect them and build the desired structure. We state
a more general version of the result we need for Lemma 3.1.33.1.3, as we believe it might be
of independent interest and helpful in other problems of similar flavour. Before stating the
lemma we introduce some definitions.

Definition 3.4.1 (𝐻-transversal family). Let 𝐻 be a graph and set ℎ = |𝑉 (𝐻) |. Let
𝑉,𝑈1, . . . ,𝑈ℎ be disjoint sets of vertices and 𝐺 be a graph on vertex set 𝑉 ∪𝑈1 ∪ · · · ∪𝑈ℎ.
A family H of pairwise vertex-disjoint copies of 𝐻 in 𝐺 [𝑈1, . . . ,𝑈ℎ] is said to be a 𝐻-
transversal family if, in addition, there exists a labelling 𝑣1, . . . , 𝑣ℎ of the vertices of 𝐻
such that, for each copy 𝐻 ∈ H , the vertex 𝑣𝑖 is embedded into𝑈𝑖 for each 𝑖 = 1, . . . , ℎ.

With H being an 𝐻-transversal family in 𝐺, we define the following auxiliary bipartite
graph T𝐺 (H , 𝑉).

Definition 3.4.2 (Auxiliary graph T𝐺 (H , 𝑉)). We define T𝐺 (H , 𝑉) to be the bipartite
graph with partition classes H and 𝑉 , where the edge between 𝐻 ∈ H and 𝑣 ∈ 𝑉 appears
if and only if all vertices of 𝐻 are incident to 𝑣 in 𝐺.

We prove the following general lemma.

Lemma 3.4.3. Let 𝐻 be a graph on ℎ vertices. For any 𝑑, 𝛿, 𝜀′ > 0 with 2𝛿 ≤ 𝑑 there exist
𝜀 > 0 and 𝐶 > 0 such that the following holds. Let 𝑉,𝑈1, . . . ,𝑈ℎ be sets with |𝑉 | = 𝑛 and
|𝑈𝑖 | = 𝑚 = (1 ± 1

2 )𝑛 for 𝑖 = 1, . . . , ℎ such that (𝑉,𝑈𝑖) is (𝜀, 𝑑)-super-regular with respect
to a graph 𝐺 for 𝑖 = 1, . . . , ℎ. Furthermore, suppose that 𝑝 ≥ 𝐶𝑛−1/𝑚1 (𝐻) .

Then a.a.s. there exists an 𝐻-transversal family H ⊆ 𝐺 (𝑈1, . . . ,𝑈ℎ, 𝑝) of size |H | ≥
(1 − 𝛿)𝑚 such that the pair (H , 𝑉) is (𝜀′, 𝑑ℎ+12−ℎ−3)-super-regular with respect to the
auxiliary graph T𝐺 (H , 𝑉).

The lemma shows that not only there is a large 𝐻-transversal family H , but that we
can additionally require that (H , 𝑉) is a super-regular pair in T𝐺 (H , 𝑉). The proof of
Lemma 3.1.33.1.3 will use the special case of 𝐻 being the square of a path on 𝑘 vertices.

Before giving a proof of Lemma 3.4.33.4.3, we introduce an auxiliary ℎ-partite ℎ-uniform
hypergraph 𝐹 = 𝐹𝐺,𝑉 (𝑈1, . . . ,𝑈ℎ) to encode the potential tuples in𝑈1 × · · · ×𝑈ℎ that we
would like to use for building the copies of 𝐻 for the family H .
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Definition 3.4.4 (Auxiliary hypergraph 𝐹). Let ℎ ≥ 1 be an integer, 𝑉,𝑈1, . . . ,𝑈ℎ be
pairwise disjoint sets with |𝑉 | = 𝑛 and |𝑈𝑖 | = 𝑚 = (1 ± 1

2 )𝑛 for 𝑖 = 1, . . . , ℎ. We define
𝐹 = 𝐹𝐺,𝑉 (𝑈1, . . . ,𝑈ℎ)33 to be the ℎ-partite ℎ-uniform hypergraph on𝑈1 × · · ·×𝑈ℎ where a
tuple (𝑢1, . . . , 𝑢ℎ) ∈ 𝑈1×· · ·×𝑈ℎ is an edge of 𝐹 if and only if the vertices 𝑢1, . . . , 𝑢ℎ have at
least 1

2𝑑
ℎ𝑛 common neighbours in the set 𝑉 in the graph 𝐺, i.e. |⋂ℎ

𝑖=1 𝑁𝐺 (𝑢𝑖 , 𝑉) | ≥ 1
2𝑑
ℎ𝑛.

Similarly, given a set 𝑋 ⊆ 𝑉 , we call an edge (𝑢1, . . . , 𝑢ℎ) ∈ 𝐸 (𝐹) good for 𝑋 if and
only if there are at least 1

2𝑑
ℎ |𝑋 | vertices in 𝑋 that are incident to all of 𝑢1, . . . , 𝑢ℎ in 𝐺. We

denote by 𝐹𝑋 the spanning subgraph of 𝐹 with edges that are good for 𝑋 .

However, we can only use those copies of 𝐻 which actually do appear in the random
graph, and we encode that by defining the random spanning subgraph �̃� of 𝐹, as follows.

Definition 3.4.5 (Auxiliary hypergraph �̃�). Let 𝐻 be a graph on ℎ vertices. Let
𝑉,𝑈1, . . . ,𝑈ℎ be pairwise disjoint sets and 𝐹 be the hypergraph defined in Definition 3.4.43.4.4.
After revealing the edges of the random ℎ-partite graph 𝐺 (𝑈1, . . . ,𝑈ℎ, 𝑝), we denote
by �̃� the (random) spanning subhypergraph of 𝐹 formed by those edges (𝑢1, . . . , 𝑢ℎ)
of 𝐹 for which the vertices 𝑢1, . . . , 𝑢ℎ give a copy of 𝐻 in the revealed random graph
𝐺 (𝑈1, . . . ,𝑈ℎ, 𝑝). We will say that �̃� is supported by 𝐺 (𝑈1, . . . ,𝑈ℎ, 𝑝).

We remark that if (𝑢1, . . . , 𝑢ℎ) ∈ 𝑈1×· · ·×𝑈ℎ is an edge of �̃�, then the vertices 𝑢1, . . . , 𝑢ℎ

give a copy of 𝐻 in 𝐺 (𝑈1, . . . ,𝑈ℎ, 𝑝) and have at least 1
2𝑑
ℎ𝑛 common neighbours in the

set 𝑉 in the graph 𝐺. We state some additional properties of 𝐹 below.

Lemma 3.4.6. Let 𝐻 be a graph on ℎ vertices. Let 0 < 𝑑 < 1 and 𝜀 ≤ min{ 1
2𝑑
ℎ−1, 𝑑 (1 −

2−1/ℎ)}. Let 𝐺 be a graph on vertex set 𝑉 ∪ 𝑈1 ∪ · · · ∪ 𝑈ℎ with |𝑉 | = 𝑛 and |𝑈1 | =
· · · = |𝑈ℎ | = 𝑚 = (1 ± 1

2 )𝑛, and assume (𝑉,𝑈𝑖) is a (𝜀, 𝑑)-super-regular pair with respect
to 𝐺 for each 𝑖 = 1, . . . , ℎ. Let 𝐹 = 𝐹𝐺,𝑉 (𝑈1, . . . ,𝑈ℎ) be the hypergraph defined in
Definition 3.4.43.4.4. Then the following holds:

(i) The minimum degree of 𝐹 is at least (1 − ℎ𝜀)𝑚ℎ−1.

(ii) If |𝑋 | ≥ 2𝜀𝑛𝑑1−ℎ, all but at most 𝜀𝑚 vertices from each 𝑈𝑖 have degree at least
(1 − ℎ𝜀)𝑚ℎ−1 in 𝐹𝑋.

Moreover the subgraph �̃� keeps roughly the expected number of edges of 𝐹.

Lemma 3.4.7. For any graph 𝐻 on ℎ ≥ 2 vertices and any 𝛿 > 0 there exist 𝜀 > 0 and
𝐶 > 0 such that the following holds for 𝑝 ≥ 𝐶𝑛−1/𝑚1 (𝐻) . Let 𝐹 = 𝐹𝐺,𝑉 (𝑈1, . . . ,𝑈ℎ) be
the hypergraph defined in Definition 3.4.43.4.4. Then a.a.s. for any sets𝑈 ′

𝑖
⊆ 𝑈𝑖 of size at least

𝛿𝑚 for 𝑖 = 1, . . . , ℎ, we have that 𝐹 ′ = �̃� [𝑈 ′
1, . . . ,𝑈

′
ℎ
] satisfies

𝑒(�̃� ′) = (1 ±
√
𝜀)

ℎ∏
𝑖=1

|𝑈 ′
𝑖 |𝑝𝑒 (𝐻) . (3.4.1)

3We remark that the definition of 𝐹 depends on 𝑑 as well. However, as this will always be clear from the
context, we omit writing 𝑑 explicitly in 𝐹𝐺,𝑉 (𝑈1, . . . ,𝑈ℎ).
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3 The square of a Hamilton cycle in randomly perturbed graphs

Moreover, if |𝑋 | ≥ 2𝜀𝑛𝑑1−ℎ, then with probability at least 1 − 𝑒−𝑛, for any choice of
𝑈 ′

1, . . . ,𝑈
′
ℎ

as above and with 𝐹 ′
𝑋
= 𝐹𝑋 [𝑈 ′

1, . . . ,𝑈
′
ℎ
], we have

𝑒(�̃� ′
𝑋) ≥ (1 −

√
𝜀)

ℎ∏
𝑖=1

|𝑈 ′
𝑖 |𝑝𝑒 (𝐻) . (3.4.2)

We remark that we will show a more general version of Lemma 3.4.73.4.7. Indeed our proof
will only use that 𝐹 satisfies (i)(i) and that 𝐹𝑋 satisfies (ii)(ii) for all 𝑋 with |𝑋 | ≥ 2𝜀𝑛𝑑1−ℎ.
Thus (3.4.13.4.1) holds for any ℎ-partite ℎ-uniform hypergraph 𝐹 on partition classes𝑈1, . . . ,𝑈ℎ

of size 𝑚 = (1 ± 1
2 )𝑛 with minimum degree (1 − ℎ𝜀)𝑚ℎ−1. Similarly (3.4.23.4.2) holds for all

subgraphs 𝐹𝑋 of such 𝐹, such that all but 𝜀𝑚 vertices in each class have degree at least
(1 − ℎ𝜀)𝑚ℎ−1 in 𝐹𝑋.

The proof of Lemma 3.4.63.4.6 relies on a standard application of the regularity method, and
that of Lemma 3.4.73.4.7 follows from an application of Chebyshev’s and Janson’s inequalities.
Therefore we postpone them to a supplementary section of this chapter (Section 3.73.7), and
we now turn to the main proof of this section.

Proof of Lemma 3.4.33.4.3. Given a graph 𝐻 on ℎ ≥ 2 vertices and 𝑑, 𝛿, 𝜀′ > 0 with 2𝛿 ≤ 𝑑,
suppose that

𝜀 ≪ 𝜂 ≪ 𝛾 ≪ 𝑑, 𝛿, 𝜀′

are positive real numbers such that

𝛾 ≤ 𝜀′ (1−𝛿)
2 , 𝜂 log( 1

𝜂
) ≤ 1

4𝛾, 𝜀 ≤ min{ 1
2𝜂𝑑

ℎ−1, 𝑑 (1 − 2−1/ℎ), 1
142 𝛾

2} ,

where additionally we require that 𝜀 is small enough for Lemma 3.4.73.4.7 with input 𝐻 and 𝛿.
Furthermore, let 𝐶 > 0 be large enough for Lemma 3.4.73.4.7 with the same input.

Given 𝑛, let𝑉,𝑈1, . . . ,𝑈ℎ be sets of size |𝑉 | = 𝑛 and |𝑈𝑖 | = 𝑚 = (1± 1
2 )𝑛 for 𝑖 = 1, . . . , ℎ

such that (𝑉,𝑈𝑖) is (𝜀, 𝑑)-super-regular with respect to a graph 𝐺 for 𝑖 = 1, . . . , ℎ. To
find the family H we will now reveal edges of 𝐺 (𝑈1, . . . ,𝑈ℎ, 𝑝) with probability 𝑝 ≥
𝐶𝑛−1/𝑚1 (𝐻) and consider the spanning subgraph �̃� of 𝐹 = 𝐹𝐺,𝑉 (𝑈1, . . . ,𝑈ℎ) as defined in
Definitions 3.4.43.4.4 and 3.4.53.4.5. Let 𝑋 ⊆ 𝑉 be of size 𝜂𝑛. With Lemma 3.4.73.4.7, we can assume
that for all𝑈 ′

𝑖
⊆ 𝑈𝑖 of size 𝛿𝑚 for 𝑖 = 1, . . . , ℎ we have that (3.4.13.4.1) and (3.4.23.4.2) hold, where

the latter holds for all 𝑋 as above by a union bound.
Using a random greedy process we now choose a family of transversal copies H of 𝐻 of

size (1−𝛿)𝑚 in �̃� as follows. Having chosen copies 𝐻1, . . . , 𝐻𝑡 ∈ �̃� with 𝑡 < (1−𝛿)𝑚, we
pick 𝐻𝑡+1 uniformly at random from all edges of �̃� that do not share an endpoint with any
of 𝐻1, . . . , 𝐻𝑡 . This is possible since by (3.4.13.4.1) there is always an edge in �̃� [𝑈 ′

1, . . . ,𝑈
′
ℎ
]

for any subsets 𝑈 ′
𝑖
⊆ 𝑈 of size at least 𝛿𝑚 for 𝑖 = 1, . . . , ℎ, and thus a transversal copy

of 𝐻 in 𝐺 (𝑈1, . . . ,𝑈ℎ, 𝑝). For 𝑖 = 1, . . . , 𝑡, we denote the 𝑖-th chosen copy of 𝐻 for
H by 𝐻𝑖 , and by H𝑖 the history 𝐻1, . . . , 𝐻𝑖 . It remains to show that a.a.s. (H , 𝑉) is

61



3 The square of a Hamilton cycle in randomly perturbed graphs

(𝜀′, 2−ℎ−3𝑑ℎ+1)-super-regular with respect to the auxiliary graph T = T𝐺 (H , 𝑉).
Observe that any 𝐻 ∈ H has |𝑁T (𝐻) | ≥ 1

2𝑑
ℎ𝑛 ≥ 𝑑ℎ+12−ℎ−3 |𝑉 | by construction.

Moreover for any 𝑣 ∈ 𝑉 we have |𝑁T (𝑣) | ≥ 2−ℎ−3𝑑ℎ+1𝑚; this can be shown as follows.
Consider the first 1

2𝑑𝑚 chosen copies, then for 𝑖 = 1, . . . , 1
2𝑑𝑚, by (3.4.13.4.1), there are at

most (1 +
√
𝜀)∏ℎ

𝑖=1 |𝑈𝑖 |𝑝𝑒 (𝐻) available copies to chose 𝐻𝑖 from. On the other hand,
as long as 𝑖 < 1

2𝑑𝑚, the vertex 𝑣 has at least 1
2𝑑𝑚 ≥ 𝛿𝑚 neighbours 𝑈 ′

𝑖
⊆ 𝑈𝑖 for

𝑖 = 1, . . . , ℎ that are not covered by the edges in H𝑖−1. Therefore, by (3.4.13.4.1) there are at
least (1 −

√
𝜀)∏ℎ

𝑖=1 |𝑈 ′
𝑖
|𝑝𝑒 (𝐻) choices for 𝐻𝑖 such that 𝐻𝑖 ∈ 𝑁T (𝑣).

Hence, for 𝑖 = 1, . . . , 1
2𝑑𝑛, we get

P[𝐻𝑖 ∈ 𝑁T (𝑣) |H𝑖−1] ≥
(1 −

√
𝜀)∏ℎ

𝑖=1 |𝑈 ′
𝑖
|𝑝𝑒 (𝐻)

(1 +
√
𝜀)∏ℎ

𝑖=1 |𝑈𝑖 |𝑝𝑒 (𝐻)
≥

(1 −
√
𝜀) ( 1

2𝑑)
ℎ

(1 +
√
𝜀)

≥ 2−ℎ−1𝑑ℎ .

As this holds independently of the history of the process, this process dominates a binomial
distribution with parameters 1

2𝑑𝑚 and 2−ℎ−1𝑑ℎ. Therefore, even though the events are
not mutually independent, we can use Chernoff’s inequality (Lemma 2.4.12.4.1) to infer that
|𝑁T (𝑣) | ≥ 2−ℎ−3𝑑ℎ+1𝑚 with probability at least 1 − 𝑛−2. Then, by applying the union
bound over all 𝑣 ∈ 𝑉 , we obtain that a.a.s. |𝑁T (𝑣) | ≥ 2−ℎ−3𝑑ℎ+1𝑚 ≥ 2−ℎ−3𝑑ℎ+1 |H | for all
𝑣 ∈ 𝑉 .

Next let 𝑋 ⊆ 𝑉 be any subset with |𝑋 | = 𝜂𝑛, and let 𝑡 = (1− 𝛿)𝑚. For 𝑖 = 0, 1, . . . , 𝑡 −1,
we obtain from (3.4.13.4.1) that there are at most (1 +

√
𝜀)∏ℎ

𝑖=1 |𝑈 ′
𝑖
|𝑝𝑒 (𝐻) edges in �̃� \ H𝑖

available for choosing 𝐻𝑖+1, of which, by (3.4.23.4.2), at least (1 −
√
𝜀)∏ℎ

𝑖=1 |𝑈 ′
𝑖
|𝑝𝑒 (𝐻) are in

�̃�𝑋. Then

P
[
𝐻𝑖 good for 𝑋

���H𝑖−1

]
≥

(1 −
√
𝜀)∏ℎ

𝑖=1 |𝑈 ′
𝑖
|𝑝𝑒 (𝐻)

(1 +
√
𝜀)∏ℎ

𝑖=1 |𝑈 ′
𝑖
|𝑝𝑒 (𝐻)

≥ (1 − 2
√
𝜀).

Again, as the lower bound on the probability holds independently of the history of the
process, this process dominates a binomial distribution with parameters (1 − 𝛿)𝑚 and
(1 − 2

√
𝜀). We let 𝐵𝑋 ⊆ H be the copies in H that are not good for 𝑋 and deduce

E[|𝐵𝑋 |] ≤ (1 − 𝛿)𝑚 2
√
𝜀 ≤ 2

√
𝜀𝑚 .

Then we get from Chernoff’s inequality (Lemma 2.4.12.4.1) that, since 𝛾𝑚 ≥ 14
√
𝜀𝑚 ≥

7E[|𝐵𝑋 |], we have
P [|𝐵𝑋 | > 𝛾𝑚] ≤ exp (−𝛾𝑚) .

There are at most
( 𝑛
𝜂𝑛

)
≤

(
𝑒
𝜂

) 𝜂𝑛
≤ exp(𝜂 log( 1

𝜂
)𝑛) ≤ exp( 1

2𝛾𝑚) choices for 𝑋 and, thus,
with the union bound over all these choices, we obtain that a.a.s. there are at most 𝛾𝑚 bad
copies in H for any 𝑋 ⊆ 𝑉 with |𝑋 | = 𝜂𝑛.

Fix a choice ofH such that there are at most 𝛾𝑚 bad copies for any 𝑋 ⊆ 𝑉 with |𝑋 | = 𝜂𝑛.
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3 The square of a Hamilton cycle in randomly perturbed graphs

Then for any set 𝑋 ′ ⊆ 𝑉 and H ′ ⊆ H with |𝑋 ′ | ≥ 𝜀′𝑛 and |H ′ | ≥ 𝜀′ |H | we find

𝑒T (H ′, 𝑋 ′) ≥ (|H ′ | − 𝛾𝑚) 𝑑
ℎ𝜂𝑛

2
|𝑋 ′ |
2𝜂𝑛

≥ 𝑑ℎ

8
|H ′ | |𝑋 ′ |

by partitioning 𝑋 ′ into pairwise disjoint sets of size 𝜂𝑛.
We conclude that a.a.s. the pair (H , 𝑉) is (𝜀′, 𝑑ℎ+12−ℎ−3)-super-regular with respect to

T𝐺 (H , 𝑉).

3.5 Proof of the embedding Lemmas 3.1.33.1.3 and 3.1.43.1.4

In this section we prove Lemma 3.1.33.1.3 and then derive Lemma 3.1.43.1.4. Throughout the section
we denote the square of a path on 𝑘 vertices by 𝐻 (𝑘) , we list their vertices as 𝑢1, . . . , 𝑢𝑘 ,
meaning that the edges of the square are 𝑢𝑖𝑢 𝑗 for each 1 ≤ |𝑖 − 𝑗 | ≤ 2, and we recall that its
end-tuples are (𝑢2, 𝑢1) and (𝑢𝑘−1, 𝑢𝑘). We start with a short overview of our argument for
the proof of Lemma 3.1.33.1.3, where we want to find the square of a Hamilton path covering
𝑉,𝑈1, . . . ,𝑈𝑘 and with end-tuples (𝑥, 𝑥 ′) and (𝑦, 𝑦′). Our proof will follow four steps, and
the decomposition of this square of a Hamilton path in random and deterministic edges is
outlined in Figure 3.63.6.

𝑦′

𝑦𝑥

𝑥′

𝐻𝑥 𝐻𝑥′ 𝐻𝑦′ 𝐻𝑦. . . . . . . . . . . . . . . . . .

Segment 1 Segment 3

Segment 2

Figure 3.6: The square of a Hamilton path with end-tuples (𝑥, 𝑥′) and (𝑦, 𝑦′) in Lemma 3.1.33.1.3 and its decom-
position into edges from 𝐺 (black) and from 𝐺 (𝑛, 𝑝) (dashed blue). Each dotted 𝐻𝑥 , 𝐻𝑥′ , 𝐻𝑦′ , 𝐻𝑦
stands for a copy of 𝑃2

𝑘
with edges all from 𝐺 (𝑛, 𝑝). Segment 1 and 3 (resp. segment 2) are

realised through several copies of the structure in Figure 3.83.8 (resp. Figure 3.73.7).

To ensure that (𝑥, 𝑥 ′) and (𝑦, 𝑦′) are the end-tuples of the square of the path, we will
first find copies 𝐻𝑥 and 𝐻𝑦 of 𝐻 (𝑘) that are connected to the tuples (𝑥, 𝑥 ′) and (𝑦, 𝑦′)
(c.f. Figure 3.63.6). Moreover, with Lemma 3.4.33.4.3, we will find a large family H of transversal
copies of 𝐻 (𝑘) in 𝑈1, . . . ,𝑈𝑘 (c.f. Definition 3.4.13.4.1) such that (H , 𝑉) is super-regular with
respect to the auxiliary graph T𝐺 (H , 𝑉) (c.f. Definition 3.4.23.4.2). In particular, this will
ensure that most pairs (𝐻, 𝐻 ′) ∈ H2 have many common neighbours in 𝑉 in the graph 𝐺.

The next step is to find random edges between the copies in H . For that we will consider
a directed auxiliary graph 𝐹 with vertex set H where, given 𝐻, 𝐻 ′ ∈ H , with 𝐻 on
𝑢1, . . . , 𝑢𝑘 and 𝐻 ′ on 𝑢′1, . . . , 𝑢

′
𝑘
, the pair (𝐻, 𝐻 ′) is an edge of 𝐹 if and only if 𝑢𝑘𝑢′1 is a

random edge and𝑉 (𝐻) ∪𝑉 (𝐻 ′) have many common neighbours in𝑉 in the graph𝐺. This
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3 The square of a Hamilton cycle in randomly perturbed graphs

will allow us to connect 𝐻 to 𝐻 ′ with a random edge, while also giving many choices for
vertices from 𝑉 to turn this into the square of a path on 2𝑘 + 1 vertices (c.f. Figure 3.73.7).

𝑣

𝐻 𝐻 ′

Figure 3.7: Connecting two copies 𝐻 and 𝐻 ′ of 𝑃2
𝑘
, using one vertex 𝑣 ∈ 𝑉 (red), edges from 𝐺 (𝑛, 𝑝) (dashed

blue), and edges from 𝐺 (black).

We will use a random greedy procedure to find a long directed path 𝐷 in 𝐹 that
covers most of H , which is possible by the properties of H and our choice of 𝑝 ≥
𝐶𝑛−(𝑘−1)/(2𝑘−3) ≥ 𝐶𝑛−1. Additionally, we can guarantee that we will later be able to
extend this into the square of a path using any subset of vertices 𝑉 ′ ⊂ 𝑉 of the right size.
We denote the first and last copy of the path 𝐷 by 𝐻 ′

𝑥 and 𝐻 ′
𝑦 , respectively.

In the next step, we take care of the set 𝑍 of those vertices in 𝑈1 ∪ · · · ∪𝑈𝑘 that are not
covered by any copy of 𝐻 (𝑘) from H . We will absorb each vertex 𝑧 ∈ 𝑍 into the square
of a short path, using four vertices from 𝑉 , two copies of 𝐻 (𝑘) in H \ 𝑉 (𝐷), and random
edges within 𝑉 (c.f. Figure 3.83.8). In fact, we will be able to do that simultaneously for each
vertex in 𝑍 , by constructing two squares of paths, one from 𝐻𝑥 to 𝐻 ′

𝑥 and one from 𝐻 ′
𝑦 to

𝐻𝑦 , which contain all vertices of 𝑍 and all copies of 𝐻 (𝑘) in H \𝑉 (𝐷).
In the final step, we will find a perfect matching between the edges (𝐻, 𝐻 ′) of 𝐷 and the

remaining vertices of 𝑉 , while making sure that the sizes of the two sets we want to match
are the same. A vertex 𝑣 ∈ 𝑉 can be matched to (𝐻, 𝐻 ′) if and only if 𝑢𝑘 , 𝑢𝑘−1, 𝑢

′
1, 𝑢

′
2 are

neighbours of 𝑣 in 𝐺 (with the labelling of the vertices of 𝐻, 𝐻 ′ as above). This matching
will close the gap between the two copies 𝐻 and 𝐻 ′ for each edge (𝐻, 𝐻 ′) of 𝐷 with a
vertex 𝑣 from 𝑉 . This will give the square of a path from 𝐻 ′

𝑥 to 𝐻 ′
𝑦 and, together with the

other pieces from 𝐻𝑥 to 𝐻 ′
𝑥 and from 𝐻𝑦 to 𝐻 ′

𝑦 , we will get the square of a Hamilton path
with the correct end-tuples. Ultimately, the shape of this square of the path is as illustrated
in Figure 3.63.6, where the segments between 𝐻𝑥 and 𝐻𝑥′ and between 𝐻𝑦′ and 𝐻𝑦 (resp.
between 𝐻𝑥′ and 𝐻𝑦′) are obtained by repeatedly inserting Figure 3.83.8 (resp. Figure 3.73.7)
several times. We will now turn to the details of the argument.

𝑧

𝐻 𝐻 ′

Figure 3.8: Absorbing a vertex 𝑧 ∈ 𝑍 ⊆ 𝑈1 ∪ · · · ∪𝑈𝑘 , using two copies 𝐻 and 𝐻 ′ of 𝑃2
𝑘
, four vertices from

𝑉 (red), edges from 𝐺 (𝑛, 𝑝) (dashed blue), and edges from 𝐺 (black).

64



3 The square of a Hamilton cycle in randomly perturbed graphs

Proof of Lemma 3.1.33.1.3. Given an integer 𝑘 ≥ 2, let 𝐻 (𝑘) be the square of a path on 𝑘

vertices and observe that 𝑚1(𝐻 (𝑘) ) = 2𝑘−3
𝑘−1 . Given 0 < 𝛿′ ≤ 𝑑 ≤ 1, let 𝛿1, 𝛿0, 𝜀

′ > 0
with 2𝛿1 < 𝛿0 < min{𝛿′, 𝑑3𝑘+32−3𝑘−20} and 𝜀′ < 𝛿8

1. Let 𝐶1 be given by Lemma 2.5.12.5.1
for input 2𝛿1 and 𝐹, where 𝐹 is the path on four vertices. Then let 𝜀2 and 𝐶2 be given by
Lemma 3.4.33.4.3 for input 𝐻 (𝑘) , 𝑑, 𝜀′, and 𝜀′, where 𝜀′ plays also the role of 𝛿 in the statement
of Lemma 3.4.33.4.3. Let 𝜀3 and 𝐶3 be given by Lemma 3.4.73.4.7 with input 𝐻 (𝑘) and 𝛿0. Finally
let 𝜀 < min{𝜀2, 𝜀3, 𝜀

′/4} and 𝐶 = max{𝐶1, 2𝐶2, 2𝐶3, 48𝜀′−1𝛿−1}. Observe that 𝜀 < 2𝛿1,
as required.

Let 𝐺 be a graph on𝑉 ∪𝑈1 ∪ · · · ∪𝑈𝑘 , where𝑉,𝑈1, . . . ,𝑈𝑘 are pairwise disjoint sets of
size |𝑉 | = 𝑛+4 and (1− 𝛿0)𝑛 ≤ |𝑈𝑖 | = 𝑚 ≤ (1− 𝛿1)𝑛 for 𝑖 = 1, . . . , 𝑘 such that 𝑛−𝑚 ≡ −1
(mod 3𝑘 − 1). Suppose that (𝑉,𝑈𝑖) is a (𝜀, 𝑑)-super-regular pair for 𝑖 = 1, . . . , 𝑘 . Further
let (𝑥, 𝑥 ′) and (𝑦, 𝑦′) be two tuples from 𝑉 such that both tuples have 𝑑2𝑚/2 common
neighbours in 𝑈𝑖 for 𝑖 = 1, . . . , 𝑘 in the graph 𝐺. Let 𝛿 be such that 𝑚 = (1 − 𝛿)𝑛 + 1
and observe that 𝛿1 ≤ 𝛿 ≤ 𝛿0 + 1/𝑛 and that the divisibility condition on 𝑛 − 𝑚 implies
that 𝛿𝑛 ≡ 0 (mod 3𝑘 − 1). For later convenience, we define 𝑚0 =

(
1 − 3𝑘

3𝑘−1𝛿
)
𝑛 − 1,

𝑡 =

(
1 − 4𝑘

3𝑘−1𝛿
)
𝑛 + 1, and 𝑠 = 𝑘

3𝑘−1𝛿𝑛. Since 𝛿𝑛 ≡ 0 (mod 3𝑘 − 1), we observe that 𝑚0,
𝑡, and 𝑠 are positive integers. Moreover, we have that

𝑚0 − 𝑡 = 𝑠 − 2 , (3.5.1)

(1 − 𝛿)𝑛 − 1 − 𝑚0 =
𝑠

𝑘
, (3.5.2)

𝑛 − 4𝑠 = 𝑡 − 1 . (3.5.3)

We let 𝑝 ≥ 𝐶𝑛−(𝑘−1)/(2𝑘−3) and reveal 𝐺 (𝑛, 𝑝) in three rounds 𝐺0 ∼ 𝐺 (𝑈1, . . . ,𝑈𝑘 ,
1
2 𝑝),

𝐺1 ∼ 𝐺 (𝑈1, . . . ,𝑈𝑘 ,
1
2 𝑝), and 𝐺2 ∼ 𝐺 (𝑉, 𝑝). Moreover we assume that a.a.s. the events

of Lemma 2.5.12.5.1 and 3.4.73.4.7 hold in 𝐺2 and 𝐺0, respectively.
Finding transversal copies of 𝐻 (𝑘) . We start by ensuring that (𝑥, 𝑥 ′) and (𝑦, 𝑦′) can

be the end-tuples of the square of a path. Fix 𝑖 = 1, . . . , 𝑘 . Recall that each of the tuples
(𝑥, 𝑥 ′) and (𝑦, 𝑦′) has 𝑑2𝑚/2 common neighbours in 𝑈𝑖 . Thus we can pick disjoint sets
𝑈𝑖,𝑥 ,𝑈𝑖,𝑦 ⊂ 𝑈𝑖 of size 𝑑2𝑚/4 such that 𝑈𝑖,𝑥 and 𝑈𝑖,𝑦 are in the common neighbourhoods
of (𝑥, 𝑥 ′) and (𝑦, 𝑦′) in 𝑈𝑖 , respectively. Let 𝐹 and �̃� be the hypergraphs defined in
Definition 3.4.43.4.4, and with 𝐻 (𝑘) and �̃� supported by 𝐺0. Then with Lemma 3.4.73.4.7 we
a.a.s. find an edge in �̃� [𝑈1,𝑥 , . . . ,𝑈𝑘,𝑥] and an edge in �̃� [𝑈1,𝑦 , . . . ,𝑈𝑘,𝑦]. Given the
definition of �̃�, these edges correspond to copies of 𝐻 (𝑘) in 𝐺0 and we denote them by
𝐻𝑥 = (𝑥1, . . . , 𝑥𝑘) and 𝐻𝑦 = (𝑦1, . . . , 𝑦𝑘).

For 𝑖 = 1, . . . , 𝑘 , let 𝑈 ′
𝑖
= 𝑈𝑖 \ {𝑥𝑖 , 𝑦𝑖} and observe that |𝑈 ′

𝑖
| = (1 − 𝛿)𝑛 − 1 and

(𝑈 ′
𝑖
, 𝑉) is (2𝜀, 𝑑/2)-super-regular. Then we apply Lemma 3.4.33.4.3 with 𝐺1 [𝑈 ′

1, . . . ,𝑈
′
𝑘
] to

a.a.s. obtain a family H of transversal copies of 𝐻 (𝑘) , of size |H | ≥ (1 − 𝜀′) (𝑚 − 2) ≥
(1 − 3𝑘

3𝑘−1𝛿)𝑛 − 1 = 𝑚0 and such that the pair (H , 𝑉) is (𝜀′, 𝑑𝑘+12−𝑘−3)-super-regular
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3 The square of a Hamilton cycle in randomly perturbed graphs

with respect to T𝐺 (H , 𝑉), where T𝐺 (H , 𝑉) is the graph defined in Definition 3.4.23.4.2. By
removing some copies of 𝐻 (𝑘) , we can assume that |H | = 𝑚0 and still have that the pair
(H , 𝑉) is (𝜀′, 𝑑𝑘+12−𝑘−4)-super-regular with respect to T𝐺 (H , 𝑉).

Building the directed path 𝐷. Ultimately we want to find a directed path 𝐷, that has
some of the copies of𝐻 (𝑘) inH as vertices. As we later would like to connect two copies of
𝐻 (𝑘) by one random edge and a vertex from 𝑉 to get the square of a path on 2𝑘 + 1 vertices
(c.f. Figure 3.73.7), we want them to appear consecutively in 𝐷 only if all their vertices have
enough common neighbours in𝑉 in the graph𝐺. We encode this condition in the auxiliary
graph 𝐹∗ with vertex set H , and where, given 𝐻, 𝐻 ′ ∈ H , the edge 𝐻𝐻 ′ is in 𝐹∗ if and
only if the vertices in 𝑉 (𝐻) ∪ 𝑉 (𝐻 ′) have at least 𝑑2𝑘+22−2𝑘−7𝑛 common neighbours in 𝑉
in the graph 𝐺.

Claim 3.5.1. The minimum degree of 𝐹∗ is at least (1 − 2𝜀′)𝑚0.

Proof of Claim 3.5.13.5.1. Any copy of 𝐻 ∈ H has degree at least 𝑑𝑘+12−𝑘−3𝑛 into 𝑉 in the
graph T𝐺 (H , 𝑉). Then, by super-regularity in T𝐺 (H , 𝑉), all but 2𝜀′𝑚0 copies of 𝐻 ′ ∈ H
have at least 𝑑2𝑘+22−2𝑘−7𝑛 common neighbours with 𝐻. This implies that 𝐻 has degree
(1 − 2𝜀′)𝑚0 in 𝐹∗. □

For a set 𝑋 ⊆ 𝑉 , we call an edge 𝐻𝐻 ′ ∈ 𝐸 (𝐹∗) good for 𝑋 if there is at least one vertex
𝑣 ∈ 𝑋 that is incident to 𝐻 and 𝐻 ′ in T𝐺 (H , 𝑉). We denote the subgraph of 𝐹∗ with edges
that are good for 𝑋 by 𝐹∗

𝑋
.

Claim 3.5.2. If |𝑋 | ≥ 𝑑−𝑘−12𝑘+4𝜀′𝑛, then all but at most 𝜀′𝑛 vertices of H have degree at
least (1 − 4𝜀′)𝑚0 in 𝐹∗

𝑋
.

Proof of Claim 3.5.23.5.2. All but at most 𝜀′𝑛 copies 𝐻 ∈ H have degree at least
𝑑𝑘+12−𝑘−4 |𝑋 | ≥ 𝜀′𝑛 into 𝑋 in the graph T𝐺 (H , 𝑉). Fixing any 𝐻 ∈ H with this property,
all but at most 𝜀′𝑚0 copies 𝐻 ′ ∈ H \ {𝐻} have at least one common neighbour with 𝐻 in
𝑋 . From Claim 3.5.13.5.1 we know that 𝛿(𝐹∗) ≥ (1 − 2𝜀′)𝑚0 and, therefore, all but at most
𝜀′𝑛 vertices from H have degree at least (1 − 4𝜀′)𝑚0 in 𝐹∗

𝑋
. □

We now define an auxiliary directed graph �̄� on vertex set H as follows. Given any 𝐻
and 𝐻 ′ ∈ H with 𝐻 = 𝑢1, . . . , 𝑢𝑘 and 𝐻 ′ = 𝑢′1, . . . , 𝑢

′
𝑘
, the pair (𝐻, 𝐻 ′) is a directed edge

of �̄� if and only if 𝐻𝐻 ′ is an edge of 𝐹∗ (which means that 𝐻 and 𝐻 ′ have many common
neighbours in 𝑉 in 𝐺) and 𝑢𝑘𝑢′1 is an edge of 𝐺1. Note that for each edge 𝐻𝐻 ′ of 𝐹∗ we
get the directed edge (𝐻, 𝐻 ′) with probability 𝑝/2 independently of all the other edges (in
particular, independently of the edge (𝐻 ′, 𝐻)). Therefore, we can also reveal each edge
(𝐻, 𝐻 ′) in 𝐹∗ with probability 𝑝/2 independently of all the others and every edge of 𝐺1

will be revealed with probability at most 𝑝/2 independently of all the others. We denote
the resulting directed graph by �̄� and we want to find a long directed path 𝐷 in �̄�.
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3 The square of a Hamilton cycle in randomly perturbed graphs

For this we will use a random greedy process that explores the graph using a depth-first
search algorithm. We do not reveal all the edges of 𝐹∗ at the beginning, but, at each step
of the algorithm, we only reveal those edges that are relevant for that step, and add those
which are successful to �̄�. In each step the algorithm maintains a directed path 𝐻1, . . . , 𝐻𝑟

in �̄� and the set 𝐵 of the vertices in H \ {𝐻1, . . . , 𝐻𝑟 }, whose neighbours have already
been all revealed (we call them “dead-ends"). Additionally, we keep track of the vertices
which have already been visited at least twice (due to backtracking of the algorithm) and
denote their set by 𝐴. We initialise 𝑟 = 0, 𝐴 = ∅, and 𝐵 = ∅.

The algorithm proceeds as follows. If 𝑟 = 0, then we choose an arbitrary vertex
𝐻1 ∈ H \ 𝐵 and increase 𝑟 by one. If 𝑟 > 0, we let H ′ = H \ ({𝐻1, . . . , 𝐻𝑟 } ∪ 𝐵) be the
vertices that have not been used and that are not “dead-ends". If 𝐻𝑟 ∉ 𝐴, then from 𝐹∗

we reveal all directed edges from 𝐻𝑟 to H ′ with probability 𝑝/2. If possible, we pick one
neighbour uniformly at random among all those that are successful, denote it by 𝐻𝑟+1, and
increase 𝑟 by one. If none of them is successful, we add 𝐻𝑟 to 𝐵, 𝐻𝑟−1 to 𝐴, and decrease 𝑟
by one. If 𝐻𝑟 ∈ 𝐴, then the directed edges from 𝐻𝑟 to H ′ in 𝐹∗ have already been revealed
earlier. If there is an edge from 𝐻𝑟 to some 𝐻 ′ ∈ H ′ in �̄�, we let 𝐻𝑟+1 = 𝐻 ′ and increase
𝑟 by one. Otherwise, we add 𝐻𝑟 to 𝐵, 𝐻𝑟−1 to 𝐴, and decrease 𝑟 by one. The algorithm
stops if 𝑟 = (1 − 4𝑘

3𝑘−1𝛿)𝑛 + 1 or when |𝐵| ≥ 𝜀′𝑛, whichever happens first. We claim that
the algorithm terminates and the latter does not happen.

Claim 3.5.3. The graph �̄� a.a.s. contains a directed path 𝐷 on 𝑡 vertices (with 𝑡 being
(1 − 4𝑘

3𝑘−1𝛿)𝑛 + 1, as defined above).

