105,851 research outputs found

    The Effects of Group Collaboration on Presence in a Collaborative Virtual Environment

    Get PDF
    Presence in Collaborative Virtual Environments (CVEs) can be classified into personal presence and co-presence. Personal presence is having a feeling of “being there” in the CVE yourself. Co-presence is having a feeling that one is in the same place as the other participants, and that one is collaborating with real people. In this paper we describe an experiment used to investigate the effects that small group collaboration and interaction has on personal presence and specially co-presence in a CVE. We hypothesise that collaboration and interaction enhances co-presence in a CVE. We found that there was a large difference in co-presence between two CVEs which produced different levels of collaboration and interaction. This supports our hypotheses that just having virtual representations of others is not sufficient to create a high sense of co-presence, and that one needs collaboration and interaction in order to enhance co-presence in a CVE. We measured personal presence subjectively, using a questionnaire developed by Slater et al. We have developed a co-presence questionnaire which assesses the levels of co-presence subjectively. We have also developed a collaboration questionnaire which measures group collaboration subjectively, as well as the degree of enjoyment and comfort with others in the group

    Virtual Collaboration in the Online Educational Setting: A Concept Analysis

    Get PDF
    This study was designed to explore the concept of virtual collaboration within the context of an online learning environment in an academic setting. Rodgers’ method of evolutionary concept analysis was used to provide a contextual view of the concept to identify attributes, antecedents, and consequences of virtual collaboration. Commonly used terms to describe virtual collaboration are collaborative and cooperative learning, group work, group interaction, group learning and teamwork. A constructivist pedagogy, group-based process with a shared purpose, support and web-based technology are required for virtual collaboration to take place. Consequences of virtual collaboration are higher order thinking and learning to work with others. A comprehensive definition of virtual collaboration is offered as an outcome of this analysis. Clarification of virtual collaboration prior to using it as a pedagogic tool in the online learning environment will enhance nursing education with the changes in nursing curriculum being implemented today. Further research is recommended to describe the developmental stages of the collaborative process among nursing students in online education and how virtual collaboration facilitates collaboration in practice

    A Content-Analysis Approach for Exploring Usability Problems in a Collaborative Virtual Environment

    Get PDF
    As Virtual Reality (VR) products are becoming more widely available in the consumer market, improving the usability of these devices and environments is crucial. In this paper, we are going to introduce a framework for the usability evaluation of collaborative 3D virtual environments based on a large-scale usability study of a mixedmodality collaborative VR system. We first review previous literature about important usability issues related to collaborative 3D virtual environments, supplemented with our research in which we conducted 122 interviews after participants solved a collaborative virtual reality task. Then, building on the literature review and our results, we extend previous usability frameworks. We identified twelve different usability problems, and based on the causes of the problems, we grouped them into three main categories: VR environment-, device interaction-, and task-specific problems. The framework can be used to guide the usability evaluation of collaborative VR environments

    Performance of grassed swale as stormwater quantity control in lowland area

    Get PDF
    Grassed swale is a vegetated open channel designed to attenuate stormwater through infiltration and conveying runoff into nearby water bodies, thus reduces peak flows and minimizes the causes of flood. UTHM is a flood-prone area due to located in lowland area, has high groundwater level and low infiltration rates. The aim of this study is to assess the performance of grassed swale as a stormwater quantity control in UTHM. Flow depths and velocities of swales were measured according to Six-Tenths Depth Method shortly after a rainfall event. Flow discharges of swales (Qswale) were evaluated by Mean- Section Method to determine the variations of Manning’s roughness coefficients (ncalculate) that results between 0.075 – 0.122 due to tall grass and irregularity of channels. Based on the values of Qswale between sections of swales, the percentages of flow attenuation are up to 54%. As for the flow conveyance of swales, Qswale were determined by Manning’s equation that divided into Qcalculate, evaluated using ncalculate, and Qdesign, evaluated using roughness coefficient recommended by MSMA (ndesign), to compare with flow discharges of drainage areas (Qpeak), evaluated by Rational Method with 10-year ARI. Each site of study has shown Qdesign is greater than Qpeak up to 59%. However, Qcalculate is greater than Qpeak only at a certain site of study up to 14%. The values of Qdesign also greater than Qcalculate up to 52% where it shows that the roughness coefficients as considered in MSMA are providing a better performance of swale. This study also found that the characteristics of the studied swales are comparable to the design consideration by MSMA. Based on these findings, grassed swale has the potential in collecting, attenuating, and conveying stormwater, which suitable to be applied as one of the best management practices in preventing flash flood at UTHM campus

