6 research outputs found

    An assessment of the usability of biometric signature systems using the human-biometric sensor interaction model’

    Get PDF
    Signature biometrics is a widely used form of user authentication. As a behavioural biometric, samples have inherent inconsistencies which must be accounted for within an automated system. Performance deterioration of a tuned biometric software system may be caused by an interaction error with a biometric capture device, however, using conventional error metrics, system and user interaction errors are combined, thereby masking the contribution by each element. In this paper we explore the application of the Human-Biometric Sensor Interaction (HBSI) model to signature as an exemplar of a behavioural biometric. Using observational data collected from a range of subjects, our study shows that usability issues can be identified specific to individual capture device technologies. While most interactions are successful, a range of common interaction errors need to be mitigated by design to reduce overall error rates

    A Framework for Biometric and Interaction Performance Assessment of Automated Border Control Processes

    Get PDF
    Automated Border Control (ABC) in airports and land crossings utilize automated technology to verify passenger identity claims. Accuracy, interaction stability, user error, and the need for a harmonized approach to implementation are required. Two models proposed in this paper establish a global path through ABC processes. The first, the generic model, maps separately the enrolment and verification phases of an ABC scenario. This allows a standardization of the process and an exploration of variances and similarities between configurations across implementations. The second, the identity claim process, decomposes the verification phase of the generic model to an enhanced resolution of ABC implementations. Harnessing a human-biometric sensor interaction framework allows the identification and quantification of errors within the system's use, attributing these errors to either system performance or human interaction. Data from a live operational scenario are used to analyze behaviors, which aid in establishing what effect these have on system performance. Utilizing the proposed method will aid already established methods in improving the performance assessment of a system. Through analyzing interactions and possible behavioral scenarios from the live trial, it was observed that 30.96% of interactions included some major user error. Future development using our proposed framework will see technological advances for biometric systems that are able to categorize interaction errors and feedback appropriately