Proof of Claim 3.5.33.5.3. First, we observe that the algorithm terminates. Indeed, if |𝐵| < 𝜀′𝑛
then |H ′ | ≥ |H | − 𝑡 − |𝐵| > 2𝜀′𝑚0 and with Claim 3.5.13.5.1 there is at least one edge of 𝐹∗

from 𝐻𝑟 to H ′. Secondly, we claim that a.a.s. |𝐵| < 𝜀′𝑛. Assume that at some point we
have |𝐵| = 𝜀′𝑛 and 𝑟 < 𝑡 = (1 − 4𝑘

3𝑘−1𝛿)𝑛 + 1. Since at least |H | − 𝑟 − |𝐵| ≥ 𝛿𝑛/4 vertices
of H are not covered by the path or a vertex from 𝐵, we can pick a set H ′ of exactly
𝛿𝑛/4 of them. This implies that all edges from 𝐵 to H ′ that are in 𝐹∗ have been revealed
but none is present in �̄�. However, with Claim 3.5.13.5.1, the expected number of edges in �̄�
from 𝐵 to H ′ with |𝐵| = 𝜀′𝑛 and |H ′ | = 1

4𝛿𝑛 is 1
8 𝑝𝜀

′𝛿𝑛2 and by Chernoff’s inequality
(Lemma 2.4.12.4.1) the probability that none of the edges in 𝐹∗ from 𝐵 to H ′ appears in �̄� is at
most 2 exp(− 1

24𝜀
′𝑝𝛿𝑛2) ≤ 2 exp(−2𝑛). A union bound over the at most 22𝑛 choices for 𝐵

and H ′ implies that the probability that there exist 𝐵 and H ′ as above is 𝑜(1). Therefore
the process stops when 𝑟 = 𝑡 and we obtain a directed path 𝐷 on 𝑡 vertices in �̄�. □

Preparing the final matching. The previous claim already guarantees a long directed
path, but we need some additional properties that enable us to finish the proof later. An
edge of 𝐷 corresponds to an edge 𝐻𝐻 ′ of 𝐹∗ and, for each of them, there are many choices
for a vertex 𝑣 ∈ 𝑉 that turns this into the square of a path on 2𝑘 + 1 vertices. We will need
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to do this simultaneously for all edges of 𝐷 in the last step of the proof. However, before
the last step, we have to cover the leftover of𝑈1 ∪ · · · ∪𝑈𝑘 and H , which will be possible
by using some vertices of 𝑉 . This will leave a subset 𝑉 ′ ⊆ 𝑉 of size 𝑡 − 1 to match to the
edges of 𝐷 in the last step, where we remark that the path 𝐷 has exactly 𝑡 − 1 edges. We
now show that this is possible for any subset 𝑉 ′ ⊆ 𝑉 of size 𝑡 − 1. We encode this task as
follows. Given a vertex 𝑣 ∈ 𝑉 , we define F𝑣 to be the set of all pairs (𝐻, 𝐻 ′) ∈ H2 such
that both 𝐻 and 𝐻 ′ are adjacent to 𝑣 in T𝐺 (H , 𝑉); note that this means that 𝑣 is adjacent
to all vertices in 𝑉 (𝐻) ∪𝑉 (𝐻 ′) in the graph 𝐺. Then we define a auxiliary bipartite graph
F𝐷 with partition 𝐸 (𝐷) and 𝑉 , where for 𝑒 ∈ 𝐸 (𝐷) and 𝑣 ∈ 𝑉 , the pair 𝑒𝑣 is an edge of
F𝐷 if and only if 𝑒 ∈ F𝑣 .

Claim 3.5.4. A.a.s. for any𝑉 ′ ⊆ 𝑉 of size 𝑡 −1 the graph F𝐷 [𝑉 ′, 𝐸 (𝐷)] contains a perfect
matching.

Proof of Claim 3.5.43.5.4. It suffices to show that for each 𝑋 ⊆ 𝑉 of size at most 𝑡 − 1 we have
|⋃𝑣∈𝑋 𝑁F𝐷

(𝑣) | ≥ |𝑋 | and then the result follows by Hall’s condition. We will use the
notation from the algorithm introduced above.

Let 𝑋 ⊆ 𝑉 of size at most 𝑡 − 1 be given. First suppose that |𝑋 | > (1 − 𝑑𝑘+22−2𝑘−8)𝑛
and let 𝑒 = (𝐻, 𝐻 ′) be any edge of 𝐷. Since 𝐻𝐻 ′ is in particular an edge of 𝐹∗,
the vertices 𝑉 (𝐻) ∪ 𝑉 (𝐻 ′) have at least 𝑑2𝑘+22−2𝑘−7𝑛 common neighbours in 𝑉 . As
|𝑉 \ 𝑉 ′ | ≤ 2𝛿𝑛 ≤ 𝑑2𝑘+22−2𝑘−8𝑛, 𝑒 has a neighbour in 𝑋 with respect to F𝐷 . Since this is
true for any edge 𝑒 of 𝐷, we conclude that |⋃𝑣∈𝑋 𝑁F𝐷

(𝑣) | = 𝑡 − 1 ≥ |𝑋 |.
Secondly suppose that |𝑋 | < 𝛿𝑛. Here it suffices to show that for any 𝑣 ∈ 𝑉 we

have |𝑁F𝐷
(𝑣) | ≥ 𝛿𝑛. Fix any 𝑣 ∈ 𝑉 and let ℓ = 𝑑𝑘+12−𝑘−6𝑛. As the pair (H , 𝑉) is

(𝜀′, 𝑑𝑘+12−𝑘−4)-super-regular with respect to T𝐺 (H , 𝑉), we have that 𝑣 has degree at least
𝑑𝑘+12−𝑘−4𝑚0 into H with respect to T𝐺 (H , 𝑉). Consider any point during the first ℓ steps
of the algorithm and let 𝐻1, . . . , 𝐻𝑟 be the current path. We assume that 𝐻𝑟 is not (yet) in
𝐴 and denote by M the history of the algorithm until this point. Now we will look into
the next two steps of the algorithm and estimate the probability that two vertices 𝐻𝑟+1 and
𝐻𝑟+2 are added to the path and the edge (𝐻𝑟+1, 𝐻𝑟+2) is in F𝑣 .

The first part is equivalent to 𝐻𝑟 ∉ 𝐵 and 𝐻𝑟+1 ∉ 𝐵 and with P[𝐻𝑟 ∈ 𝐵] ≤ (1 − 𝑝

2 )
𝛿𝑛 ≤

exp(− 𝑝

2 𝛿𝑛) ≤ 𝜀′ we get that P[𝐻𝑟 , 𝐻𝑟+1 ∉ 𝐵] ≥ (1 − 𝜀′)2. Next, we want to bound the
number of valid choices for 𝐻𝑟+1 in H ′ that are neighbours of 𝑣 in T𝐺 (H , 𝑉). From the
neighbours of 𝑣 in T𝐺 (H , 𝑉), we have to exclude those 𝐻 ′ such that 𝐻𝑟𝐻 ′ is not an edge
of 𝐹∗, and those 𝐻 ′ that are “dead-ends": in the first case their number is at most 2𝜀′𝑚0

by Claim 3.5.13.5.1, in the second case their number is at most |𝐵| < 𝜀′𝑛. Therefore there are
at least 𝑑𝑘+12−𝑘−4𝑚0 − 2𝜀′𝑚0 − 𝜀′𝑛 − ℓ ≥ 𝑑𝑘+12−𝑘−5𝑚0 valid choices for 𝐻𝑟+1 in H ′ that
are neighbours of 𝑣 in T𝐺 (H , 𝑉). Repeating the same argument in the next step of the
algorithm, there are at least 𝑑𝑘+12−𝑘−5𝑚0 valid choices for 𝐻𝑟+2 in H ′ that are neighbours
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of 𝑣 in T𝐺 (H , 𝑉). In particular for such choices of 𝐻𝑟+1 and 𝐻𝑟+2, the edge (𝐻𝑟+1, 𝐻𝑟+2)
is in F𝑣 .

We have that 𝐻𝑟 (resp. 𝐻𝑟+1) is not in 𝐴 and we condition on the event that it is also
not in 𝐵. Since we revealed the edges of 𝐹∗ in each step separately the vertex 𝐻𝑟+1 (resp.
𝐻𝑟+2) is then chosen uniformly at random from the at most |H | = 𝑚0 available possibilities.
Therefore,

P[(𝐻𝑟+1, 𝐻𝑟+2) ∈ F𝑣 |M ∧ 𝐻𝑟 , 𝐻𝑟+1 ∉ 𝐵] ≥ (𝑑𝑘+12−𝑘−5𝑚0)2

𝑚2
0

≥ 𝑑2𝑘+22−2𝑘−10

and together with the bound on P[𝐻𝑟 , 𝐻𝑟+1 ∉ 𝐵] we get

P[(𝐻𝑟+1, 𝐻𝑟+2) ∈ F𝑣 |M] ≥ (1 − 𝜀′)2𝑑2𝑘+22−2𝑘−10 ≥ 𝑑2𝑘+22−2𝑘−11 .

Crucially, this lower bound holds independently of the history M. As among the first ℓ
steps we can have at most 𝜀′𝑛 many steps in which 𝐻𝑟 ∈ 𝐴, this process dominates a
binomial distribution with parameters ℓ − 𝜀′𝑛 and 𝑑2𝑘+22−2𝑘−11𝑛. Therefore, even though
the events are not mutually independent, we can use Chernoff’s inequality (Lemma 2.4.12.4.1)
to infer that with probability at least 1 − 𝑛−2 at least 𝑑3𝑘+32−3𝑘−18𝑛 of these edges are in
F𝑣 . Some of these edges might not appear in the final path 𝐷, because of the “dead-ends"
and the backtracking of the algorithm, but their number is at most 𝜀′𝑛. Thus we get that
|𝑁F𝐷

(𝑣) | ≥ 𝑑3𝑘+32−3𝑘−18𝑛 − 𝜀′𝑛 ≥ 𝛿𝑛 with probability at least 1 − 𝑛−2. By applying the
union bound over all 𝑣 ∈ 𝑉 , we obtain that a.a.s. |𝑁F𝐷

(𝑣) | ≥ 𝛿𝑛 for all 𝑣 ∈ 𝑉 , as desired.
Finally, assume that 𝛿𝑛 ≤ |𝑋 | ≤ (1 − 𝑑𝑘+22−2𝑘−8)𝑛. Here it suffices to show that, for

any 𝑋 ⊆ 𝑉 with |𝑋 | = 𝛿𝑛, we have |⋃𝑣∈𝑋 𝑁F𝐷
(𝑣) | ≥ (1− 𝑑𝑘+22−2𝑘−8)𝑛. We use a similar

argument as above, but this time we need to give more precise estimates. Consider any
step of the algorithm where the current path is 𝐻1, . . . , 𝐻𝑟 for some 𝑟 < (1 − 4𝑘

3𝑘−1𝛿)𝑛 + 1,
assume that 𝐻𝑟 ∉ 𝐴, and denote by M the history of the algorithm until this point. We
want to bound the number of valid choices for 𝐻𝑟+1 in H ′ that are neighbours of some
𝑣 ∈ 𝑋 in T𝐺 (H , 𝑉). With Claim 3.5.13.5.1, there are at least 𝑚0 − 2𝜀′𝑚0 − 𝜀′𝑛 − 𝑟 choices
for 𝐻𝑟+1 ∈ H ′ such that 𝐻𝑟𝐻𝑟+1 is an edge of 𝐹∗ and 𝐻𝑟+1 is not a “dead-end". Using
Claim 3.5.23.5.2, for at least𝑚0 −𝑟 −4𝜀′𝑛 of these choices, 𝐻𝑟+1 has degree at least (1−4𝜀′)𝑚0

in 𝐹∗
𝑋

. Then there are at least 𝑚0 − 𝑟 − 4𝜀′𝑚0 − 𝜀′𝑛 ≥ 𝑚0 − 𝑟 − 5𝜀′𝑛 choices for 𝐻𝑟+2, such
that (𝐻𝑟+1, 𝐻𝑟+2) is in

⋃
𝑣∈𝑋 F𝑣 .

On the other hand, there are at most (𝑚0 − 𝑟) choices for each of 𝐻𝑟+1 and 𝐻𝑟+2 and as
above we have that at least one neighbour of 𝐻𝑟 or 𝐻𝑟+1 appears with probability at least
1 − 2𝜀′. Using that 𝑚0 − 𝑟 ≥ 𝛿𝑛/3 we get

P

[
(𝐻𝑟+1, 𝐻𝑟+2) ∈

⋃
𝑣∈𝑋

F𝑣
���M ∧ 𝐻𝑟 ∉ 𝐴

]
≥ (1 − 2𝜀′)2(𝑚0 − 𝑟 − 5𝜀′𝑛)2

(𝑚0 − 𝑟)2 ≥ 1 − 20
𝜀′

𝛿
.
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3 The square of a Hamilton cycle in randomly perturbed graphs

Again, as the lower bound holds independently of the history M and as there are at most
𝜀′𝑛 steps with 𝐻𝑟 ∈ 𝐴, this process dominates a binomial distribution with parameters
𝑡 − 𝜀′𝑛 and 1 − 20 𝜀′

𝛿
. Therefore, the number 𝑌 of these edges that are in

⋃
𝑣∈𝑋 F𝑣 is in

expectation at least (𝑡−𝜀′𝑛) (1−20 𝜀′
𝛿
) ≥ (1−𝛿)𝑡 and we get from the more precise version

of Chernoff’s inequality (Lemma 2.4.12.4.1) that

P

[
𝑌 < (1 − 2𝛿)𝑡 ≤ E[𝑌 ] −

(
𝛿 − 20

𝜀′

𝛿

)
(𝑡 − 𝜀′𝑛)

]
≤ exp

(
−𝐷

(
(1 − 𝛿)

����1 − 20
𝜀′

𝛿

)
(𝑡 − 𝜀′𝑛)

)
≤ exp

(
−𝛿

(
log

(
𝛿2

20𝜀′

)
− 2

)
(𝑡 − 𝜀′𝑛)

)
≤ exp

(
−𝛿 log

(
1
𝜀′

)
1
2
𝑡

)
.

There are at most
( 𝑛
𝛿𝑛

)
≤ ( 𝑒

𝛿
) 𝛿𝑛 ≤ exp(𝛿 log( 1

𝛿
)𝑛) ≤ exp(𝛿 log( 1

𝜀′ )
1
4 𝑡) choices for 𝑋 and,

thus, with the union bound over all these choices, we obtain that a.a.s. at least (1 − 2𝛿)𝑡 of
the edges are in

⋃
𝑣∈𝑋 F𝑣 for every 𝑋 ⊆ 𝑉 with |𝑋 | = 𝛿𝑛. At most 𝜀′𝑛 of these edges do

not belong to 𝐷 and putting this together we a.a.s. have�� ⋃
𝑥∈𝑋

𝑁F𝐷
(𝑥)

�� ≥ (1 − 2𝛿)𝑡 − 𝜀′𝑛 ≥ (1 − 4𝛿)𝑛 ≥ (1 − 𝑑𝑘+22−2𝑘−8)𝑛

for any 𝑋 ⊆ 𝑉 with |𝑋 | = 𝛿𝑛, as wanted. □

Let 𝐷 be the directed path in 𝐹∗ given by Claim 3.5.33.5.3 and assume that the assertion
of Claim 3.5.43.5.4 holds. We denote the first vertex of 𝐷 by 𝐻 ′

𝑥 and the last by 𝐻 ′
𝑦 . Before

dealing with the next step, we summarise what we have so far. We have several copies of
𝐻 (𝑘) : 𝐻𝑥 , 𝐻𝑦 and those in H . The vertices 𝑥 and 𝑥 ′ (resp. 𝑦 and 𝑦′) are adjacent in 𝐺 to
all vertices of 𝐻𝑥 (resp. 𝐻𝑦), and thus (𝑥, 𝑥 ′) and (𝑦, 𝑦′) can be end-tuples of the square
of a Hamilton path we want to construct. Moreover, we have an ordering (given by the
directed path 𝐷) of 𝑡 copies of 𝐻 (𝑘) in H , such that if 𝐻 = 𝑢1, . . . , 𝑢𝑘 and 𝐻 = 𝑢′1, . . . , 𝑢

′
𝑘

appear consecutively, then 𝑢𝑘𝑢′1 is an edge of the random graph, and all their vertices
𝑢1, . . . , 𝑢𝑘 , 𝑢

′
1, . . . , 𝑢

′
𝑘

have many common neighbours in 𝑉 in the graph 𝐺.
Covering the left-over vertices from𝑈1 ∪ · · · ∪𝑈𝑘 . Let H ′ be the copies of 𝐻 (𝑘) in H

not used for the path 𝐷 and observe that |H ′ | = |H \𝑉 (𝐷) | = 𝑚0− 𝑡 = 𝑠−2, where the last
equality follows from (3.5.13.5.1). Further observe that the number of vertices in𝑈𝑖 not in any
copy of 𝐻 (𝑘) in H is |𝑈𝑖 | − 2 − |H | = (1 − 𝛿)𝑛 − 𝑚0 = 𝑠

𝑘
, where the last equality follows

from (3.5.23.5.2). Therefore we have exactly 𝑠 vertices in total in 𝑈1 ∪ · · · ∪𝑈𝑘 to absorb; let
𝑍 be the set of these vertices. We want to cover the 𝑠 vertices in 𝑍 with the square of two
paths connecting 𝐻𝑥 to 𝐻 ′

𝑥 and 𝐻 ′
𝑦 to 𝐻𝑦 respectively, while using all copies of 𝐻 (𝑘) in

H ′ and exactly 4𝑠 vertices from 𝑉 (c.f. Figure 3.83.8).
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3 The square of a Hamilton cycle in randomly perturbed graphs

We start from connecting𝐻𝑥 to𝐻 ′
𝑥 , while absorbing two vertices of 𝑍 . We pick𝐻 ′ ∈ H ′

and 𝑧𝑥 , 𝑧′𝑥 ∈ 𝑍 such that the vertices in 𝐻𝑥 ∪ {𝑧𝑥} ∪ 𝐻 ′ and 𝐻 ′ ∪ {𝑧′𝑥} ∪ 𝐻 ′
𝑥 each have

at least 2𝛿𝑛 common neighbours in 𝑉 . This is possible by using Claim 3.5.13.5.1 and the
regularity property of 𝐺. Then by Lemma 2.5.12.5.1, a.a.s. the random graph 𝐺2 has a path on
four vertices within each of these two sets of 2𝛿𝑛 vertices, that gives the desired connection
(c.f. Figure 3.83.8).

Now we connect 𝐻 ′
𝑦 to 𝐻𝑦 , while absorbing the other 𝑠 − 2 vertices of 𝑍 \ {𝑧𝑥 , 𝑧′𝑥}. Let

𝐻 ′
1 = 𝐻𝑦 , 𝐻 ′

𝑠−1 = 𝐻 ′
𝑦 and 𝐻 ′

2, . . . , 𝐻
′
𝑠−2 be a labelling of the remaining 𝑠−3 copies of 𝐻 (𝑘)

in H ′ \ {𝐻 ′} such that for 𝑗 = 1, . . . , 𝑠 − 2 we have that all vertices in 𝑉 (𝐻 𝑗) ∪ 𝑉 (𝐻 𝑗+1)
have at least 𝑑2𝑘+22−2𝑘−7𝑛 common neighbours in 𝑉 in 𝐺. This is possible by Dirac’s
Theorem and because, by Claim 3.5.13.5.1, for each 𝐻 ∈ H ′ ∪ {𝐻𝑦 , 𝐻 ′

𝑦} all but 6 𝜀′
𝛿
𝑠 choices

𝐻 ′ ∈ H ′ are such that the vertices 𝑉 (𝐻) ∪𝑉 (𝐻 ′) have 𝑑2𝑘+22−2𝑘−7𝑛 common neighbours.
Next, we want to find a labelling 𝑧1, . . . , 𝑧𝑠−2 of the vertices from 𝑍 ′ = 𝑍 \ {𝑧𝑥 , 𝑧′𝑥} such

that for 𝑗 = 1, . . . , 𝑠 − 2 the vertices 𝑉 (𝐻 𝑗) ∪ {𝑧 𝑗} ∪ 𝑉 (𝐻 𝑗+1) have at least 2𝛿𝑛 common
neighbours in 𝑉 . This again follows easily from Hall’s condition for perfect matchings
and because, by Claim 3.5.13.5.1, for each 𝑗 = 1, . . . , 𝑠 − 2 all but 6𝜀′𝑠/𝛿 choices 𝑧 ∈ 𝑍 are
such that 𝑉 (𝐻 𝑗) ∪𝑉 (𝐻 𝑗+1) ∪ {𝑧} have 2𝛿𝑛 common neighbours and, similarly, vice versa.
Then by Lemma 2.5.12.5.1, a.a.s. we can greedily choose a path on four vertices in the common
neighbourhood of the vertices from𝑉 (𝐻 𝑗) ∪𝑉 (𝐻 𝑗+1) ∪ {𝑧 𝑗} in𝑉 for 𝑗 = 1, . . . , 𝑠−2, with
all the edges coming from the random graph 𝐺2. This again gives the desired connection
(c.f. Figure 3.83.8).

This completes the square of two paths from 𝐻𝑥 to 𝐻 ′
𝑥 and from 𝐻 ′

𝑦 to 𝐻𝑦 . These two
cover exactly 4𝑠 vertices of 𝑉 . Therefore, there are precisely |𝑉 | − 4 − 4𝑠 = 𝑛 − 4𝑠 = 𝑡 − 1
vertices of 𝑉 \ {𝑥, 𝑥 ′, 𝑦, 𝑦′} not yet covered by the square of a path, where we used (3.5.33.5.3);
we let 𝑉 ′ be the set of such vertices. Observe that |𝑉 ′ | = 𝑡 − 1 = |𝐸 (𝐷) |.

Finishing the square of a path. We finish the proof by constructing the square of a
path with 𝐻 ′

𝑥 and 𝐻 ′
𝑦 at the ends using precisely the vertices of 𝑉 ′ and the copies of 𝐻 (𝑘)

that are vertices of 𝑉 (𝐷). For this we use that by Claim 3.5.43.5.4 there is a perfect matching
in F𝐷 [𝑉 ′, 𝐸 (𝐷)]. For 𝑖 = 1, . . . , 𝑡 − 1, let 𝑣𝑖 be the vertex of 𝑉 matched to the edge
(𝐻𝑖 , 𝐻𝑖+1) ∈ 𝐸 (𝐷) in F𝐷 . With 𝐻𝑖 = 𝑢1, . . . , 𝑢𝑘 and 𝐻𝑖+1 = 𝑢′1, . . . , 𝑢

′
𝑘
, we then have that

𝑣𝑖 is incident to 𝑢𝑘−1𝑢𝑘 , 𝑢
′
1, 𝑢

′
2 by definition of F𝐷 . This completes the construction of the

square of the path with 𝐻 ′
𝑥 to 𝐻 ′

𝑦 at the ends. By adding the two connections found above
from 𝐻𝑥 to 𝐻 ′

𝑥 and from 𝐻 ′
𝑦 to 𝐻𝑦 and the initial tuples (𝑥, 𝑥 ′) and (𝑦, 𝑦′), we get the

square of a Hamilton path with end-tuples (𝑥, 𝑥 ′) and (𝑦, 𝑦′) as desired (c.f. Figure 3.63.6).
This finishes the proof of the lemma.

We end this section by giving the proof of Lemma 3.1.43.1.4, that follows from Lemma 3.1.33.1.3,
once we split appropriately the super-regular regular pair (𝑈,𝑉) into two copies of super-
regular 𝐾1,2, both suitable for an application of Lemma 3.1.33.1.3 with 𝑘 = 2.
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Proof of Lemma 3.1.43.1.4. Let 0 < 𝑑 < 1, choose 𝛿′ with 0 < 𝛿′ ≤ 𝑑/8 and apply
Lemma 3.1.33.1.3 with 𝑘 = 2, 𝛿′, and 𝑑/8 to obtain 𝛿0, 𝛿, 𝜀

′ with 𝛿′ ≥ 𝛿0 > 2𝛿 > 𝜀′ > 0
and 𝐶 ′ > 0. Then let 0 < 𝜀 ≤ 𝜀′/8, 𝐶 ≥ 4𝐶 ′, and 𝑝 ≥ 𝐶𝑛−1. Next let 𝑈 and 𝑉
be vertex-sets of size |𝑉 | = 𝑛 and 3𝑛/4 ≤ |𝑈 | = 𝑚 ≤ 𝑛 and assume that (𝑈,𝑉) is an
(𝜀, 𝑑)-super-regular pair. Let (𝑥, 𝑥 ′) and (𝑦, 𝑦′) be tuples from 𝑉 and𝑈, respectively, such
that they have 1

2𝑑
2𝑛 common neighbours into the other set. We will reveal 𝐺 (𝑉, 𝑝) and

𝐺 (𝑈, 𝑝) both in two rounds as 𝐺1, 𝐺3 ∼ 𝐺 (𝑉, 1
2 𝑝), and 𝐺2, 𝐺4 ∼ 𝐺 (𝑈, 1

2 𝑝).
We partition𝑉 into𝑉1,𝑈2,𝑊2 and𝑈 into𝑉2,𝑈1,𝑊1 such that for 𝑖 = 1, 2 the pairs (𝑈𝑖 , 𝑉𝑖)

and (𝑊𝑖 , 𝑉𝑖) are (𝜀′, 1
8𝑑)-super-regular pairs and (1 − 𝛿0) |𝑉𝑖 | ≤ |𝑈𝑖 | = |𝑊𝑖 | ≤ (1 − 𝛿) |𝑉𝑖 |.

Additionally, we require that (𝑥, 𝑥 ′) is in 𝑉1 and that (𝑦, 𝑦′) is in 𝑉2 and that they have at
least 1

2 (
𝑑
8 )

2𝑛 common neighbours in𝑈1,𝑊1 and in𝑈2,𝑊2, respectively. To obtain this we
split the sets according to the following random distribution. We put any vertex of 𝑉 into
each of 𝑈2 and𝑊2 with probability 𝑞1 and into 𝑉1 with probability 1 − 2𝑞1. Similarly, we
put any vertex of𝑈 into each of𝑈1 and𝑊1 with probability 𝑞2 and into𝑉2 with probability
1 − 2𝑞2. We choose 𝑞1 and 𝑞2 such that the expected sizes satisfy for 𝑖 = 1, 2

E[|𝑈𝑖 |] = E[|𝑊𝑖 |] =
(
1 − 𝛿0 + 𝛿

2

)
E[|𝑉𝑖 |] .

This is possible since such conditions give a linear system of two equations in two unknowns
𝑞1 and 𝑞2, and, as 3𝑛/4 ≤ 𝑚 ≤ 𝑛, the solution satisfies 1/7 ≤ 𝑞1, 𝑞2 ≤ 3/7. Then by
Chernoff’s inequality (Lemma 2.4.12.4.1) and with 𝑛 large enough there exists a partition such
that for 𝑖 = 1, 2 we have that |𝑊𝑖 |, |𝑈𝑖 |, and |𝑉𝑖 | are all within ±𝑛2/3 of their expectation
and the minimum degree within both pairs (𝑈𝑖 , 𝑉𝑖) and (𝑊𝑖 , 𝑉𝑖) is at least a 𝑑/4-fraction
of the other set. For 𝑖 = 1, 2 we redistribute 𝑜(𝑛) vertices between 𝑈𝑖 and𝑊𝑖 and move at
most one vertex from or to 𝑉𝑖 to obtain

(1 − 𝛿0) |𝑉𝑖 | ≤ |𝑈𝑖 | = |𝑊𝑖 | ≤ (1 − 𝛿) |𝑉𝑖 |

with minimum degree within both pairs (𝑈𝑖 , 𝑉𝑖) and (𝑊𝑖 , 𝑉𝑖) at least a 𝑑/8-fraction of the
other set. Moreover, for 𝑖 = 1, 2, we can ensure that with 𝑛𝑖 = |𝑉𝑖 |−4 we have 𝑛𝑖−|𝑈𝑖 | ≡ −1
(mod 5).

From this we get that for 𝑖 = 1, 2 the pairs (𝑈𝑖 , 𝑉𝑖) and (𝑊𝑖 , 𝑉𝑖) are (𝜀′, 1
8𝑑)-super-regular.

With 𝐺1 and 𝐺2 we reveal random edges within 𝑉1 and 𝑉2 with probability 𝑝/2 to find
tuples (𝑧, 𝑧′) in𝑉1 and (𝑤, 𝑤′) in𝑉2 such that together they give a copy of 𝐾4 and (𝑧, 𝑧′) and
(𝑤, 𝑤′) have at least 1

2 (
𝑑
8 )

2𝑛 common neighbours in 𝑈1, 𝑊1 and in 𝑈2, 𝑊2, respectively.
Then we use Lemma 3.1.33.1.3 and 𝐺3, 𝐺4 with 𝐶𝑛−1 ≥ 𝐶 ′ min{|𝑉1 |, |𝑉2 |}−1 to a.a.s. find the
square of a Hamilton path on 𝑉𝑖 , 𝑈𝑖 , 𝑊𝑖 for 𝑖 = 1, 2 with end-tuples (𝑥, 𝑥 ′), (𝑧, 𝑧′) and
(𝑦, 𝑦′), (𝑤, 𝑤′), respectively. Together with the edges between (𝑧, 𝑧′) and (𝑤, 𝑤′) this gives
the square of a Hamilton path covering𝑈 and 𝑉 with end-tuples (𝑥, 𝑥 ′) and (𝑦, 𝑦′).
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3.6 Proof of the embedding Lemma 3.1.13.1.1

The proof Lemma 3.1.13.1.1 for 𝑘 ≥ 3 is a not too difficult application of Janson’s inequality,
while the case 𝑘 = 2 requires more ad-hoc arguments. Therefore, though the two proof
strategies share some ideas, we treat the case 𝑘 = 2 separately.

3.6.1 Case 𝑘 = 2

We want to show that if 𝐺 is an 𝑛-vertex graph with minimum degree 𝛿(𝐺) ≥ 𝑚 and
maximum degree Δ(𝐺) ≤ 𝑛/(64𝑡), then a.a.s. the perturbed graph 𝐺 ∪ 𝐺 (𝑛, 𝑝) contains
𝑡𝑚+𝑡 pairwise vertex-disjoint triangles, provided 𝑝 ≥ 𝐶𝑛−1 log 𝑛. We split the proof in three
ranges for the value of 𝑚: 0 ≤ 𝑚 ≤ (log 𝑛)3, (log 𝑛)3 ≤ 𝑚 ≤

√
𝑛, and

√
𝑛 ≤ 𝑚 ≤ 𝑛/(64𝑡).

If 0 ≤ 𝑚 ≤ (log 𝑛)3 a.a.s. 𝑡𝑚 + 𝑡 pairwise vertex-disjoint triangles already exist in 𝐺 (𝑛, 𝑝)
(see [6868, Theorem 3.29]). If (log 𝑛)3 ≤ 𝑚 ≤

√
𝑛 we will find many large enough vertex-

disjoint stars in 𝐺 (see Lemma 3.6.33.6.3) and a.a.s. at least 𝑡𝑚 + 𝑡 of them will be completed
to triangles using edges of 𝐺 (𝑛, 𝑝) (see Proposition 3.6.13.6.1). However if 𝑚 >

√
𝑛 we

cannot hope to find 𝑡𝑚 + 𝑡 large enough vertex-disjoint stars and instead we will apply
a greedy strategy using that a.a.s. every vertex has an edge in its neighbourhood (see
Proposition 3.6.23.6.2).

Proposition 3.6.1. For any integer 𝑡 ≥ 1 and real number 0 < 𝛾 < 1/2, there exists 𝐶 > 0
such that for any (log 𝑛)3 ≤ 𝑚 ≤

√
𝑛 and any 𝑛-vertex graph 𝐺 with maximum degree

Δ(𝐺) ≤ 𝛾𝑛 and minimum degree 𝛿(𝐺) ≥ 𝑚 the following holds. With 𝑝 ≥ 𝐶𝑛−1 there are
a.a.s. at least 𝑡𝑚 + 𝑡 pairwise vertex-disjoint triangles in 𝐺 ∪ 𝐺 (𝑛, 𝑝).

Proposition 3.6.2. For any integer 𝑡 ≥ 1, there exists 𝐶 > 0 such that for any
√
𝑛 ≤ 𝑚 ≤

𝑛/(64𝑡) and any 𝑛-vertex graph 𝐺 with maximum degree Δ(𝐺) ≤ 𝑛/(64𝑡) and minimum
degree 𝛿(𝐺) ≥ 𝑚 the following holds. With 𝑝 ≥ 𝐶𝑛−1 log 𝑛 there are a.a.s. at least 𝑡𝑚 + 𝑡
pairwise vertex-disjoint triangles in 𝐺 ∪ 𝐺 (𝑛, 𝑝).

With this at hand, Lemma 3.1.13.1.1 is now obvious, and it remains to prove Proposition 3.6.13.6.1
and Proposition 3.6.23.6.2.

For Proposition 3.6.13.6.1, which deals with the cases (log 𝑛)3 ≤ 𝑚 ≤
√
𝑛, we first need to

find many large enough vertex-disjoint stars in 𝐺. These can be found deterministically
with Lemma 3.6.33.6.3 below and afterwards we will show that a.a.s. at least 𝑡𝑚 + 𝑡 of them can
be completed to triangles with the help of 𝐺 (𝑛, 𝑝).

Recall that, give any integer 𝑔 ≥ 2, the star on 𝑔 + 1 vertices is the graph with one vertex
of degree 𝑔 (this vertex is called the centre) and the other vertices of degree one (these
vertices are called leaves). Given a star 𝐾 , we denote the number of its leaves by 𝑔𝐾 .
Moreover, given a family of vertex-disjoint stars K, we denote the set of all their centre
vertices by K𝐶 and the set of all their leaf vertices by K𝐿 .
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Lemma 3.6.3. For every 0 < 𝛾 < 1/2 and integer 𝑠 there exists 𝜀 > 0 such that for 𝑛 large
enough and any 𝑚 with 2/𝜀 ≤ 𝑚 ≤

√
𝑛 the following holds. In every 𝑛-vertex graph 𝐺

with minimum degree 𝛿(𝐺) ≥ 𝑚 and maximum degree Δ(𝐺) ≤ 𝛾𝑛 there exists a family K
of vertex-disjoint stars in 𝐺 such that every 𝐾 ∈ K has 𝑔𝐾 leaves with 𝜀𝑚 ≤ 𝑔𝐾 ≤ 𝜀

√
𝑛

and ∑︁
𝐾 ∈K

𝑔2
𝐾 ≥ 𝑠𝜀2𝑛𝑚.

Proof of Lemma 3.6.33.6.3. Given 0 < 𝛾 < 1/2 and an integer 𝑠 we let 𝜀 > 0 such that
𝜀 ≤ 1/(6𝑠) and 𝜀 < 1/2 − 𝑠𝛾. Moreover, we let 𝑛 be large enough for our calculations
and, for simplicity, assume that 𝜀

√
𝑛 is an integer. Then let 2/𝜀 ≤ 𝑚 ≤

√
𝑛 and 𝐺 be an

𝑛-vertex graph on vertex set 𝑉 with 𝛿(𝐺) ≥ 𝑚 and Δ(𝐺) ≤ 𝛾𝑛.
Let K be a family of vertex-disjoint stars in 𝐺 with 𝜀𝑚 ≤ 𝑔𝐾 ≤ 𝜀

√
𝑛 for all 𝐾 ∈ K, that

maximizes the sum ∑︁
𝐾 ∈K

𝑔2
𝐾 (3.6.1)

among all such families. Note that each star in K has at least 2 leaves because 𝑔𝐾 ≥ 𝜀𝑚

and 𝑚 ≥ 2/𝜀.
If the sum in (3.6.13.6.1) is bigger than 𝑠𝜀2𝑛𝑚 we are done. So we assume the family K

satisfies ∑︁
𝐾 ∈K

𝑔2
𝐾 < 𝑠𝜀

2𝑛𝑚. (3.6.2)

We are going to prove that then there exists a vertex of degree larger than 𝛾𝑛, contradicting
our assumption on the maximum degree.

For this we split K into two subfamilies

M =
{
𝐾 ∈ K : 𝜀𝑚 ≤ 𝑔𝐾 < 𝜀

√
𝑛
}

and H =
{
𝐾 ∈ K : 𝑔𝐾 = 𝜀

√
𝑛
}

and we let 𝑅 be the set of vertices not covered by the stars in K, that is 𝑅 = 𝑉 (𝐺) \ (H𝐶 ∪
H𝐿 ∪M𝐶 ∪M𝐿), where H𝐶 , H𝐿 , M𝐶 , and M𝐿 are obtained from M and H as defined
above.

For all stars 𝐾 ∈ H we have 𝑔2
𝐾

= 𝜀2𝑛. From (3.6.23.6.2) we get that the subfamily H
contains at most 𝑠𝑚 stars and hence

|H𝐶 | ≤ 𝑠𝑚 ≤ 𝑠
√
𝑛 and |H𝐿 | = |H𝐶 |𝜀

√
𝑛 ≤ 𝑠𝑚𝜀

√
𝑛 ≤ 𝑠𝜀𝑛, (3.6.3)

because 𝑚 ≤
√
𝑛.

As each star in M has at least 𝜀𝑚 leaves we have
∑
𝐾 ∈M 𝑔𝐾 ≥ |M|𝜀𝑚. Using the
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Cauchy-Schwarz inequality, we then get( ∑︁
𝐾 ∈M

𝑔𝐾

)2

≤
( ∑︁
𝐾 ∈M

𝑔2
𝐾

)
|M|

(3.6.23.6.2)
≤ 𝑠𝜀2𝑛𝑚 |M| ≤

( ∑︁
𝐾 ∈M

𝑔𝐾

)
𝑠𝜀𝑛,

which implies

|M𝐿 | =
∑︁
𝐾 ∈M

𝑔𝐾 ≤ 𝑠𝜀𝑛. (3.6.4)

Therefore, |M𝐶 | ≤ |M𝐿 |/2 ≤ 𝑠𝜀𝑛/2 since each star has at least 2 leaves.
These bounds on M𝐿 and M𝐶 together with (3.6.33.6.3) immediately imply that |𝑅 | ≥

(1− 3𝑠𝜀)𝑛 ≥ 𝑛/2. We are going to show that there are many edges between 𝑅 and H𝐶 and
from that we derive the existence of a high degree vertex, giving the desired contradiction.

A vertex in 𝑅 cannot have at least 𝜀𝑚 neighbours inside 𝑅, because otherwise we could
create a new star and increase the sum in (3.6.13.6.1). Therefore, 𝑒(𝑅) < |𝑅 |𝜀𝑚/2. We also
have 𝑒(𝑅,M𝐶) = 0 since otherwise we could add an edge to one of the existing stars in K
increasing the sum in (3.6.13.6.1) (recall that stars in M have less than 𝜀

√
𝑛 leaves).

Given a leaf 𝑣 ∈ M𝐿 that belongs to a star 𝐾 with 𝑔𝐾 leaves, we must have deg(𝑣, 𝑅) <
𝑔𝐾 + 1. Otherwise, we could take 𝑉 ′ ⊂ 𝑁𝑅 (𝑣) of size |𝑉 ′ | = 𝑔𝑘 + 1 ≤ 𝜀

√
𝑛 and create a

new family of vertex-disjoint stars, given by K \ {𝐾} and the star on 𝑣 ∪𝑉 ′, to increase the
sum in (3.6.13.6.1). Therefore,

𝑒(𝑅,M𝐿) ≤
∑︁
𝐾 ∈M

𝑔𝐾 (𝑔𝐾 + 1) ≤
∑︁
𝐾 ∈K

𝑔2
𝐾 +

∑︁
𝐾 ∈M

𝑔𝐾
(3.6.23.6.2),(3.6.43.6.4)

≤ 𝑠𝜀2𝑛𝑚 + 𝑠𝜀𝑛.

Similarly, given 𝑣 ∈ H𝐿 , we must have deg(𝑣, 𝑅) < 𝜀
√
𝑛. Otherwise, we could take

𝑉 ′ ⊂ 𝑁𝑅 (𝑣) of size |𝑉 ′ | = 𝜀
√
𝑛 and create a new family of vertex-disjoint stars, given by

K \ {𝐾}, the star 𝐾 \ {𝑣}, and the star on 𝑣 ∪𝑉 ′, to increase the sum in (3.6.13.6.1). Therefore,
𝑒(𝑅,H𝐿) ≤ |H𝐿 |𝜀

√
𝑛 ≤ 𝑠𝜀2𝑛𝑚 by (3.6.33.6.3).

On the other hand, 𝛿(𝐺) ≥ 𝑚 implies 𝑒(𝑅,𝑉) ≥ 𝑚 |𝑅 |, where the edges inside of 𝑅 are
counted twice. Then we can lower bound the number of edges between 𝑅 and H𝐶 by

𝑒(𝑅,H𝐶) ≥ 𝑚 |𝑅 | − 2𝑒(𝑅) − 𝑒(𝑅,M𝐶) − 𝑒(𝑅,M𝐿) − 𝑒(𝑅,H𝐿)

≥ 𝑚 |𝑅 | − 𝜀𝑚 |𝑅 | − 0 − 2𝑠𝜀2𝑛𝑚 − 𝑠𝜀𝑛

≥ 𝑚 |𝑅 | − 𝜀𝑚 |𝑅 | − 4𝑠𝜀2𝑚 |𝑅 | − 𝑠𝜀2𝑚 |𝑅 |

≥ (1 − 𝜀 − 5𝑠𝜀2) |𝑅 |𝑚 ≥ |𝑅 | (1 − 2𝜀)𝑚.

where we used the bounds on 𝑒(𝑅), 𝑒(𝑅,M𝐶), 𝑒(𝑅,M𝐿), and 𝑒(𝑅,H𝐿) we found above,
together with |𝑅 | ≥ 𝑛/2, 𝜀𝑚 ≥ 2 and the choice of 𝜀 < 1/(6𝑠). In particular, as |H𝐶 | ≤ 𝑠𝑚
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and using 𝜀 < 1/2 − 𝑠𝛾, and |𝑅 | > 𝑛/2, there exists a vertex 𝑣 ∈ H𝐶 of degree

deg(𝑣) ≥ deg(𝑣, 𝑅) ≥ |𝑅 | (1 − 2𝜀)𝑚
𝑠𝑚

≥ |𝑅 |2𝛾 > 𝛾𝑛.

This contradicts the maximum degree of 𝐺.

Proof of Proposition 3.6.13.6.1. Let 𝑛 be sufficiently large for the following arguments. Let
𝑡 be an integer and 0 < 𝛾 < 1/2. Let 𝐺 be an 𝑛-vertex graph with maximum degree
Δ(𝐺) ≤ 𝛾𝑛 and minimum degree 𝛿(𝐺) ≥ 𝑚. With (log 𝑛)3 ≤ 𝑚 ≤

√
𝑛, we first find many

vertex-disjoint stars in 𝐺 and then complete at least 𝑚 of them to triangles with the help
of 𝐺 (𝑛, 𝑝). We apply Lemma 3.6.33.6.3 with 𝛾 and 𝑠 = 8𝑡 + 4 to get 0 < 𝜀 < 1/2 and, as 𝑛 is
large enough and 𝑚 ≥ 2/𝜀, we get a family K of vertex-disjoint stars on 𝑉 (𝐺) such that
𝜀𝑚 ≤ 𝑔𝐾 ≤ 𝜀

√
𝑛 for 𝐾 ∈ K and

∑
𝐾 ∈K 𝑔

2
𝐾
≥ (8𝑡 + 4)𝜀2𝑛𝑚.

As we have stars of different sizes, we splitK into 𝑡 = ⌈log(
√
𝑛/𝑚)/log 2⌉+1 subfamilies

K𝑖 = {𝐾 ∈ K : 2𝑖−1𝜀𝑚 ≤ 𝑔𝐾 < 2𝑖𝜀𝑚}, 1 ≤ 𝑖 ≤ 𝑡,

and set 𝑘𝑖 = |K𝑖 |.
By deleting leaves, we may assume that all stars in K𝑖 have exactly ⌈2𝑖−1𝜀𝑚⌉ leaves.