    Constructing a gazebo: supporting teamwork in a tightly coupled, distributed task in virtual reality

    Get PDF
    Many tasks require teamwork. Team members may work concurrently, but there must be some occasions of coming together. Collaborative virtual environments (CVEs) allow distributed teams to come together across distance to share a task. Studies of CVE systems have tended to focus on the sense of presence or copresence with other people. They have avoided studying close interaction between us-ers, such as the shared manipulation of objects, because CVEs suffer from inherent network delays and often have cumbersome user interfaces. Little is known about the ef-fectiveness of collaboration in tasks requiring various forms of object sharing and, in particular, the concurrent manipu-lation of objects. This paper investigates the effectiveness of supporting teamwork among a geographically distributed group in a task that requires the shared manipulation of objects. To complete the task, users must share objects through con-current manipulation of both the same and distinct at-tributes. The effectiveness of teamwork is measured in terms of time taken to achieve each step, as well as the impression of users. The effect of interface is examined by comparing various combinations of walk-in cubic immersive projection technology (IPT) displays and desktop devices

    Remote Real-Time Collaboration Platform enabled by the Capture, Digitisation and Transfer of Human-Workpiece Interactions

    Get PDF
    In this highly globalised manufacturing ecosystem, product design and verification activities, production and inspection processes, and technical support services are spread across global supply chains and customer networks. Therefore, a platform for global teams to collaborate with each other in real-time to perform complex tasks is highly desirable. This work investigates the design and development of a remote real-time collaboration platform by using human motion capture technology powered by infrared light based depth imaging sensors borrowed from the gaming industry. The unique functionality of the proposed platform is the sharing of physical contexts during a collaboration session by not only exchanging human actions but also the effects of those actions on the task environment. This enables teams to remotely work on a common task problem at the same time and also get immediate feedback from each other which is vital for collaborative design, inspection and verifications tasks in the factories of the future

    Assessing a Collaborative Online Environment for Music Composition

    Get PDF
    The current pilot study tested the effectiveness of an e-learning environment built to enable students to compose music collaboratively. The participants interacted online by using synchronous and asynchronous resources to develop a project in which they composed a new music piece in collaboration. After the learning sessions, individual semi-structured interviews with the participants were conducted to analyze the participants\u2019 perspectives regarding the e-learning environment\u2019s functionality, the resources of the e-learning platform, and their overall experience with the e-learning process. Qualitative analyses of forum discussions with respect to metacognitive dimensions, and semi-structured interview transcriptions were performed. The findings showed that the participants successfully completed the composition task in the virtual environment, and that they demonstrated the use of metacognitive processes. Moreover, four themes were apparent in the semi-structured interview transcriptions: Teamwork, the platform, face-to-face/online differences, and strengths/weaknesses. Overall, the participants exhibited an awareness of the potential of the online tools, and the task performed. The results are discussed in consideration of metacognitive processes, and the following aspects that rendered virtual activity effective for learning: The learning environment, the platform, the technological resources, the level of challenge, and the nature of the activity. The possible implications of the findings for research on online collaborative composition are also considered

    Using virtual worlds as collaborative environments for innovation and design: lessons learned and observations from case studies in architectural projects

    Get PDF
    In this paper we discuss observations and lessons learned in conducting architectural design projects in virtual worlds. By integrating a community of users in virtual worlds into a collaborative architectural design process, organisations can tap the community's creativity and intelligence through immersive technology. The paper provides an overview of the latest advances of information and communication technologies in immersive virtual environments and discusses some of the observations and lessons learned which should be taken into account in developing collaboration models for such activities. Here we propose four modes of collaboration, based on the choices for degree of openness and governance structure, which are illustrated by four case studies
    • …
    corecore