    Generalizing DET Curves Across Application Scenarios

    Full text link

    BIOMETRIC TECHNOLOGIES FOR AMBIENT INTELLIGENCE

    Get PDF
    Il termine Ambient Intelligence (AmI) si riferisce a un ambiente in grado di riconoscere e rispondere alla presenza di diversi individui in modo trasparente, non intrusivo e spesso invisibile. In questo tipo di ambiente, le persone sono circondate da interfacce uomo macchina intuitive e integrate in oggetti di ogni tipo. Gli scopi dell\u2019AmI sono quelli di fornire un supporto ai servizi efficiente e di facile utilizzo per accrescere le potenzialit\ue0 degli individui e migliorare l\u2019interazioni uomo-macchina. Le tecnologie di AmI possono essere impiegate in contesti come uffici (smart offices), case (smart homes), ospedali (smart hospitals) e citt\ue0 (smart cities). Negli scenari di AmI, i sistemi biometrici rappresentano tecnologie abilitanti al fine di progettare servizi personalizzati per individui e gruppi di persone. La biometria \ue8 la scienza che si occupa di stabilire l\u2019identit\ue0 di una persona o di una classe di persone in base agli attributi fisici o comportamentali dell\u2019individuo. Le applicazioni tipiche dei sistemi biometrici includono: controlli di sicurezza, controllo delle frontiere, controllo fisico dell\u2019accesso e autenticazione per dispositivi elettronici. Negli scenari basati su AmI, le tecnologie biometriche devono funzionare in condizioni non controllate e meno vincolate rispetto ai sistemi biometrici comunemente impiegati. Inoltre, in numerosi scenari applicativi, potrebbe essere necessario utilizzare tecniche in grado di funzionare in modo nascosto e non cooperativo. In questo tipo di applicazioni, i campioni biometrici spesso presentano una bassa qualit\ue0 e i metodi di riconoscimento biometrici allo stato dell\u2019arte potrebbero ottenere prestazioni non soddisfacenti. \uc8 possibile distinguere due modi per migliorare l\u2019applicabilit\ue0 e la diffusione delle tecnologie biometriche negli scenari basati su AmI. Il primo modo consiste nel progettare tecnologie biometriche innovative che siano in grado di funzionare in modo robusto con campioni acquisiti in condizioni non ideali e in presenza di rumore. Il secondo modo consiste nel progettare approcci biometrici multimodali innovativi, in grado di sfruttare a proprio vantaggi tutti i sensori posizionati in un ambiente generico, al fine di ottenere un\u2019elevata accuratezza del riconoscimento ed effettuare autenticazioni continue o periodiche in modo non intrusivo. Il primo obiettivo di questa tesi \ue8 la progettazione di sistemi biometrici innovativi e scarsamente vincolati in grado di migliorare, rispetto allo stato dell\u2019arte attuale, la qualit\ue0 delle tecniche di interazione uomo-macchine in diversi scenari applicativi basati su AmI. Il secondo obiettivo riguarda la progettazione di approcci innovativi per migliorare l\u2019applicabilit\ue0 e l\u2019integrazione di tecnologie biometriche eterogenee negli scenari che utilizzano AmI. In particolare, questa tesi considera le tecnologie biometriche basate su impronte digitali, volto, voce e sistemi multimodali. Questa tesi presenta le seguenti ricerche innovative: \u2022 un metodo per il riconoscimento del parlatore tramite la voce in applicazioni che usano AmI; \u2022 un metodo per la stima dell\u2019et\ue0 dell\u2019individuo da campioni acquisiti in condizioni non-ideali nell\u2019ambito di scenari basati su AmI; \u2022 un metodo per accrescere l\u2019accuratezza del riconoscimento biometrico in modo protettivo della privacy e basato sulla normalizzazione degli score biometrici tramite l\u2019analisi di gruppi di campioni simili tra loro; \u2022 un approccio per la fusione biometrica multimodale indipendente dalla tecnologia utilizzata, in grado di combinare tratti biometrici eterogenei in scenari basati su AmI; \u2022 un approccio per l\u2019autenticazione continua multimodale in applicazioni che usano AmI. Le tecnologie biometriche innovative progettate e descritte in questa tesi sono state validate utilizzando diversi dataset biometrici (sia pubblici che acquisiti in laboratorio), i quali simulano le condizioni che si possono verificare in applicazioni di AmI. I risultati ottenuti hanno dimostrato la realizzabilit\ue0 degli approcci studiati e hanno mostrato che i metodi progettati aumentano l\u2019accuratezza, l\u2019applicabilit\ue0 e l\u2019usabilit\ue0 delle tecnologie biometriche rispetto allo stato dell\u2019arte negli scenari basati su AmI.Ambient Intelligence (AmI) refers to an environment capable of recognizing and responding to the presence of different individuals in a seamless, unobtrusive and often invisible way. In this environment, people are surrounded by intelligent intuitive interfaces that are embedded in all kinds of objects. The goals of AmI are to provide greater user-friendliness, more efficient services support, user-empowerment, and support for human interactions. Examples of AmI scenarios are smart cities, smart homes, smart offices, and smart hospitals. In AmI, biometric technologies represent enabling technologies to design personalized services for individuals or groups of people. Biometrics is the science of establishing the identity of an individual or a class of people based on the physical, or behavioral attributes of the person. Common applications include: security checks, border controls, access control to physical places, and authentication to electronic devices. In AmI, biometric technologies should work in uncontrolled and less-constrained conditions with respect to traditional biometric technologies. Furthermore, in many application scenarios, it could be required to adopt covert and non-cooperative technologies. In these non-ideal conditions, the biometric samples frequently present poor quality, and state-of-the-art biometric technologies can obtain unsatisfactory performance. There are two possible ways to improve the applicability and diffusion of biometric technologies in AmI. The first one consists in designing novel biometric technologies robust to samples acquire in noisy and non-ideal conditions. The second one consists in designing novel multimodal biometric approaches that are able to take advantage from all the sensors placed in a generic environment in order to achieve high recognition accuracy and to permit to perform continuous or periodic authentications in an unobtrusive manner. The first goal of this thesis is to design innovative less-constrained biometric systems, which are able to improve the quality of the human-machine interaction in different AmI environments with respect to the state-of-the-art technologies. The second goal is to design novel approaches to improve the applicability and integration of heterogeneous biometric systems in AmI. In particular, the thesis considers technologies based on fingerprint, face, voice, and multimodal biometrics. This thesis presents the following innovative research studies: \u2022 a method for text-independent speaker identification in AmI applications; \u2022 a method for age estimation from non-ideal samples acquired in AmI scenarios; \u2022 a privacy-compliant cohort normalization technique to increase the accuracy of already deployed biometric systems; \u2022 a technology-independent multimodal fusion approach to combine heterogeneous traits in AmI scenarios; \u2022 a multimodal continuous authentication approach for AmI applications. The designed novel biometric technologies have been tested on different biometric datasets (both public and collected in our laboratory) simulating the acquisitions performed in AmI applications. Results proved the feasibility of the studied approaches and shown that the studied methods effectively increased the accuracy, applicability, and usability of biometric technologies in AmI with respect to the state-of-the-art

    A Performance Assessment Framework for Mobile Biometrics

    Get PDF
    This project aims to develop and explore a robust framework for assessing biometric systems on mobile platforms, where data is often collected in non-constrained, potentially challenging environments. The framework enables the performance assessment given a particular platform, biometric modality, usage environment, user base and required security level. The ubiquity of mobile devices such as smartphones and tablets has increased access to Internet-based services across various scenarios and environments. Citizens use mobile platforms for an ever-expanding set of services and interactions, often transferring personal information, and conducting financial transactions. Accurate identity authentication for physical access to the device and service is, therefore, critical to ensure the security of the individual, information, and transaction. Biometrics provides an established alternative to conventional authentication methods. Mobile devices offer considerable opportunities to utilise biometric data from an enhanced range of sensors alongside temporal information on the use of the device itself. For example, cameras and dedicated fingerprint devices can capture front-line physiological biometric samples (already used for device log-on applications and payment authorisation schemes such as Apple Pay) alongside voice capture using conventional microphones. Understanding the performance of these biometric modalities is critical to assessing suitability for deployment. Providing a robust performance and security assessment given a set of deployment variables is critical to ensure appropriate security and accuracy. Conventional biometrics testing is typically performed in controlled, constrained environments that fail to encapsulate mobile systems' daily (and developing) use. This thesis aims to develop an understanding of biometric performance on mobile devices. The impact of different mobile platforms, and the range of environmental conditions in use, on biometrics' accuracy, usability, security, and utility is poorly understood. This project will also examine the application and performance of mobile biometrics when in motion
    corecore