8 research outputs found

    Balancing performance and effort in deep learning via the fusion of real and synthetic cultural heritage photogrammetry training sets

    Get PDF
    Cultural heritage presents both challenges and opportunities for the adoption and use of deep learning in 3D digitisation and digitalisation endeavours. While unique features in terms of the identity of artefacts are important factors that can contribute to training performance in deep learning algorithms, challenges remain with regards to the laborious efforts in our ability to obtain adequate datasets that would both provide for the diversity of imageries, and across the range of multi-facet images for each object in use. One solution, and perhaps an important step towards the broader applicability of deep learning in the field of digital heritage is the fusion of both real and virtual datasets via the automated creation of diverse datasets that covers multiple views of individual objects over a range of diversified objects in the training pipeline, all facilitated by closerange photogrammetry generated 3D objects. The question is the ratio of the combination of real and synthetic imageries in which an inflection point occurs whereby performance is reduced. In this research, we attempt to reduce the need for manual labour by leveraging the flexibility provided for in automated data generation via close-range photogrammetry models with a view for future deep learning facilitated cultural heritage activities, such as digital identification, sorting, asset management and categorisation

    Belgique

    Full text link
    peer reviewedThe digital documentation of heritage places produces accurate 3D restitution of their geometry in a virtual environment and can be related to multiple semantic layers to archive, represent, preserve and transmit the knowledge gathered along their lifecycle. The combination of high-density point clouds with other sources of information advises virtual reconstitutions of historical states of a place’s physical realm. The cultural significance of the built heritage lies in the values associated with its tangible and intangible dimensions. Apart from aspects of values related to historical sites’ physical attributes, 3D models can support the representation of intangible elements influencing visitors’ perception of their Genius Loci and supporting new interpretations about their cultural significance. In this framework, 3D animation, rendering, and simulation technologies allow recreating aspects of a place’s atmosphere, like the simulation of lighting conditions and the user’s immersive experience of a heritage site into a virtual environment. This paper focuses on the light perception recreated in a funeral chapel of the Theban Thumb environment by considering the strong spiritual dimension in the conception of funeral sites in Egypt during the New Kingdom period (1550-1069 BC). We investigate the potential of 3D simulation and animation technologies to represent hypotheses about original lighting conditions in such sites. The proposed research is based on the case study of Sennefer’s tomb, located on the western bank of the Nile, opposite modern Luxor

    Digital modes of interpretation of Pictish sculpture

    Get PDF
    Funding: Scottish Funding Council.Cultural heritage is no longer something that can only be experienced in a museum exhibition. Digital tools have facilitated the distribution of material relating to artefacts, both in its representation and in presenting its context. This paper describes how digital modelling techniques can be synthesised with 3D scanning to digitally restore artefacts and create authentic replicas of their original states. The digital artefacts can then be used to assist the process of interpreting these artefacts in diverse forms, both in the museum and outside the museum. The study looks at Pictish sculpture as a case-study, restoring 3D models of two stones, and creating varying opportunities for their interpretation. As part of this study, new interactive tools, a virtual reality environment, and a virtual tour are built to assist immersive interpretation of the Pictish sculpture. The application of these digitised objects serves as an opportunity for informal learning. These applications were evaluated during a drop-in session. Findings show that all participants enjoyed the immersive mode of learning with 89% also showing a willingness to learn more about the topic.Publisher PDFPeer reviewe

    Diverse approaches to learning with immersive Virtual Reality identified from a systematic review

    Get PDF
    To investigate how learning in immersive Virtual Reality was designed in contemporary educational studies, this systematic literature review identified nine design features and analysed 219 empirical studies on the designs of learning activities with immersive Virtual Reality. Overall, the technological features for physical presence were more readily implemented and investigated than pedagogical features for learning engagement. Further analysis with k-means clustering revealed five approaches with varying levels of interactivity and openness in learning tasks, from watching virtual worlds passively to responding to personalised prompts. Such differences in the design appeared to stem from different practical and educational priorities, such as accessibility, interactivity, and engagement. This review highlights the diversity in the learning task designs in immersive Virtual Reality and illustrates how researchers are navigating practical and educational concerns. We recommend future empirical studies recognise the different approaches and priorities when designing and evaluating learning with immersive Virtual Reality. We also recommend that future systematic reviews investigate immersive Virtual Reality-based learning not only by learning topics or learner demographics, but also by task designs and learning experiences

    Diverse approaches to learning with immersive Virtual Reality identified from a systematic review

    Get PDF
    To investigate how learning in immersive Virtual Reality was designed in contemporary educational studies, this systematic literature review identified nine design features and analysed 219 empirical studies on the designs of learning activities with immersive Virtual Reality. Overall, the technological features for physical presence were more readily implemented and investigated than pedagogical features for learning engagement. Further analysis with k-means clustering revealed five approaches with varying levels of interactivity and openness in learning tasks, from watching virtual worlds passively to responding to personalised prompts. Such differences in the design appeared to stem from different practical and educational priorities, such as accessibility, interactivity, and engagement. This review highlights the diversity in the learning task designs in immersive Virtual Reality and illustrates how researchers are navigating practical and educational concerns. We recommend future empirical studies recognise the different approaches and priorities when designing and evaluating learning with immersive Virtual Reality. We also recommend that future systematic reviews investigate immersive Virtual Reality-based learning not only by learning topics or learner demographics, but also by task designs and learning experiences

    Virtual Reality Methods

    Get PDF
    ePDF and ePUB available Open Access under CC-BY-NC-ND licence. Since the mid-2010s, virtual reality (VR) technology has advanced rapidly. This book explores the many opportunities that VR can offer for humanities and social sciences researchers. The book provides a user-friendly, non-technical methods guide to using ready-made VR content and 360° video as well as creating custom materials. It examines the advantages and disadvantages of different approaches to using VR, providing helpful, real-world examples of how researchers have used the technology
    corecore