Denote by I the set of indices 𝑖 ∈ [𝑡] such that 𝑘𝑖
(
2𝑖−1𝜀𝑚

)2 ≥ 𝜀2𝑛𝑚/𝑡. Next we prove
that

∑
𝑖∈I 𝑘𝑖

(
2𝑖−1𝜀𝑚

)2 ≥ 𝜀2𝑛𝑚.

Observe first that
∑
𝑖∉I 𝑘𝑖

(
2𝑖−1𝜀𝑚

)2 ≤ 𝑡 (𝜀2𝑛𝑚/𝑡) = 𝜀2𝑛𝑚. It follows that

∑︁
𝑖∈I

𝑘𝑖

(
2𝑖−1𝜀𝑚

)2
=

1
4

∑︁
𝑖∈I

𝑘𝑖
(
2𝑖𝜀𝑚

)2
=

1
4

𝑡∑︁
𝑖=1

|K𝑖 |
(
2𝑖𝜀𝑚

)2 −
∑︁
𝑖∉I

𝑘𝑖
(
2𝑖−1𝜀𝑚

)2

≥ 1
4

𝑡∑︁
𝑖=1

∑︁
𝐾 ∈K𝑖

𝑔2
𝐾 − 𝜀2𝑛𝑚 ≥ (2𝑡 + 1)𝜀2𝑛𝑚 − 𝜀2𝑛𝑚 ≥ 2𝑡𝜀2𝑛𝑚.

Now we reveal random edges on𝑉 (𝐺) with probability 𝑝 ≥ 𝐶/𝑛where𝐶 is large enough
for the Chernoff bounds and inequalities below. We shall show that this allows us to find
at least 𝑚 triangles a.a.s.. Indeed, for each 𝑖 ∈ I, we find many pairwise vertex-disjoint
triangles in K𝑖 using random edges.

Claim 3.6.4. For any 𝑖 ∈ I, after revealing edges of 𝐺 (𝑛, 𝑝) with 𝑝 ≥ 𝐶/𝑛 we have with
probability at least 1 − 1/𝑛 at least 𝑘𝑖 (2𝑖−1𝑚)2/𝑛 pairwise vertex-disjoint triangles within
(𝐺 ∪ 𝐺 (𝑛, 𝑝)) [∪𝐾 ∈K𝑖

𝑉 (𝐾)].

Having this claim and since |I | ≤ 𝑡 = 𝑜(𝑛), with a union bound over 𝑖 ∈ I, there are
a.a.s. at least∑︁

𝑖∈I

𝑘𝑖 (2𝑖−1𝑚)2

𝑛
=

1
𝜀2𝑛

∑︁
𝑖∈I

𝑘𝑖
(
2𝑖−1𝜀𝑚

)2 ≥ 2𝑡𝜀2𝑛𝑚

𝜀2𝑛
= 2𝑡𝑚 ≥ 𝑡𝑚 + 𝑡
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pairwise vertex-disjoint triangles in 𝐺 ∪ 𝐺 (𝑛, 𝑝). It remains to prove Claim 3.6.43.6.4.

Proof of Claim 3.6.43.6.4. Fix 𝑖 ∈ I and let 𝑘 = 𝑘𝑖 and 𝑔 = ⌈2𝑖−1𝜀𝑚⌉. We reveal random
edges with probability 𝑝 within each set of leaves of the 𝑘 stars in K𝑖 . We recall that
these 𝑘 sets are pairwise disjoint and each has size 𝑔. Let 𝑋 𝑗 be the indicator variable
of the event that the 𝑗-th of these sets contains at least one edge for 1 ≤ 𝑗 ≤ 𝑘 , and set
𝑋 =

∑𝑘
𝑗=1 𝑋𝑖 . Then P[𝑋 𝑗 = 1] = 1 − (1 − 𝑝) (

𝑔

2) and E[𝑋] = 𝑘
(
1 − (1 − 𝑝) (

𝑔

2)
)
. We have

that E[𝑋] ≥ 2𝑘𝑔2/(𝜀2𝑛). Indeed,

𝑘

(
1 − (1 − 𝑝) (

𝑔

2)
)
≥ 2𝑘𝑔2/(𝜀2𝑛) ⇔ 1 − 2𝑔2/(𝜀2𝑛) ≥

(
1 − 𝐶

𝑛

) (𝑔2)
,

and the later holds for large enough 𝐶 and 𝑛 using the inequality 1− 𝑥 ≤ 𝑒−𝑥 ≤ 1− 𝑥
2 valid

for 𝑥 < 3/2.
From Chernoff’s inequality (Lemma 2.4.12.4.1) and from the fact that 𝑘𝑔2/(𝜀2𝑛) ≥ 𝑚/𝑡 by

the definition of I, it follows that with probability at most

2 exp
(
−1

6
𝑘𝑔2

𝜀2𝑛

)
≤ 2 exp

(
−1

6
𝑚

𝑡

)
≤ 1
𝑛

there are less than 𝑘𝑔2/(𝜀2𝑛) triangles, where the last inequality holds as 𝑡 ≤ log 𝑛,
𝑚 ≥ (log 𝑛)3 and 𝑛 is large enough. □

Proof of Proposition 3.6.23.6.2. Let 𝑡 ≥ 1 be an integer,
√
𝑛 ≤ 𝑚 ≤ 𝑛/(64𝑡), and 𝐺 be an 𝑛-

vertex graph with maximum degree Δ(𝐺) ≤ 𝑛/(64𝑡) and minimum degree 𝛿(𝐺) ≥ 𝑚. We
can greedily obtain a spanning bipartite subgraph𝐺 ′ ⊆ 𝐺 of minimum degree 𝛿(𝐺 ′) ≥ 𝑚/2
by taking a partition of𝑉 (𝐺) into sets 𝐴 and 𝐵 such that 𝑒𝐺 (𝐴, 𝐵) is maximised and letting
𝐺 ′ = 𝐺 [𝐴, 𝐵]. Indeed, a vertex of degree less than 𝑚/2 can be moved to the other class to
increase 𝑒𝐺 (𝐴, 𝐵). W.l.o.g. we assume |𝐵| ≥ 𝑛/2 ≥ |𝐴|. Moreover, we have |𝐴| ≥ 16𝑡𝑚,
as otherwise with 𝑒(𝐴, 𝐵) ≥ 𝑛𝑚/4 there is a vertex of degree larger than 𝑛/(64𝑡), a
contradiction.

Claim 3.6.5. For every 𝐴′ ⊆ 𝐴, 𝐵′ ⊆ 𝐵 with |𝐴′ | < 4𝑡𝑚, |𝐵′ | ≤ 𝑛/4 we have 𝑒(𝐴 \ 𝐴′, 𝐵 \
𝐵′) ≥ 𝑛𝑚/16.

Proof. If 𝑒(𝐴 \ 𝐴′, 𝐵 \ 𝐵′) < 𝑛𝑚/16, it follows from 𝑒(𝐴, 𝐵 \ 𝐵′) ≥ |𝐵 \ 𝐵′ |𝑚/2 ≥ 𝑛𝑚/8
that we have 𝑒(𝐴′, 𝐵 \ 𝐵′) ≥ 𝑛𝑚/16. Since |𝐴′ | < 4𝑡𝑚, there must be a vertex of degree
at least 𝑛/(64𝑡) in 𝐴′, a contradiction. □

From this claim it follows that there are many vertices of high degree in 𝐴 \ 𝐴′.
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Claim 3.6.6. Suppose that 𝐴′ ⊆ 𝐴, 𝐵′ ⊆ 𝐵 with |𝐴′ | < 4𝑡𝑚, |𝐵′ | ≤ 𝑛/4. Let 𝐴∗ = {𝑣 ∈
𝐴 \ 𝐴′ : deg(𝑣, 𝐵 \ 𝐵′) ≥ 𝑚/(32𝑡)}. Then |𝐴∗ | ≥ (4𝑡 − 1)𝑚.

Proof. We have |𝐴∗ | 𝑛64𝑡 +|𝐴|
𝑚

32𝑡 ≥ 𝑒(𝐴∗, 𝐵\𝐵′)+𝑒(𝐴\(𝐴′∪𝐴∗), 𝐵\𝐵′) = 𝑒(𝐴\𝐴′, 𝐵\𝐵′) ≥
𝑛𝑚
16 , where the last inequality uses Claim 3.6.53.6.5. Since |𝐴| ≤ 𝑛/2, we get

|𝐴∗ | ≥ 𝑛𝑚/16 − 𝑛𝑚/(64𝑡)
𝑛/(64𝑡) = (4𝑡 − 1)𝑚.

□

Let 𝑠 = ⌈ 4𝑡𝑛
𝑚
⌉ and 𝑟 = ⌈𝑚2

2𝑛 ⌉. We will now iteratively construct our 𝑡𝑚 + 𝑡 triangles in 𝑟
rounds of 𝑠 triangles each. In each round we will reveal 𝐺 (𝑛, 𝑞) with 𝑞 =

𝐶 log 𝑛
𝑚2 , where 𝐶

is large enough for the Chernoff bound below. For the start we set 𝐴′ = 𝐵0 = ∅.
Let 𝑖 = 1, . . . , 𝑟 , suppose that before the 𝑖-th round we have

|𝐴′ | = (𝑖 − 1)𝑠 ≤
(⌈𝑚2

2𝑛

⌉
− 1

) ⌈4𝑡𝑛
𝑚

⌉
≤ 𝑚2

2𝑛

(
4𝑡𝑛
𝑚

+ 1
)
< 4𝑡𝑚

and |𝐵0 | = (𝑖 − 1) (2𝑠) < 5𝑡𝑚, and note this is true for 𝑖 = 1. In the 𝑖-th round we pick
vertices 𝑣1, . . . , 𝑣𝑠 ∈ 𝐴 \ 𝐴′ and pairwise disjoint sets 𝐵1, . . . , 𝐵𝑠 ⊆ 𝐵 \ 𝐵0, each of size
⌈𝑚/(32𝑡)⌉, such that 𝐵 𝑗 ⊂ 𝑁𝐺′ (𝑣 𝑗) for each 𝑗 = 1, . . . , 𝑠. We can do this greedily, where
for 𝑗 = 1, . . . , 𝑠 we set 𝐵′ = 𝐵0 ∪ 𝐵1 ∪ · · · ∪ 𝐵 𝑗−1 and apply Claim 3.6.63.6.6 to obtain a vertex
𝑣 𝑗 ∈ 𝐴 \ 𝐴′ together with a set 𝐵 𝑗 ⊆ 𝐵 \ 𝐵′ of ⌈𝑚/(32𝑡)⌉ neighbours of 𝑣 𝑗 . We can do
this as |𝐴′ | < 4𝑡𝑚 and |𝐵′ | ≤ 𝑠⌈𝑚/(32𝑡)⌉ + |𝐵0 | ≤ 𝑛/4 as 𝑚 ≤ 𝑛/(64𝑡). Now we reveal
additional edges at random with probability 𝑞. Then with probability at least 1 − 1/𝑛2 we
have at least one edge in each set 𝐵1, . . . , 𝐵𝑠. Indeed the probability that there is no edge
in a set 𝐵𝑖 is at most (1 − 𝑞) (

|𝐵𝑖 |
2 ) ≤ exp

(
−𝐶 log 𝑛

𝑚

( ⌈𝑚/(32𝑡) ⌉
2

) )
≤ 𝑛−3 as 𝐶 is large enough.

Therefore the probability that there is a set without any edge is at most 𝑠𝑛−3 ≤ 𝑛−2 by a
union bound. We fix an arbitrary edge from each 𝐵𝑖 and together with 𝑣1, . . . , 𝑣𝑠 this gives
us 𝑠 triangles. We add the vertices 𝑣1, . . . , 𝑣𝑠 to 𝐴′ and the vertices of the edges that we
chose to 𝐵0. Notice that |𝐴′ | = 𝑖𝑠 and |𝐵0 | = 𝑖(2𝑠), as required at the beginning of next
round.

We can repeat the above 𝑟 times because with 𝑚 ≥
√
𝑛 we get 𝑟𝑞 ≤ 𝐶 log 𝑛

𝑛
= 𝑝. By

a union bound over the 𝑟 = ⌈𝑚2

2𝑛 ⌉ ≤ 𝑛 rounds, we get that we succeed a.a.s. and find
𝑡𝑠 ≥ 2𝑡𝑚 ≥ 𝑡𝑚 + 𝑡 triangles.

3.6.2 Case 𝑘 ≥ 3

The case 𝑘 ≥ 3 of Lemma 3.1.13.1.1 is much easier. The proof is still split into two parts.
When 𝑚 is small, we can find 𝑚𝑡 + 𝑡 pairwise vertex-disjoint copies of the square of a path
on 𝑘 + 1 vertices already in the random graph 𝐺 (𝑛, 𝑝). When 𝑚 is large, we need to use
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the edges of 𝐺 as well, and the reader will recognise a similar strategy to the one used for
Proposition 3.6.23.6.2.

Proof of Lemma 3.1.13.1.1 (𝑘 ≥ 3). Let 𝑘 ≥ 3 and 𝑡 ≥ 1 be integers and 𝐶 be large enough
for the inequalities below to hold. For convenience, we set 𝛾 = 1/(16𝑘𝑡). Further let
𝑝 ≥ 𝐶 (log 𝑛)1/(2𝑘−3)𝑛−(𝑘−1)/(2𝑘−3) , 1 ≤ 𝑚 ≤ 𝛾𝑛, and let 𝐺 be an 𝑛-vertex graph with
vertex set 𝑉 , minimum degree 𝛿(𝐺) ≥ 𝑚 and maximum degree Δ(𝐺) ≤ 𝛾𝑛.

We distinguish two cases. If 𝑚 ≤ (log 𝑛)2/(2𝑘−3)𝑛(2𝑘−4)/(2𝑘−3) , we only need Janson’s
inequality (Lemma 2.4.22.4.2) and we will greedily find 𝑡𝑚 + 𝑡 copies of 𝑃2

𝑘+1, using only
edges from the random graph 𝐺 (𝑛, 𝑝). Let 𝑉 ′ ⊆ 𝑉 be the set of vertices used in this
greedy construction. As long as we have not found 𝑡𝑚 + 𝑡 copies of 𝑃2

𝑘+1, we have
|𝑉 ′ | ≤ (𝑡𝑚 + 𝑡) (𝑘 + 1) and thus |𝑉 \ 𝑉 ′ | ≥ 𝑛/2. We let {𝐻𝑖}𝑖∈I be the family of copies
of 𝑃2

𝑘+1 with vertices in 𝑉 \ 𝑉 ′ and note |I | ≥ 2−𝑘−2𝑛𝑘+1. Then, using the notation of
Lemma 2.4.22.4.2, we observe that the expected number of these copies appearing as subgraphs
of 𝐺 (𝑛, 𝑝) is

E[𝑋] = |I |𝑝2𝑘−1 ≥ 2−𝑘−2𝑛𝑘+1𝑝2𝑘−1

≥ 𝐶 (log 𝑛) (2𝑘−1)/(2𝑘−3)𝑛(2𝑘−4)/(2𝑘−3) ≥ 32𝑘𝑡𝑚 log 𝑛 .

On the other hand, we have

Δ[𝑋] =
∑︁
𝐻𝑖∼𝐻 𝑗

𝑝𝑒 (𝐻𝑖)+𝑒 (𝐻 𝑗 )−𝑒 (𝐻𝑖∩𝐻 𝑗 ) ≤
𝑘∑︁
𝑟=2

𝑂 (𝑛2(𝑘+1)−𝑟 𝑝2(2𝑘−1)−(2𝑟−3) )

≤ E2 [𝑋]
𝑘∑︁
𝑟=2

𝑂

(
𝑝3−2𝑟𝑛−𝑟

)
≤ E2 [𝑋]𝑜

(
𝑛−1

)
,

where in the first inequality we split the sum according to the value of 𝑟 = 𝑣(𝐻𝑖 ∩ 𝐻 𝑗) and
used that then 𝑒(𝐻𝑖∩𝐻 𝑗) ≤ 2𝑟−3. Then with Lemma 2.4.22.4.2 we get that the probability that
there is no copy of 𝑃2

𝑘+1 is bounded from above by exp(−E[𝑋]/8) ≤ 𝑛−4𝑘𝑡𝑚. We conclude
with a union bound over the at most

( 𝑛
(𝑘+1) (𝑡𝑚+𝑡)

)
≤ 𝑛3𝑘𝑡𝑚 possible choices for 𝑉 ′ that we

can a.a.s. find 𝑡𝑚 + 𝑡 copies of 𝑃2
𝑘+1 in 𝐺 (𝑛, 𝑝).

For𝑚 ≥ (log 𝑛)2/(2𝑘−3)𝑛(2𝑘−4)/(2𝑘−3) we need to use the edges of𝐺. We will find copies
of 𝑃2

𝑘+1, where all edges incident to one vertex come from 𝐺 and the remaining edges
come from 𝐺 (𝑛, 𝑝), where we will need to distinguish between 𝑘 = 3 and 𝑘 ≥ 4. First, we
greedily obtain a spanning bipartite subgraph 𝐺 ′ ⊆ 𝐺 of minimum degree 𝛿(𝐺 ′) ≥ 𝑚/2
by taking a partition of 𝑉 (𝐺) into sets 𝐴 and 𝐵 such that 𝑒𝐺 (𝐴, 𝐵) is maximised and
letting 𝐺 ′ = 𝐺 [𝐴, 𝐵]. Indeed, a vertex of degree less than 𝑚/2 can be moved to the other
class to increase 𝑒𝐺 (𝐴, 𝐵). W.l.o.g. we assume |𝐵| ≥ 𝑛/2 ≥ |𝐴|. Moreover, we have
|𝐴| ≥ 𝑚/(4𝛾), as otherwise with 𝑒(𝐴, 𝐵) ≥ 𝑛𝑚/4 there is a vertex of degree at least 𝛾𝑛, a
contradiction.
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Then we observe that given any sets 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵 such that |𝐴′ | ≤ 𝑚/(16𝛾)
and |𝐵′ | ≤ 𝑛/4, we also have 𝑒(𝐴 \ 𝐴′, 𝐵 \ 𝐵′) ≥ 𝑛𝑚/16. Otherwise, from 𝑒(𝐴, 𝐵 \
𝐵′) ≥ |𝐵 \ 𝐵′ |𝑚/2 ≥ 𝑛𝑚/8, it would follow that 𝑒(𝐴′, 𝐵 \ 𝐵′) ≥ 𝑛𝑚/16 and thus, since
|𝐴′ | ≤ 𝑚/(16𝛾), we would have a vertex of degree at least 𝛾𝑛 in 𝐴′, a contradiction to the
maximum degree of 𝐺.

We will greedily find 𝑡𝑚 + 𝑡 copies of 𝑃2
𝑘+1 with one vertex in 𝐴 and 𝑘 vertices in

𝐵. Let 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵 be the set of vertices used in this greedy construction. As
long as we have not found 𝑡𝑚 + 𝑡 copies of 𝑃2

𝑘+1, we have |𝐴′ | ≤ 𝑡𝑚 + 𝑡 ≤ 𝑚/(16𝛾) and
|𝐵′ | ≤ 𝑘 (𝑡𝑚 + 𝑡) ≤ 𝑛/4, and thus 𝑒(𝐴 \ 𝐴′, 𝐵 \ 𝐵′) ≥ 𝑛𝑚/16. Therefore, using that
|𝐴| ≤ 𝑛/2, there is a vertex 𝑣 ∈ 𝐴 \ 𝐴′ with degree at least 𝑚/8 into 𝐵 \ 𝐵′. We let 𝐵∗ be a
set of 𝑚/8 neighbours of 𝑣 in 𝐵 \ 𝐵′.

When 𝑘 = 3, we will find a path on three vertices in 𝐵∗ in the random graph, which
will give, together with the three edges of 𝐺 between 𝑣 and those vertices, a copy of
𝑃2

4. We argue as follows. If such a path does not appear, then there are less than 𝑚
edges of 𝐺 (𝑛, 𝑝) in 𝐵∗. However the expected number of random edges within 𝐵∗ is at
least 𝑝

(𝑚/8
2

)
≥ 8𝑘𝑡𝑚 log 𝑛, and therefore, by Chernoff’s inequality (Lemma 2.4.12.4.1), with

probability at least 1 − 𝑛−4𝑘𝑡𝑚 there are more than 𝑚 edges of 𝐺 (𝑛, 𝑝) in 𝐵∗. We conclude
by union bound over the at most(

|𝐴|
𝑡𝑚 + 𝑡

) (
|𝐵|

𝑘 (𝑡𝑚 + 𝑡)

)
≤ 𝑛3𝑘𝑡𝑚

choices for 𝐴′ and 𝐵′.
For 𝑘 ≥ 4 we let 𝐵1, . . . , 𝐵4 be pairwise disjoint sets of size 𝑚/32 in 𝐵∗. Moreover,

we let 𝐵5, . . . , 𝐵𝑘 be pairwise disjoint sets of size 𝑛/(4𝑘) in 𝐵 \ 𝐵′, each disjoint from
𝐵1, . . . , 𝐵4. This is possible as |𝐵 \ 𝐵′ | ≥ 𝑛/4.

Claim 3.6.7. With probability at least 1 − 𝑛−𝜔 (𝑚) there exists vertices 𝑏1, . . . , 𝑏𝑘 with
𝑏𝑖 ∈ 𝐵𝑖 for 𝑖 = 1, . . . , 𝑘 such that in 𝐺 (𝑛, 𝑝) we have the edges 𝑏𝑖𝑏𝑖+1 for 𝑖 = 1, . . . , 𝑘 − 1
and 𝑏𝑖𝑏𝑖+2 for 𝑖 = 3, . . . , 𝑘 − 2.

Observe that, together with 𝑣 and the edges 𝑣𝑏𝑖 for 𝑖 = 1, . . . , 4, this gives a copy of
𝑃2
𝑘+1 with vertices 𝑏1, 𝑏2, 𝑣, 𝑏3, . . . , 𝑣𝑘 . As there are at most 𝑛𝑂 (𝑚) choices for 𝐴′ and 𝐵′,

by a union bound and Claim 3.6.73.6.7, we a.a.s. find 𝑡𝑚 + 𝑡 copies of 𝑃2
𝑘+1. It remains to prove

the claim.

Proof of Claim 3.6.73.6.7. We denote by {𝐻𝑖}𝑖∈I the graphs on 𝑘 vertices 𝑏1, . . . , 𝑏𝑘 with
𝑏𝑖 ∈ 𝐵𝑖 for 𝑖 = 1, . . . , 𝑘 and edges 𝑏𝑖𝑏𝑖+1 for 𝑖 = 1, . . . , 𝑘 −1 and 𝑏𝑖𝑏𝑖+2 for 𝑖 = 3, . . . , 𝑘 −2.
Then, using the notation of Lemma 2.4.22.4.2, the expected number of those graphs appearing
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in 𝐺 (𝑛, 𝑝) is

E[𝑋] = |I |𝑝2𝑘−5 ≥ Ω(𝑚4𝑛𝑘−4𝑝2𝑘−5)

≥ Ω

(
𝑚(log 𝑛)

6
2𝑘−3+

2𝑘−5
2𝑘−3 𝑛(𝑘−4)+3(2𝑘−4)

2𝑘−3 − (2𝑘−5) (𝑘−1)
2𝑘−3

)
= 𝜔(𝑚 log 𝑛) ,

where we used the bounds on the sizes of the sets 𝐵𝑖 for 𝑖 = 1, . . . , 𝑘 in the first inequality
and the bounds on 𝑚 and 𝑝 in the second inequality. On the other hand we get

Δ[𝑋] =
∑︁
𝐻𝑖∼𝐻 𝑗

𝑝𝑒 (𝐻𝑖)+𝑒 (𝐻 𝑗 )−𝑒 (𝐻𝑖∩𝐻 𝑗 )

≤
∑︁
𝑟 ,𝑠

𝑂 (𝑚8−𝑟𝑛2𝑘−8−𝑠𝑝2(2𝑘−5)−(2𝑠+min{2𝑟−3,𝑟−1}) )

≤ E2 [𝑋]
∑︁
𝑟 ,𝑠

𝑂 (𝑚−𝑟𝑛−𝑠𝑝−2𝑠−min{2𝑟−3,𝑟−1})

≤ E2 [𝑋]𝑂 (𝑛−2𝑝−1) ≤ E2 [𝑋]𝑜(𝑛−1) ,

where we split the sum according to the value of 𝑟 and 𝑠, with 0 ≤ 𝑟 ≤ 4, 0 ≤ 𝑠 ≤ 𝑘 − 4,
and 2 ≤ 𝑟 + 𝑠 ≤ 𝑘 − 1, where 𝑟 and 𝑠 are the number of common vertices of 𝐻𝑖 and 𝐻 𝑗 in
𝐵1, . . . , 𝐵4 and 𝐵5, . . . , 𝐵𝑘 , respectively. In the first inequality we used that 𝑒(𝐻𝑖 ∩ 𝐻 𝑗) ≤
2𝑠+min{2𝑟−3, 𝑟−1}, and in the third inequality we used that𝑂 (𝑚−𝑟𝑛−𝑠𝑝−2𝑠−min{2𝑟−3,𝑟−1}) )
is maximised for 𝑟 = 0 and 𝑠 = 2 with the given bounds on 𝑚 and 𝑝. The claim follows by
Lemma 2.4.22.4.2, as in the application above. □

3.7 Supplementary proofs

In the final section of this chapter, we prove Lemmas 3.1.23.1.2, 3.4.63.4.6 and 3.4.73.4.7, whose proofs
are either standard or a close adaptation of results from the literature.

We begin by proving Lemma 3.1.23.1.2, following the argument of [99, Lemma 12 and
13]. For this we consider a largest matching 𝑀 in the reduced graph 𝑅 and assume that
|𝑀 | < (𝛼 + 2𝑘𝑑)𝑡. Then we will find a set 𝐼 ⊂ 𝑉 (𝑅) of size roughly (1 − 𝛼)𝑡 which
contains very few edges. With the properties of the reduced graph, we conclude that the
original graph 𝐺 has to be (𝛼, 𝛽)-stable.

Proof of Lemma 3.1.23.1.2. Given and integer 𝑘 ≥ 2 and 0 < 𝛽 < 1/12, we let 0 < 𝑑 <

10−4𝑘−2𝛽6, 0 < 𝜀 < 𝑑/4, 4𝛽 ≤ 𝛼 ≤ 1/3, and 𝑡 ≥ 10/𝑑. Then we let 𝐺 be an 𝑛-vertex
graph on vertex set 𝑉 with minimum degree 𝛿(𝐺) ≥ (𝛼 − 𝑑/2)𝑛 that is not (𝛼, 𝛽)-stable
and we let 𝑅 be the (𝜀, 𝑑)-reduced graph for some (𝜀, 𝑑)-regular partition 𝑉0, . . . , 𝑉𝑡 of
𝐺. We observe for the minimum degree of 𝑅 that 𝛿(𝑅) ≥ (𝛼 − 2𝑘𝑑)𝑡 because, otherwise,
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3 The square of a Hamilton cycle in randomly perturbed graphs

there would be vertices with degree at most (𝛼 − 2𝑘𝑑)𝑡 (𝑛/𝑡) + 𝜀𝑛 < (𝛼 − 𝑑/2)𝑛− (𝑑 + 𝜀)𝑛
in 𝐺 ′ contradicting (P2)(P2).

Let 𝑀 be a matching in 𝑅 of maximal size. Observe that |𝑀 | ≥ min{𝛿(𝑅), ⌊𝑡/2⌋} ≥
(𝛼 − 2𝑘𝑑)𝑡. We assume |𝑀 | < (𝛼 + 2𝑘𝑑)𝑡 and show that 𝐺 must then be (𝛼, 𝛽)-stable,
which is a contradiction. Let𝑈 = 𝑉 (𝑅) \𝑉 (𝑀). We shall first show that there exists a set
𝐼 ⊂ 𝑉 (𝑅) of size |𝑈 | + |𝑀 | that contains only few egdes.

Since 𝑀 is a matching of maximal size in 𝑅,𝑈 is independent. Moreover, given an edge
𝑥𝑦 ∈ 𝑀 , either 𝑥 or 𝑦 has at most one neighbour in 𝑈. Then we can split 𝑉 (𝑀) into two
disjoint subsets 𝑋 and 𝑌 by placing for each matching edge 𝑥𝑦 of 𝑀 one of its endpoints
with at most one neighbour in𝑈 into the subset 𝑋 , and the other endpoint into the subset𝑌 .
We claim that 𝐼 = 𝑈 ∪ 𝑋 contains only few edges. We have 𝑒(𝑈) = 0, 𝑒(𝑋,𝑈) ≤ |𝑋 |, and
we can upper bound 𝑒(𝑋) as follows. Let 𝑥𝑦 ∈ 𝐸 (𝑋) and denote by 𝑥 ′ and 𝑦′ the vertices
matched to 𝑥 and 𝑦 in 𝑀 respectively. Then 𝑥 ′, 𝑦′ ∈ 𝑌 and either 𝑥 ′ or 𝑦′ has at most one
neighbour in𝑈. Otherwise, there would be two distinct vertices 𝑥 ′′, 𝑦′′ ∈ 𝑈 such that 𝑥 ′𝑥 ′′

and 𝑦′𝑦′′ are edges of 𝑅, and we could apply the rotation 𝑀 \ {𝑥𝑥 ′, 𝑦𝑦′} ∪ {𝑥𝑦, 𝑥 ′𝑥 ′′, 𝑦′𝑦′′}
and get a larger matching, contradicting the maximality of 𝑀 . Therefore, 𝑒(𝑋) ≤ |𝑋 | |𝑍 |,
where 𝑍 = {𝑣 ∈ 𝑌 | deg(𝑣,𝑈) < 2}. Observe that

𝑒(𝑌,𝑈) ≤ (|𝑌 | − |𝑍 |) |𝑈 | + |𝑍 |

and
𝑒(𝑌,𝑈) ≥ |𝑈 |𝛿(𝑅) − 𝑒(𝑋,𝑈) ≥ |𝑈 |𝛿(𝑅) − |𝑋 |

where we use that since𝑈 is independent, a vertex in𝑈 can have neighbours only in 𝑋 and
𝑌 . We get

|𝑍 | ≤ (|𝑌 | − 𝛿(𝑅)) |𝑈 | + |𝑋 |
|𝑈 | − 1

<
4𝑘𝑑𝑡 |𝑈 | + |𝑋 |

|𝑈 | − 1
≤ 5𝑘𝑑𝑡,

where the first inequality comes from the upper and lower bound on 𝑒(𝑌,𝑈), the second
one from |𝑌 | = |𝑀 | < (𝛼 + 2𝑘𝑑)𝑡 and 𝛿(𝑅) ≥ (𝛼 − 2𝑘𝑑)𝑡, and the last one from
|𝑈 | = 𝑡 − 2|𝑀 | ≥ 𝑡/4, |𝑋 | = |𝑀 | < 𝑡/2 and 10/𝑡 ≤ 𝑑. Hence, 𝑒(𝑋) ≤ |𝑋 |5𝑘𝑑𝑡.

Therefore, the set 𝐼 = 𝑈 ∪ 𝑋 has size

|𝐼 | = |𝑉 (𝑅) | − |𝑀 | = (1 − 𝛼 ± 2𝑘𝑑) 𝑡

because |𝑌 | = |𝑀 | = (𝛼 ± 2𝑘𝑑)𝑡 and contains at most

𝑒(𝐼) ≤ 𝑒(𝑋) + 𝑒(𝑋,𝑈) + 𝑒(𝑈) ≤ |𝑋 |5𝑘𝑑𝑡 + |𝑋 |

≤ (5𝑘𝑑𝑡 + 1) (𝛼 + 2𝑘𝑑)𝑡 ≤ 6𝛼𝑘𝑑𝑡2

edges, where we use |𝑋 | = |𝑀 | = (𝛼 ± 2𝑘𝑑)𝑡, and 𝑑 ≤ 𝛼/(20𝑘) and 10/𝑡 ≤ 𝑑 in the last
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inequality.
We now move to the original graph 𝐺 and prove that the existence of such set 𝐼 in 𝑅

implies that 𝐺 is (𝛼, 𝛽)-stable. Let 𝐵′′ =
⋃
𝑖∈𝐼 𝑉𝑖 be the union of the clusters 𝐼. Then

|𝐵′′ | = (1 − 𝛼 ± 3𝑘𝑑)𝑛 and 𝑒(𝐵′′) ≤ 6𝛼𝑘𝑑𝑛2. Let

𝐵′ = {𝑣 ∈ 𝐵′′ | deg(𝑣, 𝐵′′) ≤
√
𝑘𝑑𝑛}.

Then 𝑒(𝐵′′) ≥ (|𝐵′′ | − |𝐵′ |)
√
𝑘𝑑𝑛 and, therefore, all but at most 6𝛼

√
𝑘𝑑𝑛 vertices of 𝐵′′

belong to 𝐵′ and, thus, |𝐵′ | = (1 − 𝛼 ± 4
√
𝑘𝑑)𝑛. Let

𝐴′ = {𝑣 ∈ 𝑉 | deg(𝑣, 𝐵′) ≥ (1 − 𝛽/4) |𝐵′ |}

and note that 𝐴′ ∩ 𝐵′ = ∅. Observe that if 𝑣 ∈ 𝐵′, then

deg(𝑣,𝑉 \ 𝐵′) ≥ 𝛿(𝐺) − deg(𝑣, 𝐵′)

≥ (𝛼 − 𝑑/2 −
√
𝑘𝑑)𝑛 ≥ (𝛼 − 2

√
𝑘𝑑)𝑛.

(3.7.1)

With |𝑉 \ 𝐵′ | ≤ (𝛼 + 4
√
𝑘𝑑)𝑛 this implies

𝑒(𝐵′, 𝑉 \ 𝐵′) ≥ (𝛼 − 2
√
𝑘𝑑)𝑛|𝐵′ | ≥ (|𝑉 \ 𝐵′ | − 6

√
𝑘𝑑𝑛) |𝐵′ |

and with the definition of 𝐴′ and the fact that |𝑉 \ (𝐵′ ∪ 𝐴′) | = |𝑉 \ 𝐵′ | − |𝐴′ |, we get

𝑒(𝐵′, 𝑉 \ 𝐵′) ≤ |𝑉 \ (𝐵′ ∪ 𝐴′) | (1 − 𝛽/4) |𝐵′ | + |𝐴′ | |𝐵′ |

=
(
|𝑉 \ 𝐵′ | − |𝑉 \ (𝐵′ ∪ 𝐴′) |𝛽/4

)
|𝐵′ | .

The last two inequalities imply that all but at most 24
√
𝑘𝑑𝑛/𝛽 vertices of 𝑉 \ 𝐵′ belong to

𝐴′. Therefore we can bound the size of 𝐴′ as follows

|𝐴′ | ≥ |𝑉 \ 𝐵′ | − 24
√
𝑘𝑑𝑛/𝛽

≥ 𝛼𝑛 − 4
√
𝑘𝑑𝑛 − 24

√
𝑘𝑑𝑛/𝛽 ≥ 𝛼𝑛 − 𝛽2𝑛 ,

and
|𝐴′ | ≤ |𝑉 \ 𝐵′ | ≤ 𝛼𝑛 + 4

√
𝑘𝑑𝑛 ≤ 𝛼𝑛 + 𝛽2𝑛 .

where we used in both inequalities that 4
√
𝑘𝑑𝑛 + 24

√
𝑘𝑑𝑛/𝛽 ≤ 𝛽2𝑛, as 𝑑 ≤ 10−4𝑘−2𝛽6.

It follows that we have built two sets 𝐴′ and 𝐵′ such that |𝐴′ ∪ 𝐵′ | ≥ 𝑛 − 𝛽2𝑛, |𝐴′ | =
𝛼𝑛 ± 𝛽2𝑛 and |𝐵′ | = (1− 𝛼)𝑛 ± 𝛽2𝑛. Moreover each vertex of 𝐴′ has at least (1− 𝛽/4) |𝐵′ |
neighbours in 𝐵′ by the definition of 𝐴′, and each vertex of 𝐵′ has at least (1 − 𝛽/2) |𝐴′ |
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neighbours in 𝐴′. This can be justified as follows. Given 𝑣 ∈ 𝐵′,

deg(𝑣, 𝐴′) = deg(𝑣,𝑉 \ 𝐵′) − deg(𝑣,𝑉 \ (𝐴′ ∪ 𝐵′))

≥ deg(𝑣,𝑉 \ 𝐵′) − |𝑉 \ (𝐴′ ∪ 𝐵′) |

≥ (𝛼 − 2
√
𝑘𝑑)𝑛 − 24

√
𝑘𝑑𝑛/𝛽 ≥ (𝛼 − 𝛽2)𝑛

≥ 𝛼 − 𝛽2

𝛼 + 𝛽2 |𝐴
′ | ≥ (1 − 𝛽/2) |𝐴′ | ,

where we used that 𝐴′ and 𝐵′ are disjoint, the inequalities (3.7.13.7.1), |𝑉 \ (𝐴′ ∪ 𝐵′) | ≤
24
√
𝑘𝑑𝑛/𝛽 and 2

√
𝑘𝑑 + 24

√
𝑘𝑑/𝛽 ≤ 𝛽2, the upper bound on |𝐴′ | and the inequality

𝛼 ≥ 4𝛽.
Now we need to take care of the vertices of 𝐺 not yet covered by 𝐴′ ∪ 𝐵′, i.e. the at

most 𝛽2𝑛 vertices in 𝑉 \ (𝐴′ ∪ 𝐵′). Let 𝑣 be one such vertex. Then deg(𝑣, 𝐴′ ∪ 𝐵′) ≥
𝛿(𝐺) − |𝑉 \ (𝐴′ ∪ 𝐵′) | ≥ (𝛼 − 𝑑/2)𝑛 − 𝛽2𝑛 ≥ 𝛼𝑛/2. Therefore, it is possible to add these
vertices to 𝐴′ and 𝐵′ to obtain 𝐴 ⊇ 𝐴′ and 𝐵 ⊇ 𝐴′ such that each vertex of 𝐵 has at least
𝛼𝑛/4 neighbours in 𝐴, and each vertex of 𝐴 has at least 𝛼𝑛/4 neighbours in 𝐵. As we add
at most 𝛽2𝑛 vertices, we have |𝐴| = (𝛼 ± 2𝛽2)𝑛 and |𝐵| = (1 − 𝛼 ± 2𝛽2)𝑛. Moreover, all
but at most 𝛽2𝑛 ≤ 𝛽𝑛 vertices from 𝐴 have degree at least

(1 − 𝛽/4) |𝐵′ | ≥ (1 − 𝛽/4) ( |𝐵| − 𝛽2𝑛) ≥ (1 − 𝛽) |𝐵|

into 𝐵, where we used that |𝐵| ≤ |𝐵′ | + 𝛽2𝑛, |𝐵| ≥ (1 − 𝛼 − 2𝛽2)𝑛 ≥ (2/3 − 2𝛽2)𝑛
and 𝛽 < 1/12. Similarly, all but at most 𝛽2𝑛 ≤ 𝛽𝑛 vertices from 𝐵 have degree at least
(1 − 𝛽/2) |𝐴′ | ≥ (1 − 𝛽) |𝐴| into 𝐴. Moreover, as 𝐵′ is a subset of 𝐵′′ and we add at
most 𝛽2𝑛 vertices to 𝐵′ to get 𝐵, we have 𝑒(𝐵) ≤ 𝑒(𝐵′′) + 𝛽2𝑛2 ≤ (6𝛼𝑘𝑑 + 𝛽2)𝑛2 ≤ 𝛽𝑛2.
Therefore, 𝐺 is (𝛼, 𝛽)-stable according to Definition 1.1.101.1.10.

We now prove Lemma 3.4.63.4.6, which is a standard application of the regularity method.

Proof of Lemma 3.4.63.4.6. To prove (i)(i), without loss of generality, it suffices to show that
the degree of every vertex in 𝑈1 is at least (1 − ℎ𝜀)𝑚ℎ−1. Fix any 𝑢1 ∈ 𝑈1 and set
𝑁1 = 𝑁𝐺 (𝑢1, 𝑉). Notice that since (𝑉,𝑈1) is (𝜀, 𝑑)-super-regular, we have |𝑁1 | ≥
𝑑 |𝑉 | ≥ 𝜀 |𝑉 |. Since (𝑉,𝑈2) is (𝜀, 𝑑)-super-regular, there are at least (1 − 𝜀)𝑚 vertices
𝑢2 ∈ 𝑈2 such that the set 𝑁2 = 𝑁𝐺 (𝑢2, 𝑁1) of neighbours of 𝑢2 in 𝑁1 has size at least
(𝑑 − 𝜀) |𝑁1 | ≥ (𝑑 − 𝜀)𝑑 |𝑉 | ≥ 𝜀 |𝑉 |. Continuing in the same way, by applying Lemma 2.1.12.1.1
to the (𝜀, 𝑑)-super-regular pair (𝑉,𝑈 𝑗) for 𝑗 = 3, . . . , ℎ, we get that there are at least
((1− 𝜀)𝑚) 𝑗−1 choices of (𝑢2, . . . , 𝑢 𝑗) ∈ 𝑈2 × · · · ×𝑈 𝑗 such that the vertices 𝑢1, 𝑢2, . . . , 𝑢 𝑗

have at least (𝑑−𝜀) 𝑗−1 |𝑁1 | ≥ (𝑑−𝜀) 𝑗−1𝑑 |𝑉 | ≥ (𝑑−𝜀)ℎ−1𝑑 |𝑉 | ≥ 𝜀 |𝑉 | common neighbours
in the set 𝑉 . Since (𝑑 − 𝜀)ℎ−1 |𝑁1 | ≥ 1

2𝑑
ℎ𝑛 and ((1 − 𝜀)𝑚)ℎ−1 ≥ (1 − ℎ𝜀)𝑚ℎ−1, the first

part of the lemma follows.
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Without loss of generality, it suffices to prove (ii)(ii) for 𝑈1. If |𝑋 | ≥ 2𝜀𝑛𝑑1−ℎ, then, by
applying Lemma 2.1.12.1.1, for all but at most 𝜀𝑚 vertices 𝑢1 ∈ 𝑈1, the set 𝑁1 = 𝑁 (𝑢1, 𝑋) of
neighbours of 𝑢1 in 𝑋 is of size at least (𝑑−𝜀) |𝑋 |. Fix any such 𝑢1 and proceed in the same
way as in the proof of (i)(i). We get that there are at least ((1 − 𝜀)𝑚)ℎ−1 ≥ (1 − ℎ𝜀)𝑚ℎ−1

choices of (𝑢2, . . . , 𝑢ℎ) ∈ 𝑈2 × · · · ×𝑈ℎ such that the vertices 𝑢1, 𝑢2, . . . , 𝑢ℎ have at least
(𝑑 − 𝜀)ℎ−1 |𝑁1 | ≥ (𝑑 − 𝜀)ℎ |𝑋 | ≥ 1

2𝑑
ℎ |𝑋 | common neighbours in the set 𝑋 , and the second

part of the lemma follows.

