144,746 research outputs found

    Comprehension, Use Cases and Requirements

    Get PDF
    Within requirements engineering it is generally accepted that in writing specifications (or indeed any requirements phase document), one attempts to produce an artefact which will be simple to comprehend for the user. That is, whether the document is intended for customers to validate requirements, or engineers to understand what the design must deliver, comprehension is an important goal for the author. Indeed, advice on producing ‘readable’ or ‘understandable’ documents is often included in courses on requirements engineering. However, few researchers, particularly within the software engineering domain, have attempted either to define or to understand the nature of comprehension and it’s implications for guidance on the production of quality requirements. In contrast, this paper examines thoroughly the nature of textual comprehension, drawing heavily from research in discourse process, and suggests some implications for requirements (and other) software documentation. In essence, we find that the guidance on writing requirements, often prevalent within software engineering, may be based upon assumptions which are an oversimplification of the nature of comprehension. Furthermore, that these assumptions may lead to rules which detract from the quality of the requirements document and, thus, the understanding gained by the reader. Finally the paper suggests lessons learned which may be useful in formulating future guidance for the production of requirements documentation

    Development Of Metacognitive And Discursive Activities In Indonesian Maths Teaching A theory based analysis of communication processes

    Get PDF
    We report on a German-Indonesian feasibility study which aims to significantly increase the mathematical skills of Indonesian secondary school students. For this study a learning environment for basic secondary school mathematics in class seven has been developed. It focuses on fostering cognitive, metacognitive and discursive activities. For the effectiveness of the new instructional concept it is necessary that those activities are an important feature of the teaching and learning culture in the classroom instruction. In this paper we present the theoretical framework for the new approach to teaching and learning. We use two transcript-based examples to exemplify and explain the observable features of this classroom culture und to formulate consequences for the following instruction development. Keywords: classroom culture, metacognition, discursivity, cognitive activatio

    The role of Comprehension in Requirements and Implications for Use Case Descriptions

    Get PDF
    Within requirements engineering it is generally accepted that in writing specifications (or indeed any requirements phase document), one attempts to produce an artefact which will be simple to comprehend for the user. That is, whether the document is intended for customers to validate requirements, or engineers to understand what the design must deliver, comprehension is an important goal for the author. Indeed, advice on producing ‘readable’ or ‘understandable’ documents is often included in courses on requirements engineering. However, few researchers, particularly within the software engineering domain, have attempted either to define or to understand the nature of comprehension and it’s implications for guidance on the production of quality requirements. Therefore, this paper examines thoroughly the nature of textual comprehension, drawing heavily from research in discourse process, and suggests some implications for requirements (and other) software documentation. In essence, we find that the guidance on writing requirements, often prevalent within software engineering, may be based upon assumptions which are an oversimplification of the nature of comprehension. Hence, the paper examines guidelines which have been proposed, in this case for use case descriptions, and the extent to which they agree with discourse process theory; before suggesting refinements to the guidelines which attempt to utilise lessons learned from our richer understanding of the underlying discourse process theory. For example, we suggest subtly different sets of writing guidelines for the different tasks of requirements, specification and design

    Referential and visual cues to structural choice in visually situated sentence production

    Get PDF
    We investigated how conceptually informative (referent preview) and conceptually uninformative (pointer to referent’s location) visual cues affect structural choice during production of English transitive sentences. Cueing the Agent or the Patient prior to presenting the target-event reliably predicted the likelihood of selecting this referent as the sentential Subject, triggering, correspondingly, the choice between active and passive voice. Importantly, there was no difference in the magnitude of the general Cueing effect between the informative and uninformative cueing conditions, suggesting that attentionally driven structural selection relies on a direct automatic mapping mechanism from attentional focus to the Subject’s position in a sentence. This mechanism is, therefore, independent of accessing conceptual, and possibly lexical, information about the cued referent provided by referent preview

    Comprehensibility of UML-based Formal Model – A Series of Controlled Experiments

    No full text
    This paper summarises two controlled experiments conducted on a model that integrates the use of semi-formal notation, the Unified Modelling Language (UML) and a formal notation, B. The experiments assessed the comprehensibility of the model, namely UML-B. The first experiment compared the comprehensibility of a UML-B model and a B model. In the second experiment, the model was compared with an Event-B model, a new generation of B. The experiments assessed the ability of the model to present information and to promote problem domain understanding. The measurement focused on the efficiency in performing the comprehension tasks. The experiments employed a cross-over design and were conducted on third-year and masters students. The results suggest that the integration of semi-formal and formal notations expedites the subjects’ comprehension tasks with accuracy even with limited hours of training

    An inquiry based instructional planning model that accommodates student diversity

    Get PDF
    The students in today’s public school classrooms represent great diversity and the struggle of teachers to teach all their students well. This paper describes an inquiry based instructional planning model that reflects lessons from the literature on effective teaching for diverse classrooms. An example of a high school lesson exemplifies the model. The model includes a framework for planning supports for students with extraordinary learning challenges

    Applying science of learning in education: Infusing psychological science into the curriculum

    Get PDF
    The field of specialization known as the science of learning is not, in fact, one field. Science of learning is a term that serves as an umbrella for many lines of research, theory, and application. A term with an even wider reach is Learning Sciences (Sawyer, 2006). The present book represents a sliver, albeit a substantial one, of the scholarship on the science of learning and its application in educational settings (Science of Instruction, Mayer 2011). Although much, but not all, of what is presented in this book is focused on learning in college and university settings, teachers of all academic levels may find the recommendations made by chapter authors of service. The overarching theme of this book is on the interplay between the science of learning, the science of instruction, and the science of assessment (Mayer, 2011). The science of learning is a systematic and empirical approach to understanding how people learn. More formally, Mayer (2011) defined the science of learning as the “scientific study of how people learn” (p. 3). The science of instruction (Mayer 2011), informed in part by the science of learning, is also on display throughout the book. Mayer defined the science of instruction as the “scientific study of how to help people learn” (p. 3). Finally, the assessment of student learning (e.g., learning, remembering, transferring knowledge) during and after instruction helps us determine the effectiveness of our instructional methods. Mayer defined the science of assessment as the “scientific study of how to determine what people know” (p.3). Most of the research and applications presented in this book are completed within a science of learning framework. Researchers first conducted research to understand how people learn in certain controlled contexts (i.e., in the laboratory) and then they, or others, began to consider how these understandings could be applied in educational settings. Work on the cognitive load theory of learning, which is discussed in depth in several chapters of this book (e.g., Chew; Lee and Kalyuga; Mayer; Renkl), provides an excellent example that documents how science of learning has led to valuable work on the science of instruction. Most of the work described in this book is based on theory and research in cognitive psychology. We might have selected other topics (and, thus, other authors) that have their research base in behavior analysis, computational modeling and computer science, neuroscience, etc. We made the selections we did because the work of our authors ties together nicely and seemed to us to have direct applicability in academic settings
    corecore