Finally, we move to the proof of Lemma 3.4.73.4.7, which follows from the Chebyshev’s and
Janson’s inequalities.

Proof of Lemma 3.4.73.4.7. Given any graph 𝐻 on ℎ ≥ 2 vertices and any 𝛿 > 0, we fix
𝜀 > 0 with 𝜀 < 2−4ℎ−24ℎ−8𝛿4ℎ, and we let 𝛿′ = 2−3ℎ−1𝜀1/4 and large enough for the
inequalities indicated below to hold. Observe that the maximum degree of 𝐹 is 𝑚ℎ−1 and,
by Lemma 3.4.63.4.6(i)(i), the minimum degree of 𝐹 is at least (1 − ℎ𝜀)𝑚ℎ−1. Therefore

E[𝑒(�̃�)] = 𝑒(𝐹)𝑝𝑒 (𝐻) = (1 ± ℎ𝜀)𝑚ℎ𝑝𝑒 (𝐻)

and

Var[𝑒(�̃�)] = 𝑂ℎ, 𝛿
©­«

∑︁
𝐻′⊆𝐻,𝑒 (𝐻′)>0

𝑚2𝑣 (𝐻)−𝑣 (𝐻′)
(
𝑝2𝑒 (𝐻)−𝑒 (𝐻′) − 𝑝2𝑒 (𝐻)

)ª®¬
= 𝑂ℎ, 𝛿

©­«E[𝑒(�̃�)]2
∑︁

𝐻′⊆𝐻,𝑒 (𝐻′)>0
𝑚−𝑣 (𝐻′) 𝑝−𝑒 (𝐻

′)ª®¬
= 𝑂ℎ, 𝛿

©­«E[𝑒(�̃�)]2
∑︁

𝐻′⊆𝐻,𝑒 (𝐻′)>0
𝑛−𝑣 (𝐻

′) 𝑝−𝑒 (𝐻
′)ª®¬

= 𝑂ℎ, 𝛿

(
E[𝑒(�̃�)]2𝐶−1𝑛−1

)
,

where we used that 𝑛−𝑣 (𝐻′) 𝑝−𝑒 (𝐻
′) ≤ 𝐶−𝑒 (𝐻′)𝑛−𝑣 (𝐻

′)+𝑒 (𝐻′)/𝑚1 (𝐻) ≤ 𝐶−𝑒 (𝐻′)𝑛−1 in the last
step. Using Chebyshev’s inequality (Lemma 2.4.32.4.3), we have

P
[
𝑒(�̃�) ≠ (1 ± 𝜀)E[𝑒(�̃�)]

]
= 𝑂ℎ, 𝛿,𝜀

(
Var[𝑒(�̃�)]
E[𝑒(�̃�)]2

)
= 𝑂ℎ, 𝛿,𝜀 (𝐶−1𝑛−1) ,

and thus a.a.s.

𝑒(�̃�) = (1 ± 𝜀)E[𝑒(�̃�)] = (1 ± 𝜀) (1 ± ℎ𝜀)𝑚ℎ𝑝𝑒 (𝐻) . (3.7.2)
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Similarly as above, given𝑈 ′
𝑖
⊆ 𝑈 ′

𝑖
of size at least 𝛿𝑚 for 𝑖 = 1, . . . , ℎ, we have

E[𝑒(�̃� ′)] = 𝑒(𝐹 ′)𝑝𝑒 (𝐻)

= (1 ± ℎ 𝜀
𝛿
)
ℎ∏
𝑖=1

|𝑈 ′
𝑖 |𝑝𝑒 (𝐻)

= Ωℎ, 𝛿,𝜀 (𝑛ℎ𝑝𝑒 (𝐻) ) = Ωℎ, 𝛿,𝜀 (𝐶𝑛)

and Δ[𝑒(�̃� ′)] = 𝑂ℎ, 𝛿,𝜀 (E[𝑒(�̃� ′)]2𝐶−1𝑛−1). Then with Janson’s inequality (Lemma 2.4.22.4.2)
we have

P
[
𝑒(�̃� ′) < (1 − 𝜀)E[𝑒(𝐹 ′)]

]
≤ exp

(
− 𝜀2E[𝑒(�̃� ′)]2

2Δ[𝑒(�̃� ′)] + 2E[𝑒(�̃� ′)]

)
≤ exp(−ℎ𝑛) ,

where the last inequality holds for large enough 𝐶, and we conclude with a union bound
that a.a.s.

𝑒(�̃� ′) ≥ (1 − 𝜀)E[𝑒(𝐹 ′)]

≥ (1 − 𝜀) (1 − ℎ 𝜀
𝛿
)
ℎ∏
𝑖=1

|𝑈 ′
𝑖 |𝑝𝑒 (𝐻)

≥ (1 −
√
𝜀)

ℎ∏
𝑖=1

|𝑈 ′
𝑖 |𝑝𝑒 (𝐻)

(3.7.3)

for all choices of𝑈 ′
𝑖
⊆ 𝑈 ′

𝑖
of size at least 𝛿𝑚 for 𝑖 = 1, . . . , ℎ and using the choice of 𝜀. This

proves the lower bound of (3.4.13.4.1). Note that (3.7.23.7.2) and (3.7.33.7.3) hold also with 𝛿 replaced
by 𝛿′.

Next we upper bound 𝑒(�̃� ′) by taking 𝑒(�̃�) and subtracting those edges of �̃� that are
not in �̃� ′, i.e. the edges that contain at least one vertex 𝑣𝑖 that belongs to𝑈 \𝑈 ′

𝑖
. We only

need a lower bound on their number and we will see that it is enough to lower bound those
for which |𝑈𝑖 \𝑈 ′

𝑖
| ≥ 𝛿′𝑚 (which can be done using (3.7.33.7.3)), and simply ignore the others.

For this we let 𝐽 ⊆ [ℎ] be the set of those indices 𝑗 ∈ [ℎ] such that |𝑈 ′
𝑗
| ≤ (1 − 𝛿′)𝑚, and

for any ∅ ≠ 𝐼 ⊆ 𝐽 we let 𝐹𝐼 be the subgraph of 𝐹 induced by the sets 𝑈𝑖 \𝑈 ′
𝑖

for 𝑖 ∈ 𝐼 and
𝑈 ′
𝑖

for 𝑖 ∉ 𝐼. If 𝐽 = ∅, then the inequality 𝑒(�̃� ′) ≤ 𝑒(�̃�) already gives the desired upper
bound on 𝑒(�̃� ′). Otherwise, using (3.7.23.7.2) and (3.7.33.7.3), we get

𝑒(�̃� ′) ≤ 𝑒(�̃�) −
∑︁

∅≠𝐼⊆𝐽
𝑒(�̃�𝐼 )

≤ (1 + 𝜀)E[𝑒(�̃�)] −
∑︁

∅≠𝐼⊆𝐽
(1 − 𝜀)E[𝑒(𝐹𝐼 )] ,

86



3 The square of a Hamilton cycle in randomly perturbed graphs

that we can further upper bound by

(1 + 𝜀) (1 + ℎ𝜀)
ℎ∏
𝑖=1

|𝑈𝑖 |𝑝𝑒 (𝐻) −
∑︁

∅≠𝐼⊆𝐽

[
(1 − 𝜀) (1 − ℎ 𝜀

𝛿′ )
∏
𝑖∈𝐼

|𝑈𝑖 \𝑈 ′
𝑖 |

∏
𝑖∉𝐼

|𝑈 ′
𝑖 |𝑝𝑒 (𝐻)

]
≤

∏
𝑗∉𝐽

|𝑈 𝑗 |
∏
𝑗∈𝐽

|𝑈 ′
𝑗 |𝑝𝑒 (𝐻) + 2ℎ𝜀

ℎ∏
𝑖=1

|𝑈𝑖 |𝑝𝑒 (𝐻) + 2ℎ
𝜀

𝛿′

∑︁
∅≠𝐼⊆𝐽

(∏
𝑖∈𝐼

|𝑈𝑖 \𝑈 ′
𝑖 |

∏
𝑖∉𝐼

|𝑈 ′
𝑖 |𝑝𝑒 (𝐻)

)
≤ (1 − 𝛿′) |𝐽 |−ℎ

ℎ∏
𝑖=1

|𝑈 ′
𝑖 |𝑝𝑒 (𝐻) + 2ℎ𝜀𝛿−ℎ

ℎ∏
𝑖=1

|𝑈 ′
𝑖 |𝑝𝑒 (𝐻) + 2ℎ

𝜀

𝛿′
2 |𝐽 |𝛿−|𝐽 |

ℎ∏
𝑖=1

|𝑈 ′
𝑖 |𝑝𝑒 (𝐻)

≤
(
1 + 2ℎ𝛿′ + 2ℎ𝜀𝛿−ℎ + 2ℎ+1ℎ𝛿−ℎ

𝜀

𝛿′

) ℎ∏
𝑖=1

|𝑈 ′
𝑖 |𝑝𝑒 (𝐻) ≤ (1 +

√
𝜀)

ℎ∏
𝑖=1

|𝑈 ′
𝑖 |𝑝𝑒 (𝐻) .

To get the second line, we used (1+ 𝜀) (1+ ℎ𝜀) ≤ 1+2ℎ𝜀, (1− 𝜀) (1− ℎ 𝜀
𝛿′ ) ≥ 1−2ℎ 𝜀

𝛿′ and

ℎ∏
𝑖=1

|𝑈𝑖 | −
∑︁

∅≠𝐼⊆𝐽

∏
𝑖∈𝐼

|𝑈𝑖 \𝑈 ′
𝑖 |

∏
𝑖∉𝐼

|𝑈 ′
𝑖 | =

∏
𝑗∉𝐽

|𝑈 𝑗 |
∏
𝑗∈𝐽

|𝑈 ′
𝑗 |

as we are left with those edges that have vertices in 𝑈 𝑗 \𝑈 ′
𝑗

for 𝑗 ∉ 𝐽 and in 𝑈 ′
𝑗

for 𝑗 ∈ 𝐽.
To get to the third line, we used that for 𝑗 ∉ 𝐽 we have |𝑈 ′

𝑗
| ≥ (1− 𝛿′)𝑚 = (1− 𝛿′) |𝑈 𝑗 | and

that for each 𝑖 we have |𝑈𝑖 \𝑈 ′
𝑖
| ≤ |𝑈𝑖 | ≤ 𝛿−1 |𝑈 ′

𝑖
|. In the last estimate we use the bound on

𝜀 and the choice of 𝛿′. This finishes the proof of (3.4.13.4.1).
For (3.4.23.4.2), we repeat essentially the same argument we used for the lower bound

of (3.4.13.4.1). Observe that from (ii)(ii) of Lemma 3.4.63.4.6, if |𝑋 | ≥ 2𝜀𝑛𝑑1−ℎ, all but at most 𝜀𝑚
vertices from each𝑈𝑖 have degree at least (1 − ℎ𝜀)𝑚ℎ−1 in 𝐹𝑋. Therefore

E[𝑒(�̃� ′
𝑋)] = 𝑒(𝐹 ′

𝑋)𝑝𝑒 (𝐻) = (1 ± ℎ 𝜀
𝛿
)
ℎ∏
𝑖=1

|𝑈 ′
𝑖 |𝑝𝑒 (𝐻) = Ωℎ, 𝛿,𝜀 (𝐶𝑛) (3.7.4)

and again Δ[𝑒(�̃� ′
𝑋
)] = 𝑂ℎ,𝜀, 𝛿 (E[𝑒(�̃� ′

𝑋
)]2𝐶−1𝑛−1). Then with Lemma 2.4.22.4.2 we have

P[𝑒(�̃� ′
𝑋) < (1 − 𝜀)E[𝑒(�̃� ′

𝑋)]] ≤ exp

(
−

𝜀2E[𝑒(�̃� ′
𝑋
)]2

2Δ[𝑒(�̃� ′
𝑋
)] + 2E[𝑒(�̃� ′

𝑋
)]

)
≤ exp(−ℎ𝑛) ,

where the last inequality holds for large enough𝐶. Then with a union bound over all choices
of 𝑈 ′

1, . . . ,𝑈
′
ℎ

we conclude that 𝑒(�̃� ′
𝑋
) ≥ (1 − 𝜀)E[𝑒(�̃� ′

𝑋
)] with probability 1 − 𝑒−𝑛, and

using (3.7.43.7.4), we finish the proof.
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4
Triangles in randomly perturbed graphs

In this chapter, we discuss our results related to the containment of 𝑚 vertex-disjoint
triangles in the perturbed graph model, namely Theorems 1.1.81.1.8 and 1.1.111.1.11 to 1.1.131.1.13.
These theorems borrow a lot from the strategies used while dealing with the perturbed
threshold for the square of a Hamilton cycle in Chapter 33. In fact, using that the square
of a cycle on three vertices is a triangle, we do not need to develop any further technical
result. The main Theorem 1.1.81.1.8 follows easily from the stability Theorem 1.1.111.1.11, the
extremal Theorem 1.1.121.1.12, and the sublinear Theorem 1.1.131.1.13. The sublinear Theorem 1.1.131.1.13
is essentially a consequence of Lemma 3.1.13.1.1. Therefore we prove Theorem 1.1.81.1.8 and
Theorem 1.1.131.1.13 already here. We prove the extremal Theorem 1.1.121.1.12 and the stability
Theorem 1.1.111.1.11 in Sections 4.24.2 and 4.34.3 respectively, after giving a brief overview of both
in Section 4.14.1.

Proof of Theorem 1.1.81.1.8. Let 𝛽1, 𝛾1 > 0 and 𝐶1 > 0 be given by Theorem 1.1.121.1.12 on
input 𝛼0 = 1/512. Then let 𝛾2 > 0 and 𝐶2 > 0 be given by Theorem 1.1.111.1.11 on input
𝛽 = min{𝛼0/4, 𝛽1}. Moreover, let 𝐶3 > 0 be given by Theorem 1.1.131.1.13. Define 𝐶 =

max{𝐶1, 𝐶3} and 𝛾 = min{𝛾1, 𝛾2}.
Let 𝐺 be any 𝑛-vertex graph and 𝑝 ≥ 𝐶 log 𝑛/𝑛, and define 𝑚 = min{𝛿(𝐺), ⌊𝑛/3⌋}. If

𝑚 ≤ 𝑛/512, then we get from Theorem 1.1.131.1.13 that a.a.s. 𝐺 ∪ 𝐺 (𝑛, 𝑝) contains at least 𝑚
pairwise vertex-disjoint triangles, as 𝐶 ≥ 𝐶3. Otherwise, 𝑚 > 𝑛/512 and we can choose
𝛼 ∈ (𝛼0, 1/3] such that (𝛼 − 𝛾)𝑛 ≤ 𝑚 ≤ 𝛼𝑛. If 𝐺 is (𝛼, 𝛽)-stable, then 𝐺 is also (𝛼, 𝛽1)-
stable and, by Theorem 1.1.121.1.12, there are a.a.s. at least min{𝛿(𝐺), ⌊𝛼𝑛⌋} ≥ 𝑚 pairwise
vertex-disjoint triangles in𝐺 ∪𝐺 (𝑛, 𝑝), as 𝛼0 < 𝛼 ≤ 1/3 and𝐶 ≥ 𝐶1. Otherwise, 𝐺 is not
(𝛼, 𝛽)-stable and, by Theorem 1.1.111.1.11, a.a.s.𝐺∪𝐺 (𝑛, 𝑝) contains at least min{𝛼𝑛, ⌊𝑛/3⌋} ≥
𝑚 pairwise vertex-disjoint triangles, as 4𝛽 ≤ 𝛼 ≤ 1/3 and 𝑝 = 𝜔(1/𝑛).

We now move to the proof of the sublinear Theorem 1.1.131.1.13 which uses Lemma 3.1.13.1.1.
For readability, we restate Lemma 3.1.13.1.1 in the specific case 𝑘 = 2 and 𝑡 = 1, which will be
enough for our scope.

Lemma 4.0.1 (Lemma 3.1.13.1.1 restated with 𝑘 = 2 and 𝑡 = 1). There exists 𝐶 > 0 such that
the following holds for any 1 ≤ 𝑚 ≤ 𝑛/64 and any 𝑛-vertex graph 𝐺 of minimum degree
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𝛿(𝐺) ≥ 𝑚 and maximum degree Δ(𝐺) ≤ 𝑛/64. For 𝑝 ≥ 𝐶𝑛−1 log 𝑛, a.a.s. the perturbed
graph 𝐺 ∪ 𝐺 (𝑛, 𝑝) contains 𝑚 pairwise vertex-disjoint triangles.

Proof of Theorem 1.1.131.1.13. We let 𝐶 be large enough such that with 𝑝 ≥ 𝐶 log 𝑛/𝑛 we can
expose 𝐺 (𝑛, 𝑝) in three rounds as

⋃3
𝑖=1𝐺𝑖 with 𝐺𝑖 ∼ 𝐺 (𝑛, 𝐶𝑖 log 𝑛/𝑛) for 𝑖 = 1, . . . , 3

such that the following hold. We let 𝐶1 = 1 and observe that, by a union bound, a.a.s. for
any set of vertices 𝑈 of size at least 𝑛/512 there is at least one edge in 𝐺1 [𝑈]. Next,
we let 𝐶2 be large enough such that for a set of vertices 𝑈 of size at least 𝑛/2 there are
a.a.s. at least log3 𝑛 pairwise vertex-disjoint triangles in 𝐺2 [𝑈], which is possible by [6868,
Theorem 3.29]. Finally, let 𝐶3 be such that we can apply Lemma 4.0.14.0.1 with 𝐶3/2. We
expose 𝐺1 already now and assume that the described property holds, while we leave 𝐺2

and 𝐺3 until we need them.
Let 1 ≤ 𝑚 ≤ 𝑛/512 and let𝐺 be an 𝑛-vertex graph on vertex set𝑉 with minimum degree

𝛿(𝐺) ≥ 𝑚. To apply Lemma 4.0.14.0.1 to a large subgraph𝐺 ′ of𝐺, we needΔ(𝐺 ′) ≤ 𝑣(𝐺 ′)/64.
For this let 𝑉 ′ be the set of vertices from 𝐺 of degree at least 𝑛/128. If |𝑉 ′ | ≥ 𝑚, then
we let 𝑉 ′′ be any subset of 𝑉 ′ of size 𝑚 and we greedily find 𝑚 pairwise vertex-disjoint
triangles in 𝐺 ∪ 𝐺1, each containing exactly one vertex from 𝑉 ′′. Indeed, as long as we
have less than 𝑚 triangles there is a vertex 𝑣 ∈ 𝑉 ′′ not yet contained in a triangle. Then
there is a set 𝑈 ⊆ 𝑁𝐺 (𝑣) \ 𝑉 ′′ of at least 𝑛/128 − 3𝑚 ≥ 𝑛/512 vertices not covered by
triangles, and we can find an edge within 𝐺1 [𝑈] that gives us a triangle containing 𝑣 and
two vertices from𝑈.

Otherwise, |𝑉 ′ | < 𝑚 and we remove 𝑉 ′ from 𝐺 to obtain 𝐺 ′ = 𝐺 [𝑉 \𝑉 ′]. Note that we
have 𝑣(𝐺 ′) = 𝑛 − |𝑉 ′ | ≥ 𝑛/2, minimum degree 𝛿(𝐺 ′) ≥ 𝑚′ = 𝑚 − |𝑉 ′ |, and maximum
degree Δ(𝐺 ′) < 𝑛/128 ≤ 𝑣(𝐺 ′)/64. If 𝑚′ < (log 𝑛)3, then we a.a.s. find 𝑚′ pairwise
vertex-disjoint triangles within 𝐺2 [𝑉 (𝐺 ′)]. Otherwise, (log 𝑣(𝐺 ′))3 ≤ (log 𝑛)3 ≤ 𝑚′ ≤
𝑛/512 ≤ 𝑣(𝐺 ′)/64, and, by Lemma 4.0.14.0.1 and as 𝐶3 log 𝑛/𝑛 ≥ 𝐶3

2 log 𝑣(𝐺 ′)/𝑣(𝐺 ′), there
are a.a.s. at least 𝑚′ pairwise vertex-disjoint triangles in 𝐺 ′ ∪ 𝐺3 [𝑉 (𝐺 ′)].

Now that we found 𝑚′ pairwise vertex-disjoint triangles, we can greedily add triangles
by using the 𝑚 − 𝑚′ vertices from 𝑉 ′ and an edge in their neighbourhood until we have 𝑚
triangles. Analogous to above, as long as we have less than 𝑚 triangles, for each available
vertex 𝑣 ∈ 𝑉 ′, there is a set 𝑈 ⊂ 𝑁𝐺 (𝑣) \ 𝑉 ′ of at least 𝑛/512 vertices not covered by
triangles, and we find an edge within 𝐺1 [𝑈].

4.1 Proof overview of the extremal and the non-extremal case

The extremal Theorem 1.1.121.1.12 and the stability Theorem 1.1.111.1.11 can be proved along the
same lines as the corresponding statements for the square of a Hamilton cycle in Chapter 33.
Nevertheless, we provide a very brief overview and, for convenience, we restate the technical
lemmas we need from Chapter 33, in the specific case of interest for this chapter. For
simplicity, when outlining the proofs of Theorems 1.1.111.1.11 and 1.1.121.1.12, we assume 𝛼 = 1/3,
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𝑛 is a multiple of 3, and 𝐺 is an 𝑛-vertex graph with minimum degree 𝛿(𝐺) ≥ 𝑛/3, in
which case both theorems give a triangle factor in 𝐺 ∪ 𝐺 (𝑛, 𝑝).

4.1.1 Extremal case.

Assume that 𝐺 is (1/3, 𝛽)-stable and let 𝑝 ≥ 𝐶 log 𝑛/𝑛. We want to show that a.a.s.
𝐺 ∪𝐺 (𝑛, 𝑝) contains a triangle factor. The definition of stability (Definition 1.1.101.1.10) gives
a partition of 𝑉 (𝐺) into 𝐴 ∪ 𝐵 where the size of 𝐵 is roughly double the size of 𝐴, there
is a minimum degree condition between 𝐴 and 𝐵, and in each part all but at most a few
vertices see all but at most few a vertices of the other part. Our proof will follow three
steps. Firstly, we find a collection of pairwise vertex-disjoint triangles T1, such that after
removing the triangles of T1, we are left with two sets 𝐴1 = 𝐴 \𝑉 (T1) and 𝐵1 = 𝐵 \𝑉 (T1)
with |𝐵1 | = 2|𝐴1 |. The way we find these triangles depends on the sizes of 𝐴 and 𝐵 and
we will use two different approaches when |𝐵| > 2𝑛/3 and |𝐵| ≤ 2𝑛/3. In particular
when |𝐵| > 2𝑛/3 we need to find some triangles entirely within 𝐵, just using the minimum
degree 𝑛/3 − |𝐴| and random edges. For that we will use Theorem 1.1.131.1.13.

Our second step is to cover the vertices in 𝐴1 and 𝐵1 that do not have a high degree to
the other part; this will give two collections of pairwise vertex-disjoint triangles T2 and
T3. Each such triangle has one vertex in 𝐴1 and two vertices in 𝐵1 so that we still have
|𝐵2 | = 2|𝐴2 |, where 𝐴2 = 𝐴1 \𝑉 (T2∪T3) and 𝐵2 = 𝐵1 \𝑉 (T2∪T3). Moreover at this point,
each vertex sees all but at most a few vertices of the other part. Given this high minimum
degree condition between 𝐴2 and 𝐵2 and using Hall’s matching theorem, we can find a
perfect matching between the vertices in 𝐴2 and the edges of 𝐺 (𝑛, 𝑝) [𝐵2] in the following
sence: we can match a vertex 𝑣 ∈ 𝐴2 to an edge 𝑢𝑤 ∈ 𝐸 (𝐺 (𝑛, 𝑝) [𝐵2]) if and only if 𝑢𝑣 and
𝑣𝑤 are both edges of 𝐺. Note that if 𝑣 is matched to 𝑢𝑤, then the vertices 𝑢, 𝑣, 𝑤 induce
a triangle in 𝐺 ∪ 𝐺 (𝑛, 𝑝). This perfect matching corresponds to a collection of pairwise
vertex-disjoint triangles T4, covering all the vertices of 𝐴2 and 𝐵2. We conclude observing
that the collection of triangles T1 ∪ T2 ∪ T3 ∪ T4 gives a triangle factor in 𝐺 ∪ 𝐺 (𝑛, 𝑝).

4.1.2 Non-extremal case.

Assume that 𝐺 is not (1/3, 𝛽)-stable and let 𝑝 ≥ 𝐶/𝑛. We want to show that a.a.s.
𝐺 ∪𝐺 (𝑛, 𝑝) contains a triangle factor. We apply the regularity lemma to 𝐺 and obtain the
reduced graph 𝑅, to which we apply Lemma 3.1.23.1.2 (with 𝑘 = 1). We restate it for an easier
consultation.

Lemma 4.1.1 (Lemma 3.1.23.1.2 restated with 𝑘 = 1). For any 0 < 𝛽 < 1/12 there exists 𝑑 > 0
such that the following holds for any 0 < 𝜀 < 𝑑/4, 4𝛽 ≤ 𝛼 ≤ 1/3, and 𝑡 ≥ 10/𝑑 . Let 𝐺 be
an 𝑛-vertex graph with minimum degree 𝛿(𝐺) ≥ (𝛼 − 𝑑/2)𝑛 that is not (𝛼, 𝛽)-stable and
let 𝑅 be the (𝜀, 𝑑)-reduced graph for some (𝜀, 𝑑)-regular partition 𝑉0, . . . , 𝑉𝑡 of 𝐺. Then
𝑅 contains a matching 𝑀 of size (𝛼 + 2𝑑)𝑡.
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It follows that we can cover the vertices of 𝑅 with cherries 𝐾1,2 and matching edges
𝐾1,1, such that there are not too many cherries. Using the tools developed for dealing
with the square of a Hamilton cycle (Lemmas 3.1.33.1.3 and 3.1.43.1.4), we can already find a
triangle factor in each super-regular cherry and super-regular matching edge. Indeed, given
an unbalanced super-regular cherry 𝑉 ,𝑈,𝑊 of 𝐺, under certain additional assumptions,
Lemma 3.1.33.1.3 with 𝑘 = 2 guarantees the existence of the square of a Hamilton path
in 𝐺 [𝑉,𝑈,𝑊] ∪ 𝐺 (𝑉, 𝑝) ∪ 𝐺 (𝑈,𝑊, 𝑝), covering 𝑉 , 𝑈, and 𝑊 , provided 𝑝 ≥ 𝐶𝑛−1.
Assuming that |𝑉 | + |𝑈 | + |𝑊 | ≡ 0 (mod 3), we can then easily extract a triangle factor.
However, given the way we build the square of a Hamilton path in Lemma 3.1.33.1.3, this lemma
requires an extra divisibility condition (possibly an artefact of our proof), which we are
able to avoid here. Therefore we use the following lemma, for which we give a short proof
in the next subsection.

Lemma 4.1.2. For any 0 < 𝛿′ ≤ 𝑑 < 1 there exist 𝛿0, 𝛿1, 𝜀 with 𝛿′ ≥ 𝛿0 > 2𝛿1 > 𝜀 > 0
and 𝐶 > 0 such that the following holds. Let 𝑈,𝑉,𝑊 be pairwise disjoint sets such that
|𝑉 | = 𝑛 and (1 − 𝛿0)𝑛 ≤ |𝑈 | = |𝑊 | ≤ (1 − 𝛿1)𝑛, where |𝑉 | + |𝑈 | + |𝑊 | ≡ 0 (mod 3).
Suppose that (𝑉,𝑈) and (𝑉,𝑊) are (𝜀, 𝑑)-super-regular pairs with respect to a graph 𝐺
and let 𝐺 (𝑉, 𝑝) and 𝐺 (𝑈,𝑊, 𝑝) be random graphs with 𝑝 ≥ 𝐶𝑛−1.

Then a.a.s. there exists a triangle factor in𝐺 [𝑉,𝑈,𝑊] ∪𝐺 (𝑉, 𝑝) ∪𝐺 (𝑈,𝑊, 𝑝) covering
𝑉,𝑈, and𝑊 .

The following lemma deals with regular matching edges.

Lemma 4.1.3. For any 0 < 𝑑 < 1 there exist 𝜀 > 0 and 𝐶 > 0 such the following holds
for sets𝑈,𝑉 of size |𝑉 | = 𝑛 and 3𝑛/4 ≤ |𝑈 | ≤ 𝑛 where |𝑉 | + |𝑈 | ≡ 0 (mod 3). If (𝑈,𝑉) is
an (𝜀, 𝑑)-super-regular pair and 𝐺 (𝑈, 𝑝) and 𝐺 (𝑉, 𝑝) are random graphs with 𝑝 ≥ 𝐶/𝑛,
then a.a.s. there exists a triangle factor.

We omit the proof as it can be easily derived from Lemma 4.1.24.1.2 by appropriately splitting
the super-regular pair (𝑈,𝑉) into two copies of super-regular cherries, in the exact same
way as we derived Lemma 3.1.43.1.4 from Lemma 3.1.33.1.3 in Chapter 33.

However, before we can apply Lemma 4.1.24.1.2 to each cherry and Lemma 4.1.34.1.3 to each
matching edge, some preliminary steps are needed. We remove some vertices from each
cherry to make it unbalanced and ensure that both edges are super-regular. Then we cover
all vertices that are not contained in any of the cherries or edges by finding a collection of
triangles T1. We construct another collection of triangles T2 to ensure that in each cherry
the relations between the three sets are as required by Lemma 4.1.24.1.2. For constructing T1

and T2 we will mainly rely on the minimum degree condition of 𝐺 and the fact that in the
probability 𝑝 ≥ 𝐶/𝑛, the constant𝐶 can be chosen large enough so that a.a.s. the following
holds: each linear-sized set contains a random edge, and for any not too small part of a
regular pair and any linear-sized set there is a triangle containing an edge form the pair
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and the third vertex from the set. Finally, we can use Lemma 4.1.24.1.2 and Lemma 4.1.34.1.3 to
cover the remaining vertices with a collection of triangles T3. Together T1 ∪ T2 ∪ T3 gives
a triangle factor in 𝐺 ∪ 𝐺 (𝑛, 𝑝).

We mention already now that when 𝛼 is sufficiently smaller than 1/3 and the condition on
the minimum degree of 𝐺 reads as 𝛿(𝐺) ≥ (𝛼 − 𝛾)𝑛, many of the steps outlined above are
not necessary. In this case indeed we do not have to cover all graph with triangles and we
only want to find 𝛼𝑛 pairwise vertex-disjoint triangles in 𝐺 ∪𝐺 (𝑛, 𝑝). We will see that an
application of Lemma 4.1.24.1.2 and Lemma 4.1.34.1.3 to the cherries and the matching edges found
at the beginning (after having made them super-regular and suitable for Lemma 4.1.24.1.2) is
already enough to find these 𝛼𝑛 triangles.

4.1.3 Proof of Lemma 4.1.24.1.2

Proof of Lemma 4.1.24.1.2. Given 0 < 𝛿′ ≤ 𝑑 < 1, let 𝜀′ > 0 be given by Lemma 2.1.32.1.3 on input
𝑑3/64 and let 0 < 𝛿 < 𝛿0 ≤ min{𝛿′, 𝑑3/22}. Furthermore, let 𝐶 ≥ 8𝛿−2, let 0 < 𝜀 < 𝛿/4
be given by Lemma 3.4.33.4.3 on input 𝐻 being an edge, 𝑑, 𝛿

3(1−𝛿) (in place of 𝛿), and 𝜀′/2,
and let 𝑝 ≥ 𝐶/𝑛.

Suppose𝑈, 𝑉 ,𝑊 are disjoint sets of size |𝑉 | = 𝑛 and (1 − 𝛿0)𝑛 ≤ |𝑈 | = |𝑊 | ≤ (1 − 𝛿)𝑛
with |𝑉 | + |𝑈 | + |𝑊 | ≡ 0 (mod 3), and𝐺 is a graph with vertex set𝑈 ∪𝑉 ∪𝑊 such that the
pairs (𝑉,𝑈) and (𝑉,𝑊) are (𝜀, 𝑑)-super-regular with respect to𝐺. Let 𝛿1 be such that |𝑈 | =
|𝑊 | = (1 − 𝛿1)𝑛 and observe that 𝛿 ≤ 𝛿1 ≤ 𝛿0. We reveal random edges 𝐺1 ∼ 𝐺 (𝑈,𝑊, 𝑝)
and𝐺2 ∼ 𝐺 (𝑉, 𝑝) and we have that a.a.s. any set of size at least 𝛿𝑛 in𝑉 contains an edge of
𝐺2. Indeed, for a fixed set of size at least 𝛿𝑛, the probability that it does not contain an edge
of𝐺2 is at most (1− 𝑝) ( 𝛿𝑛2 ) ≤ exp(−𝑝

(𝛿𝑛
2
)
) ≤ exp(−2𝑛) since𝐶 ≥ 8𝛿−2, and we conclude

by a union bound over the at most 2𝑛 choices of such set. Then we apply Lemma 3.4.33.4.3 to𝐺1

and we obtain a matching 𝑀 ⊆ 𝐺1 of size |𝑀 | =
(
1 − 𝛿

3(1−𝛿)

)
|𝑊 | =

(
1 − 𝛿

3(1−𝛿)

)
(1−𝛿1)𝑛

such that the pair (𝑀,𝑉) is (𝜀′/2, 𝑑3/32)-super-regular with respect to the graph T𝐺 (𝑀,𝑉)
defined in Definition 3.4.23.4.2. As for 𝑥 ∈ (0, 1) the function 𝑥 → 𝑥/(1 − 𝑥) is increasing
and 𝛿 ≤ 𝛿1, we have

(
𝛿1
3 − 𝛿

3(1−𝛿) (1 − 𝛿1)
)
≥

(
𝛿1
3 − 𝛿1

3(1−𝛿1) (1 − 𝛿1)
)
≥ 0. Thus by

ignoring
(
𝛿1
3 − 𝛿

3(1−𝛿) (1 − 𝛿1)
)
𝑛 ≤ 𝑑3𝑛/64 edges of 𝑀 , we get a subset 𝑀 ′ ⊆ 𝑀 with

|𝑀 ′ | = (1 − 4𝛿1/3)𝑛.
Next, let 𝑈 ′ = 𝑈 \ 𝑉 (𝑀 ′) and 𝑊 ′ = 𝑊 \ 𝑉 (𝑀 ′) be the sets of vertices in 𝑈 and 𝑊 ,

respectively, that are not incident to edges of 𝑀 ′. Note that both 𝑈 ′ and 𝑊 ′ have size
𝛿1𝑛/3. We want to cover these vertices with triangles having the other two vertices in 𝑉 .
Any vertex 𝑣 ∈ 𝑈 ′ ∪𝑊 ′ has degree at least 𝑑𝑛 into 𝑉 and as 𝑑 > 2𝛿0 ≥ 2𝛿1 we can pick
these triangles greedily for each 𝑣 ∈ 𝑈 ′ ∪𝑊 ′ using 𝐺2. Let 𝑉 ′ ⊆ 𝑉 be the vertices that
were used for these triangles and observe |𝑉 \𝑉 ′ | = |𝑀 ′ | = (1 − 4𝛿1/3)𝑛.

To obtain the triangle factor it remains to find a perfect matching in 𝐻𝐺 (𝑀 ′, 𝑉 \𝑉 ′). By
Lemma 2.1.32.1.3 it is sufficient to observe that the pair (𝑀 ′, 𝑉 \𝑉 ′) is (𝜀′, 𝑑3/64)-super-regular
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with respect to𝐻𝐺 (𝑀 ′, 𝑉 \𝑉 ′), which holds because (𝑀,𝑉) is (𝜀′/2, 𝑑3/32)-super-regular
with respect to 𝐻𝐺 (𝑀,𝑉).

4.2 Proof of the extremal Theorem 1.1.121.1.12

Proof of Theorem 1.1.121.1.12. Let 0 < 𝛼0 ≤ 1/3 and choose 𝑑 = 1/2. Let 0 < 𝜀 < 1/5,
and choose 𝛽 and 𝛾 with 0 < 𝛽 < 𝛼0 𝜀/36 and 0 < 𝛾 < 𝛽/11. Let 𝐶1 be given
by Theorem 1.1.131.1.13, and choose 𝐶3 such that a.a.s. the random graph 𝐺 (𝑛, 𝐶4 log 𝑛/𝑛)
contains a perfect matching. Finally, let 𝐶 ≥ 2𝐶1 + 1 + 2𝐶3/𝛼0 and 𝛼0 ≤ 𝛼 ≤ 1/3.

Let 𝑝 ≥ 𝐶 log 𝑛/𝑛. With our choice of 𝐶, we can reveal 𝐺 (𝑛, 𝑝) in three rounds
𝐺1 ∼ 𝐺 (𝑛, 2𝐶1 log 𝑛/𝑛) and, 𝐺2 ∼ 𝐺 (𝑛, log 𝑛/𝑛), and 𝐺3 ∼ 𝐺 (𝑛, 2𝐶3

𝛼0
log 𝑛/𝑛). We will

only know later in which subset we will use𝐺1 and𝐺3, but we have that a.a.s. there is an edge
of 𝐺2 between any two not necessarily disjoint sets of size 𝛽𝑛. Indeed, fixed two such sets,
the probability that there is no edge of 𝐺2 is at most (1− log 𝑛/𝑛) (𝛽𝑛)2 ≤ exp(−𝛽2𝑛 log 𝑛),
and we conclude by a union bound over the at most 22𝑛 choices for the two sets. Now let
𝐺 be an 𝑛-vertex graph with minimum degree 𝛿(𝐺) ≥ (𝛼 − 𝛾) 𝑛 that is (𝛼, 𝛽)-stable and
define𝑚0 = max{𝑛/3−𝛿(𝐺), 𝑛/3−⌊𝛼𝑛⌋}. Our goal is to a.a.s. find pairwise vertex-disjoint
triangles in 𝐺 ∪ 𝐺 (𝑛, 𝑝) such that at most 3𝑚0 vertices are left uncovered.

To aid with calculations we let 𝜅 = 𝑛/3 − ⌈𝛼𝑛⌉ and observe that 𝜅 ∈ {0,−1/3,−2/3} if
𝛼 = 1/3 and that 𝜅 > 0 if 𝛼 < 1/3 and 𝑛 large enough. Also note that 𝑚0 − 𝜅 is an integer
and that 3𝜅 = ⌊(1−𝛼)𝑛⌋ − 2⌈𝛼𝑛⌉. With this we set 𝑤 = max{3𝜅, 0}. As 𝐺 is (𝛼, 𝛽)-stable
we get a partition of 𝑉 (𝐺) into sets 𝐴 and 𝐵 satisfying the conditions of Definition 1.1.101.1.10.

Claim 4.2.1. There a.a.s. are a collection of triangles T1 in 𝐺 ∪ 𝐺1 ∪ 𝐺2 with |T1 | ≤ 𝛽𝑛

and a set 𝑊 ⊆ 𝑉 (𝐺) \ 𝑉 (T1) with |𝑊 | ≤ 3𝑚0 − 𝑤 such that the following holds. For
𝐴1 = 𝐴\(𝑉 (T1)∪𝑊) and 𝐵1 = 𝐵\(𝑉 (T1)∪𝑊), we have that |𝐴1 | ≤ ⌈𝛼𝑛⌉, |𝐵1 | = 2|𝐴1 |+𝑤,
the minimum degree between 𝐴1 and 𝐵1 is at least 𝛼𝑛/5, all but at most 𝛽𝑛 vertices of 𝐴1

have degree at least |𝐵1 | − 𝛽𝑛 into 𝐵1, and all but at most 𝛽𝑛 vertices of 𝐵1 have degree at
least |𝐴1 | − 𝛽𝑛 into 𝐴1.

The sets 𝐴1 and 𝐵1 partition 𝑉 (𝐺) \ (𝑉 (T1) ∪𝑊) and, after proving Claim 4.2.14.2.1, we
will cover all but 𝑤 vertices from 𝐴1 ∪ 𝐵1 with additional triangles. Hence, if we manage
to find these triangles, we have covered all but |𝑊 | + 𝑤 ≤ 3𝑚0 vertices, as desired. We
remark for later that |𝑊 | ≤ 3𝑚0 − 𝑤 ≤ 4𝛾𝑛.

Proof of Claim 4.2.14.2.1. We have either |𝐵| > ⌊(1 − 𝛼)𝑛⌋ or |𝐴| ≥ ⌈𝛼𝑛⌉. First suppose
that we are in the first case, where |𝐵| = ⌊(1 − 𝛼)𝑛⌋ + 𝑚 for some 1 ≤ 𝑚 ≤ 𝛽𝑛 (and
|𝐴| = ⌈𝛼𝑛⌉ − 𝑚), and note that

|𝐵| − 2|𝐴| = 𝑛 − 3⌈𝛼𝑛⌉ + 3𝑚 = 3𝑚 + 3𝜅 > 0 .
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If 1 ≤ 𝑚 ≤ 𝑚0−𝜅, then 0 < 3𝑚 ≤ 3𝑚0−3𝜅 and we let𝑊 be any set with min{3𝑚, 3𝑚+3𝜅} ≤
3𝑚0 −𝑤 vertices from 𝐵. Then with the choice of T1 = ∅, we have that the sets 𝐴1 = 𝐴 and
𝐵1 = 𝐵 \𝑊 partition𝑉 (𝐺) \𝑊 , and |𝐴1 | = ⌈𝛼𝑛⌉ −𝑚 and |𝐵1 | = |𝐵| −min{3𝑚, 3𝑚 +3𝜅} =
2|𝐴1 | + 𝑤. If on the other hand 𝑚0 < 𝑚 + 𝜅, then

𝛿(𝐺 [𝐵]) ≥ 𝛿(𝐺) − |𝐴| ≥ (𝑛/3 − 𝑚0) − (⌈𝛼𝑛⌉ − 𝑚) = 𝑚 − 𝑚0 + 𝜅 > 0

and we observe that 𝑚 −𝑚0 + 𝜅 is an integer. Moreover 𝑚 −𝑚0 + 𝜅 ≤ 𝑚 ≤ |𝐵|/256, where
we use𝑚0−𝜅 ≥ 0,𝑚 ≤ 𝛽𝑛 ≤ 𝛼0𝜀𝑛/36 ≤ 𝑛/(3 ·5 ·36) and |𝐵| = ⌊(1−𝛼)𝑛⌋ +𝑚 ≥ 𝑛/2+𝑚.
Thus, by Theorem 1.1.131.1.13 and as 2𝐶1 log 𝑛/𝑛 ≥ 𝐶1 log |𝐵|/|𝐵| we a.a.s. find 𝑚 − 𝑚0 + 𝜅
pairwise vertex-disjoint triangles in (𝐺 ∪ 𝐺1) [𝐵]. Denote by T1 the collection of these
𝑚 − 𝑚0 + 𝜅 triangles. Let 𝑊 be any set of 3𝑚0 − 𝑤 vertices from 𝐵 not covered by any
triangle in T1. Then the sets 𝐴1 = 𝐴 and 𝐵1 = 𝐵\ (𝑉 (T1)∪𝑊) partition𝑉 (𝐺) \ (𝑉 (T1)∪𝑊),
and we have |𝐴1 | = ⌈𝛼𝑛⌉ − 𝑚 and

|𝐵1 | = |𝐵| − 3(𝑚 − 𝑚0 + 𝜅) − (3𝑚0 − 𝑤) = 2|𝐴1 | + 𝑤 .

It remains to consider the second case, where |𝐴| = ⌈𝛼𝑛⌉ + 𝑚 for some 0 ≤ 𝑚 ≤ 𝛽𝑛.
First, we greedily pick𝑚 pairwise vertex-disjoint triangles in𝐺∪𝐺2 each with two vertices
in 𝐴 and one vertex in 𝐵. Indeed during the process, there is always a vertex 𝑣 in 𝐵, not
yet contained in a triangle, with at least deg(𝑣, 𝐴) − 2𝑚 ≥ (𝛼/4 − 2𝛽)𝑛 ≥ 𝛽𝑛 uncovered
neighbours in 𝐴 in the graph 𝐺. By the property assumed in 𝐺2 we can then find an edge
within these neighbours of 𝑣 to get a triangle. Denote by T1 the collection of these 𝑚
triangles.

If 𝜅 ≥ 0, then, with the choice of𝑊 = ∅, we have that 𝐴1 = 𝐴\𝑉 (T1) and 𝐵1 = 𝐵\𝑉 (T1)
partition 𝑉 (𝐺) \𝑉 (T1) and

|𝐵1 | = |𝐵| − |T1 | = ⌊(1 − 𝛼)𝑛⌋ − 2𝑚 = 2(⌈𝛼𝑛⌉ − 𝑚) + 3𝜅 = 2|𝐴1 | + 𝑤.

If 𝜅 < 0, we additionally pick a set 𝑊 of vertices not covered by triangles from T1,
such that |𝑊 | = 1, |𝑊 ∩ 𝐴| = 1, |𝑊 ∩ 𝐵| = 0 if 𝜅 = −2/3, and |𝑊 | = 2, |𝑊 ∩ 𝐴| =
|𝑊 ∩ 𝐵| = 1 if 𝜅 = −1/3. Then, the sets 𝐴1 = 𝐴 \ (𝑉 (T1) ∪𝑊) and 𝐵1 = 𝐵 \ (𝑉 (T1) ∪𝑊)
partition 𝑉 (𝐺) \ (𝑉 (T1) ∪ 𝑊), and |𝐵1 | = 2|𝐴1 | + 𝑤. Indeed, if 𝜅 = −2/3 we have
|𝐴1 | = |𝐴| − 2|T1 | − 1 = ⌈𝛼𝑛⌉ − 𝑚 − 1 and

|𝐵1 | = |𝐵| − |T1 | = ⌊(1 − 𝛼)𝑛⌋ − 2𝑚 = 2(⌈𝛼𝑛⌉ − 𝑚) + 3𝜅 = 2|𝐴1 |

and if 𝜅 = −1/3 we have |𝐴1 | = |𝐴| − 2|T1 | − 1 = ⌈𝛼𝑛⌉ − 𝑚 − 1 and

|𝐵1 | = |𝐵| − |T1 | − 1 = ⌊(1 − 𝛼)𝑛⌋ − 2𝑚 − 1 = 2(⌈𝛼𝑛⌉ − 𝑚) + 3𝜅 − 1 = 2|𝐴1 | .
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Observe, that in both the first and the second case |𝐵1 | = 2|𝐴1 | + 𝑤 and |𝑊 | ≤ 3𝑚0 − 𝑤.
Moreover, as we remove at most 3𝑚0 − 𝑤 ≤ 4𝛾𝑛 ≤ 𝛼𝑛/20 vertices from each 𝐴 and 𝐵,
the minimum degree between 𝐴1 and 𝐵1 is at least 𝛼𝑛/4 − 𝛼𝑛/20 = 𝛼𝑛/5. The other
conditions on the degrees between 𝐴1 and 𝐵1 are clearly satisfied, because for all but at
most 𝛽𝑛 vertices from each set there are still at most 𝛽𝑛 non-neighbours in the other set.
The bounds |T | ≤ 𝛽𝑛 and |𝐴1 | ≤ ⌈𝛼𝑛⌉ also hold in all cases. □

We want to cover all but 𝑤 vertices in 𝐴1 ∪ 𝐵1 and we start from those vertices in 𝐴1

and 𝐵1 that do not have a high degree to the other part. We will always cover them with
triangles with one vertex in 𝐴1 and two vertices in 𝐵1 to ensure that the relation between
the number of vertices remaining in 𝐴1 and 𝐵1 does not change. Let

𝐴1 = {𝑣 ∈ 𝐴1 : deg(𝑣, 𝐵1) ≤ |𝐵1 | − 9𝛽𝑛}

and
𝐵1 = {𝑣 ∈ 𝐵1 : deg(𝑣, 𝐴1) ≤ |𝐴1 | − 9𝛽𝑛},

and observe that |𝐴1 |, |𝐵1 | ≤ 𝛽𝑛.
We claim that a.a.s. we can greedily pick pairwise vertex-disjoint triangles in (𝐺 ∪

𝐺2) [𝐴1 ∪ 𝐵1] that cover all vertices of 𝐴1, with each triangle having one vertex in 𝐴1 and
two vertices in 𝐵1 \ 𝐵1. Indeed, at each step during the process, an uncovered vertex 𝑣 in
𝐴1 has at least deg(𝑣, 𝐵1) − |𝐵1 | − 2|𝐴1 | ≥ (𝛼/5 − 3𝛽)𝑛 ≥ 𝛽𝑛 uncovered neighbours in
𝐵1 \ 𝐵1 in the graph 𝐺. We then find an edge of 𝐺2 within these neighbours of 𝑣 and build
a triangle. Denote by T2 the collection of these triangles and note that |T2 | ≤ 𝛽𝑛.

Observe that at this point 2|T2 | ≤ 2𝛽𝑛 vertices of 𝐵1 \𝐵1 have already been covered. We
claim that a.a.s. we can greedly pick pairwise vertex-disjoint triangles in (𝐺 ∪ 𝐺2) [(𝐴1 ∪
𝐵1) \ 𝑉 (T2)] that cover all vertices of 𝐵1, where each triangle has one vertex in 𝐴1 \ 𝐴1,
one vertex in 𝐵1 and one vertex in 𝐵1 \ 𝐵1. Indeed, at each step during the process,
an uncovered vertex 𝑣 in 𝐵1 has at least deg(𝑣, 𝐴1) − |𝐴1 | − |𝐵1 | ≥ (𝛼/5 − 2𝛽)𝑛 ≥ 𝛽𝑛

uncovered neighbours in 𝐴1 \ 𝐴1 in the graph 𝐺 and at least

𝛿(𝐺) − 3|T1 | − |𝑊 | − deg(𝑣, 𝐴1) − 2|T2 | − 2|𝐵1 |

≥ (𝛼 − 𝛾)𝑛 − 3𝛽𝑛 − 4𝛾𝑛 − (⌈𝛼𝑛⌉ − 9𝛽𝑛) − 4𝛽𝑛 ≥ 𝛽𝑛

uncovered neighbours in 𝐵1 \𝐵1 in the graph𝐺. We then find an edge of𝐺2 between these
two neighbourhood sets to get a triangle. Denote by T3 the collection of these triangles and
note that |T3 | ≤ 𝛽𝑛.

The sets 𝐴2 = 𝐴1 \𝑉 (T2 ∪T3) and 𝐵2 = 𝐵1 \𝑉 (T2 ∪T3) give a partition of the remaining

95



4 Triangles in randomly perturbed graphs

vertices in 𝑉 (𝐺) \ (𝑉 (T1) ∪𝑉 (T2) ∪𝑉 (T3) ∪𝑊). We have

|𝐴2 | ≥ |𝐴| − 2|T1 | − |T2 | − |T3 | − |𝑊 | ≥ 𝛼𝑛 − 5𝛽𝑛 − 4𝛾𝑛 ≥ 𝛼𝑛/2

and |𝐵2 | = 2|𝐴2 |+𝑤. Moreover, the degree from 𝐴2 to 𝐵2 is at least |𝐵1 |−9𝛽𝑛−2|T2∪T3 | =
|𝐵2 | − 9𝛽𝑛 and the degree from 𝐵2 to 𝐴2 is at least |𝐴1 | − 9𝛽𝑛− |T2 ∪T3 | = |𝐴2 | − 9𝛽𝑛. Let
𝑊 ′ be any subset of 𝐵2 of size 2 and let 𝐵′

2 = 𝐵2 \𝑊 ′. Observe that |𝐵′
2 | = 2|𝐴2 |. Since

2𝐶3
𝛼0

log 𝑛/𝑛 ≥ 𝐶3 log |𝐵′
2 |/|𝐵

′
2 |, a.a.s. 𝐺3 [𝐵′

2] contains a perfect matching 𝑀 .
Let B be the following auxiliary bipartite graph with classes 𝐴2 and 𝐸 (𝑀). There is an

edge between a vertex 𝑣 ∈ 𝐴2 and an edge 𝑢𝑤 ∈ 𝐸 (𝑀) if and only if the vertices 𝑢 and𝑤 are
both neighbours of the vertex 𝑣 in the graph𝐺. Observe that if 𝑣 is connected with 𝑢𝑤 in B,
then {𝑣, 𝑢, 𝑤} induces a triangle in𝐺∪𝐺3. Using Hall’s condition, the graphB has a perfect
matching. Indeed, the degree of each 𝑣 ∈ 𝐴2 in B is at least |𝐸 (𝑀) | − 18𝛽𝑛 ≥ |𝐸 (𝑀) |/2,
and the degree of each 𝑢𝑤 ∈ 𝐸 (𝑀) in B is at least |𝐴2 | − 18𝛽𝑛 ≥ |𝐴2 |/2. Therefore there
exists a perfect matching in B, which gives a triangle factor T4 in (𝐺 ∪ 𝐺3) [𝑉 ′], where
𝑉 ′ = 𝑉 (𝐺) \ (𝑉 (T1) ∪𝑉 (T2) ∪𝑉 (T3) ∪𝑊 ∪𝑊 ′).

Then T1 ∪ T2 ∪ T3 ∪ T4 contains at least

(𝑛 − |𝑊 | − |𝑊 ′ |)/3 ≥ 𝑛/3 − 𝑚0 ≥ min{𝛿(𝐺), ⌊𝛼𝑛⌋}

pairwise vertex-disjoint triangles covering 𝑉 (𝐺) \ (𝑊 ∪𝑊 ′).

We point out that under certain conditions our proof of Theorem 1.1.121.1.12 gives more
triangles. When 𝛼 < 1/3 and |𝐴| ≥ 𝛼𝑛, as |𝑊 | ≤ 3𝑚0 − 𝑤, we get ⌈𝛼𝑛⌉ pairwise vertex-
disjoint triangles in 𝐺 ∪ 𝐺 (𝑛, 𝑝), even when 𝛿(𝐺) < 𝛼𝑛. Similarly, when 𝛼 = 1/3 and
|𝐴| ≥ 𝑛/3, as |𝑊 | ≤ 2, we get ⌊𝑛/3⌋ pairwise vertex-disjoint triangles in 𝐺 ∪ 𝐺 (𝑛, 𝑝),
even when 𝛿(𝐺) < 𝑛/3.

4.3 Proof of the stability Theorem 1.1.111.1.11

Proof of Theorem 1.1.111.1.11. We start by defining necessary constants. Given 0 < 𝛽 < 1/12,
let 𝑑 > 0 be obtained from Lemma 4.1.14.1.1, and set 𝛾 = 𝑑/2 and 𝑡0 = 11/𝑑. Next, we
take any 0 < 𝛿′ < 160−2𝑑2 and use Lemma 4.1.24.1.2 on input 𝑑/2 and 𝛿′ to obtain 𝛿0, 𝛿, 𝜀

′

with 𝛿′ ≥ 𝛿0 > 𝛿 > 𝜀′ > 0 and 𝐶1. Additionally we assume that 𝐶1 is large enough and
𝜀′ is small enough for Lemma 4.1.34.1.3 to hold with input 𝑑/2. Finally, let 𝐶2 be given by
Lemma 2.5.52.5.5 on input 𝑑/2. We let 0 < 𝜀 ≤ 𝜀′/2. In summary, the dependencies between
our constants are as follows:

𝜀 ≪ 𝜀′ < 𝛿 < 𝛿0 ≤ 𝛿′ ≪ 𝑑 ≪ 𝛽 <
1
12

and
1
𝑡0
, 𝛾 ≪ 𝑑.
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We apply Lemma 2.1.42.1.4 with 𝜀 and 𝑡0 to obtain 𝑇 . We take 𝐶 large enough such that,
for 𝑝 ≥ 𝐶/𝑛, the random graph 𝐺 (𝑛, 𝑝) contains the union 𝐺1 ∪ 𝐺2 ∪ 𝐺3, where 𝐺1 ∼
𝐺 (𝑛, 2𝐶1𝑇/𝑛), 𝐺2 ∼ 𝐺 (𝑛, 4𝐶2𝑇/(𝑑𝑛)), and 𝐺3 ∼ 𝐺 (𝑛, 96𝑇2/(𝑑2𝑛)).

Now, for any 𝛼 with 4𝛽 ≤ 𝛼 ≤ 1/3, let 𝐺 be an 𝑛-vertex graph on the vertex set 𝑉 with
minimum degree 𝛿(𝐺) ≥ (𝛼 − 𝛾)𝑛 that is not (𝛼, 𝛽)-stable. With the regularity lemma
(Lemma 2.1.42.1.4) applied to 𝐺, we get 𝐺 ′, 𝑡0 < 𝑡 + 1 ≤ 𝑇 and a partition 𝑉0, . . . , 𝑉𝑡 of
𝑉 (𝐺) such that (P1)(P1) – (P4)(P4) hold. Define 𝑛0 = |𝑉1 | = |𝑉2 | = · · · = |𝑉𝑡 | and observe that
(1 − 𝜀)𝑛/𝑡 ≤ 𝑛0 ≤ 𝑛/𝑡. We denote by 𝑅 the (𝜀, 𝑑)-reduced graph for 𝐺, that is, the graph
on the vertex set [𝑡] with edges 𝑖 𝑗 corresponding to 𝜀-regular pairs (𝑉𝑖 , 𝑉 𝑗) of density
at least 𝑑 in 𝐺 ′. We observe that the minimum degree of 𝑅 satisfies 𝛿(𝑅) ≥ (𝛼 − 2𝑑)𝑡
because, otherwise, there would be vertices with degree at most (𝛼 − 2𝑑)𝑡 (𝑛/𝑡) + 𝜀𝑛 <
(𝛼 − 𝛾)𝑛 − (𝑑 + 𝜀)𝑛 in 𝐺 ′, contradicting (P2)(P2).

The purpose of 𝐺1 will become clear later, but we describe some useful properties of
𝐺2 and 𝐺3 now. Let 𝑈 and 𝑊 be any two clusters that give an edge in 𝑅, 𝑉 any cluster,
and 𝑈 ′ ⊆ 𝑈, 𝑊 ′ ⊆ 𝑊 , 𝑉 ′ ⊆ 𝑉 three pairwise disjoint subsets each of size 𝑑𝑛0/2. Then,
with 𝐺2 and as 4𝐶2𝑇/(𝑑𝑛) ≥ 2𝐶2/(𝑑𝑛0), by Lemma 2.5.52.5.5 we have that with probability
at least 1 − 2−4(𝑑𝑛0/2)/(𝑑/2) = 1 − 2−4𝑛0

there is a triangle in 𝐺 ∪ 𝐺2 with one vertex in each set𝑈 ′,𝑊 ′, 𝑉 ′. (4.3.1)

With a union bound over the at most 𝑡323𝑛0 choices for𝑈,𝑊 ,𝑉 and𝑈 ′,𝑊 ′,𝑉 ′, we conclude
that a.a.s. (4.3.14.3.1) holds for all choices as above.

With 𝐺3 we a.a.s. have that

any set 𝐴 of size at least 𝑑𝑛0/2 contains an edge of 𝐺3. (4.3.2)

In fact, given any set 𝐴 of size at least 𝑑𝑛0/2, the expected number of edges of 𝐺3 in 𝐴 is(
|𝐴|
2

)
· 96𝑇2

𝑑2𝑛
≥ 1

3
·
𝑑2𝑛2

0
4

· 96𝑇2

𝑑2𝑛
= 8𝑇2 𝑛

2
0
𝑛

≥ 2𝑛 ,

where we used that 𝑛/𝑛0 ≤ 𝑡/(1 − 𝜀) ≤ 2𝑇 . Therefore the probability that the set 𝐴 does
not contain an edge of 𝐺3 is at most (1 − 96𝑇2

𝑑2𝑛
) (

|𝐴|
2 ) ≤ exp

(
−
( |𝐴|

2
)
· 96𝑇2

𝑑2𝑛

)
≤ exp(−2𝑛)

and (4.3.24.3.2) follows from a union bound over the at most 2𝑛 choices for 𝐴.
Now let 𝑀1 be a largest matching in 𝑅. Since𝐺 is not (𝛼, 𝛽)-stable, using Lemma 4.1.14.1.1,

we conclude that |𝑀1 | ≥ (𝛼 + 2𝑑)𝑡. At this point, for the sake of clarity, we split our proof
into two cases – 0 < 𝛼 < 1/3 − 𝑑/3 and 1/3 − 𝑑/3 ≤ 𝛼 ≤ 1/3 – although some steps will
be the same. The first case is indeed much easier, as we do not need to cover all the graph
with triangles, while in the second case we are looking for a spanning structure and we
want to find ⌊𝑛/3⌋ pairwise vertex-disjoint triangles.
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4 Triangles in randomly perturbed graphs

Case 0 < 𝛼 < 1/3 − 𝑑/3. As 𝑀1 is a largest matching in 𝑅, the set 𝑉 (𝑅) \ 𝑉 (𝑀1) is
independent and only one endpoint of each edge of 𝑀1 can be adjacent to more than one
vertex from 𝑉 (𝑅) \ 𝑉 (𝑀1). Therefore, we can greedily pick a second matching 𝑀2 such
that each edge of 𝑀2 contains a vertex of 𝑉 (𝑅) \ 𝑉 (𝑀1) and a vertex of 𝑉 (𝑀1), and 𝑀2

covers at least min{|𝑉 (𝑅) \𝑉 (𝑀1) |, 𝛿(𝑅)} vertices of 𝑉 (𝑅) \𝑉 (𝑀1). The two matchings
𝑀1 and 𝑀2 together cover a subset 𝑉 (𝑀1 ∪ 𝑀2) ⊂ 𝑉 (𝑅) of

2|𝑀1 | + min{|𝑉 (𝑅) \𝑉 (𝑀1) |, 𝛿(𝑅)} ≥ min{𝑡, (3𝛼 + 2𝑑)𝑡} ≥ (3𝛼 + 𝑑)𝑡

vertices, and we can extract a collection of |𝑀2 | vertex-disjoint cherries and a disjoint
matching that cover such vertices. This gives a subgraph 𝑅′ ⊆ 𝑅 consisting of cherries
and a matching such that for all edges 𝑖 𝑗 ∈ 𝐸 (𝑅′) the pair (𝑉𝑖 , 𝑉 𝑗) is 𝜀-regular of density
at least 𝑑 in 𝐺 ′, and therefore in 𝐺 as well. We denote by J ⊂ [𝑡] the indices of the
clusters 𝑉𝑖 of the cherries and the matching edges in 𝑅′ and we observe from above that
|J | ≥ (3𝛼 + 𝑑)𝑡. We add to 𝑉0 all the vertices of 𝐺 that are in the clusters 𝑉 𝑗 for 𝑗 ∉ J .

Then we make all pairs associated with the edges of 𝑅′ super-regular. Given a pair
(𝐴, 𝐵), by Lemma 2.1.12.1.1, all but at most 𝜀𝑛0 vertices of 𝐴 (resp. 𝐵) have degree at least
(𝑑 − 𝜀)𝑛0 to 𝐵 (resp. 𝐴). For every such pair we remove these vertices from 𝐴 and 𝐵, and
remove additional vertices to ensure all clusters have the same size. As 𝑅′ only contains
vertex-disjoint cherries and a disjoint matching, we can achieve that by removing a total of
at most 2𝜀𝑛0 vertices from each cluster. We add all the removed vertices to 𝑉0. Observe
that afterwards all the pairs (𝐴, 𝐵) associated with the edges of 𝑅′ are (2𝜀, 𝑑 − 3𝜀)-super-
regular, because every vertex 𝑎 ∈ 𝐴 has degree at least (𝑑 − 𝜀)𝑛0 − 2𝜀𝑛0 ≥ (𝑑 − 3𝜀) |𝐵|
into 𝐵, and every vertex 𝑏 ∈ 𝐵 has degree at least (𝑑 − 3𝜀) |𝐴| into 𝐴.

Recall that for a later application of Lemma 4.1.24.1.2 we need that for each cherry the
sizes of the leaf-clusters are smaller than the size of the centre-cluster. Thus for each
cherry 𝑖 𝑗 𝑘 of 𝑅′, with 𝑗 being the centre, we additionally remove 𝛿 |𝑉 𝑗 | ≤ 𝛿𝑛0 vertices
from the leaves 𝑉𝑖 and 𝑉𝑘 , and add them to 𝑉0. We have |𝑉𝑖 | = |𝑉𝑘 | = (1 − 𝛿) |𝑉 𝑗 | that
implies |𝑉𝑖 | = |𝑉𝑘 | ≥ (1 − 𝛿0) |𝑉 𝑗 |, as 𝛿0 > 𝛿. We have that all edges of 𝑅′ still give
(2𝜀, 𝑑 − 3𝜀 − 𝛿)-super-regular pairs. Moreover������⋃𝑗∈J𝑉 𝑗

������ ≥ (1 − 2𝜀 − 𝛿)𝑛0 |J | ≥ (1 − 𝜀) (1 − 2𝜀 − 𝛿) (3𝛼 + 𝑑)𝑛 ≥ 3𝛼𝑛 .

We can assume (by moving only a few additional vertices to𝑉0 that do not harm the bounds
above) that for all cherries and matching edges in 𝑅′ the number of vertices in the clusters
together is divisible by three.

For each such super-regular cherry 𝑖 𝑗 𝑘 of 𝑅′, after revealing 𝐺1 [𝑉𝑖 ∪ 𝑉 𝑗 ∪ 𝑉𝑘] we find
by Lemma 4.1.24.1.2 a.a.s. a triangle factor covering all the vertices in 𝑉𝑖 ∪ 𝑉 𝑗 ∪ 𝑉𝑘 . Similarly
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for any matching edge 𝑖 𝑗 of 𝑅′, after revealing 𝐺1 [𝑉𝑖 ∪ 𝑉 𝑗] we find by Lemma 4.1.34.1.3
a.a.s. a triangle factor covering all the vertices in𝑉𝑖 ∪𝑉 𝑗 . Note that we apply Lemma 4.1.24.1.2
and Lemma 4.1.34.1.3 only constantly many times and thus a.a.s. we get a triangle factor in
all such applications. Let T be the union of all such triangle factors. Then T covers��⋃

𝑗∈J 𝑉 𝑗
�� ≥ 3𝛼𝑛 vertices and gives at least 𝛼𝑛 = min{𝛼𝑛, ⌊𝑛/3⌋} pairwise vertex-disjoint

triangles in 𝐺 ∪ 𝐺 (𝑛, 𝑝).
Case 1/3− 𝑑/3 ≤ 𝛼 ≤ 1/3. As discussed in the overview, here we cannot directly apply

Lemma 4.1.24.1.2 and Lemma 4.1.34.1.3 as in the case 0 < 𝛼 < 1/3 − 𝑑/3, but we need additional
steps. However even with a lower minimum degree, we will cover all vertices of 𝐺 and
find ⌊𝑛/3⌋ pairwise vertex-disjoint triangles. Recall that 𝑀1 is a largest matching and that
|𝑀1 | ≥ (𝛼 + 2𝑑)𝑡. Then the set 𝑉 (𝑅) \𝑉 (𝑀1) is independent, has size

|𝑉 (𝑅) \𝑉 (𝑀1) | = 𝑡 − 2|𝑀1 | ≤ (1 − 2𝛼 − 4𝑑)𝑡 ≤ (𝛼 − 3𝑑)𝑡

and only one endpoint of each edge of 𝑀1 can be adjacent to more than one vertex from
𝑉 (𝑅) \ 𝑉 (𝑀1). Given that 𝛿(𝑅) ≥ (𝛼 − 2𝑑)𝑡, we can greedily pick a second matching
𝑀2 such that each edge of 𝑀2 contains a vertex of 𝑉 (𝑅) \ 𝑉 (𝑀1) and a vertex of 𝑉 (𝑀1),
and 𝑀2 covers the remaining vertices 𝑉 (𝑅) \ 𝑉 (𝑀1) completely. Therefore, the two
matchings 𝑀1 and 𝑀2 together cover the vertex set 𝑉 (𝑅) and we can extract a collection
of ℓ = |𝑀2 | ≤ (𝛼 − 3𝑑)𝑡 vertex-disjoint cherries and a disjoint matching that cover 𝑉 (𝑅).

This gives a spanning subgraph 𝑅′ ⊆ 𝑅 on vertex set [𝑡] containing ℓ ≤ (𝛼 − 3𝑑)𝑡
cherries and a matching of size (𝑡 − 3ℓ)/2 ≥ (1 − 3𝛼 + 9𝑑)𝑡/2 ≥ 9𝑑𝑡/2 such that for all
edges 𝑖 𝑗 ∈ 𝐸 (𝑅′) the pair (𝑉𝑖 , 𝑉 𝑗) is 𝜀-regular of density at least 𝑑 in 𝐺 ′, and therefore
in 𝐺 as well. We denote by I ⊆ [𝑡] the indices of the clusters 𝑉𝑖 that are not the centre
of a cherry in 𝑅′. As above, with Lemma 2.1.12.1.1, we can make the pairs associated with
the edges of 𝑅′ (2𝜀, 𝑑 − 3𝜀)-super-regular, while keeping the clusters all of the same size.
For this we have to remove at most 𝑡2𝜀𝑛0 ≤ 𝑡2𝜀𝑛/𝑡 = 2𝜀𝑛 vertices, which we add to 𝑉0.
Next, as for a later application of Lemma 4.1.24.1.2 we need that for each cherry the sizes of
the leaf-clusters are smaller than the size of the centre-cluster, we remove for each 𝑖 ∈ I
additionally 𝛿 |𝑉𝑖 | ≤ 𝛿𝑛0 ≤ 𝛿𝑛/𝑡 vertices from 𝑉𝑖 and add them to 𝑉0. Note that we remove
vertices from the clusters of matching edges as well, although this is not necessary. We
then get |𝑉0 | ≤ 𝜀𝑛 + 2𝜀𝑛 + 𝑡𝛿𝑛/𝑡 ≤ 2𝛿𝑛. We can assume (by moving only a few additional
vertices to 𝑉0 that do not harm the bounds above) that for all cherries and matching edges
in 𝑅′ the number of vertices in the clusters together is divisible by three. By removing 𝑛
(mod 3) ∈ {0, 1, 2} vertices from 𝑉0 we also have |𝑉0 | ≡ 0 (mod 3); note that this only
happens when 𝑛 is not divisible by 3 and we can discard these vertices.

Covering 𝑉0 with triangles. We now want to cover the exceptional vertices in 𝑉0 by
triangles. It would be easy to do this greedily by just using (4.3.24.3.2), but it might happen that
afterwards in many of the cherries the number of vertices is not divisible by three or that
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4 Triangles in randomly perturbed graphs

the centre cluster gets too small. To avoid both these issues, we will cover 𝑉0 while using
the same number of vertices from clusters that are together in a cherry or matching edge.
For this we will always cover three vertices at a time and combine (4.3.14.3.1) with (4.3.24.3.2) to
find additional triangles. Observe that |𝑉0 ∪

⋃
𝑖∉I 𝑉𝑖 | ≤ 2𝛿𝑛 + ℓ𝑛/𝑡 ≤ (𝛼 − 𝛾)𝑛 − 2𝑑𝑛 and,

therefore, any 𝑣 ∈ 𝑉0 has at least 2𝑑𝑛 neighbours in
⋃
𝑖∈I 𝑉𝑖 .

Assume we have already covered 𝑉 ′ ⊆ 𝑉0 vertices of 𝑉0 using at most 5|𝑉 ′ | triangles in
total. Let𝑊 ′ be the set of vertices from

⋃
𝑖∈I 𝑉𝑖 used for the triangles covering𝑉 ′ and note

that |𝑊 ′ | ≤ 30𝛿𝑛. Then let I ′ ⊆ I be the set of indices of clusters 𝑉𝑖 with 𝑖 ∈ I which
intersect𝑊 ′ in at least

√
𝛿𝑛0 vertices and note that |I ′ | ≤ |𝑊 ′ |/(

√
𝛿𝑛0) ≤ 30

√
𝛿𝑡/(1−𝜀) ≤

40
√
𝛿𝑡 ≤ 𝑑𝑡/4. Moreover, notice that as for each 𝑣 ∈ 𝑉0 we have deg𝐺 (𝑣,

⋃
𝑖∈I 𝑉𝑖) ≥ 2𝑑𝑛,

there are at least 𝑑𝑡 indices 𝑖 ∈ I such that 𝑣 has at least 𝑑𝑛0 neighbours in 𝑉𝑖 . In
particular, as |I ′ | ≤ 𝑑𝑡/4 and 𝑡 ≥ 10/𝑑, there are at least 𝑑𝑡 − |I ′ | ≥ 3𝑑𝑡/4 ≥ 7 indices
𝑖 ∈ I \I ′ such that 𝑣 has at least 𝑑𝑛0 neighbours in𝑉𝑖 . Therefore we can pick three vertices
𝑣1, 𝑣2, 𝑣3 ∈ 𝑉0 \ 𝑉 ′ and three indices 𝑖1, 𝑖2, 𝑖3 in I \ I ′ such that 𝑣 𝑗 has 𝑑𝑛0 neighbours
in 𝑉𝑖 𝑗 for 𝑗 = 1, 2, 3 and the clusters 𝑉𝑖1 , 𝑉𝑖2 , 𝑉𝑖3 belong to pairwise different cherries or
matching edges. For 𝑗 = 1, 2, 3 with (4.3.24.3.2) we find an edge 𝑒 𝑗 in 𝐺3 [𝑁 (𝑣 𝑗 , 𝑉𝑖 𝑗 ) \𝑊 ′]
and we cover the three vertices with triangles. It is easy to show that we can find at most
10 additional triangles with the help of (4.3.14.3.1) and (4.3.24.3.2), in such a way that, overall, for
each cherry and matching edge, we use the same number of vertices from each of their
clusters; in particular, the number of vertices used from each cherry and matching edge
is divisible by three. The clusters 𝑉𝑖1 , 𝑉𝑖2 , 𝑉𝑖3 can belong to three cherries, two cherries
and one matching edge, one cherry and two matching edges, or three matching edges. We
give details in the case where they are all leaves of (different) cherries, and we refer to
Figure 4.14.1 for the other three cases. With (4.3.14.3.1) we find four triangles: two with a vertex
in each of the other cluster of the cherry containing 𝑉𝑖1 and the third vertex in one of the
other clusters of the cherry containing 𝑉𝑖2 , and other two triangles with one vertex in each
of the other cluster of the cherry containing𝑉𝑖3 and the third vertex in the remaining cluster
of the cherry containing 𝑉𝑖2 . When a 𝑉𝑖 𝑗 belongs to a matching edge of 𝑅′, we first find
with (4.3.24.3.2) two triangles inside this matching edge each with one vertex in the cluster 𝑉𝑖 𝑗
and the other two vertices in the other cluster of the matching edge, then we proceed as
before (see Figure 4.14.1). Note that we cover three vertices of 𝑉0 using at most 13 triangles,
and thus to cover 𝑉 ′ ⊆ 𝑉0 we use at most 13|𝑉 ′ |/3 ≤ 5|𝑉 ′ |, as claimed above. Therefore
we can repeat this procedure until 𝑉 ′ = 𝑉0.

Let T1 be the set of triangles we found above to cover 𝑉0 and keep the divisibility
condition. We now update the regularity partition by deleting 𝑉 (T1) from each 𝑉𝑖 for
𝑖 ∈ [𝑡] and note that for all cherries and matchings from 𝑅′ the number of vertices in
the clusters together is divisible by three. We recall that so far we removed at most
(2𝜀 + 𝛿 + 2

√
𝛿)𝑛0 vertices from each cluster, where the first (resp. second, third) term

bounds the number of vertices removed for making each pair super-regular (resp. for a
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Figure 4.1: Embeddings of triangles for absorbing𝑉0 while using the same number of vertices from each cluster
within a cherry or a matching edge. Each red triangle covers a vertex of 𝑉0. Each blue triangle
stands for two triangles with end-points in the same clusters; we only draw one for simplicity.

later application of Lemma 4.1.24.1.2, for covering 𝑉0).
Balancing the partition. Now the matching edges in 𝑅′ are already ready for an

application of Lemma 4.1.34.1.3 and we will not modify the corresponding clusters anymore.
However, before an application of Lemma 4.1.24.1.2 to the cherries in 𝑅′, we need to ensure
that the ratio between their size and the size of the centre-cluster satisfies the hypotheses
of the lemma. This is what we are going to do now. For 𝑖 ∉ I we denote by 𝑊𝑖 and 𝑈𝑖
the leaf-clusters of the cherry centred at 𝑉𝑖 . Before covering the vertices of 𝑉0, we had
|𝑊𝑖 | = |𝑈𝑖 | ≤ (1 − 𝛿) |𝑉𝑖 | for 𝑖 ∉ I, which still holds as we removed the same number of
vertices from each cluster of a cherry.

However we still need to guarantee the other inequality |𝑊𝑖 |, |𝑈𝑖 | ≥ (1 − 𝛿0) |𝑉𝑖 |. For
that, we find 2𝑚 triangles with two vertices in 𝑉𝑖 , of which one half has the third vertex in
𝑈𝑖 and the other half in𝑊𝑖 , where 𝑚 is the smallest integer such that

|𝑈𝑖 | − 𝑚 ≥ (1 − 𝛿0) ( |𝑉𝑖 | − 4𝑚). (4.3.3)

Then after removing these 2𝑚 triangles, we will have precisely (1 − 𝛿0) |𝑉𝑖 | ≤ |𝑈𝑖 | = |𝑊𝑖 |.
Observe that the inequality (4.3.34.3.3) implies that 𝑚 ≥ (1−𝛿0) |𝑉𝑖 |− |𝑈𝑖 |

4(1−𝛿0)−1 and, as we chose the
smallest such 𝑚, we get 𝑚 ≤ ⌈ (1−𝛿0) |𝑉𝑖 |− |𝑈𝑖 |

4(1−𝛿0)−1 ⌉. Moreover as 𝛿 < 𝛿0, |𝑉𝑖 | ≤ 𝑛0 and

|𝑈𝑖 | ≥ (1 − 2𝜀 − 𝛿 − 2
√
𝛿)𝑛0, we have (1−𝛿0) |𝑉𝑖 |− |𝑈𝑖 |

4(1−𝛿0)−1 <
(1−𝛿0)−(1−2𝜀−𝛿−2

√
𝛿)

2 𝑛0 < 2
√
𝛿𝑛0.

Therefore, for 𝑛 (and thus 𝑛0) large enough, 𝑚 ≤ 2
√
𝛿𝑛0. We can find these at most

4
√
𝛿𝑛0 triangles, by iteratively picking them with (4.3.24.3.2) and removing the corresponding

vertices from 𝑈𝑖 , 𝑊𝑖 , and 𝑉𝑖 . Indeed, for any 𝑣 ∈ 𝑊𝑖 ∪𝑈𝑖 we have degree into 𝑉𝑖 at least
(𝑑 − 3𝜀 − 𝛿 − 10

√
𝛿)𝑛0 ≥ 𝑑𝑛0/2, as we started from (2𝜀, 𝑑 − 3𝜀)-super-regular pairs and

𝛿 < 𝛿′ < 160−2𝑑2.
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Note that afterwards we still have |𝑈𝑖 | ≤ (1 − 𝛿) |𝑉𝑖 | as for large enough 𝑛 and with
𝛿 < 𝛿0 we have 𝑚 ≤ ⌈ (1−𝛿0) |𝑉𝑖 |− |𝑈𝑖 |

4(1−𝛿0)−1 ⌉ ≤ (1−𝛿) |𝑉𝑖 |− |𝑈𝑖 |
4(1−𝛿)−1 . Therefore, we have (1 − 𝛿0) |𝑉𝑖 | ≤

|𝑈𝑖 | = |𝑊𝑖 | ≤ (1− 𝛿) |𝑉𝑖 |. Moreover with 𝑑−3𝜀− 𝛿−10
√
𝛿 ≥ 𝑑/2 and 2𝜀 ≤ 𝜀′, we get that

the pairs (𝑈𝑖 , 𝑉𝑖) and (𝑊𝑖 , 𝑉𝑖) are (𝜀′, 𝑑/2)-super-regular. Let T2 be the set of triangles we
removed during this phase.

Completing the triangles. Now for any 𝑖 ∉ I, after revealing 𝐺1 [𝑉𝑖 ∪𝑊𝑖 ∪ 𝑈𝑖], we
a.a.s. find a triangle factor covering the vertices of𝑈𝑖 ,𝑊𝑖 , and𝑉𝑖 by Lemma 4.1.24.1.2. Similarly
for any matching edge 𝑖 𝑗 of 𝑅′ observe that (𝑉𝑖 , 𝑉 𝑗) is a (𝜀′, 𝑑/2)-super-regular pair. Then
after revealing 𝐺1 [𝑉𝑖 ∪ 𝑉 𝑗], we a.a.s. find a triangle factor covering the vertices of 𝑉𝑖 and
𝑉 𝑗 by Lemma 4.1.34.1.3. Note that we apply Lemma 4.1.24.1.2 and Lemma 4.1.34.1.3 only constantly
many times and thus a.a.s. we get a triangle factor in all such applications. Let T3 be the
union of the triangle factors we obtain for each 𝑖 ∉ I and each matching edge 𝑖 𝑗 from 𝑅′.
Then T1 ∪ T2 ∪ T3 gives ⌊𝑛/3⌋ pairwise vertex-disjoint triangles in 𝐺 ∪ 𝐺 (𝑛, 𝑝).
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5
Transversals in hypergraph collection

In this chapter, we discuss our general sufficient condition for a family of hypergraphs to
be 𝑑-colour-blind. We start by explaining the relevant terminology in Section 5.15.1, then we
state our result in Section 5.25.2. We overview its proof in Section 5.35.3 and we give a full proof
in Section 5.45.4. Finally we prove the applications listed in Theorem 1.2.51.2.5 in Section 5.55.5.

5.1 Setting and terminology

This section introduces the relevant terminology. An ordered hypergraph is a hypergraph
equipped with a linear order of its vertex set. For convenience, we often index the vertices
of an ordered 𝑛-vertex hypergraph with {1, 2, . . . , 𝑛} so that 𝑣𝑖 < 𝑣 𝑗 if and only if 𝑖 < 𝑗 . A
subgraph of an ordered hypergraph inherits an ordering from the parent hypergraph in the
obvious way. Whenever we state that two ordered hypergraphs are isomorphic, we mean
that they are isomorphic as ordered hypergraphs.

Definition 5.1.1 (ℓ-link). Let 𝑘, ℓ, 𝑚 ∈ N with ℓ ≤ 𝑚. Let A = (𝑉, 𝐸) be an ordered
𝑘-uniform hypergraph on 𝑚 vertices. We call A an ℓ-link of uniformity 𝑘 if A𝑠 and A𝑡

are isomorphic, where A𝑠 = A[{𝑣1, · · · , 𝑣ℓ}], and A𝑡 = A[{𝑣𝑚−ℓ+1, · · · , 𝑣𝑚}]. We refer
to 𝑚 as the order of A and we call the ordered hypergraphs A𝑠 and A𝑡 the start and the
end of A, respectively.

Definition 5.1.2 (A-chain). Let 𝑘, ℓ, 𝑚 ∈ N with ℓ ≤ 𝑚, and A be an ℓ-link of uniformity
𝑘 and order 𝑚. We say that an ordered hypergraph P is an A-chain if the following
properties hold.

(i) 𝑣(P) = 𝑛 = (𝑚 − ℓ)𝑡 + ℓ for some 𝑡 ∈ N.

(ii) Set 𝑆1 = {1, . . . , 𝑚} and for 1 < 𝑞 ≤ 𝑡 define 𝑆𝑞 ⊆ [𝑛] recursively as follows. For
1 < 𝑞 ≤ 𝑡, if 𝑆𝑞−1 = {𝑠, . . . , 𝑠 +𝑚 − 1}, define 𝑆𝑞 = {𝑠 +𝑚 − ℓ, . . . , 𝑠 + 2𝑚 − ℓ − 1}.
Then, for each 1 ≤ 𝑞 ≤ 𝑡, the hypergraph P𝑞 = P[{𝑣𝑖 : 𝑖 ∈ 𝑆𝑞}] is isomorphic to A.

(iii) Each edge of P is contained in P𝑞 for some 𝑞 ∈ [𝑡].



5 Transversals in hypergraph collection

We refer to 𝑡 as the length of the A-chain and we call P1 and P𝑡 the first and the last links
of P, respectively. Moreover, we call the start of P1 and the end of P𝑡 the start and the end
of P, respectively, and refer to them collectively as the ends of P.

Definition 5.1.3 (A-cycle). Let P be an A-chain. Let S and T be the start and the end
of P, respectively. Let 𝜙 be the isomorphism between the ordered hypergraphs S and T ,
and identify 𝑥 ∈ S with 𝜙(𝑥) ∈ T for each 𝑥 ∈ S. We call the resulting (unordered)
hypergraph an A-cycle.

We remark that with A being an ℓ-link of order 𝑚, if P is an A-chain and C is an
A-cycle, then the following holds: 𝑣(C) ∈ (𝑚 − ℓ)N and 𝑒(C) = 𝑒 (A)−𝑒 (A𝑠)

𝑚−ℓ 𝑣(C), while
𝑣(P) ∈ (𝑚−ℓ)N+ℓ and 𝑒(P) = 𝑒 (A)−𝑒 (A𝑠)

𝑚−ℓ 𝑣(P)−𝑂 (1), where𝑂 (1) stands for a constant
which only depends on A.

Observe that for each 1 ≤ ℓ ≤ 𝑘 , a single 𝑘-uniform edge induces an ℓ-link of uniformity
𝑘 and order 𝑘 , and its chain (resp. cycle) corresponds to a 𝑘-uniform ℓ-path (resp. cycle).
Figure 5.15.1 shows the case 𝑘 = 5 and ℓ = 2. Similarly, the compete graph on 𝑟 vertices
induces a (𝑟 − 1)-link of uniformity 2 and order 𝑟, and its chain (resp. cycle) corresponds
to the (𝑟 − 1)-th power of a path (resp. cycle). Figure 5.25.2 illustrates the case 𝑟 = 3. Finally,
Figure 5.35.3 shows that a pillar can also be obtained as an A-chain.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

Figure 5.1: A 5-uniform 2-path is an A-chain, with A being (any ordering of) a single 5-uniform edge. The
numbering of the vertices in an edge denotes the (ordered) isomorphism between that edge and A.
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Figure 5.2: The square of a path is an A-chain, with A being (any ordering of) a triangle.
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Figure 5.3: A pillar is an A-chain, with A being the above ordering of a cycle on 4 vertices.

We now state the properties we require from the link A for our main theorem to hold.
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5 Transversals in hypergraph collection

Definition 5.1.4. Let 𝑘, ℓ, 𝑚 ∈ N with ℓ ≤ 𝑚, A be an ℓ-link of order 𝑚 and uniformity 𝑘 ,
and 𝑑 ∈ [𝑘 − 1]. We say that A is (𝛿, 𝑑)-good if the following three properties hold.

Ab. For any 𝛼 > 0, there exist 0 < 𝜏, 𝜂 ≤ 𝛼 and 𝑛0 ∈ N so that if H is a 𝑘-uniform
hypergraph on 𝑛 ≥ 𝑛0 vertices with 𝛿𝑑 (H) ≥ (𝛿 + 𝛼)𝑛𝑘−𝑑 , then there exists 𝐴 ⊆
𝑉 (H) of size at most 𝜏𝑛 with the following property.

For any 𝐿 ⊆ 𝑉 (H) \ 𝐴 of size at most 𝜂𝑛 with |𝐿 | ∈ (𝑚 − ℓ)N, there exists an
embedding of an A-chain to H with vertex set 𝐴 ∪ 𝐿. Furthermore, the embedding
of the start and the end of the A-chain does not depend on the subset 𝐿.

Con. For any 𝛼 > 0, there exist a positive integer 𝑐 and 𝑛0 ∈ N so that if H is a 𝑘-uniform
hypergraph H on 𝑛 ≥ 𝑛0 vertices with 𝛿𝑑 (H) ≥ (𝛿 + 𝛼)𝑛𝑘−𝑑 , the following holds.

Let S and T be vertex-disjoint copies of A𝑠 in H . Then, H contains an embedding
of an A-chain of length at most 𝑐 with start S and end T .

Fac. For any 𝛼 > 0, there exist 𝛽0 > 0 and 𝑛0 ∈ N so that the following holds for any
𝑛 ≥ 𝑛0 and 𝛽 ≤ 𝛽0.

Let H be a hypergraph collection on vertex set [𝑛] with |H| ≤ 𝛽𝑛 and 𝛿𝑑 (H) ≥
(𝛿 + 𝛼)𝑛𝑘−𝑑 . Moreover, suppose 𝑒(A) divides |H|. Then H contains a transversal
which consists of |H|/𝑒(A) vertex-disjoint copies of A.

We remark that the property Fac easily holds when A consists of a single edge, as stated
in the following observation.

Observation 5.1.5. Let 𝑘 ∈ N, 𝑑 ∈ [𝑘 − 1] and A be a 𝑘-uniform edge. Then, for any
𝛿 > 0, property Fac holds for A (with respect to minimum 𝑑-degree).

Proof of Observation 5.1.55.1.5. Let 𝛿, 𝛼 > 0, set 𝛽0 = 𝛼/(2𝑘), and let 𝛽 ≤ 𝛽0. Let H be a
hypergraph collection on [𝑛] with 𝛿𝑑 (H) ≥ (𝛿 + 𝛼)𝑛𝑘−𝑑 and |H| ≤ 𝛽𝑛. Suppose that we
have found 𝑠 < |H| vertex-disjoint copies of A on [𝑛] together with a rainbow colouring
(using 𝑠 colours), and let 𝑆 be the vertex set spanned by those copies. Observe that
|𝑆 | = 𝑠𝑘 ≤ 𝛼𝑛/2. Let 𝐻 be a hypergraph in H not yet used, then by Observation 2.6.12.6.1,
𝐻 [𝑉 \ 𝑆] still contains an edge and thus a copy of A. Hence we can extend the collection
of copies of A in a rainbow fashion. This proves the observation.

5.2 Main theorem

We have now introduced all the necessary terminology to state our main theorem. Recall
that, following Definition 1.2.21.2.2, the uncoloured minimum 𝑑-degree threshold for a Hamilton
A-cycle, with A being a link of uniformity 𝑘 , is the smallest real number 𝛿 = 𝛿(A, 𝑑) with
the following property. For any 𝛼 > 0, there exists 𝑛0 ∈ N so that for any 𝑛 ∈ (𝑚 − ℓ)N
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5 Transversals in hypergraph collection

with 𝑛 ≥ 𝑛0, every 𝑘-uniform hypergraph H on 𝑛 vertices with 𝛿𝑑 (H) ≥ (𝛿 + 𝛼)𝑛𝑘−𝑑

contains a Hamilton A-cycle.

Theorem 5.2.1. Let 𝑘, ℓ, 𝑚 ∈ N with ℓ ≤ 𝑚, A be an ℓ-link of order 𝑚 and uniformity 𝑘 ,
and 𝑑 ∈ [𝑘 − 1]. Let 𝛿 = 𝛿(A, 𝑑) be the uncoloured minimum 𝑑-degree threshold for the
containment of a Hamilton A-cycle and suppose that A is (𝛿0, 𝑑)-good for some 𝛿0 ≥ 𝛿.
Then, for any 𝛼 > 0, there exists 𝑛0 ∈ N so that for any 𝑛 ∈ (𝑚 − ℓ)N with 𝑛 ≥ 𝑛0, the
following holds.

Let H be a 𝑘-uniform hypergraph collection on vertex set [𝑛] with |H| = 𝑒 (A)−𝑒 (A𝑠)
𝑚−ℓ 𝑛

and 𝛿𝑑 (H) ≥ (𝛿0 + 𝛼)𝑛𝑘−𝑑 . Then H contains a transversal copy of a Hamilton A-cycle.

Observe that the quantity 𝑛
𝑚−ℓ (𝑒(A) − 𝑒(A𝑠)) appearing in Theorem 5.2.15.2.1 is precisely

the number of edges in a Hamilton A-cycle covering 𝑛 vertices. Therefore, it is also the
size of a hypergraph collection on [𝑛] containing a transversal copy of a Hamilton A-cycle.
Moreover, if Theorem 5.2.15.2.1 holds with 𝛿0 = 𝛿, then the family of Hamilton A-cycles is
𝑑-colour-blind.

5.3 Proof overview

As previously mentioned, the framework of the proof of our main result borrows a lot
from the work of Montgomery, Müyesser, and Pehova [9090]. We will now attempt to give
a self-contained account of the main ideas of our proof strategy. For the purposes of the
proof sketch, it will be conceptually (and notationally) simpler to imagine that we are trying
to prove that the family of (2-uniform) Hamilton cycles is colour-blind. Observe that a
Hamilton cycle is an A-cycle with A being an edge.

Proposition 5.3.1 (Theorem 2 in [3434]). For any 𝛼 > 0, there exists 𝑛0 ∈ N such that
the following holds. Let G be a graph collection on vertex set [𝑛] with |G| = 𝑛 and
𝛿(G) ≥ (1/2 + 𝛼)𝑛. Then G contains a transversal copy of a Hamilton cycle.

Colour absorption. The basic premise of our approach, which is shared with [9090], is that
Proposition 5.3.15.3.1 becomes significantly easier to prove if we assume that |G| = (1+𝑜(1))𝑛,
that is, if we have a bit more colours than we need to find a rainbow Hamilton cycle on 𝑛
vertices. Thus, the starting goal of the proof is to somehow simulate having access to more
colours than we need, while still starting with a graph collection of size exactly 𝑛. The
way we achieve this is through the following lemma, which follows in a long tradition of
absorption based ideas. Before stating it, we introduce the following terminology. Given a
hypergraph collection H, when we say that a hypergraph 𝐻 ⊂ ∪𝑖∈[𝑚]𝐻𝑖 is uncoloured, we
mean that a colouring has not yet been assigned.

Lemma 5.3.2. Let 𝑑, 𝑘, 𝑛 ∈ N, 1/𝑛 ≪ 𝛾 ≪ 𝛽 ≪ 𝛼 and 𝛿 ≥ 0. Let F be a 𝑘-uniform
hypergraph with 𝑒(F ) = 𝛽𝑛 and suppose that any 𝑛-vertex 𝑘-uniform hypergraph with
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5 Transversals in hypergraph collection

minimum 𝑑-degree at least 𝛿𝑛𝑘−𝑑 contains a copy of F . Let H be a 𝑘-uniform hypergraph
collection on [𝑛] with 𝛿𝑑 (H) ≥ (𝛿 + 𝛼)𝑛𝑘−𝑑 and |H| = 𝑚 with 𝑚 ≥ 𝛼𝑛.

Then, there is an uncoloured copy S of F in ∪𝑖∈[𝑚]𝐻𝑖 and disjoint sets 𝐴,𝐶 ⊂ [𝑚],
with |𝐴| = 𝑒(F ) − 𝛾𝑛 and |𝐶 | ≥ 10𝛽𝑚 such that the following property holds. Given any
subset 𝐵 ⊂ 𝐶 with |𝐵| = 𝛾𝑛, there is a rainbow colouring of S in H using colours in 𝐴∪𝐵.

We remark that Lemma 5.3.25.3.2 is the hypergraph analogue of Lemma 3.4 from [9090]. For
the sake of completeness, we give its proof below. Before proving it, we need the following
lemma from [9090].

Lemma 5.3.3 (Lemma 3.3 in [9090]). Let 𝛼 ∈ (0, 1) and let ℓ, 𝑚, 𝑛 ≥ 1 be integers satisfying
ℓ ≤ 𝛼7𝑚/105 and 𝛼2𝑛 ≥ 8𝑚. Let 𝐾 be a bipartite graph on vertex classes 𝐴 and 𝐵 such
that |𝐴| = 𝑚, |𝐵| = 𝑛 and, for each 𝑣 ∈ 𝐴, 𝑑𝐾 (𝑣) ≥ 𝛼𝑛.

Then, there are disjoint subsets 𝐵0, 𝐵1 ⊂ 𝐵 with |𝐵0 | = 𝑚 − ℓ and |𝐵1 | ≥ 𝛼7𝑛/105, and
the following property. Given any set𝑈 ⊂ 𝐵1 of size ℓ, there is a perfect matching between
𝐴 and 𝐵0 ∪𝑈 in 𝐾 .

Proof of Lemma 5.3.25.3.2. Let H be the 𝑘-uniform hypergraph with vertex set [𝑛], where 𝑒
is an edge of H exactly when 𝑒 ∈ 𝐸 (𝐻𝑖) for at least 𝛼𝑚 values of 𝑖 ∈ [𝑚]. Then, by
Proposition 2.6.22.6.2, 𝛿𝑑 (H) ≥ 𝛿𝑛𝑘−𝑑 and, therefore, H contains a copy of F , which we
denote by S. Observe that S is an uncoloured copy of F in ∪𝑖∈[𝑚]𝐻𝑖 .

Let 𝐾 be the bipartite graph with vertex classes 𝐸 (S) and [𝑚], where 𝑒𝑖 is an edge of
𝐾 exactly if 𝑒 ∈ 𝐻𝑖 . Note that, since each 𝑒 ∈ 𝐸 (S) is also an edge of H , we have that
𝑑𝐾 (𝑒) ≥ 𝛼𝑚. Then, as 𝛾 ≪ 𝛽 ≪ 𝛼, by Lemma 5.3.35.3.3 with ℓ = 𝛾𝑛, 𝑚 = 𝛽𝑛, 𝑛 = 𝑚, there
are disjoint sets 𝐴,𝐶 ⊂ [𝑚] with |𝐴| = 𝑒(F ) − 𝛾𝑛 and |𝐶 | ≥ 10𝛽𝑚, such that, for any set
𝐵 ⊂ 𝐶 of size 𝛾𝑛 there is a perfect matching between 𝐸 (S) and 𝐴 ∪ 𝐵. Note that for such
a matching 𝑀 , the function 𝜙 : 𝐸 (S) → 𝐴 ∪ 𝐵, defined by 𝑒𝜙(𝑒) ∈ 𝑀 for each 𝑒 ∈ 𝐸 (S),
gives a rainbow colouring of S in H using colours in 𝐴 ∪ 𝐵, as required.

Completing the cycle. Lemma 5.3.25.3.2 provides us with a lot of flexibility, by finding
a small subgraph that admits a rainbow colouring in many different ways. To prove
Proposition 5.3.15.3.1, we will also need the following proposition.

Proposition 5.3.4. Let 1/𝑛 ≪ 𝜁 ≪ 𝜅, 𝛼. Let G be a graph collection on [𝑛] with
|G| = (1 + 𝜅 − 𝜁)𝑛 and 𝛿(G) ≥ (1/2 + 𝛼)𝑛. Let 𝑎, 𝑏 ∈ [𝑛] be distinct vertices. Then, G
contains a rainbow Hamilton path with 𝑎 and 𝑏 as its endpoints, using every colour 𝐺𝑖
with 𝑖 ∈ [(1 − 𝜁)𝑛].

Proposition 5.3.45.3.4, in combination with Lemma 5.3.25.3.2, gives a proof of Proposition 5.3.15.3.1.

Sketch of Proposition 5.3.15.3.1. Let C denote the set of the 𝑛 colours. Apply Lemma 5.3.25.3.2
with F being a path of length 𝛽𝑛 (and some constant 𝛾 ≪ 𝛽). This gives a path S in G and
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colour sets 𝐴 and 𝐶. Let 𝑎 and 𝑏 be the endpoints of S. Set G′ to be the graph collection
obtained by restricting G to the vertex set ( [𝑛] \𝑉 (S)) ∪{𝑎, 𝑏} and colour set C\ 𝐴. Apply
Proposition 5.3.45.3.4, labelling the colours in G′ so that the first (1 − 𝜁)𝑛 colours correspond
to those in C \ (𝐴∪𝐶). This way, we extend S to a Hamilton cycle H . While the edges in
S are still uncoloured, those in H \ S have been assigned a colour set using all colours in
C \ (𝐴 ∪𝐶) and exactly |𝐶 | − 𝛾𝑛 colours from 𝐶. Using the absorption property of S, the
path S can be given a colouring using all the colours in 𝐴 and the remainder colours in C,
thereby giving H a rainbow colouring, as desired.

Unfortunately, due to the technicalities present in the statement, Proposition 5.3.45.3.4 is far
from trivial to show. Most of the novelty in the proof of our main theorem is the way we
approach Proposition 5.3.45.3.4 for arbitrary A-chains satisfying Ab, Con, and Fac. We now
proceed to explain briefly how we achieve this, and how the three properties come in handy.

Firstly, in the setting of Proposition 5.3.45.3.4, it is quite easy to find a few rainbow paths
using most of the colours from the set [(1− 𝜁)𝑛]. Below is a formal statement of a version
of this for arbitrary A-chains, where we remark that

(
𝑒 (A)−𝑒 (A𝑠)

𝑚−ℓ

)
𝑛 is the number of edges

of an A-cycle on 𝑛 vertices.

Lemma 5.3.5. Let 1/𝑛 ≪ 1/𝑇 ≪ 𝜔, 𝛼. Let A be an ℓ-link of order 𝑚 and uniformity 𝑘 ,
and 𝑑 ∈ [𝑘−1]. Let 𝛿 be the minimum 𝑑-degree threshold for the containment of a Hamilton
A-cycle. Let H be a 𝑘-uniform hypergraph collection on [𝑛] with 𝛿𝑑 (H) ≥ (𝛿 + 𝛼)𝑛𝑘−𝑑 ,
and suppose that |H| ≥

(
𝑒 (A)−𝑒 (A𝑠)

𝑚−ℓ

)
𝑛. Then H contains a rainbow collection of 𝑇-many

pairwise vertex-disjoint A-chains covering all but at most 𝜔𝑛 vertices of H.

Proof. Choose 𝜔,𝑇 such that Lemma 2.6.32.6.3 holds with 𝛽 = (1 − 𝜔/2)/𝑇 , and set 𝑡 =(
𝑒 (A)−𝑒 (A𝑠)

𝑚−ℓ

)
. Let H be a 𝑘-uniform hypergraph collection on [𝑛] with 𝛿𝑑 (H) ≥ (𝛿 +

𝛼)𝑛𝑘−𝑑 and |H| ≥ 𝑡𝑛.
By Lemma 2.6.32.6.3 applied with 𝛽 = (1 − 𝜔/2)/𝑇 , there exists a partition of [𝑛] into

𝑉1, . . . , 𝑉𝑇 , 𝑉𝑇+1 with |𝑉1 | = · · · = |𝑉𝑇 | = (1 − 𝜔/2)𝑛/𝑇 and |𝑉𝑇+1 | = 𝜔𝑛/2, such that for
any 1 ≤ 𝑖 ≤ 𝑇 +1 and any hypergraphH of the collection H, it holds that 𝛿𝑑 (H [𝑉𝑖]) ≥ (𝛿+
𝛼/2) |𝑉𝑖 |𝑘−𝑑 . We claim that we can greedily cover all but at most𝑚 ·𝑇 vertices of𝑉1, . . . , 𝑉𝑇

with a rainbow collection of 𝑇-many pairwise vertex-disjoint A-chains A1, . . . ,A𝑇 , such
that A𝑖 covers all but at most 𝑚 vertices of the set 𝑉𝑖 for each 𝑖 ∈ [𝑇]. Suppose we were
able to do so for the sets 𝑉1, . . . , 𝑉𝑖 for some 1 ≤ 𝑖 < 𝑇 . Then the number of colours used
so far is at most 𝑖 · (𝑡 |𝑉1 |) and thus there are at least 𝑡𝑛− (𝑇 −1)𝑡 |𝑉1 | = 𝑡𝑛 (𝑇−1)𝜔+2

2𝑇 available
colours. Let 𝐶 be the set of such colours. Observe that a rainbow A-chain covering the
vertices of 𝑉𝑖+1 uses no more than 𝑡 (1 − 𝜔)𝑛/𝑇 = 𝜂 |𝐶 | colours, where 𝜂 = 2−𝜔

(𝑇−1)𝜔+2 ≤ 𝛼
4 ,

where we used 1/𝑇 ≪ 𝜔, 𝛼 for the last inequality. Let K be the 𝑘-uniform hypergraph
with vertex set 𝑉𝑖+1, where 𝑒 is an edge of K if 𝑒 ∈ 𝐸 (𝐻𝑖) for at least 𝜂 |𝐶 | colours 𝑖 ∈ 𝐶.
Then by Proposition 2.6.22.6.2, we have 𝛿𝑑 (K) ≥ (𝛿 +𝛼/2− 𝜂) |𝑉𝑖+1 |𝑘−𝑑 ≥ (𝛿 +𝛼/4) |𝑉𝑖+1 |𝑘−𝑑 ,
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where we used 𝜂 ≤ 𝛼/4 for the last inequality. Therefore K contains a copy of a Hamilton
A-cycle, which in turn contains an A-chain covering all but 𝑚 vertices of 𝑉𝑖+1. Now we
greedily assign colours from 𝐶 to this A-chain in a rainbow fashion.

This shows we can find a rainbow collection of𝑇-many pairwise vertex-disjointA-chains
covering all but at most 𝑚 · 𝑇 + |𝑉𝑇+1 | ≤ 𝜔𝑛 vertices of H, as wanted.

Although it is easy to use most of the colours coming from a colour set using the above
result, a challenge in Proposition 5.3.45.3.4 is that we need to use all of the colours coming
from the set [(1 − 𝜁)𝑛]. As we are currently concerned with the case when A consists of
a single edge, this will not be a major issue. Indeed, using the minimum degree condition
on each of the colours, we can greedily find rainbow matchings using small colour subsets
of [(1 − 𝜁)𝑛] (see Observation 5.1.55.1.5). For arbitrary A, we would like to proceed in the
same way; however, say when A is a triangle, the situation becomes considerably more
complicated. This is why the property Fac is built into the assumptions of the main
theorem.

Our ultimate goal is to build a single A-chain connecting specific ends, not just a
collection of A-chains. Hence, we rely on the property Con to connect the ends of
the paths we obtained via Lemma 5.3.55.3.5 (as well as the greedy matching we found for the
purpose of exhausting a specific colour set). An issue is that Con is an uncoloured property,
whereas we would like to connect these ends in a rainbow manner. Here we rely on the
trick offered by Proposition 2.6.22.6.2, which states that in hypergraph collections where each
hypergraph has good minimum 𝑑-degree conditions, we can pass down to an auxiliary
hypergraph K which also has good minimum 𝑑-degree conditions. An edge appears in K
if and only if that edge has Ω(𝑛) many colours in the original hypergraph collection. We
can use the property Con on K to connect ends via short uncoloured paths, and later assign
greedily one of the many available colours to the edges on this path.

As is the case with many absorption-based arguments, the short connecting paths we find
will be contained in a pre-selected random set. After all the connections are made, there
will remain many unused vertices inside this random set. To include these vertices inside
a path, we use the property Ab. Similarly to Con, property Ab is an uncoloured property,
but we can use again the trick of passing down to an appropriately chosen auxiliary graph.

5.4 Proof of main theorem

Proof of Theorem 5.2.15.2.1. Let 𝑘, ℓ, 𝑚 ∈ N with ℓ ≤ 𝑚, A be an ℓ-link of order 𝑚 and
uniformity 𝑘 , and 𝑑 ∈ [𝑘 −1]. Let 𝛿 = 𝛿(A, 𝑑) be the minimum 𝑑-degree threshold for the
containment of a Hamilton A-cycle, and suppose that A is (𝛿0, 𝑑)-good for some 𝛿0 ≥ 𝛿.
In the following, the constant implicit in any 𝑂 (·) only depends on A and, therefore, can
be bounded in terms of 𝑚.
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5 Transversals in hypergraph collection

Constants. Let 𝛼 > 0, let 𝑐 be given by Con with 𝛼/10 and let 𝛽0 be given by Fac
applied with 𝛼/6. Choose 𝛽 < 𝛽0 such that 0 < 𝛽 ≪ 𝛼, 1/𝑐, 1/𝑚. Next choose 𝜌 and 𝛾
such that 0 < 𝛾 ≪ 𝜌 ≪ 𝛽 and the hierarchy in Lemma 5.3.25.3.2 is satisfied with 𝛾, 𝛽, 𝛼. Let
𝜏 and 𝜂 be given by Ab with 𝛼 = 𝜌, so that we have 0 < 𝜏, 𝜂 ≤ 𝜌. Now choose 𝑇 ∈ N
and 𝜔, 𝜈 > 0 with 1/𝑇 ≪ 𝜔 ≪ 𝜈 ≪ 𝜂 so that the hierarchy in Lemma 5.3.55.3.5 is satisfied
with 𝑇, 𝜔, 𝛼. Finally, let 𝑛 ∈ (𝑚 − ℓ)N be such that 𝑛 ≫ 𝑇 , and 𝑛 ≫ 𝑛0 for any of the 𝑛0

coming from the applications of Con, Fac and Ab above. Without loss of generality we
assume that 𝛽𝑛 is an integer and that there exists an A-chain on 𝛽𝑛 edges. We summarise
the dependency between the parameters as follows

1/𝑛 ≪ 1/𝑇 ≪ 𝜔 ≪ 𝜈 ≪ 𝜂, 𝜏, 𝛾 ≪ 𝜌 ≪ 𝛽 ≪ 𝛼, 1/𝑐, 1/𝑚 .

Set-up. Let H be a 𝑘-uniform hypergraph collection on vertex set [𝑛] with |H| =
𝑒 (A)−𝑒 (A𝑠)

𝑚−ℓ 𝑛 and 𝛿𝑑 (H) ≥ (𝛿 + 𝛼)𝑛𝑘−𝑑 . Set 𝑡 = 𝑒 (A)−𝑒 (A𝑠)
𝑚−ℓ so that 𝑡𝑛 = |H|. We will use

[𝑡𝑛] to refer to our set of colours. Set 𝑉 = 𝑉 (H).
1. Setting up the colour absorber. Let F be an A-chain on 𝛽𝑛 edges (and thus
𝛽𝑛−𝑒 (A𝑠)
𝑒 (A)−𝑒 (A𝑠) (𝑚 − ℓ) + ℓ = 𝛽𝑛/𝑡 + 𝑂 (1) vertices), which exists by our choice of 𝛽. As
the minimum degree threshold for the containment of F is at most 𝛿, the hypotheses of
Lemma 5.3.25.3.2 are satisfied for F with the hypergraph collection H (observe also that we
may assume without loss of generality that |H| = 𝑡𝑛 ≥ 𝛼𝑛). Therefore, there exist disjoint
colour sets 𝐴,𝐶 ⊆ [𝑡𝑛] with |𝐴| = 𝑒(F ) − 𝛾𝑛 = (𝛽 − 𝛾)𝑛 and |𝐶 | ≥ 10𝛽𝑡𝑛, and an
uncoloured copy S1 of F in H such that the following holds.

Given any subset 𝐵 ⊆ 𝐶 with |𝐵| = 𝛾𝑛, there is a rainbow colouring of
S1 in H using colours in 𝐴 ∪ 𝐵.

(5.4.1)

We denote the start and the end of S1 by F1 and F2, respectively, and define 𝑆′1 =

𝑉 (S1) \ (𝑉 (F1) ∪ 𝑉 (F2)) to be the set of all vertices of S1 except those in its ends. Note
that, as 𝜌 ≪ 𝛽, we have 10𝛽𝑡𝑛 ≥ 𝜌𝑛 and, without relabelling, we can fix 𝐶 to be a subset
of the original set 𝐶 of size exactly 𝜌𝑛. For convenience, we split the set 𝐶 arbitrarily
into two subsets 𝐶1 and 𝐶2, with |𝐶1 | = 𝛾𝑛/2 (and |𝐶2 | = (𝜌 − 𝛾/2)𝑛). Our goal in the
remainder of the proof, in correspondence with Proposition 5.3.45.3.4 from the proof overview,
is to find a rainbow A-chain, vertex-disjoint with 𝑆′1, starting in F2 and ending in F1, using
all colours in [𝑡𝑛] \ (𝐶 ∪ 𝐴), and some colours from 𝐶. Note that, similarly to the setting
of Proposition 5.3.45.3.4, we have (𝑡 − (𝛽 − 𝛾))𝑛 colours available compared to (𝑡 − 𝛽)𝑛 edges
that we need to colour.

2. Setting up the vertex absorber. Since |𝑉 (S1) | = 𝛽𝑛/𝑡 +𝑂 (1) ≤ 𝛼𝑛/1000, where we
used that 𝛽 ≪ 𝛼 in the last inequality, we have that 𝛿𝑑 (H[𝑉 \𝑉 (S1)]) ≥ (𝛿 + 9𝛼/10)𝑛𝑘−𝑑

by Observation 2.6.12.6.1. We define an auxiliary graph K1 to be the 𝑘-uniform graph on
vertex set 𝑉1 = 𝑉 \ 𝑉 (S1), where 𝑒 is an edge of K1 if and only if 𝑒 ∈ 𝐸 (H𝑖) for at least
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5 Transversals in hypergraph collection

𝛼 |𝐶1 |/2 = 𝛼𝛾𝑛/4 values of 𝑖 ∈ 𝐶1. Then, using Proposition 2.6.22.6.2 on K1, we get that
𝛿𝑑 (K1) ≥ (𝛿 + 𝛼/2)𝑛𝑘−𝑑 ≥ (𝛿 + 𝜌)𝑛𝑘−𝑑 . By the choice of the constants 𝜂 and 𝜏 for Ab,
we have that there exists a set 𝑆2 ⊆ 𝑉1 of size at most 𝜏𝑛 such that the following property
holds.

For any set 𝐿 ⊆ 𝑉1\𝑆2 of size at most 𝜂𝑛with |𝐿 | ∈ (𝑚−ℓ)N, there exists
an embedding of an A-chain in K1 with vertex set 𝑆2 ∪ 𝐿. Furthermore,
the embedding of the start and the end of this A-chain does not depend
on the subset 𝐿.

(5.4.2)

In particular, by taking 𝐿 = ∅ in (5.4.25.4.2), there is a copy S2 of an A-chain in K1 with vertex
set 𝑆2. We denote its ends by G1 and G2, and define 𝑆′2 = 𝑉 (S2) \ (𝑉 (G1) ∪𝑉 (G2)).

3. Setting up the reservoir connector. By Observation 2.6.12.6.1, we have that 𝛿𝑑 (H[𝑉 \
(𝑆′1 ∪ 𝑆

′
2)]) ≥ (𝛿 + 𝛼/2)𝑛𝑘−𝑑 , where we used that 𝜏, 𝛽 ≪ 𝛼. We define another auxiliary

graph K2 as the 𝑘-uniform graph on vertex set𝑉2 = 𝑉 \ (𝑆′1 ∪ 𝑆
′
2), where 𝑒 is an edge of K2

if an only if 𝑒 ∈ 𝐸 (H𝑖) for at least 𝛼 |𝐶1 |/2 = 𝛼𝛾𝑛/4 values of 𝑖 ∈ 𝐶1. By Proposition 2.6.22.6.2,
we know that 𝛿𝑑 (K2) ≥ (𝛿 + 𝛼/3)𝑛𝑘−𝑑 . Using Lemma 2.6.32.6.3 on K2 with 𝑡 = 2, 𝑛1 = 𝜈𝑛

and 𝑛2 = |𝑉2 | − 𝑛1, we get a set 𝑅1 of size 𝜈𝑛, such that every subset of 𝑑 vertices of
𝑉2 have 𝑑-degree at least (𝛿 + 𝛼/6)𝑛𝑘−𝑑1 into 𝑅1 in the graph K2. Moreover, we can
assume that 𝑅1 does not contain any of the vertices in 𝑉 (F1) ∪ 𝑉 (F2) ∪ 𝑉 (G1) ∪ 𝑉 (G2).
From Observation 2.6.12.6.1, we have that for any two vertex-disjoint copies S and T of A𝑠

in 𝑉2 and any 𝑅′ ⊆ 𝑅1 of size |𝑅′ | ≤ 𝛼𝑛1/50, we have that the minimum 𝑑-degree in
(𝑅1 \ 𝑅′) ∪𝑉 (S) ∪𝑉 (T ) in K2 is at least (𝛿 + 𝛼/10)𝑛𝑘−𝑑1 . Then, property Con applied to
the hypergraph K2 [(𝑅1 \ 𝑅′) ∪𝑉 (S) ∪𝑉 (T )] implies the following.

For any 𝑅′ ⊆ 𝑅1 of size |𝑅′ | ≤ 𝛼𝑛1/50 and any two vertex-disjoint
copies S and T of A𝑠 in K2 [𝑉2 \ 𝑅′], there is an A-chain of length at
most 𝑐 in (𝑅1 \ 𝑅′) ∪𝑉 (S) ∪𝑉 (T ) in K2 with start S and end T .

(5.4.3)

4. Setting aside a random set to balance vertices and colours. Define 𝑛0 = 𝑛− |𝐴 |+ |𝐶 |
𝑡

and 𝑟2 so that the equality below holds44

𝑛 − |𝑉 (S1) | − |𝑆2 | − |𝑅1 | − 𝑟2 = 𝑛0 .

In particular, we have that

𝑟2 =
|𝐴| + |𝐶 |

𝑡
− 𝛽𝑛

𝑡
− |𝑆2 | − 𝜈𝑛 +𝑂 (1)

=
𝜌 − 𝛾
𝑡

𝑛 − |𝑆2 | − 𝜈𝑛 +𝑂 (1).

4Ignoring divisibility issues, 𝑛0 represents the number of vertices an A-cycle on 𝑡𝑛 − |𝐴| − |𝐶 | edges would
have.
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5 Transversals in hypergraph collection

As 0 ≤ |𝑆2 | ≤ 𝜏𝑛, 𝜏, 𝜈 ≪ 𝜌, and 𝛾 ≪ 𝜌 we have that

𝜌

2𝑡
𝑛 ≤ 𝑟2 ≤ 𝜌 − 𝛾

𝑡
𝑛 +𝑂 (1). (5.4.4)

As 𝜈, 𝜏, 𝛽 ≪ 𝛼, by Observation 2.6.12.6.1, we have that 𝛿(H[𝑉 \ (𝑉 (S1) ∪𝑉 (S2) ∪ 𝑅1)]) ≥
(𝛿 + 𝛼/3)𝑛𝑘−𝑑 . Using Lemma 2.6.32.6.3 on H[𝑉 \ (𝑉 (S1) ∪𝑉 (S2) ∪ 𝑅1)] with 𝑡 = 2, we find
a subset 𝑅2 of 𝑉 \ (𝑉 (S1) ∪ 𝑉 (S2) ∪ 𝑅1) of size 𝑟2, so that every subset of 𝑑 vertices of
𝑉 \ (𝑉 (S1) ∪𝑉 (S2) ∪ 𝑅1) has 𝑑-degree (𝛿 + 𝛼/6)𝑟𝑘−𝑑2 into 𝑅2 with respect to each of the
hypergraphs in the collection.

5. Covering most of the leftover vertices via A-chains using almost all the colours
in [𝑡𝑛] \ (𝐴 ∪ 𝐶). Set 𝑉 ′ = 𝑉 \ (𝑉 (S1) ∪ 𝑉 (S2) ∪ 𝑅1 ∪ 𝑅2) and note |𝑉 ′ | = 𝑛0. Let H′

be the hypergraph collection obtained by restricting H to the vertex set 𝑉 ′ and colour set
[𝑡𝑛] \ (𝐴∪𝐶). Using the upper bound from (5.4.45.4.4) and that 𝜈, 𝜏, 𝜌, 𝛽 ≪ 𝛼, we have through
Observation 2.6.12.6.1 that 𝛿(H′) ≥ (𝛿 + 𝛼/8)𝑛𝑘−𝑑0 . Moreover, by our definition of 𝑛0, we have
|H′ | = 𝑡𝑛 − |𝐴| − |𝐶 | = 𝑡𝑛0 =

(
𝑒 (A)−𝑒 (A𝑠)

𝑚−ℓ

)
𝑛0. Therefore H′ satisfies the hypotheses of

Lemma 5.3.55.3.5 and we find a rainbow collection {P𝑖 : 𝑖 ∈ [𝑇]} of 𝑇-many vertex-disjoint
A-chains in H′, covering all but a vertex subset 𝑉0 of size at most 𝜔𝑛0, and using only
colours from [𝑡𝑛] \ (𝐴∪𝐶). Moreover, observe that the set of colours from [𝑡𝑛] \ (𝐴∪𝐶)
unused by

⋃
𝑖∈[𝑇 ] P𝑖 , which we denote by 𝐶0, has size at most 𝑡𝜔𝑛0 +𝑂 (𝑇) ≤ 2𝑡𝜔𝑛0.

6. Exhaust 𝐶0 inside 𝑅2. Let 𝐶 ′ ⊆ 𝐶1 be a minimal size subset of 𝐶1 such that
|𝐶 ′ ∪ 𝐶0 | is divisible by 𝑒(A). Note this can be accomplished with a subset 𝐶 ′ satisfying
|𝐶 ′ | = 𝑂 (1) and, since |𝐶0 | ≤ 2𝑡𝜔𝑛0, we have that |𝐶0 ∪ 𝐶 ′ | ≤ 2𝑡𝜔𝑛0 + 𝑂 (1). Let H′′

be the hypergraph collection obtained by restricting H to the vertex set 𝑅2 and colour set
𝐶0 ∪𝐶 ′. Recall that, by property of the set 𝑅2, we have that 𝛿(H′′) ≥ (𝛿 + 𝛼/6)𝑟2

𝑘−𝑑 . As
1/𝑛 ≪ 𝜌 and 𝑛 ≫ 𝑛0, we have that 𝑟2 is sufficiently large to apply Fac and deduce that
H′′ contains |𝐶0 ∪ 𝐶 ′ |/𝑒(A) vertex-disjoint rainbow copies of A using all of the colours
in 𝐶0 ∪ 𝐶 ′ and |𝐶0 ∪ 𝐶 ′ | ≤ 3𝑡𝜔𝑛 ≤ (6𝑡2𝜔/𝜌)𝑟2 ≤ (𝛼/1000)𝑟2 vertices of 𝑅2, where we
used the lower bound on 𝑟2 in (5.4.45.4.4) and 𝜔 ≪ 𝜌.

7. Shrink leftover vertices in 𝑅2 via 𝐶2. Let 𝑅′
2 be the subset of 𝑅2 consisting of those

vertices unused in the previous step and set 𝑟 ′2 = |𝑅′
2 |. Since 𝑟2 − 𝑟 ′2 ≤ (𝛼/1000)𝑟2 and

using Observation 2.6.12.6.1, we have that 𝛿(H′′[𝑅′
2]) ≥ (𝛿 + 𝛼/30)𝑟 ′2

𝑘−𝑑 . Note that by the
upper bound in (5.4.45.4.4) we have that

𝑡𝑟 ′2 ≤ 𝑡𝑟2 ≤ (𝜌 − 𝛾)𝑛 +𝑂 (1) ≤ (𝜌 − 𝛾/2)𝑛 = |𝐶2 |.

Let H′′′ be the hypergraph collection obtained by restricting H to the vertex set 𝑅′
2 and

colour set 𝐶2. Then |H′′′ | = |𝐶2 | ≥
(
𝑒 (A)−𝑒 (A𝑠)

𝑚−ℓ

)
𝑟 ′2. Hence, similarly to Step 5, we can

apply Lemma 5.3.55.3.5 to H′′′ in order to find a rainbow collection {P ′
𝑖

: 𝑖 ∈ [𝑇]} of 𝑇-many
vertex-disjoint A-chains (with colours coming from 𝐶2) in H′′′, covering all but a vertex
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5 Transversals in hypergraph collection

subset 𝑉 ′
0 ⊆ 𝑅′

2 of size at most 𝜔𝑟 ′2.
8. Connect everything via 𝐶1 and 𝑅1 to build an almost spanning A-cycle. We

recall that we built one uncoloured A-chain in each of Step 1 and 2, |𝐶0 ∪ 𝐶 ′ |/𝑒(A)
rainbow A-chains in Step 6 (indeed a copy of A is trivially a rainbow A-chain of length
1), and 𝑇 rainbow A-chains in each of Step 5 and 7. Therefore, at this point there are
2 + 2𝑇 + |𝐶0 ∪ 𝐶 ′ |/𝑒(A) ≤ 3𝑡𝜔𝑛 vertex-disjoint A-chains, which we will now connect
to build an A-cycle, using additional vertices in 𝑅1 and colours in 𝐶1. This can be done
by repeatedly invoking property (5.4.35.4.3). Indeed, suppose that the chains are labelled
J1, · · · ,J𝑧 where 𝑧 ≤ 3𝑡𝜔𝑛. Suppose that for some 1 ≤ 𝑧′ ≤ 𝑧, we found an A-chain R
in K2 such that the following properties all hold.

• 𝑉 (R) ⊇ ⋃
𝑖∈[𝑧′] 𝑉 (J𝑖);

• With 𝑅′ = 𝑉 (R) \ ⋃
𝑖∈[𝑧′] 𝑉 (J𝑖), we have 𝑅′ ⊆ 𝑅1 and |𝑅′ | ≤ ((𝑚 − ℓ)𝑐 + ℓ)𝑧′;

• The start of R is the start of J1, and its end is the end of J𝑧′.

We remark that for 𝑧′ = 1, the A-chain R = J1 has the above properties. As |𝑅′ | ≤
𝛼𝑛1/50 = 𝛼𝜈𝑛/50 (using that 𝜔 ≪ 𝛼, 1/𝑐, 1/𝑚), property (5.4.35.4.3) applies to show that
there is an A-chain in K2 of length at most 𝑐 starting in the end of J𝑧′ and ending in the
start of J𝑧′+1 (where 𝑧′ + 1 = 1 if 𝑧′ = 𝑧), which uses vertices of 𝑅1 \ 𝑅′ and these shared
ends. Observe that these chain uses less than (𝑚 − ℓ)𝑐 + ℓ vertices of 𝑅1 \ 𝑅′. This shows
that R can be extended to satisfy the above properties with respect to 𝑧′ + 1. Inductively,
we obtain an A-cycle C0 in K2 covering

⋃
𝑖∈[𝑧 ] J𝑖 , and we denote by 𝑅′

1 the vertices from
𝑅1 unused by C0.

Consider the set of edges of C0 not contained in some J𝑖 , i.e. the edges we have
found in the previous steps to connect the various J𝑖’s. Note that there are at most
((𝑚 − ℓ)𝑐 + ℓ)𝑧𝑡 ≤ 𝛼𝛾𝑛/1000 such edges, where we used 𝜔 ≪ 𝛾, 𝛼, 1/𝑐, 1/𝑚. Moreover,
each such edge belongs to K2 and thus has at least 𝛼 |𝐶1 |/2 = 𝛼𝛾𝑛/4 colours coming from
𝐶1. Therefore we can greedily assign a distinct colour of 𝐶1 to each such edge.

9. Absorb the leftover vertices. Note that C0 covers everything in𝑉 , except the sets𝑉0,𝑉 ′
0,

and 𝑅′
1 which are leftover from Steps 5, 7, and 8, respectively. Note that |𝑅′

1 | + |𝑉0 | + |𝑉 ′
0 | ≤

𝜈𝑛 + 𝜔𝑛0 + 𝜔𝑟 ′2 ≤ (𝜈 + 2𝜔)𝑛 ≤ 𝜂𝑛, where we used that 𝜔, 𝜈 ≪ 𝜂. Therefore, by (5.4.25.4.2),
there exists an embedding of an A-chain S′

2 in K1 with vertex set 𝑆2 ∪ 𝑅′
1 ∪ 𝑉0 ∪ 𝑉 ′

0, and
with the same ends as the A-chain S2. As in the previous step, we can then colour the
edges of S′

2 in a rainbow fashion, by assigning colours still available in𝐶1. This is possible
as |𝑉 (S2) | ≤ (𝜏 + 𝜂)𝑛 and thus there are at most 𝑡 (𝜏 + 𝜂)𝑛 ≤ 𝛼𝛾𝑛/10 new edges, where
we used 𝜏, 𝜂 ≪ 𝛾, 𝛼. Moreover these edges belong to the hypergraph K1 and appear in at
least 𝛼𝛾𝑛/4 colours in 𝐶1, while we only used at most 𝛼𝛾𝑛/1000 colours from 𝐶1 in the
previous step. Therefore there are at least 𝛼𝛾𝑛/8 available colours for each edge, and we
can greedily assign distinct colours.
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5 Transversals in hypergraph collection

10. Assign a colouring to S1. Observe that we now have a Hamilton A-cycle that is
rainbow except for S1, which is still uncoloured. Moreover, we have used some colours in
𝐶, together with all colours outside 𝐴 ∪ 𝐶, but we have not used any of the colours in 𝐴.
Therefore the unused colours must be those in 𝐴 together with a subset 𝐵 ⊆ 𝐶 of size 𝛾𝑛.
We can then assign colours to S1 in a rainbow fashion by property (5.4.15.4.1). This completes
the rainbow embedding and finishes the proof.

5.5 Applications

In this section we discuss some applications of our main theorem and, in particular, we
prove Theorem 1.2.51.2.5. The proofs of the statements of Theorem 1.2.51.2.5 all follow the same
strategy. Suppose we want to prove 𝑑-colour-blindness of a family F . We first identify a
link A such that each member of F is an A-cycle. Then we show that A is (𝛿, 𝑑)-good,
with 𝛿 being the uncoloured minimum degree threshold for the family F . Once this is
done, the 𝑑-colour-blindness of F is a consequence of Theorem 5.2.15.2.1. We will give a full
proof of the statement (A)(A) of Theorem 1.2.51.2.5 with 𝑟 = 2, while we will only sketch how to
prove properties Ab, Con, and Fac for the statement (A)(A) with 𝑟 > 2 and the statement (B)(B).
The reader can then easily complete a full proof, by mimicking the one given for the square
of Hamilton cycles.

5.5.1 Powers of Hamilton cycles

The (uncoloured) minimum degree threshold for the containment of the 𝑟-th power of a
Hamilton cycle in a 2-uniform graph was conjectured to be 𝑟

𝑟+1𝑛 by Pósa (for 𝑟 = 2) and
Seymour (for larger 𝑟). This was proved by Komlós, Sárkozy, and Szemerédi [7373, 7474], using
the regularity method and the Blow-Up Lemma. Later, Levitt, Sárkozy, and Szemerédi [8282]
obtained a proof for the case 𝑟 = 2 that avoids the regularity lemma and is instead based on
the absorption method. More recently, Pavez-Signé, Sanhueza-Matamala, and Stein [9494]
generalised this to 𝑟 ≥ 2, while studying the hypergraph version of the problem. Both of
these fit our framework and allow us to obtain part (A)(A) of Theorem 1.2.51.2.5. We will first
focus on the case 𝑟 = 2, which we will use as a more detailed example and we first observe
that it can be reformulated as follows.

Theorem 5.5.1 (Rainbow version of Pósa’s conjecture). For any 𝛼 > 0 there exists 𝑛0

such that for 𝑛 ≥ 𝑛0 the following holds. Any graph collection G on vertex set [𝑛] with
𝛿(G) ≥ (2/3 + 𝛼)𝑛 contains a transversal copy of the square of a Hamilton cycle.

As mentioned above, in order to prove Theorem 5.5.15.5.1, it is enough to show that the square
of a cycle is an A-cycle for a suitable choice of a (2/3, 1)-good link A. Towards that goal,
we let A be the 2-link coming from an arbitrary ordering of 𝐾3 (see Figure 5.25.2) and we
prove that such A is indeed (2/3, 1)-good. The properties Ab and Con for A follow from
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the proof of the (uncoloured) Pósa conjecture in [8282]. In that proof, the authors give an
exact version of the uncoloured threshold, by distinguishing an extremal and a non-extremal
case. They say that a graph is extremal if it has two (not necessarily disjoint) sets each
of size roughly 𝑛/3 with few edges in between. However, for any 𝛼 > 0, a graph 𝐺 with
𝛿(𝐺) ≥ (2/3+𝛼)𝑛 cannot be extremal, thus we can use all lemmas from [8282] dealing with
the non-extremal case. We summarise the statements we use from [8282] as follows.

Theorem 5.5.2 (Lemma 3, Lemma 5, and Theorem 1 in [8282]). For any 𝛼 > 0 there exists
𝑛0 such that for 𝑛 ≥ 𝑛0 the following holds for any 𝑛-vertex graph with minimum degree
𝛿(𝐺) ≥ (2/3 + 𝛼)𝑛.

(P1) For any two disjoint ordered edges (𝑎, 𝑏) and (𝑐, 𝑑) there is a square of a path of
length at most 10𝛼−4, with end-tuples (𝑎, 𝑏) and (𝑐, 𝑑).

(P2) There exists the square of a path 𝑃 of length at most 𝛼9𝑛 such that for every subset
𝐿 ⊆ 𝑉 (𝐺) \ 𝑉 (𝑃) there exists a square of a path 𝑃𝐿 with 𝑉 (𝑃𝐿) = 𝑉 (𝑃) ∪ 𝐿 that
has the same end-tuples as 𝑃.

(P3) There exists the square of a Hamilton cycle in 𝐺.

Finally the property Fac for A follows as a special case of a theorem in [9090].

Theorem 5.5.3 (Theorem 1.3 in [9090]). For any integer 𝑟 ≥ 1 and any 𝛼 > 0, there exists
𝑛0 ∈ N such that for 𝑛 ≥ 𝑛0 the following holds. Any graph collection G on [𝑛] with
𝛿(G) ≥

(
𝑟
𝑟+1 + 𝛼

)
𝑛 contains a transversal copy of a 𝐾𝑟+1-factor.

We are now ready to give a full proof of Theorem 5.5.15.5.1.

Proof of Theorem 5.5.15.5.1. Let 𝛼 > 0 and A be the 2-link of order 3 and uniformity 2
coming from an arbitrary ordering of 𝐾3. Note that an A-chain is the square of a path (see
Figure 5.25.2) and an A-cycle is the square of a cycle.

The minimum degree threshold for a Hamilton A-cycle is 𝛿 = 𝛿(A, 1) = 2/3 by (P3)(P3) of
Theorem 5.5.25.5.255. Let 𝑛0 be large enough for Theorem 5.5.25.5.2 and 5.5.35.5.3 to hold. Then A has
property Ab with 𝜏 = 𝛼9 and 𝜂 = 𝛼20 by (P2)(P2) of Theorem 5.5.25.5.2, and it has property Con
with 𝐶 = 10𝛼−4 by (P1)(P1) of Theorem 5.5.25.5.2. Moreover, A has property Fac with 𝛽0 = 1 by
Theorem 5.5.35.5.3 (with 𝑟 = 2). Therefore A is (𝛿, 𝑑)-good.

Now let G be a graph collection on [𝑛] with 𝛿(G) ≥ (2/3 + 𝛼)𝑛 with 𝑛 ≥ 𝑛0 . Then,
by Theorem 5.2.15.2.1, there exists a rainbow Hamilton A-cycle in G, i.e. a transversal copy of
the square of a Hamilton cycle, as desired.

5The constant 2/3 is in fact best possible, as the complete tripartite graph with parts of size 𝑛/3− 1, 𝑛/3, and
𝑛/3 + 1 has minimum degree 2𝑛/3 − 1 and does not even contain a 𝐾3-factor.
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To obtain part (A)(A) of Theorem 1.2.51.2.5 for 𝑟 > 2 we can proceed exactly as for 𝑟 = 2, using
the statements in [9494]. However, these statements do not readily match our setup as those
given in Theorem 5.5.25.5.2. Nevertheless, Lemma 4.3 in [9494] implies property Con and it
is straightforward to check that together with Lemma 7.2 in [9494] this also gives property
Ab. Indeed, Lemma 7.2 in [9494] states that if 𝐺 is a graph with 𝛿(𝐺) ≥ (𝑟/(𝑟 + 1) + 𝛼)𝑛
and 𝑛 is large enough, then there is a small set of pairwise vertex-disjoint 𝑟-th powers of
short paths, such that every vertex of 𝐺 can be absorbed into many of them (into the 𝑟-th
power of a path). These paths can then be connected into the 𝑟-th power of a single path
to fulfil property Ab (c.f. Step 1 of the proof of Theorem 1.1 in [9494] for more details).
As property Fac still holds by Theorem 5.5.35.5.3, we have that A is (𝛿, 1)-good, for A being
the (𝑟 − 1)-link of order 𝑟 and uniformity 2 coming from an arbitrary ordering of 𝐾𝑟 and
𝛿 = 𝛿(A, 1) = 𝑟/(𝑟 + 1). The result follows by Theorem 5.2.15.2.1.

5.5.2 Hamilton ℓ-cycles in 𝑘-uniform hypergraphs

The statements in (B)(B) of Theorem 1.2.51.2.5 state 𝑑-colour-blindness of the family F of 𝑘-
uniform Hamilton ℓ-cycles, for various ranges of 𝑑, 𝑘 , and ℓ. Note that an ℓ-cycle in a
𝑘-uniform hypergraph is an A-cycle, with A being the ℓ-link of order 𝑘 and uniformity 𝑘
consisting of a single edge (see Figure 5.15.1). The result will follow from our main theorem,
once we will have shown that such A is (𝛿, 𝑑)-good, with 𝛿 being the uncoloured minimum
degree threshold of the considered family F .

We start by observing that, since A consists of a single edge, Observation 5.1.55.1.5 guaran-
tees that A satisfies property Fac for any 𝑘 ≥ 3, and 1 ≤ ℓ, 𝑑 ≤ 𝑘 . The properties Ab and
Con can be derived from the absorption-style proof of the uncoloured minimum degree
threshold for F . We summarise the precise reference for each property and each case of
the statements in (B)(B) of Theorem 1.2.51.2.5 in Table 5.15.1.

Family F Reference for 𝛿F,𝑑 Property Ab Property Con Property Fac
Buß, Hàn, Lemma 7 in [3131] Lemma 5 in [3131]

Observation 5.1.55.1.5

1 < ℓ < 𝑘/2 and Schacht [3131]
and 𝑑 = 𝑘 − 2 de Bastos, Mota, Schacht, Lemma 7 in [1313] Lemma 5 in [1313]Schnitzer, and Schulenburg [1313]
1 ≤ ℓ < 𝑘/2 Hàn and Schacht [6161] Lemma 5 in [6161] Lemma 6 in [6161]and 𝑑 = 𝑘 − 1
ℓ = 𝑘 − 1 Rödl, Ruciński, Lemma 2.1 in [9999] Lemma 2.4 in [9999]and 𝑑 = 𝑘 − 1 and Szemerédi [9999]
ℓ = 𝑘/2

Hàn, Han, and Zhao [6060] Lemma 2.3 in [6060] Lemma 2.5 in [6060]and 𝑘/2 < 𝑑 ≤ 𝑘 − 1,
with 𝑘 even

Table 5.1: References for the properties Ab, Con, and Fac for the families in the statement (B)(B) of Theorem 1.2.51.2.5.
The first row is split into two, as [3131] deals with the case 𝑘 = 3 and [1313] deals with the case 𝑘 ≥ 4.

Although some of these lemmas are not stated in the same exact form of the corres-
ponding property, it is always straightforward to derive the properties from the lemmas.
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Nevertheless, we clarify a few points. Firstly, we consider the second row of Table 5.15.1,
where 1 ≤ ℓ < 𝑘/2 and 𝑑 = 𝑘 − 1. Lemma 6 in [6161] states that for every integer 𝑘 ≥ 2
and every pair of real numbers 𝑑, 𝜀 > 0, there exists an 𝑛0 such that for every 𝑘-uniform
hypergraph H on 𝑛 vertices with 𝛿(H) ≥ 𝑑𝑛 the following holds. There is a set 𝑅 of
size at most 𝜀𝑛 such that each set of 𝑘 − 1 vertices has degree at least 𝑑𝜀𝑛/2 into 𝑅. This
implies property Con with 𝑐 = 3. Indeed, given two edges S and T in H , since 2ℓ ≤ 𝑑

and using the property of 𝑅, we can find an additional edge of H and connect S and T into
an ℓ-path of length 3. Secondly, we consider the last row of Table 5.15.1, where ℓ = 𝑘/2 and
𝑘/2 < 𝑑 ≤ 𝑘 − 1 with 𝑘 even. The authors of [6060] prove an exact uncoloured minimum
degree threshold, by distinguishing between an extremal and a non-extremal case. It is
easy to see that any hypergraph H with 𝛿𝑑 (H) ≥ (𝛿F,𝑑 + 𝛼)𝑛𝑘−𝑑 is non-extremal, and
thus we can use all lemmas from [6060] dealing with the non-extremal case.

Statements in (B)(B) of Theorem 1.2.51.2.5 can now be proved using the same arguments as in
the proof of Theorem 5.5.15.5.1. Of course, Table 5.15.1 is not an exhaustive list of all Dirac-type
results proven via the absorption method, rather it is only a small sample.
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6
Multistage Maker-Breaker game

In this chapter, we discuss our results related to the multistage Maker-Breaker game, namely
Theorems 1.3.41.3.4 and 1.3.61.3.6 to 1.3.81.3.8 and Corollary 1.3.51.3.5. Before discussing more complex
results, we illustrate an easy proof due to Barkey [1111], which provides an exact result for
the multistage duration threshold for the unbiased connectivity game (played on the edge
set of the complete graph). We recall that C𝑛 is the hypergraph on vertex set 𝐸 (𝐾𝑛) and
with hyperedges corresponding to the edge sets of all spanning trees of 𝐾𝑛.

Theorem 6.0.1 (Unbiased connectivity game [1111]). We have 𝜏(C𝑛, 1) = ⌊log2(𝑛) − 1⌋.

Theorem 6.0.16.0.1 is an application of Lehman’s Theorem [8181] of which we use the following
formulation that can be found in e.g. [6363].

Theorem 6.0.2 (Theorem 1.1.3 in [6363]). Let 𝐺 = (𝑉, 𝐸) be a graph on 𝑛 vertices which
admits two edge-disjoint spanning trees. Then in the unbiased Maker-Breaker game on the
edge set of𝐺, Maker, even as a second player, has a strategy to build a connected spanning
tree of 𝐺 within 𝑛 − 1 moves.

Proof of Theorem 6.0.16.0.1. The upper bound 𝜏(C𝑛, 1) ≤ ⌊log2(𝑛)−1⌋ is trivial. Indeed, after
log2(𝑛) − 1 rounds, the board has fewer than 𝑛 − 1 edges and cannot contain a spanning
tree.

The lower bound on 𝜏(C𝑛, 1) follows from Lehamn’s Theorem. Maker’s goal is to ensure
that the 𝑖-th stage is played on a board which contains ⌊ 𝑛2𝑖 ⌋ edge-disjoint spanning trees for
every 𝑖 ≤ ⌊log2(𝑛) − 1⌋. As ⌊ 𝑛2𝑡 ⌋ ≥ 2 for 𝑡 = ⌊log2(𝑛) − 1⌋, Theorem 6.0.26.0.2 then guarantees
that Maker can still claim a spanning tree in round 𝑡, which yields 𝜏(C𝑛, 1) ≥ ⌊log2(𝑛) −1⌋.

In order to achieve Maker’s goal, notice first that it is a well known fact that the complete
graph on 𝑛 vertices can be edge-partitioned into ⌊ 𝑛2 ⌋ edge-disjoint spanning trees. Hence,
the case 𝑖 = 1 of Maker’s goal is obvious, and we can proceed by induction. Assume the
board at stage 𝑖 − 1 has ⌊ 𝑛

2𝑖−1 ⌋ spanning trees. Then Maker pairs them (arbitrarily) and
forms ⌊ 𝑛2𝑖 ⌋ pairwise disjoint pairs of spanning trees (possibly ignoring one further spanning
tree). She then plays on each pair separately using the strategy from Theorem 6.0.26.0.2, i.e.
she always plays on the same pair that Breaker played on in his previous move. In this
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way Maker occupies ⌊ 𝑛2𝑖 ⌋ edge-disjoint spanning trees, which then belong to the board on
which the next stage is played, as wanted.

The proofs of Theorems 1.3.41.3.4 and 1.3.61.3.6 to 1.3.81.3.8 are more involved, but they all share
similar strategies, which we discuss in the next section.

6.1 Winning Criteria

We remark that, in order to show the equality 𝜏(H , 𝑏) = 𝑇 , we need to provide two
strategies: one for Maker to claim at least one winning for at last 𝑇 stages, and one for
Breaker to destroy all the winning sets in at most 𝑇 stages.

We start from Breaker’s strategy. He wants to destroy all the winning sets in the least
possible amount of stages. For that we will use the following well-known variant of Beck’s
Criterion [1818]. It states that, under a certain Breaker’s strategy, we can give an upper bound
on the number of winning sets that Maker can completely occupy during one stage of a
multistage Maker-Breaker game. Its proof, which can be found in [2121], follows directly
from the proof of that criterion.

Theorem 6.1.1 (Beck’s Criterion). Let an integer 𝑏 ≥ 1 and a hypergraph H = (𝑋, F )
be given. Then, in the (1: 𝑏) Maker-Breaker game on H , Breaker has a strategy which
ensures that Maker occupies no more than∑︁

𝐹∈F
(1 + 𝑏)−|𝐹 |+1

winning sets 𝐹 ∈ F completely.

We now discuss Maker’s strategy. She wants to claim at least one winning set for many
stages. It might not be clear at this point, but it will often be the case that, while playing
a (1: 𝑏) multistage Maker-Breaker game on 𝐾𝑛, Maker wants to claim at least one edge in
each member of a suitable family of edge sets of 𝐾𝑛. We remark that this family is not the
family of winning sets of the game. We provide a criterion under which Maker can achieve
such a goal in Lemma 6.1.46.1.4. The methods used in the proof of Lemma 6.1.46.1.4 are similar to
those in Chapters 17 and 20 of [1515]. However the results in [1515] only deal with uniform
hypergraphs and a single stage game, and thus are not applicable in our setting, as we work
with non-uniform hypergraphs and multistage games.

As a first step towards proving Lemma 6.1.46.1.4, we need to generalise a criterion of Beck [2020]
to biased games, which ensures that Maker can get an 𝛼-fraction of each winning set in a
biased Maker-Breaker game.
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Lemma 6.1.2. Given a hypergraph H = (𝑋, F ), a real 0 ≤ 𝛼 ≤ 1, and an integer 𝑏 ≥ 1,
if there exists 𝜇 ∈ (0, 1) such that∑︁

𝐹∈F
𝜆
−|𝐹 |
𝛼,𝜇,𝑏

< 1 with 𝜆𝛼,𝜇,𝑏 = (1 + 𝜇) 1−𝛼
𝑏 (1 − 𝜇)𝛼,

then Maker has a strategy to claim 𝛼 |𝐹 | elements of every winning set 𝐹 ∈ F in a (1: 𝑏)
Maker-Breaker game.

Proof of Lemma 6.1.26.1.2. Denote by 𝑋𝑖 the elements which Maker took in the first 𝑖 rounds.
Denote by 𝑌𝑖, 𝑗 with 0 ≤ 𝑗 ≤ 𝑏 the elements which Breaker took in the first 𝑖 − 1 rounds
plus the first 𝑗 elements he took in the 𝑖th round. We define the following potential for each
𝐹 ∈ F , 0 ≤ 𝑗 ≤ 𝑏, and round 𝑖:

𝜙𝑖, 𝑗 (𝐹) = (1 + 𝜇) 1
𝑏
( |𝐹∩𝑌𝑖, 𝑗 |−(1−𝛼) |𝐹 |) (1 − 𝜇) |𝐹∩𝑋𝑖 |−𝛼 |𝐹 | .

We further define the potential of a vertex 𝑣 ∈ 𝑋 as

𝜙𝑖, 𝑗 (𝑣) =
∑︁
𝐹∈F
𝑣∈𝐹

𝜙𝑖, 𝑗 (𝐹) ,

and we let
𝜙𝑖, 𝑗 =

∑︁
𝐹∈F

𝜙𝑖, 𝑗 (𝐹)

denote the total potential of the game immediately after Breaker took his 𝑗 th element of
round 𝑖. Note that 𝜙𝑖,0(𝑣) and 𝜙𝑖,0 then describe potentials immediately after Maker’s 𝑖th

turn. We further let

𝜙0,𝑏 =
∑︁
𝐹∈F

(1 + 𝜇)− 1
𝑏
(1−𝛼) |𝐹 | (1 − 𝜇)−𝛼 |𝐹 | =

∑︁
𝐹∈F

𝜆
−|𝐹 |
𝛼,𝜇,𝑏

denote the potential at the start of the game, i.e. when no elements have been claimed yet.
By assumption 𝜙0,𝑏 < 1.

Maker’s strategy in round 𝑖 is to claim an element 𝑣 ∈ 𝑋 not yet claimed which maximises
𝜙𝑖−1,𝑏 (𝑣). We claim that, following this strategy, Maker can ensure that 𝜙𝑖, 𝑗 < 1 holds
throughout the game. Indeed, for 𝑗 ∈ [𝑏], let 𝑤 𝑗 be the 𝑗 th element Breaker claimed in
round 𝑖. Then, 𝜙𝑖−1,𝑏 (𝑣) ≥ 𝜙𝑖−1,𝑏 (𝑤 𝑗) ≥ 𝜙𝑖,0(𝑤 𝑗) where the first inequality holds by the
maximality of 𝑣, and the second inequality holds since Maker’s move can never increase
the potential of any vertex. Moreover, 𝜙𝑖, 𝑗 (𝑤) ≤ (1 + 𝜇)1/𝑏𝜙𝑖, 𝑗−1(𝑤) for all 𝑤 ∈ 𝑋 , as
Breaker can increase the potential of any 𝐹 ∈ F at most by a factor (1 + 𝜇)1/𝑏 when he
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claims an element of 𝑋 . In particular, this gives

𝜙𝑖, 𝑗−1(𝑤 𝑗) ≤ (1 + 𝜇) ( 𝑗−1)/𝑏𝜙𝑖,0(𝑤 𝑗) ≤ (1 + 𝜇) ( 𝑗−1)/𝑏𝜙𝑖−1,𝑏 (𝑣)

for all 𝑗 ∈ [𝑏].
Therefore,

𝜙𝑖,𝑏 = 𝜙𝑖−1,𝑏 − 𝜇𝜙𝑖−1,𝑏 (𝑣) + ((1 + 𝜇)1/𝑏 − 1)
𝑏∑︁
𝑗=1

𝜙𝑖, 𝑗−1(𝑤 𝑗)

≤ 𝜙𝑖−1,𝑏 − 𝜇𝜙𝑖−1,𝑏 (𝑣) + ((1 + 𝜇)1/𝑏 − 1)𝜙𝑖−1,𝑏 (𝑣)
𝑏∑︁
𝑗=1

(1 + 𝜇) ( 𝑗−1)/𝑏

= 𝜙𝑖−1,𝑏 − 𝜇𝜙𝑖−1,𝑏 (𝑣) + 𝜇𝜙𝑖−1,𝑏 (𝑣) = 𝜙𝑖−1,𝑏,

where the first line uses that 𝜇𝜙𝑖−1,𝑏 (𝑣) describes the change of the total potential caused
by Maker and ((1+ 𝜇)1/𝑏 −1)∑𝑏

𝑗=1 𝜙𝑖, 𝑗−1(𝑤 𝑗) is the change caused by Breaker, and where
we use the geometric sum to get the third line. Further, we have that 𝜙𝑖, 𝑗 ≤ 𝜙𝑖,𝑏 for all
0 ≤ 𝑗 ≤ 𝑏, because the potential can only increase when Breaker claims an element. We
thus conclude that 𝜙𝑖, 𝑗 ≤ 𝜙𝑖,𝑏 ≤ 𝜙0,𝑏 < 1 for all 𝑖 and 0 ≤ 𝑗 ≤ 𝑏.

Now assume that there is some 𝐹 ∈ F such that Breaker has claimed at least (1 − 𝛼) |𝐹 |
elements of 𝐹 after some round 𝑖. Note that this implies 𝜙𝑖,𝑏 (𝐹) ≥ 1, and therefore
𝜙𝑖,𝑏 ≥ 1, which is a contradiction.

Given any fixed winning set 𝐹 ∈ F and any Breaker’s bias 𝑏, it is clear that Maker
can guarantee to claim rougly a 1

𝑏+1 -fraction of all elements of 𝐹. Our next aim towards
proving Lemma 6.1.46.1.4 is to show that, under certain conditions, Maker can simultaneously
ensure to get almost a 1

𝑏+1 -fraction from each winning set 𝐹 ∈ F . The following lemma is
obtained from Lemma 6.1.26.1.2 by a suitable choice of the parameters 𝛼 und 𝜇.

Lemma 6.1.3. For every 𝛿 ∈ (0, 1) the following holds. Let 𝑏, 𝑠 ≥ 1 be integers, H =

(𝑋, F = F1 ∪ · · · ∪ F𝑠) be a hypergraph, and 𝑘𝑖 = min𝐹∈F𝑖 |𝐹 | for 𝑖 ∈ [𝑠]. If 𝑘𝑖 >
4𝛿−2 log(𝑠 |F𝑖 |) for every 𝑖 ∈ [𝑠], then Maker has a strategy to claim at least ( 1

𝑏+1 − 𝛿) |𝐹 |
elements of every winning set 𝐹 ∈ F in a (1: 𝑏) Maker-Breaker game.

Proof of Lemma 6.1.36.1.3. With 𝜇 = 𝛿/2, let 𝜀 > 0 such that

𝑒𝜇
2
= (1 + 𝜇) 1

𝑏+1+
𝜀
𝑏 (1 − 𝜇) 1

𝑏+1−𝜀 . (6.1.1)

Note that the existence of such 𝜀 is given by the fact that 𝑓 (𝑥) = (1 + 𝜇) 1
𝑏+1+

𝑥
𝑏 (1 − 𝜇) 1

𝑏+1−𝑥

defines a continuous function on R with 𝑓 (0) = (1− 𝜇2) 1
𝑏+1 < 1 and lim𝑥→+∞ 𝑓 (𝑥) = +∞.
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6 Multistage Maker-Breaker game

Moreover, rearranging (6.1.16.1.1) gives

𝑒𝜇
2
= (1 − 𝜇2) 1

𝑏+1

(
(1 + 𝜇) 1

𝑏

1 − 𝜇

) 𝜀
⇒ 𝜀 =

𝜇2 − 1
𝑏+1 log(1 − 𝜇2)

1
𝑏

log(1 + 𝜇) − log(1 − 𝜇)
.

Therefore, using that 𝑥
1+𝑥 < log(1 + 𝑥) < 𝑥 holds for all 𝑥 > −1, 𝑥 ≠ 0, we obtain

𝜀 <
𝜇2 + 𝜇2

(𝑏+1) (1−𝜇2)
𝜇

𝑏 (1+𝜇) + 𝜇
<

1 + 2
𝑏+1

1 + 1
2𝑏

· 𝜇
2

𝜇
≤ 2𝜇 .

We now apply Lemma 6.1.26.1.2 with 𝛼 = 1
𝑏+1 − 𝜀. By (6.1.16.1.1) and the choice of 𝜇, we get

∑︁
𝐹∈F

((1 + 𝜇) 1
𝑏+1+

𝜀
𝑏 (1 − 𝜇) 1

𝑏+1−𝜀)−|𝐹 | =
𝑠∑︁
𝑖=1

∑︁
𝐹∈F𝑖

𝑒−𝜇
2 |𝐹 | ≤

𝑠∑︁
𝑖=1

|F𝑖 |𝑒−
1
4 𝛿

2𝑘𝑖

<

𝑠∑︁
𝑖=1

|F𝑖 |𝑒− log(𝑠 |F𝑖 |) =
𝑠

𝑠
= 1 .

Thus, Maker can claim at least

𝛼 |𝐹 | =
(

1
𝑏 + 1

− 𝜀
)
|𝐹 | >

(
1

𝑏 + 1
− 2𝜇

)
|𝐹 | =

(
1

𝑏 + 1
− 𝛿

)
|𝐹 |

elements of every winning set 𝐹 ∈ F .

Finally, we may apply Lemma 6.1.36.1.3 repeatedly over several stages in order to obtain that,
even after some number of stages, Maker can make sure to get at least one element from
every winning set.

Lemma 6.1.4 (Multistage winning criteria). For every 𝛾 ∈ (0, 1), integers 𝑏, 𝑠 ≥ 1,
and hypergraph H = (X, F = F1 ∪ · · · ∪ F𝑠) with |F | > 1 the following holds. Let
𝑘 𝑗 = min𝐹∈F𝑗

|𝐹 | for every 𝑗 ∈ [𝑠] and assume that(
𝑘 𝑗

log(𝑠 |F𝑗 |)

)𝛾/2
≥ 20𝑏 · max

{
1, log𝑏+1

(
𝑘 𝑗

log(𝑠 |F𝑗 |)

)}
(6.1.2)

for every 𝑗 ∈ [𝑠]. Then, in the (1 : 𝑏) Maker-Breaker multistage game on H , Maker has
a strategy to ensure that after (1 − 𝛾) min𝑖∈[𝑠] log𝑏+1

(
𝑘𝑖

log(𝑠 |F𝑖 |)

)
stages, she still claims at

least one element in each 𝐹 ∈ F .

Proof of Lemma 6.1.46.1.4. Let 𝑡 and 𝛿 be defined by

𝑡 = (1 − 𝛾) min
𝑖∈[𝑠]

log𝑏+1

(
𝑘𝑖

log(𝑠 |F𝑖 |)

)
and 𝛿 = 4 max

𝑖∈[𝑠]

(
log(𝑠 |F𝑖 |)

𝑘𝑖

) 𝛾

2

,
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6 Multistage Maker-Breaker game

and observe that there exists some 𝑗 ∈ [𝑠] with

2𝑏𝛿𝑡 ≤ 2𝑏 · 4
( log(𝑠 |F𝑗 |)

𝑘 𝑗

) 𝛾

2

· (1 − 𝛾) log𝑏+1

(
𝑘 𝑗

log(𝑠 |F𝑗 |)

)
(6.1.26.1.2)
<

1
2
.

At the end of stage 𝑖, let X𝑖 denote the set of all elements of X that belong to Maker, let
F 𝑖
𝑗
=

{
𝐹 ∩ X𝑖 : 𝐹 ∈ F𝑗

}
be the multiset of "left-overs" of the winning sets of F𝑗 , and set

𝑘𝑖, 𝑗 = min𝐹∈F𝑖
𝑗
|𝐹 | for each 𝑗 ∈ [𝑠]. We aim to show that Maker can play in such a way that

𝑘𝑡 , 𝑗 ≥ 1 for all 𝑗 ∈ [𝑠]. To achieve that, in each stage 𝑖 ≤ 𝑡, we let Maker play according to
the strategy of Lemma 6.1.36.1.3 with input 𝛿 and hypergraph H 𝑖 = (X𝑖 , F 𝑖 = F 𝑖

1 ∪ . . . ∪ F 𝑖
𝑠 ).

Notice that, as long as the assumptions of Lemma 6.1.36.1.3 hold at the beginning of some
stage 𝑖 ≤ 𝑡, i.e. if 𝑘𝑖−1, 𝑗 > 4𝛿−2 log(𝑠 |F𝑗 |) for all 𝑗 ∈ [𝑠], we obtain 𝑘𝑖, 𝑗 ≥ 𝑘𝑖−1, 𝑗 ( 1

𝑏+1 − 𝛿)
and hence 𝑘𝑖, 𝑗 ≥ 𝑘 𝑗 ( 1

𝑏+1 − 𝛿)𝑖 for every 𝑗 ∈ [𝑠]. In particular, we then conclude

𝑘𝑖, 𝑗 ≥ 𝑘 𝑗

(
1

𝑏 + 1
− 𝛿

) 𝑡
= 𝑘 𝑗

(
1

𝑏 + 1

) 𝑡
· (1 − (𝑏 + 1)𝛿)𝑡

≥
(

𝑘 𝑗

log(𝑠 |F𝑗 |)

)𝛾
log(𝑠 |F𝑗 |) · (1 − 2𝑏𝛿𝑡) ≥ 1

2

(
𝑘 𝑗

log(𝑠 |F𝑗 |)

)𝛾
log(𝑠 |F𝑗 |) ,

where the second inequality holds since 𝑡 ≤ (1− 𝛾) log𝑏+1

(
𝑘 𝑗

log(𝑠 |F𝑗 |)

)
and since (1− 𝑥)𝑡 ≥

1− 𝑥𝑡 as long as 𝑥 < 1, and the last inequality holds since 2𝑏𝛿𝑡 < 1
2 . This in turn gives that

𝑘𝑖, 𝑗 ≥
1
2

(
𝑘 𝑗

log(𝑠 |F𝑗 |)

)𝛾
log(𝑠 |F𝑗 |) ≥ 4𝛿−2 log(𝑠 |F𝑗 |) = 4𝛿−2 log(𝑠 |F 𝑖

𝑗 |) ,

where the second inequality holds by the definition of 𝛿. Now, this means that for the next
stage 𝑖 + 1 we can again apply Lemma 6.1.36.1.3. Inductively it follows that Maker can play in
such a way that

𝑘𝑖, 𝑗 ≥
1
2

(
𝑘 𝑗

log(𝑠 |F𝑗 |)

)𝛾
log(𝑠 |F𝑗 |)

for all 𝑖 ≤ 𝑡 and 𝑗 ∈ [𝑠]. In particular, using (6.1.26.1.2) again, we obtain 𝑘𝑡 , 𝑗 ≥ 1.

6.2 Proof of Theorem 1.3.41.3.4 (Hamilton cycle game)

In this section we prove Theorem 1.3.41.3.4 and Corollary 1.3.51.3.5. The upper bounds
𝜏(C𝑛, 𝑏), 𝜏(H𝑛, 𝑏) ≤ (1 + 𝑜(1)) log𝑏+1(𝑛) are trivial, since after (1 + 𝑜(1)) log𝑏+1(𝑛)
stages, the board has fewer than 𝑛 − 1 edges, and thus it can be neither Hamiltonian, nor
connected. Thus it remains to provide a strategy for Maker to obtain a matching lower bound
for the Hamilton cycle game, which immediately gives a lower bound for the connectivity
game as well. For this section only, given any set 𝑆 ⊆ 𝑉 (𝐺), we denote the (joint) external
neighbourhood of 𝑆 by 𝑁𝐺 (𝑆) = {𝑢 ∈ 𝑉 (𝐺) \ 𝑆 : there exists 𝑥 ∈ 𝑆 with 𝑢𝑥 ∈ 𝐸 (𝐺)}.
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6 Multistage Maker-Breaker game

We will use the following criterion for the existence of Hamilton cycles, which is obtained
by choosing 𝑑 = log log 𝑛 in Theorem 1.1 in [6565].

Theorem 6.2.1 (Corollary from Theorem 1.1 in [6565]). For every large enough 𝑛 the
following holds. Let 𝐺 = (𝑉, 𝐸) be a graph on 𝑛 vertices such that

(P1) for every 𝑆 ⊆ 𝑉 , if |𝑆 | ≤ 𝑛
log 𝑛 , then |𝑁 (𝑆) | ≥ (log log 𝑛) |𝑆 |;

(P2) there is an edge in 𝐺 between any two disjoint subsets 𝐴, 𝐵 ⊆ 𝑉 such that |𝐴| =
|𝐵| = 𝑛

log 𝑛 ,

then 𝐺 is Hamiltonian.

6.2.1 Maker’s strategy

Choose

𝜀 ∈
(
4 log log 𝑛

log 𝑛
,

5 log log 𝑛
log 𝑛

)
and 𝛾 = 2 ·

log 𝑏 + log log𝑏+1(𝑛) + 5
(1 − 𝜀) log 𝑛 − 2 log log 𝑛 − log 2

such that 𝜀−1 ∈ N, and assume 𝑛 to be large enough whenever needed. We will
prove that 𝜏(HAM𝑛, 𝑏) ≥ (1 − 𝛾 − 2𝜀) log𝑏+1(𝑛). Since 𝑏 is subpolynomial, then
𝜏(HAM𝑛, 𝑏) ≥ (1 − 𝑜(1)) log𝑏+1(𝑛), as required. Moreover observe that when 𝑏 = 1,
this gives 𝜏(HAM𝑛, 𝑏) ≥ log2(𝑛) − Θ(log2 log(𝑛)) which is very close to the random
graph intuition as discussed in the introduction.

In order to prove this bound, consider the family F =
⋃𝑠
𝑖=1 F𝑖 with 𝑠 = 2/𝜀 defined by

F𝑗 =
{
𝐸𝐾𝑛

(𝐴, 𝐵) : 𝐴, 𝐵 ⊆ 𝑉 (𝐾𝑛), 𝐴 ∩ 𝐵 = ∅, |𝐴| = 𝑛
( 𝑗−1) 𝜀

2 , |𝐵| = 𝑛 − 1
2
𝑛

( 𝑗+1) 𝜀
2

}
,

for 1 ≤ 𝑗 ≤ 𝑠 − 1, and

F𝑠 =
{
𝐸𝐾𝑛

(𝐴, 𝐵) : 𝐴, 𝐵 ⊆ 𝑉 (𝐾𝑛), 𝐴 ∩ 𝐵 = ∅, |𝐴| = |𝐵| = 𝑛

log 𝑛

}
.

Moreover set 𝑘 𝑗 = min{|𝐹 | : 𝐹 ∈ F𝑗} for every 𝑗 ∈ [𝑠].
Maker plays according to Lemma 6.1.46.1.4 with 𝛾 and 𝑠 as defined above and hypergraph

H = (𝐸 (𝐾𝑛), F ). For that we need to verify that the condition (6.1.26.1.2) holds. For

𝑗 ∈ [𝑠 − 1], we have 1
2𝑛

1+ ( 𝑗−1) 𝜀
2 ≤ 𝑘 𝑗 ≤ 𝑛1+ ( 𝑗−1) 𝜀

2 and |F𝑗 | =
(

𝑛
1
2𝑛

( 𝑗+1) 𝜀/2

) ( 1
2𝑛

( 𝑗+1) 𝜀/2

𝑛( 𝑗−1) 𝜀/2

)
.

Hence

|F𝑗 | ≤ 𝑛𝑛
( 𝑗+1) 𝜀/2

and |F𝑗 | ≥
(

𝑛
1
2𝑛

( 𝑗+1) 𝜀/2

)
≥

(
2𝑛1−( 𝑗+1) 𝜀/2

) 1
2𝑛

( 𝑗+1) 𝜀/2

≥ 2
1
2𝑛

( 𝑗+1) 𝜀/2
.
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6 Multistage Maker-Breaker game

In particular, using that 𝑠 = 2/𝜀 ≤ 𝑛 and the bounds above on 𝑘 𝑗 and |𝐹𝑗 |, we have
𝑛1−𝜀

2 log2 𝑛
≤ 𝑘 𝑗

log(𝑠 |F𝑗 |) ≤ 𝑘 𝑗

log |F𝑗 | ≤ 𝑛, from which we can conclude (6.1.26.1.2) for 𝑗 ∈ [𝑠 − 1] as
follows:(

𝑘 𝑗

log(𝑠 |F𝑗 |)

)𝛾/2
≥

(
𝑛1−𝜀

2 log2 𝑛

)𝛾/2

= exp
[
𝛾

2
·
(
(1 − 𝜀) log 𝑛 − log 2 − 2 log log 𝑛

)]
= exp(log 𝑏 + log log𝑏+1(𝑛) + 5) > 20𝑏 log𝑏+1(𝑛)

≥ 20𝑏max
{
1, log𝑏+1

(
𝑘 𝑗

log(𝑠 |F𝑗 |)

)}
.

Similarly, for 𝑗 = 𝑠 we have 𝑘𝑠 = 𝑛2

log2 𝑛
and |F𝑠 | = 1

2
( 𝑛
𝑛/log 𝑛

) (𝑛−𝑛/log 𝑛
𝑛/log 𝑛

)
, hence |F𝑠 | ≤ 4𝑛

and |F𝑠 | ≥ exp
(
(2−𝑜 (1))𝑛 log log 𝑛

log 𝑛

)
. In particular, 𝑛

2 log2 𝑛
≤ 𝑘𝑠

log(𝑠 |F𝑠 |) ≤ 𝑘𝑠
log |F𝑠 | ≤ 𝑛 from

which we can conclude (6.1.26.1.2) analogously.
By Lemma 6.1.46.1.4 we now obtain that Maker can ensure to claim at least one edge in each

𝐹 ∈ F for at least

(1 − 𝛾) log𝑏+1

(
𝑛1−𝜀

2 log2 𝑛

)
≥ (1 − 𝛾) log𝑏+1

(
𝑛1−2𝜀

)
≥ (1 − 𝛾 − 2𝜀) log𝑏+1(𝑛)

stages, where we use the choice of 𝜀 in the first inequality.
It thus remains to check that if a graph 𝐺 contains an edge from every 𝐹 ∈ F , then

properties (P1)(P1) and (P2)(P2) hold. Using only F𝑠, we immediately see that (P2)(P2) holds. For
proving (P1)(P1), let 𝑆 ⊆ 𝑉 (𝐾𝑛) with |𝑆 | ≤ 𝑛

log 𝑛 be given, and let 𝑗 ∈ [𝑠 − 1] be largest
such that 𝑛( 𝑗−1) 𝜀/2 ≤ |𝑆 |. If 𝑗 ≤ 𝑠 − 2, then |𝑆 | < 𝑛 𝑗 𝜀/2. Otherwise, if 𝑗 = 𝑠 − 1,
then |𝑆 | ≤ 𝑛

log 𝑛 = 𝑛( 𝑗+1) 𝜀/2

log 𝑛 . In any case, choose any subset 𝑆′ ⊆ 𝑆 of size 𝑛( 𝑗−1) 𝜀/2, and
observe that |𝑁𝐺 (𝑆′) | ≥ 1

2𝑛
( 𝑗+1) 𝜀/2 − 𝑛( 𝑗−1) 𝜀/2 since Maker claims an edge in every set

𝐸𝐾𝑛
(𝑆′, 𝐵) ∈ F𝑗 with 𝐵 ∩ 𝑆′ = ∅ and |𝐵| = 𝑛 − 1

2𝑛
( 𝑗+1) 𝜀/2. In particular,

|𝑁𝐺 (𝑆) | ≥ |𝑁𝐺 (𝑆′) | − |𝑁𝐺 (𝑆′) ∩ 𝑆 | ≥
1
2
𝑛( 𝑗+1) 𝜀/2 − 𝑛( 𝑗−1) 𝜀/2 − 𝑛( 𝑗+1) 𝜀/2

log 𝑛

≥ 1
4
𝑛( 𝑗+1) 𝜀/2 > (log log 𝑛) |𝑆 | ,

where we use the definition of 𝑗 and that 𝜀 > 4 log log 𝑛
log 𝑛 . This proves (P1)(P1) and hence the

lower bound of Theorem 1.3.41.3.4. □

6.3 Proof of Theorem 1.3.61.3.6 (Non-k-colourability game)

In this section we prove Theorem 1.3.61.3.6. Maker’s strategy relies on Lemma 6.1.46.1.4, while
Breaker’s strategy relies on multiple applications of the following lemma.
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6 Multistage Maker-Breaker game

Lemma 6.3.1 (Corollary of Theorem 1.8 in [6464]). Let 𝑏 ≥ 1 be an integer and 𝐺 be the
union of at most 𝑏 + 1 edge-disjoint forests. Then Breaker wins the (1: 𝑏) cycle game on 𝐺.

6.3.1 Maker’s strategy

Let 𝑛 be large enough and consider the family

F =

{
𝐸𝐾𝑛

(𝐴) : 𝐴 ⊆ 𝑉 (𝐾𝑛), |𝐴| =
⌈𝑛
𝑘

⌉}
Maker plays according to Lemma 6.1.46.1.4 with

𝛾 = 2 ·
log 𝑏 + log log𝑏+1(𝑛) + 5

log 𝑛 − 2 log 𝑘 − log 4 − log log 2
,

𝑠 = 1 and hypergraph H = (𝐸 (𝐾𝑛), F ). Note that 𝛾 = 𝑜(1) and 𝛾 > 0 since 𝑏 and 𝑘 are
subpolynomial in 𝑛. In order to apply Lemma 6.1.46.1.4, we need to check that condition (6.1.26.1.2)
holds. Observe that |𝐹 | =

(⌈ 𝑛
𝑘 ⌉
2

)
for every 𝐹 ∈ F and, with ℓ =

(⌈ 𝑛
𝑘 ⌉
2

)
, we have

(
ℓ

log |F |

)𝛾/2
≥

(
𝑛2

4𝑘2

log(2𝑛)

)𝛾/2

= exp
(
log 𝑏 + log log𝑏+1(𝑛) + 5

)
> 20𝑏 log𝑏+1(𝑛) ≥ 20𝑏max

{
1, log𝑏+1

(
ℓ

log |F |

)}
,

where we use the definition of 𝛾 in the equality and that ℓ
log( |F |) ≤ 𝑛 in the last inequality.

Therefore, (6.1.26.1.2) holds and we conclude that Maker can claim an edge from each 𝐹 ∈ F
for at least

(1 − 𝛾) log𝑏+1

(
ℓ

log |F |

)
≥ (1 − 𝛾) log𝑏+1

(
𝑛2

4𝑘2

log(2𝑛)

)
≥

(
1 − 𝛾 −

2 log𝑏+1(2𝑘) + log𝑏+1(log 2)
log𝑏+1(𝑛)

)
log𝑏+1(𝑛)

= (1 − 𝑜(1)) log𝑏+1(𝑛)

stages, where we use that 𝛾 = 𝑜(1) and 𝑘 is subpolynomial in 𝑛.
It remains to show that if a graph 𝐺 contains an edge from every 𝐹 ∈ F , then 𝐺 does

not admit a proper 𝑘-colouring. Observe indeed that if there is a proper 𝑘-colouring of 𝐺,
then at least one colour would be assigned to at least ⌈𝑛

𝑘
⌉ vertices. But 𝐺 contains an edge

in every set of ⌈𝑛
𝑘
⌉ vertices, which is a contradiction. □
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6.3.2 Breaker’s strategy

Breaker wants to force the board to be a forest, so that it is bipartite and thus 𝑘-colourable
for each 𝑘 ≥ 2. We explain below a strategy to achieve this in log𝑏+1(𝑛) + 1 stages. In each
stage we partition the board 𝑋𝑖 = 𝐹𝑖,1 ∪ · · · ∪ 𝐹𝑖,𝑘𝑖 into 𝑘𝑖 edge-disjoint forests, where 𝑘𝑖
is the smallest number such that such a partition exists. Let F𝑖 be the collection of forests
from such a partition. We show that Breaker can ensure that 𝑘𝑖+1 ≤ ⌈ 𝑘𝑖

𝑏+1⌉, by using the
following strategy. Assume that in stage 𝑖 the board 𝑋𝑖 has 𝑘𝑖 edge-disjoint forests. Then
we split the board 𝑋𝑖 into ⌈ 𝑘𝑖

𝑏+1⌉ edge-disjoint boards 𝐺 𝑗 , such that each forest 𝐹 ∈ F𝑖 is
contained in exactly one board 𝐺 𝑗 , and each board contains at most 𝑏 + 1 edge-disjoint
forests 𝐹 ∈ F𝑖 . Whenever Maker plays on some board 𝐺 𝑗 , Breaker plays on the same
board according to the strategy given by Lemma 6.3.16.3.1. Thus, at the end of stage 𝑖, Maker
has claimed an acyclic graph on each board 𝐺 𝑗 . We conclude that there is a partition of
𝑋𝑖+1 into at most ⌈ 𝑘𝑖

𝑏+1⌉ edge-disjoint forests as wanted.
Using the fact that 𝑋0 = 𝐸 (𝐾𝑛) and thus 𝑘0 = ⌈𝑛2 ⌉, we conclude that 𝑘𝑖 ≤ 1 for

𝑖 ≥ log𝑏+1(𝑛) + 1, and thus the board becomes a forest. □

6.4 Proof of Theorem 1.3.71.3.7 (𝐻-game)

In this section we prove Theorem 1.3.71.3.7. Maker’s strategy relies on the container method
(see Section 2.32.3) and Lemma 6.1.46.1.4. Breaker’s strategy relies instead on the notion of
𝐾-collections introduced in Section 2.72.7.

6.4.1 Maker’s strategy

Let 𝐻 be a graph and assume 𝑛 to be large enough whenever needed. We will prove
𝜏(H𝐻,𝑛, 𝑏) ≥

(
1

𝑚2 (𝐻) − 𝑜(1)
)

log𝑏+1(𝑛), as required.
Let 𝑛0, 𝑟 ∈ N and 𝛿 ∈ (0, 1) be given by Theorem 2.3.12.3.1 on input 𝐻. Let 𝑛 ≥ 𝑛0

and denote the collection of containers by {𝐶𝑖 : 𝑖 ∈ [𝑡 (𝑛)]}. Maker plays according to
Lemma 6.1.46.1.4 with

𝛾 = 2 · 𝑚2(𝐻) ·
log 𝑏 + log log𝑏+1(𝑛) + 5

log 𝑛 − 2 · 𝑚2(𝐻) · log log 𝑛
,

𝑠 = 1 and hypergraph H = (𝐸 (𝐾𝑛), F ), where

F = {𝐸 (𝐾𝑛) \ 𝐶𝑖 : 𝑖 ∈ [𝑡 (𝑛)]} .

We let 𝑘 = min{|𝐹 | : 𝐹 ∈ F } and we check that condition (6.1.26.1.2) of Lemma 6.1.46.1.4
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holds. Observe that 𝛿
(𝑛
2
)
≤ 𝑘 ≤

(𝑛
2
)

and

|F | ≤
( (𝑛

2
)

𝑟𝑛2−1/𝑚2 (𝐻)

)
· (2𝑟 )𝑟𝑛2−1/𝑚2 (𝐻)

< 𝑛2𝑟𝑛2−1/𝑚2 (𝐻)
.

In particular, 𝑛1/𝑚2 (𝐻)

log2 𝑛
≤ 𝑘

log |F | ≤ 𝑛
2 and therefore

(
𝑘

log |F |

)𝛾/2
≥

(
𝑛1/𝑚2 (𝐻)

log2 𝑛

)𝛾/2

= exp
[
𝛾

2

(
1

𝑚2(𝐻)
log 𝑛 − 2 log log 𝑛

)]
= exp

(
5 + log 𝑏 + log log𝑏+1(𝑛)

)
> 40𝑏 log𝑏+1(𝑛) > 20𝑏 log𝑏+1

(
𝑘

log |F |

)
.

Therefore Maker can claim an edge from each 𝐹 ∈ F for at least

(1 − 𝛾) log𝑏+1

(
𝑘

log |F |

)
≥ (1 − 𝛾) log𝑏+1

(
𝑛1/𝑚2 (𝐻)

log2 𝑛

)
≥

(
1 − 𝛾
𝑚2(𝐻)

−
2 log𝑏+1(log 𝑛)

log𝑏+1(𝑛)

)
log𝑏+1(𝑛)

=

(
1

𝑚2(𝐻)
− 𝑜(1)

)
log𝑏+1(𝑛)

stages, where we use that 𝛾 = 𝑜(1) since 𝑏 is subpolynomial in 𝑛.
It remains to show that if a graph 𝐺 contains an edge from every 𝐹 ∈ F , then 𝐺

still contains a copy of 𝐻. Observe that if 𝐺 is 𝐻-free then, by the container theorem
(Theorem 2.3.12.3.1), there exists 𝑖 ∈ [𝑡] such that 𝐸 (𝐺) ⊆ 𝐶𝑖 . But 𝐺 contains an edge in
𝐸 (𝐾𝑛) \ 𝐶𝑖 , which is a contradiction.

Therefore the lower bound of Theorem 1.3.71.3.7 is proven. □

6.4.2 Breaker’s strategy

We split Breaker’s strategy in two phases. In the first phase, which will occupy the main
part of the game, Breaker ensures that the board will not have many copies of 𝐻 clustered
together (see Definition 2.7.12.7.1). Then afterwards, in the second phase, Breaker can consider
each cluster separately and destroy all remaining copies of 𝐻 in a tiny number of stages.

Given any constant 𝜀 > 0 and any 𝑛 ∈ N large enough, we show that Breaker can block
all copies of 𝐻 in at most

(
1

𝑚2 (𝐻) + 𝜀
)

log𝑏+1(𝑛) stages. For this, let 𝐾 be any subgraph

of 𝐻 such that 𝑒 (𝐾)−1
𝑣 (𝐾)−2 = 𝑚2(𝐻), and notice that 𝑑2(𝐾) = 𝑚2(𝐾) = 𝑚2(𝐻). Next, let

𝛿 = 𝛿(𝐻, 𝜀) > 0 be a constant such that

1
𝑚2(𝐾) − 𝛿

<
1

𝑚2(𝐾)
+ 𝜀

4
,
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and pick 𝑡 = 𝑡 (𝐻, 𝜀, 𝛿) ∈ N such that for all 𝑥 ≥ 𝑡 − 1 it holds that

𝑒(𝐾) + 𝑚2(𝐾)𝑥
𝑣(𝐾) + 𝑥 ≥ 𝑚2(𝐾) − 𝛿 and

(𝑡 + 2)𝑣(𝐾)
(𝑚2(𝐾) − 𝛿) · 𝑡 · 𝑣(𝐾) − 1

<
1

𝑚2(𝐾) − 𝛿
+ 𝜀

4
.

As already pointed out, Breaker’s strategy is based on two phases: first he blocks all
𝐾-collections on at least 𝑡𝑣(𝐾) vertices (see Claim 6.4.16.4.1), and then he blocks all remaining
copies of 𝐾 . Since 𝐾 is a subgraph of 𝐻, at this point Breaker will have blocked all copies
of 𝐻 as well.

Claim 6.4.1 (First phase of Breaker’s strategy). Breaker has a strategy so that after(
1

𝑚2 (𝐾) +
𝜀
2

)
log𝑏+1(𝑛) stages, the board does not contain a 𝐾-collection with at least

𝑡𝑣(𝐾) vertices.

Proof of Claim 6.4.16.4.1. By Claim 2.7.32.7.3 we know that, if the board contains a 𝐾-collection
on at least 𝑡𝑣(𝐾) vertices, then it must also contain an 𝑠-bunch 𝐵 with 𝑠 ≥ 𝑡 and 𝑡𝑣(𝐾) ≤
𝑣(𝐵) ≤ (𝑡 + 1)𝑣(𝐾). Hence, Breaker can concentrate on blocking such bunches, and we
define

F =

𝐵 =
⋃
𝑖∈[𝑠]

𝐾𝑖 :
𝐵 is an 𝑠-bunch of copies 𝐾𝑖 of 𝐾 in 𝐾𝑛 with

𝑠 ≥ 𝑡 and 𝑡𝑣(𝐾) ≤ 𝑣(𝐵) ≤ (𝑡 + 1)𝑣(𝐾)

 .

Let F0 = F and, throughout the game, denote by F𝑖 ⊆ F𝑖−1 the family of all elements
𝐹 ∈ F𝑖−1 that Maker has fully occupied at the end of stage 𝑖. In order to prove the claim,
we must show that Breaker has a strategy to ensure F𝑘 = ∅ for 𝑘 =

(
1

𝑚2 (𝐾) +
𝜀
2

)
log𝑏+1(𝑛).

Now, as any bunch in F0 has at most (𝑡 + 1)𝑣(𝐾) vertices, we have

|F0 | ≤ 𝑛(𝑡+1)𝑣 (𝐾) · 2( (𝑡+1)𝑣 (𝐾))2
< 𝑛(𝑡+2)𝑣 (𝐾) . (6.4.1)

Using Theorem 6.1.16.1.1, Breaker has a strategy to ensure that

|F𝑖 | ≤
∑︁
𝐵∈F𝑖−1

(𝑏 + 1)−𝑒 (𝐵)+1 ≤ |F𝑖−1 | · (𝑏 + 1)−(𝑚2 (𝐾)−𝛿) ·𝑡 ·𝑣 (𝐾)+1 (6.4.2)

for each positive 𝑖 ∈ N, where in the last inequality we use that 𝑒(𝐵) = 𝑑 (𝐵) · 𝑣(𝐵) ≥
(𝑚2(𝐾) − 𝛿) · 𝑡 · 𝑣(𝐾) for all 𝐵 ∈ F𝑖−1 ⊆ F0, which follows from the Claim 2.7.42.7.4 (note its
assumptions hold by the choice of 𝑡). Combining (6.4.16.4.1) and (6.4.26.4.2), we observe that

|F𝑘 | < 𝑛(𝑡+2)𝑣 (𝐾) · (𝑏 + 1)𝑘 · [−(𝑚2 (𝐾)−𝛿) ·𝑡 ·𝑣 (𝐾)+1] ≤ 1

since, by our choice of 𝛿 and 𝑡, we have 𝑘 >
(𝑡+2)𝑣 (𝐾)

(𝑚2 (𝐾)−𝛿) ·𝑡 ·𝑣 (𝐾)−1 log𝑏+1(𝑛). Therefore
F𝑘 = ∅ and this finishes the proof of the claim.

Now, consider the first moment when Breaker made sure that every remaining 𝐾-
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6 Multistage Maker-Breaker game

collection has fewer than 𝑡𝑣(𝐾) vertices, and denote them with K1, . . . ,Kℓ , ℓ ∈ N0. Since
any two such collections are edge-disjoint by definition, we know then that each remaining
copy of 𝐾 must appear in a unique collection. From now on, in each further stage, Breaker
plays as follows: whenever Maker claims an edge of 𝐸 (K𝑖) for some 𝑖 ∈ [ℓ], Breaker
claims as many edges as possible of the same collection. In all other cases, Breaker plays
arbitrarily. Since each of the collections K𝑖 has fewer than (𝑡𝑣(𝐾))2 edges, it takes fewer
than log𝑏+1((𝑡𝑣(𝐾))2) stages until from each collection there is at most one edge left and
hence all copies of 𝐾 are blocked. Combining the two phases, Breaker wins within(

1
𝑚2(𝐾)

+ 𝜀
2

)
log𝑏+1(𝑛) + 2 log𝑏+1(𝑡𝑣(𝐾)) ≤

(
1

𝑚2(𝐾)
+ 𝜀

)
log𝑏+1(𝑛)

=

(
1

𝑚2(𝐻)
+ 𝜀

)
log𝑏+1(𝑛)

stages. Hence, the upper bound of Theorem 1.3.71.3.7 is proven. □

6.5 Proof of Theorem 1.3.81.3.8 (Pancyclicity game)

In this section we prove Theorem 1.3.81.3.8. We start observing that the upper bound
𝜏(PAN𝑛, 𝑏) ≤

(
1
2 + 𝑜(1)

)
log𝑏+1(𝑛) follows from Theorem 1.3.71.3.7. Indeed Breaker plays

according to his strategy given by Theorem 1.3.71.3.7 with 𝐻 = 𝐶3. By doing this, he can
ensure that the board does not contain any triangle after

(
1
2 + 𝑜(1)

)
log𝑏+1(𝑛) stages and

thus it cannot be pancyclic. For the lower bound, we will use the following criterion for a
graph to be pancyclic, which is a corollary of Theorem 1.1 in [7272].

Theorem 6.5.1 (Corollary from Theorem 1.1 in [7272]). Let 𝐺 be a graph on 𝑛 vertices such
that

(P1) every independent set of 𝐺 is of size at most
√
𝑛;

(P2) 𝐺 is 600
√
𝑛-vertex-connected,

then 𝐺 is pancyclic.

6.5.1 Maker’s strategy

Let 𝑛 be large enough and consider the family F = F1 ∪ F2 ∪ F3 with

F1 = {𝐸𝐾𝑛
(𝐴) : 𝐴 ⊂ 𝑉 (𝐾𝑛), |𝐴| =

√
𝑛},

F2 = {𝐸𝐾𝑛
(𝐴, 𝐵) : 𝐴, 𝐵 ⊂ 𝑉 (𝐾𝑛), 𝐴 ∩ 𝐵 = ∅, |𝐴| = 1, |𝐵| = 𝑛 − 700

√
𝑛},

F3 = {𝐸𝐾𝑛
(𝐴, 𝐵) : 𝐴, 𝐵 ⊂ 𝑉 (𝐾𝑛), 𝐴 ∩ 𝐵 = ∅, |𝐴| =

√
𝑛, |𝐵| =

√
𝑛},
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6 Multistage Maker-Breaker game

and set 𝑘 𝑗 = min{|𝐹 | : 𝐹 ∈ F𝑗} for 𝑗 ∈ [3]. Maker plays according to Lemma 6.1.46.1.4 with

𝛾 = 2 ·
log 𝑏 + log log𝑏+1(𝑛) + 5

log
√
𝑛 − log log 𝑛 − log 3000

,

𝑠 = 3 and hypergraph H = (𝐸 (𝐾𝑛), F ). Note that 𝛾 = 𝑜(1) since 𝑏 is subpolynomial in 𝑛.
We check that condition (6.1.26.1.2) of Lemma 6.1.46.1.4 holds. We have |F1 | =

( 𝑛√
𝑛

)
, |F2 | =

𝑛
( 𝑛−1
700

√
𝑛−1

)
, and |F3 | =

( 𝑛√
𝑛

) (𝑛−√𝑛√
𝑛

)
. Further, we have 𝑘1 =

(√𝑛
2
)
, 𝑘2 = 𝑛 − 700

√
𝑛, and

𝑘3 = 𝑛. Note that 𝑛4 ≤ 𝑘 𝑗 ≤ 𝑛 and
√
𝑛
√
𝑛 ≤ 3|𝐹𝑗 | = 𝑠 |𝐹𝑗 | ≤ 𝑛700

√
𝑛 and thus

√
𝑛

3000 log 𝑛 ≤
𝑘 𝑗

log(𝑠 |F𝑗 |) ≤ 2
√
𝑛

log 𝑛 for every 𝑗 ∈ [3]. Using this, we can estimate for each 𝑗 ∈ [3],

(
𝑘 𝑗

log(𝑠 |F𝑗) |

)𝛾/2
≥

( √
𝑛

3000 log(𝑛)

)𝛾/2

= exp
(
log 𝑏 + log log𝑏+1(𝑛) + 5

)
> 20𝑏 log𝑏+1(𝑛) ≥ 20𝑏max

{
1, log𝑏+1

(
𝑘 𝑗

log(𝑠 |F𝑗) |

)}
,

and thus (6.1.26.1.2) holds as well. We conclude that Maker can claim an edge of each 𝐹 ∈ F
for at least

(1 − 𝛾) log𝑏+1

( √
𝑛

3000 log(𝑛)

)
≥

(
1
2
− 𝛾 −

log𝑏+1(3000 log 𝑛)
log𝑏+1(𝑛)

)
log𝑏+1(𝑛)

=

(
1
2
− 𝑜(1)

)
log𝑏+1(𝑛)

stages.
It remains to show that if a graph 𝐺 contains an edge from every 𝐹 ∈ F , then 𝐺 fulfills

(P1)(P1) and (P2)(P2). Let 𝐴 ⊂ 𝑉 (𝐾𝑛) be any vertex set of size |𝐴| =
√
𝑛. Then, using the

subfamily F1, the graph 𝐺 has at least one edge within 𝐴. Therefore, every independent
set can be of size at most

√
𝑛 as required by (P1)(P1). Further, let 𝑉 (𝐾𝑛) = 𝐴 ∪ 𝐵 ∪ 𝐶 be

any partition of 𝑉 (𝐾𝑛) with |𝐶 | = 600
√
𝑛. We show that 𝐺 contains an edge between 𝐴

and 𝐵, and thus it is 600
√
𝑛-vertex-connected as required by (P2)(P2). Assume |𝐴| ≥

√
𝑛 and

|𝐵| ≥
√
𝑛. In this case, using the subfamily F3, the graph 𝐺 contains an edge between

𝐴 and 𝐵. Assume otherwise without loss of generality that |𝐴| <
√
𝑛. Using F2 instead,

every vertex in 𝐴 has at least 700
√
𝑛 > |𝐴| + |𝐶 | neighbours in 𝐺, so there needs to be a

neighbour in 𝐵. □
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7
Conclusion and open problems

In this chapter, we discuss connections to other lines of research and highlight some open
problems in the field. We first list the ones related to randomly perturbed graphs in
Section 7.17.1, then those related to the appearance of transversals in hypergraph collections
in Section 7.27.2, and finally those arising in the context of the multistage version of the
Maker-Breaker game in Section 7.37.3.

7.1 Other spanning structures in randomly perturbed graphs

7.1.1 Larger powers of Hamilton cycles

Theorem 1.1.141.1.14 completely determines the perturbed threshold for the containment of the
square of a Hamilton cycle, and it is natural to investigate larger powers as well.

Let 𝑟 ≥ 3 be fixed. In the extremal setting, Komlós, Sarközy, and Szemerédi [7474]
showed that for 𝑛 large enough any 𝑛-vertex graph 𝐺 with minimum degree 𝛿(𝐺) ≥ 𝑟

𝑟+1𝑛

contains the 𝑟-th power of a Hamilton cycle. This result establishes that for the perturbed
threshold 𝑝𝛼 = 0 holds for 𝛼 ≥ 𝑟

𝑟+1 . In the random setting, i.e. when 𝛼 = 0, the threshold
is understood as well and equal to 𝑛−1/𝑟 , which follows from a result of Riordan [9898].
Research in the perturbed setting has mainly focused on the range of small positive densities
or densities close to the extremal threshold. In particular, it was shown by Böttcher,
Montgomery, Parczyk, and Person [2626] that for any 𝛼 ∈ (0, 1) there exists 𝜂 = 𝜂(𝑟, 𝛼) > 0
such that for any 𝑛-vertex graph𝐺𝛼 with minimum degree 𝛿(𝐺𝛼) ≥ 𝛼𝑛 a.a.s. 𝐺𝛼∪𝐺 (𝑛, 𝑝)
contains the perturbed threshold for the containment of the 𝑟-th power of a Hamilton cycle,
provided 𝑝 ≥ 𝑛−1/𝑟−𝜂 . At the other extreme, Nenadov and Trujić [9292], improving on a
result of Dudek, Reiher, Ruciński, and Schacht [4343], showed that for 𝛼 ≥ 𝑟

𝑟+1 , while 𝐺𝛼
alone contains the 𝑟-th power of a Hamilton cycle, adding a linear number of random
edges suffices to enforce the (2𝑟 + 1)-st power of a Hamilton cycle. When 𝛼 > 1/2,
even higher powers of Hamilton cycles have been studied by Antoniuk, Dudek, Reiher,
Ruciński, and Schacht [66] and by Antoniuk, Dudek, and Ruciński [77], although this last
result is concerned with a different notion of threshold. We remark that no exact results
are known for 𝛼 ∈ (0, 1/2] and 𝑟 ≥ 3.
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The first case that remains open is 𝑟 = 3, where we recall that it is only known that
the perturbed threshold is 𝑛−1/3 for 𝛼 = 0, 𝑛−1 for 1/2 < 𝛼 < 3/4, and 0 for 𝛼 ≥ 3/4.
We observe that we can obtain natural lower bounds by determining the sparsest possible
structure that remains for 𝐺 (𝑛, 𝑝) after mapping the third power of a Hamilton cycle into
the complete bipartite graph 𝐻𝛼 with parts of size 𝛼𝑛 and (1 − 𝛼)𝑛. When 𝛼 = 1/4, this
structure is essentially the square of a Hamilton cycle on 3𝑛/4, and is obtained by mapping
every fourth vertex of the third power of a Hamilton cycle into the smaller part of 𝐻1/4.
Therefore, in order for 𝐻1/4 ∪ 𝐺 (𝑛, 𝑝) to contain the third power of a Hamilton cycle,
we need 𝐺 (𝑛, 𝑝) to contain the square of a Hamilton cycle on 3𝑛/4 vertices. This gives
𝑝1/4 ≥ 𝑛−1/2 and we believe this is actually tight.

Conjecture 7.1.1. Let 𝑝𝛼 be the perturbed threshold for the containment of the third power
of a Hamilton cycle. Then 𝑝1/4 = 𝑛−1/2.

However, as discussed in the introduction, finding the square of a Hamilton cycle at this
probability is a particularly challenging problem, and, additionally, it is not possible to first
embed small parts arbitrarily and then connect them, as we do in the proof of our main
result.

For each of the ranges 0 < 𝛼 < 1/4 and 1/4 < 𝛼 < 1/2, it is not clear whether to expect
a similar ‘jumping’ behaviour as the one proved for the square of a Hamilton cycle in the
range 0 < 𝛼 < 1/2. We can obtain natural lower bounds similarly as we did for 𝛼 = 1/4.
Again, the sparsest structure that remains for 𝐺 (𝑛, 𝑝) is obtained essentially by mapping
every 1/𝛼-th vertex of 𝐶3

𝑛 into the smaller part of 𝐻𝛼. However, in contrast to the lower
bounds in Proposition 1.1.151.1.15, the threshold for the appearance of this structure in 𝐺 (𝑛, 𝑝)
is not determined by the second or third power of a short path. For example, when 𝛼 = 1/5,
by doing as described above and mapping every fifth vertex of 𝐶3

𝑛 into the smaller part of
𝐻𝛼, we are left with copies of 𝑃3

4, which are connected by three edges, cyclically. By a
first moment argument, the threshold for this structure in 𝐺 (𝑛, 𝑝) is at least 𝑛−4/9, and thus
𝑝1/5 ≥ 𝑛−4/9, which is larger than the threshold for a 𝑃3

4-factor in 𝐺 (𝑛, 𝑝).
In addition, this lower bound does not seem to be attainable with our approach, because

at this probability there is no small structure that we can find and then connect into the
third power of a Hamilton cycle. Indeed at probability 𝑛−4/9 it is not possible to first
find the copies of 𝑃3

4’s arbitrarily and then connect them. On the other hand, we believe
our methods can give the following. We map every ninth and tenth vertex of 𝐶3

𝑛 into the
smaller part of 𝐻1/5, and this leaves copies of 𝑃3

8 connected by single edges, cyclically. We
expect that it is possible to extend our argument to this set-up, but this would only imply
𝑝1/5 ≤ 𝑛−7/18. A similar discussion (with other edge-densities) holds for the other values
of 𝛼 ∈ (0, 1/4) ∪ (1/4, 1/2) and, if our argument goes through, it would improve on the
bounds obtained in [2626], but it would still be far from the lower bounds discussed above.
The exact threshold remains a mystery.
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7.1.2 Larger clique factors

As discussed in the previous section, the perturbed threshold for the (𝑟 − 1)-st power of
a Hamilton cycle with 𝑟 ≥ 4 is not entirely known. For certain values of 𝛼 and 𝑟 ≥ 4,
the perturbed threshold is not even precisely known for 𝐾𝑟 -factors. Indeed, as discussed
in Section 1.1.21.1.2, the perturbed threshold is known for all 𝛼 ∈ [0, 1], except the boundary
cases 𝛼 ∈ {1/𝑟, 2/𝑟, . . . , (𝑟 − 2)/𝑟}.

Let 𝑟 ≥ 4 and 𝛼 = 1 − 𝑘/𝑟 with 2 ≤ 𝑘 ≤ 𝑟 − 1. A natural extremal structure is given by
the complete ⌈𝑟/𝑘⌉-partite graph with ⌊𝑟/𝑘⌋ classes of size 𝑘𝑛/𝑟 and possibly one class
of size (1 − ⌊𝑟/𝑘⌋𝑘/𝑟)𝑛 if 𝑘 ∤ 𝑟 . This implies that to get a 𝐾𝑟 -factor in 𝐺𝛼 ∪ 𝐺 (𝑛, 𝑝) we
need to cover all but polylog 𝑛 vertices of the sets of size 𝑘𝑛/𝑟 with vertex-disjoint copies
of 𝐾𝑘 . It follows that the threshold is at least the threshold for a 𝐾𝑘-factor in 𝐺 (𝑛, 𝑝), i.e.
𝑛−2/𝑘 (log 𝑛)2/(𝑘2−𝑘) . Surprisingly, this is not sufficient in the case when 𝑟 > 3 and 𝑘 ≠ 2;
in fact, for small 𝜀, even 𝑛−2/𝑘+𝜀 is not sufficient.

We briefly explain the counterexample for 𝑟 = 4 and 𝑘 = 3, by constructing an 𝑛-
vertex graph 𝐺 with minimum degree 𝛿(𝐺) ≥ (1 − 3/4)𝑛 = 𝑛/4 such that, even for small
𝜀 > 0, with 𝑝 ≥ 𝑛−2/3+𝜀 a.a.s. the graph 𝐺 ∪ 𝐺 (𝑛, 𝑝) does not contain a 𝐾4-factor. Let
0 < 𝜀 ≤ 1/49, 𝑝 ≥ 𝑛−2/3+𝜀 , and 𝑛7𝜀 ≤ 𝑚 ≤ 𝑛1/7. Then, for two sets 𝐴 and 𝐵 with
|𝐴| = 𝑛/4 − 𝑚 and |𝐵| = 3𝑛/4 + 𝑚, we let 𝐺 be the 𝑛-vertex graph on 𝑉 (𝐺) = 𝐴 ∪ 𝐵

such that 𝐴 is an independent set, 𝐺 [𝐵] is given by |𝐵|/(2𝑚) disjoint copies of 𝐾𝑚,𝑚, and
any pair of vertices (𝑎, 𝑏) with 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 is an edge. Clearly 𝐺 has minimum
degree 𝑛/4. If 𝐺 ∪𝐺 (𝑛, 𝑝) contains a 𝐾4-factor, since 𝐴 only contains 𝑛/4−𝑚 vertices, at
least 𝑚 copies of 𝐾4 must lie within 𝐵. However we claim that a.a.s. the perturbed graph
𝐺 ∪ 𝐺 (𝑛, 𝑝) [𝐵] contains less than 𝑚 copies of 𝐾4 and thus a.a.s. 𝐺 ∪ 𝐺 (𝑛, 𝑝) does not
contain a 𝐾4-factor. Denote by 𝑋 the number of 𝐾4’s in 𝐺 ∪ 𝐺 (𝑛, 𝑝) [𝐵]. It is not hard to
see that when 𝑚 is not too small the best way to build a 𝐾4 in 𝐵 is to choose a 𝐾𝑚,𝑚 in 𝐵
and ask for an edge of 𝐺 (𝑛, 𝑝) on each side of 𝐾𝑚,𝑚. We get E[𝑋] ≲ 𝑛

𝑚
𝑚4𝑝2 = 𝑜(𝑚) and

by Markov’s inequality a.a.s. 𝑋 < 𝑚 as claimed.

Problem 7.1.2. Determine the behaviour of the perturbed threshold for a 𝐾4-factor and
the extremal graphs at 𝛼 = 1/4.

The counterexamples for other values of 𝑟 > 3 and 𝑘 ≠ 2 can be constructed in a
similar way, by slightly modifying the corresponding extremal graph defined above. In
the case when 𝑘 = 2 this construction does not increase the lower bound 𝑛−1 log 𝑛 and,
with Theorem 1.1.131.1.13 in mind, we believe that Theorem 1.1.71.1.7 generalises to 𝐾𝑟 . However
we believe that in all cases, using our methods, the non-extremal Theorem 1.1.111.1.11 can be
extended to any 𝐾𝑟 -factor: i.e. for all 2 ≤ 𝑘 ≤ 𝑟 − 1 and with 𝛼 = 1 − 𝑘/𝑟, when 𝐺𝛼 is
not close (with a similar condition as in Definition 1.1.101.1.10) to the extremal graph defined
above, then 𝑝 ≥ 𝐶𝑛−2/𝑘 is sufficient for a 𝐾𝑟 -factor in 𝐺𝛼 ∪ 𝐺 (𝑛, 𝑝).
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7.2 Transversals in hypergraph collections

7.2.1 Vertex degree for tight Hamilton cycles

Statement (B)(B) of Theorem 1.2.51.2.5 proves 𝑑-colour-blindness of the family of 𝑘-uniform
Hamilton ℓ-cycles, for various ranges of 𝑑, 𝑘 , and ℓ. However, there is a well-known
(uncoloured) Dirac-type result whose rainbow version is missing there: the vertex minimum
degree for tight Hamilton cycles in 3-uniform hypergraphs, corresponding to 𝑑 = 1, 𝑘 = 3
and ℓ = 𝑘 − 1.

The proof of the minimum vertex degree threshold for this family is due to Reiher, Rödl,
Ruciński, Schacht, and Szemerédi [9797], and it uses the absorption method, making this
family an ideal candidate for our main theorem. However, it turns out that we cannot hope
for the property Con to hold in this range of the parameters (see Section 2.1 in [9797] for a
discussion). Due to this additional complication, it would be an interesting challenge to
obtain a transversal generalisation of the result in [9797].

7.2.2 Exact results and stability

For Hamilton cycles in graphs, the exact rainbow minimum degree threshold is known [7070],
and the family of Hamilton cycles is exactly colour-blind, meaning that an error-term as in
Definition 1.2.31.2.3 is not required. It is natural to ask whether exact results also hold for other
structures in the rainbow setup and if a general statement similar to our Theorem 5.2.15.2.1 can
be proved. For example, improving on the statement (A)(A) of Theorem 1.2.51.2.5, it would be
very interesting to show if 𝛿(G) ≥ 𝑟𝑛/(𝑟 + 1) is already sufficient for a transversal copy of
the 𝑟-th power of a Hamilton cycle in graphs. Note that already for a rainbow 𝐾𝑟 -factor it is
not known whether 𝛿(G) ≥ 𝑟𝑛/(𝑟 +1) suffices. Moreover, resolving this for the 𝑟-th power
of a Hamilton cycles does not immediately imply the analogous result for a 𝐾𝑟 -factors,
even though the former contains the latter, because of the different number of colours
needed for a rainbow embedding. A similar observation is true for tight Hamilton cycles
and perfect matchings in hypergraphs. We remark that Lu, Wang, and Yu [8484] showed
that the family of 𝑘-uniform perfect matchings is exactly (𝑘 − 1)-colour blind, proving that
the rainbow minimum co-degree threshold essentially is 𝑛/2. Improving on one of the
statements in (B)(B) of Theorem 1.2.51.2.5, we can ask if the same condition 𝛿𝑘−1(H) ≥ 𝑛/2 is
sufficient for a transversal copy of a tight Hamilton cycle.

In the non-rainbow setup, exact results can typically be obtained by considering an
extremal and non-extremal case separately, where the latter often gives stability. Lu,
Wang, and Yu [8484] give an exact result for perfect matchings in collections of 𝑘-uniform
hypergraphs. Their arguments uses absorbers and distinguishes between an extremal and
non-extremal case. Roughly speaking, they say that a hypergraph collection is extremal if
essentially all of them are close to one of the extremal graphs for the uncoloured problem.
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Working with a similar notion for an extremal collection, it would be interesting to prove an
exact version for any of our results, as many of them hold in the uncoloured setup, e.g. [1414,
5858, 5959, 6060, 7373, 100100].

It seems to be too much to hope for a general theorem that covers all of these applications,
because of the different extremal constructions in each case. But we remark that, besides
the properties Ab, Con, and Fac, the additional (𝛼𝑛𝑘−𝑑)-term for the minimum 𝑑-degree
in our theorem is only necessary for the two applications of Lemma 5.3.55.3.5. Therefore, a
major step would be a variant of this theorem (for specific A) which is applicable with
a lower minimum 𝑑-degree, under the assumption that the hypergraph collection is not
extremal. However, Hamilton cycles give new complications and in this setup it is harder
to make a direct use of the results from the non-rainbow case, which was the main scope
of our investigation.

7.2.3 Other potential applications

There are many more structures which can be represented as A-cycles, e.g. copies of 𝐶4

glued as depicted in Figure 5.35.3. In the case of graphs, any A-link forms an A-cycle
with bounded maximum degree and bounded bandwidth. Thus, the bandwidth theorem
by Böttcher, Schacht and Taraz [2929] immediately gives minimum degree thresholds for the
existence of a Hamilton A-cycle, but their proof relies on different techniques than we
require for the application of Theorem 5.2.15.2.1. Hence, one would need to prove properties
Ab, Con, and Fac for such structures in order to obtain the corresponding rainbow result
using our method. More generally, a rainbow version of the bandwidth theorem would be
very interesting. Note that the bandwidth theorem is not optimal for many graphs, so the
minimum degree conditions for the containment of Hamilton A-cycles is an interesting
problem even in the non-rainbow setup.

7.3 Multistage positional games

In Section 1.31.3 we have introduced the multistage Maker-Breaker game and determined the
duration of this game for several natural graph properties. Being a new set-up, there are
many directions open for future work.

7.3.1 Connection to the classical setting

Observe that in all our results (Theorems 1.3.41.3.4 and 1.3.61.3.6 to 1.3.81.3.8) it happens that the
threshold 𝜏(H , 𝑏) is asymptotically the same as log𝑏+1(𝑏H), where 𝑏H denotes the
threshold bias for the Maker-Breaker game on the hypergraph H (see Section 1.3.11.3.1).
We wonder whether this is always the case.
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Problem 7.3.1. Does there exist a hypergraph H = (𝑋, F ) and a positive integer 𝑏, for
which 𝜏(H , 𝑏) and log𝑏+1(𝑏H) are not asymptotically the same?

7.3.2 Additional games

One could continue this line of research and estimate 𝜏(H , 𝑏) for other starting hypergraphs
H . We believe it would be interesting to consider the case where H is the hypergraph on
vertex set 𝐸 (𝐾𝑛), with hyperedges being the edge sets of (i) triangle factors, (ii) copies of
a fixed spanning tree or (iii) powers of Hamilton cycles.

Additionally, as a natural next step one may also consider multistage variants of other
positional games, for example Waiter-Client games and Client-Waiter game on 𝐾𝑛, or
Maker-Breaker games on the random graph 𝐺 (𝑛, 𝑝).

7.3.3 Multistage Maker-Breaker game with stop

The following variant of multistage games springs to mind, which we may call multistage
game with stop. Let a hypergraph H = (𝑋, F ) and a bias 𝑏 ≥ 1 be given, and define
𝑋0 = 𝑋 . For 𝑖 ≥ 1, the stage 𝑖 is played on the board 𝑋𝑖−1 ⊆ 𝑋 , and it ends the first time
Maker claims a winning set from F𝑖−1 ⊆ F completely. Then we define the next board
𝑋𝑖 to consist of all the elements which have been claimed by Maker or are free by the end
of stage 𝑖, and we let F𝑖 ⊆ F𝑖−1 be the family of those winning sets which are still fully
contained in 𝑋𝑖 . Similarly to the threshold 𝜏(H , 𝑏), we may define the duration of this
game, and denote it by 𝜏stop(H , 𝑏).

It is easy to see that 𝜏stop(H , 𝑏) ≥ 𝜏(H , 𝑏) always holds. Moreover, for the connectivity
game and hence also the Hamilton cycle game, we obtain that this bound is asymptotically
tight, as 𝜏stop(C𝑛, 𝑏) ≤ (1 + 𝑜(1)) log𝑏+1(𝑛) can be shown if 𝑏 is subpolynomial in 𝑛.
Indeed Breaker just needs to isolate a single vertex.

However, if we consider local properties instead, e.g. the 𝐻-game, there can be a huge
difference between 𝜏stop(H , 𝑏) and 𝜏(H , 𝑏). Indeed, for 𝑏 = 1, using that on dense graphs
Maker can claim a copy of 𝐻 fast and applying Turán’s Theorem, it is straightforward to
prove that 𝜏stop(H𝐻,𝑛, 1) = Θ(𝑛2). It would be interesting to understand this variant much
better. Hence, we suggest the following problem.

Problem 7.3.2. Given any graph 𝐻 and any constant bias 𝑏, determine 𝑐 = 𝑐(𝐻, 𝑏) such
that 𝜏stop(H𝐻,𝑛, 𝑏) = (𝑐 ± 𝑜(1))𝑛2.

Already the case when 𝐻 = 𝐾3 and 𝑏 = 1 is open and would be of interest.
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